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Abstract. In this paper we introduce a common problem in electronic measurements and
electrical engineering: finding the first root from the left of an equation in the presence of some
initial conditions. We present examples of electrotechnical devices (analog signal filtering), where it
is necessary to solve it. Two new methods for solving this problem, based on global optimization
ideas, are introduced. The first uses the exact a priori given global Lipschitz constant for the first
derivative. The second method adaptively estimates local Lipschitz constants during the search.
Both algorithms either find the first root from the left or determine the global minimizers (in the
case when the objective function has no roots). Sufficient conditions for convergence of the new
methods to the desired solution are established in both cases. The results of numerical experiments
for real problems and a set of test functions are also presented.
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1. Introduction. Let us consider a device whose behavior depends on a char-
acteristic f(x), x ∈ [a, b]; f(x) may be, for instance, an electrical signal and [a, b] a
time interval. The device functions correctly while f(x) > 0. At the initial moment
x = a, we have f(a) > 0. It is supposed that the function f(x) is multiextremal and
the Lipschitz condition is satisfied for its first derivative; that is,

|f ′(x)− f ′(y)| ≤ L|x− y|, x, y ∈ [a, b],(1)

where the constant L, 0 < L <∞, is the Lipschitz constant. Generally, L is unknown.
The problem we deal with in this paper is determining a time interval [a, x∗] where
the device works correctly. This problem is equivalent to the problem of finding the
root of f that is first from the left, that is, finding

x∗ = min{x : f(x) = 0},(2)

subject to conditions:

x ∈ [a, b], f(a) > 0.(3)

This problem very often arises in electronic measurements [1], [6], [22] and electrical
engineering [3], [5], [11], [12], [13], [14], [17], and in section 2 we present two concrete
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Fig. 1. Auxiliary support function φ(x) for the function f(x).

applications as examples. Usually it is difficult to solve the problem (2), (3) in an
analytical way and numerical methods are used to find a σ-approximation xσ of the
point x∗ such that

0 ≤ f(xσ), |xσ − x∗| < σ.(4)

Two approaches are currently used by engineers to solve the problem (1)–(4).
The first one uses standard local techniques for finding equation roots in order to
achieve a rapid convergence to the point x∗. The drawback of this method is that
convergence is not assured since f(x) is a multiextremal function on [a, b], and it may
diverge or converge to a local minimum greater than zero (see [17]). Moreover, if
the objective function f(x) has more than one root (and this is usually the case; see
Figure 1), different choices of the initial conditions can produce different solutions of
the equation f(x) = 0.

The second approach is based on the use of any simple grid technique which
produces a dense mesh starting from the left margin of the interval and going on by
σ until the value f(x) becomes less than zero (see [3]). This approach is very reliable
but the number of evaluations of f(x) is too high.

In this paper we propose two new numerical algorithms for solving the problem
(1)–(4) in order to find a point xσ from (4). The methods are based on geometric
ideas of the global optimization technique [20]. The new algorithms either find the
point xσ from (4) or determine a σ approximation x′σ of the global minimizer x′ of
f(x) and the corresponding value f(x′σ) in the case

f(x) > 0, x ∈ [a, b].(5)

The first algorithm uses the given constant L from (2). Since in practice it is
difficult to know this value a priori, the problem of estimating it in the course of
the search arises. The second method presented here estimates the local Lipschitz
constants for subintervals of the search region in the course of the search. Using local
estimates instead of the global one accelerates the search significantly.

The new techniques are described in section 3. Convergence conditions are estab-
lished in section 4. Section 5 contains results of numerical experiments executed both
with objective functions derived from the applications presented in section 2 and with
a series of test functions. Finally, section 6 concludes the paper.
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2. Filters as examples of electronic devices where the problem arises.
The problem (1)–(4) arises very often in applications (see [1], [3], [5], [6], [11], [12], [13],
[14], [17], [22]). In fact, the objective function f(x) can be considered as, for example,
a reliability characteristic of a device or a mathematical model. While f(x) > 0 the
model is reliable, but for x ≥ x∗ it is not.

Here we consider two concrete examples that illustrate the problem (1)–(4). Both
of them deal with electrical filters. Filters are basic electronic components utilized
in many fields such as power conversion circuits, electronic measurement instruments
and communications systems. In particular, electrical filters can be found in tele-
phones, televisions, radios, radar, and sonar. A filter is a device that modifies in a
predetermined way the input signal that passes through it. Electrical filters may be
classified as analog filters, used to process analog or continuous-time signals, or digital
filters, used to process digital signals (discrete-time signals).

Let us consider a signal s(x), where x is time. If a signal s(x), composed of a sum
of signals s1(x), s2(x), . . . , sn(x) so that

s(x) = s1(x) + s2(x) + · · ·+ sn(x),

is the input of an analog filter, the output signal is obtained from the input one by
suppressing certain components sk(x), k ∈ {1, . . . , n}. Let us define for the signal s(x)
its frequency θ as the number of times that the signal repeats itself in unit time and
the pulse ω = 2πθ. Below we refer to θ or ω simply as frequency. If a signal s(x) has
a certain frequency θ, it may be represented by a rotant vector having angular speed
equal to ω and the amplitude equal to the maximum amplitude of s(x). As all the
vectors with the same angular speed can be represented in a complex plane (see [5]),
since we can represent the signal s(x) in the frequency domain instead of the time
domain, we can write s(x) as s(ω). If Y (ω) is the filter output and X(ω) is its input
into the frequency domain, the function

|H(ω)| = |Y (ω)|
|X(ω)|

is called the transfer function in the frequency domain (see [11], [12]). From the value
of |H(ω)| we can evaluate the answer of the filter, that is, how far the output signal
is from the input signal. The cutoff frequency ωc is defined as the frequency where
the transfer function is equal to

√
0.5 of its maximum amplitude. This implies that

ωc can be calculated from the following equation:

|H(ω)| =
√

0.5Hmax,

or

|H(ω)|2 = 0.5H2
max,

where

Hmax = max{H(ω) : ω ∈ [0,∞)}.

The passband is the width of the interval [ωc1, ωc2] in which

|H(ω)|2 ≥ 0.5H2
max,
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Fig. 2. A circuit realization of the Chebyshev filter.

where ωc1 is called the lower cutoff frequency and ωc2 is called the higher cutoff
frequency. If ωc1 = 0 the filter is a low-pass filter; if ωc2 → ∞ the filter is a high-
pass filter; finally, if ωc1 and ωc2 are finite values, the filter is a passband filter. In
general, an electrical filter is designed to separate one component of the input signal
from the others. If we want to separate a particular frequency ωp and reject all
other frequencies, for technical reasons we cannot build a filter that will pass only
ωp, but a set of frequencies ωp ∈ [ωc1, ωc2]. As an example, let us consider a radio
or television receiver. The transmission station is assigned an interval of frequencies
called the band of frequencies or channel frequencies, in which it must transmit its
signal. Ideally, the receiver should accept and process any signal in the assigned
channel and completely exclude signals at all other frequencies. Thus the simplest
specifications on the magnitude of the transfer function of the receiver are

|H(ω)| =
{
Hmax for ωc1 ≤ ω ≤ ωc2,
0 otherwise,

(6)

where ωc1 ≤ ω ≤ ωc2 is the channel of the signal to be received. However, no circuits
can produce such a transfer function exactly. In practice, filters are not required to
meet the extremely stringent requirements such as those of (6), and some filters with
a transfer function approximating (6) have been found to be consistently satisfactory.
A filter that has a uniform approximation property in the passband is the Chebyshev
filter (see [11], [12]), which is the first example that will be described in what follows.

An electrical circuit that realizes a Chebyshev filter is shown in Figure 2, where
voltage Vin(ω) is the input and voltage Vout(ω) is the output. The transfer function
F (ω), obtained by applying Kirchhoff laws to the circuit of Figure 2, has the following
expression:

F (ω) =

∣∣∣∣Vout(ω)

Vin(ω)

∣∣∣∣ =
1√

1 +R2C2ω2
· 1√

(2− ω2LC)2 + ω2L2/R2
,(7)

where the values R, C, and L are introduced in Figure 2 and | · | is the length of
a complex vector. This function suppresses the frequency components beyond the
cutoff frequency ωc and is characterized by ripples in the passband. The number of
maxima and minima in the ripple passband defines the filter order. In our case, the
filter order is n = 3. The cutoff frequency can be found as the first root from the left
for the function

f(ω) = F (ω)2 − 0.5F 2
max,
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Fig. 3. A circuit realization of the passband filter.

where Fmax is the maximum of the function

F (ω), ω ∈ (0,∞).

Let us consider the second example. In Figure 3 the electrical circuit of a bandpass
filter [11] is shown. The transfer function of this filter is given by

F (ω) =

∣∣∣∣Vout(ω)

Iin(ω)

∣∣∣∣ =
ωL1R1√

(Z2
1 + Z2

2 )2 · Z3

,(8)

where

Z1 = −ω3R1L1L2 + ωR1L2 + ωR1L1C1/C2 −R1/(ωC2) + 2ωL1R1 + ωL1R2,

Z2 = ω2L1L2 + ω2R1R2L1C1 −R1R2 − L1/C2,

Z3 = (ωL1)2 + (ω2R1L1C1 −R1)2.

This result can be obtained by applying Kirchhoff laws to the circuit in Figure 3.
The transfer function tends to zero for ω → 0 and ω →∞. The cutoff frequency can
be found as the first zero crossing for the function

f(ω) = −(F (ω)2 − 0.5F 2
max).

The values of the circuit parameters may be changed, thus varying the flatness
of the transfer function.

3. Theoretical background and the algorithms. New algorithms presented
here for solving the problem (1)–(4) are based on the following idea. Let us suppose
that the objective function f(x) and its first derivative f ′(x) have already been cal-
culated at n trial points xi, 1 ≤ i ≤ n. We can reorder these points by subscripts in
such a way that

a = x1 < x2 < · · · < xi < · · · < xn = b.

Thus, dealing with the trial points, we use two numerations. The record xi means
that this point has been produced during the ith iteration. The record xi, i = i(n),
means that this point has the ith position in the string above during the nth iteration.
We designate the results of trials as zi = f(xi), z

′
i = f ′(xi), 1 ≤ i ≤ n.
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For every interval [xi−1, xi], 1 < i ≤ n, we construct an auxiliary function φi(x) in
such a way that φi(x) ≤ f(x), x ∈ [xi−1, xi]. Knowing the structure of the auxiliary
function, we can find the first function φi(x) such that for some x ∈ [xi−1, xi] it follows
that

φi(x) = 0,

and we can determine the first root from the left of this equation. Adaptively im-
proving the set of functions φi(x), 1 < i ≤ n, by adding new points xn+1, xn+2, . . .
we will improve our approximation of f(x) and of the point x∗. This geometric ap-
proach is widely used in global optimization (see [7], [10]), applying functions φi(x)
with different structures (see [8], [15], [16] for methods using only the values of objec-
tive functions and [2], [4], [9], [20], [24], [25], [26], [27] for algorithms where the first
derivatives are also taken into consideration).

In the two algorithms presented here we use the following three ideas to provide
a fast localization of the points xσ from (4):

—using smooth auxiliary functions from [20], where they demonstrated good
performance in global optimization;

—constructing auxiliary functions only for intervals [xi−1, xi], 1 < i ≤ k, where

k = min{{n} ∪ {i : f(xi) < 0, 1 < i ≤ n}};(9)

—adaptively estimating of the local Lipschitz constant Li for every interval [xi−1, xi]
(in the second algorithm).

Let us discuss these ideas one after another. First, there exist three types of
support function elaborated to solve global optimization problems: piecewise linear
(see [8], [15], [16], [18]), nonsmooth quadratic (see [4], [9], [24], [26]), and smooth
quadratic (see [20], [25], [27]). We use the last construction because (see [20], [25],
[27]) it best approximates the objective function.

Suppose that we have an estimate mi of the constant Li such that

mi ≥ Li.(10)

In this case it is possible to construct a support function φi(x) for f(x) over
[xi−1, xi] (see [20]) as follows:

φi(x) =

 zi−1 + z′i−1(x− xi−1)− 0.5mi(x− xi−1)2, x ∈ [xi−1, y
′
i],

0.5mix
2 + bix+ ci, x ∈ (y′i, yi],

zi − z′i(xi − x)− 0.5mi(xi − x)2, x ∈ (yi, xi],
(11)

where

yi =
xi − xi−1

4
+
z′i − z′i−1

4mi
+
zi−1 − zi + z′ixi − z′i−1xi−1 + 0.5mi(x

2
i − x2

i−1)

mi(xi − xi−1) + z′i − z′i−1

,(12)

y′i = −xi − xi−1

4
− z
′
i − z′i−1

4mi
+
zi−1 − zi + z′ixi − z′i−1xi−1 + 0.5mi(x

2
i − x2

i−1)

mi(xi − xi−1) + z′i − z′i−1

,(13)

bi = z′i − 2miyi +mixi,(14)

ci = zi − z′ixi − 0.5mix
2
i +miy

2
i .(15)
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An illustration of the functions f(x), φi(x) is presented in Figure 1. The function
φi(x) has been constructed using the Taylor formula for f(x) about the point xi−1

(see the first line in (11)) and the point xi (see the third line in (11)). The second
line of (11) has been obtained as the quadratic which agrees with the f(x) curvature
at the interval extremes. Note that the first derivative φ′i(x), for all x ∈ (xi−1, xi)
exists.

It will be useful for us to find the point

hi = argmin{φi(x) : x ∈ [xi−1, xi]}(16)

and the corresponding value

Ri = φi(hi) = min{φi(x) : x ∈ [xi−1, xi]}.(17)

We will call the value Ri the characteristic of the interval [xi−1, xi]. Let us consider
two cases. If φ′i(y

′
i) < 0 and φ′i(yi) > 0, then

hi = argmin{f(xi−1), φi(x̂i), f(xi)},(18)

where

x̂i = 2yi − z′im−1
i − xi−1.(19)

The point x̂i is determined from the equation φ′i(x) = 0, x ∈ [y′i, yi]. It follows from
(11) that

φi(x̂i) = ci − 0.5mix̂
2
i .(20)

In the second case there is no point x̂i ∈ [y′i, yi] such that φ′i(x̂i) = 0 and

hi = argmin{f(xi−1), f(xi)}.(21)

The algorithms work by constructing the function φi(x) from (11) from left to
right taking the intervals one after another and calculating their characteristics. If in
a step Rj < 0 has been found, this means that there exists a point x̃ ∈ [xj−1, xj ] such
that φj(x̃) = 0.

In this case we determine the new trial point xn+1 = x̃ (all possible locations of
xn+1 are shown in Figures 4, 5, 6) and evaluate f(xn+1) and f ′(xn+1). If f(xn+1) < 0,
then there is no need to consider the interval (xn+1, b] because the solution xσ is in
(a, xn+1] (here a, b are from (3)). Then we increment n and restart the procedure. If
(5) takes place, then the algorithm will function to find an approximation x′σ of the
point x′.

The last points we discuss before describing the algorithms are obtaining valuesmi

such that (10) holds and the influence on the speed (and correctness) of the algorithm.
The first method for obtaining the values mi is to take mi = L, where L is from (1).
But in real problems, it is often difficult to know the exact value of L. In this case
a fixed estimate of L is taken and used in the course of the search. This strategy is
applied in global optimization methods (for different auxiliary functions φi(x)) in [2],
[4], [15], [27]. We use it in our first algorithm A1.

The second approach to determining the values mi is to estimate L in the course
of the search using information obtained from evaluating f(x), f ′(x) at trial points.
The way of estimating L is under intensive investigation (see [23]), and many global
optimization algorithms do it in different manners (see [8], [9], [16], [21]).
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Fig. 4. Possible locations for the roots of the equation φi(x) = 0: the case when xn+1 is
calculated by the formula (29).

Fig. 5. Possible locations for the roots of the equation φi(x) = 0: the case when xn+1 is
calculated by the formula (30).
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Fig. 6. Possible locations for the roots of the equation φi(x) = 0: the case when xn+1 is
calculated by the formula (31).

The main drawback of both approaches is the following. The global Lipschitz
constant L gives very poor information about the behavior of f(x) in every small
interval [xi−1, xi]. That is why, in our second algorithm A2, we estimate local Lipschitz
constants Li for every interval [xi−1, xi], 1 < i ≤ k. This strategy has been successfully
applied in global optimization techniques [18], [19], [20], [24], [25], [26] for different
classes of problems.

Now we are ready to describe the methods. We present only A2, since the A1
scheme can be obtained easily from it by eliminating Step 2, below, and using mi = K,
L ≤ K <∞, in all subsequent steps.

Let us suppose that n trials, with n ≥ 2, of the algorithm have already been
carried out at points x1, . . . , xn. The (n + 1)th trial point xn+1 is chosen according
to the following procedure.

Step 1 (ordering trial points). Among the trial points x1, . . . , xn of the previous
n iterations, form the subset Xk(n) such that

Xk(n) = {x1, x2, . . . , xk},

where k is as defined in (9). We let bn = xk, the right margin of the search interval
during the nth iteration (see Figure 1).
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Step 2 (computing mi). Calculate estimates mi for the local Lipschitz constants
Li for the intervals

[xi−1, xi], 1 < i ≤ k,

as follows:

mi = r ·max{λi, γi, ξ},(22)

where ξ > 0 and r > 1 are parameters of the method.
The values λi and γi spy on changes of local and global information, respectively,

obtained in the course of the search. The value λi is calculated as

λi = max{vj : 1 < j ≤ k, i− 1 ≤ j ≤ i+ 1},(23)

where

vj =
|2(zj−1 − zj) + (z′j + z′j−1)(xj − xj−1)|+ dj

(xj − xj−1)2
(24)

and

dj =
√

[2(zj−1 − zj) + (z′j − z′j−1)(xj − xj−1)]2 + (z′j − z′j−1)2(xj − xj−1)2.

The second component γi from (22) is calculated as

γi = m(xi − xi−1)/Xmax,(25)

where m estimates the global Lipschitz constant L from (1):

m = max{vi : 1 < i ≤ k}(26)

and

Xmax = max{xi − xi−1 : 2 ≤ i ≤ k}.

Step 3 (calculating characteristics Ri of the intervals). Initialize the index sets
I = ∅, Y = ∅, Y ′ = ∅. Set the index of the current interval i = 2.

Step 3.0 (organizing the main cycle). If i > k, then go to Step 4; otherwise
compute the values yi, y

′
i according to (12) and (13). If φ′i(y

′
i) · φ′i(yi) < 0, then go to

Step 3.2; otherwise, go to Step 3.1.
Step 3.1 (computing Ri if φ′i(y

′
i) · φ′i(yi) ≥ 0). Calculate Ri = φi(hi), where hi

is from (21). If hi = xi, then include i in Y ; else include i in Y ′. Go to Step 3.3.
Step 3.2 (computing Ri if φ′i(y

′
i) · φ′i(yi) < 0). Calculate Ri = φi(hi), where hi

is from (18). Include i in I. Go to Step 3.3.
Step 3.3 (verifying the sign of Ri). If Ri ≤ 0, then go to Step 5; otherwise set

i = i+ 1 and go to Step 3.0.
Step 4 (computing the new trial point if Rj > 0, 1 < j ≤ k). Find an interval i

with the minimal characteristic, that is,

i = argmin{Rj : 1 < j ≤ k},(27)
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and define the new trial at the point xn+1 as follows:

xn+1 =

 y′i if i ∈ Y ′,
x̂i if i ∈ I,
yi if i ∈ Y .

(28)

Go to Step 6.
Step 5 (computing the new trial point if Ri ≤ 0). If φi(y

′
i) ≤ 0, then go to Step

5.1. Otherwise go to Step 5.2.
Step 5.1 (choosing the new trial point if φi(y

′
i) ≤ 0). Calculate

xn+1 = xi−1 +
1

mi
(z′i−1 +

√
z
′2
i−1 + 2mizi−1),(29)

that is, the right root of the equation

zi−1 + z′i−1(x− xi−1)− 0.5mi(x− xi−1)2 = 0

obtained from the first line of (11) (see Figure 4), and go to Step 6.
Step 5.2 (choosing the new trial point if φi(y

′
i) > 0 and φ′i(y

′
i)φ
′
i(yi) < 0). If

φ′i(y
′
i) · φ′i(yi) ≥ 0, then go to Step 5.3. Otherwise, if φi(x̂i) > 0, then compute

xn+1 = xi +
1

mi
(zi
′ +
√
z
′2
i + 2mizi),(30)

that is, the right root of the equation

zi − z′i(xi − x)− 0.5mi(xi − x)2 = 0

obtained from the third line of (11) (see Figure 5(a)) and go to Step 6.
If φi(x̂i) ≤ 0, then xn+1 is calculated following the formula (this situation is

presented in Figure 6(a))

xn+1 =
−bi −

√
b2i − 2mici
mi

(31)

obtained from the second line of (11) as the left root of the equation

0.5mix
2 + bix+ ci = 0;

then go to Step 6.
Step 5.3 (choosing the new trial point if φ′i(y

′
i) · φ′i(yi) ≥ 0). If φi(yi) > 0, then

calculate xn+1 using (30) (see Figure 5(b)) and go to Step 6. Otherwise use (31) for
calculating xn+1 (see Figure 6(b)).

Step 6 (the stopping rule). If the stopping rule |xi − xi−1| ≤ σ, where σ is from
(4), is fulfilled, then Stop. Otherwise calculate the value f(xn+1) and go to Step 7,
setting bn+1 = xn+1 if f(xn+1) < 0.

Step 7 (adjusting the search information). Calculate the value f ′(xn+1). Set
n = n+ 1 and go to Step 1.

After fulfillment of the stopping rule the following situations can take place:
i. bn+1 6= b. This means that we can take xσ = xk−1 because this is the last trial

point such that f(xk−1) > 0.
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Fig. 7. Flowchart for the algorithms.

ii. bn+1 = b and Ri > 0 for all i, 1 < i ≤ k. This means that no root has been
found in the interval [a, b] and we can continue our investigation taking a new interval
[a1, b1], where a1 = b. The point

xnσ = argmin{f(xj) : 1 ≤ j ≤ n}

can be taken as a σ–approximation of the global minimizer x′ over [a, b] and the value
f(xnσ) can be used as an estimate of reliability of our device over the interval [a, b].

iii. bn+1 = b and there exists an interval j such that its characteristic Rj ≤ 0.
This situation means that it is necessary to take new σ1 < σ because the algorithm
stops within the interval [xj−1, xj ] with properties zj−1 > 0, zj > 0, and Rj ≤ 0 and
cannot proceed because xj−1−xj ≤ σ. For a better understanding of the algorithms’
logic we present their flowchart in Figure 7.

Let us say a few words about parameters of the second method. The parameter
ξ is a small number reflecting our supposition that f ′(x) is not constant over the
interval [xi−1, xi] and r > 1 is a reliability parameter of the method. Increasing
r means that we suppose that the information obtained during the search is not
sufficiently reliable and the objective function behavior is worse than is seen from the
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Fig. 7. (Cont.).

search. Our experience shows that taking r ∈ [1.2, 2] gives good results both in terms
of convergence and in terms of speed.

4. Convergence analysis. In this section we demonstrate that the infinite trial
sequence {xn} generated by A1 or A2 in the case σ = 0 has as its limit points (points
of accumulation):

—the point x∗ from (2) if within [a, b] there exists at least one root of the equation
f(x) = 0;

—the global minimizer x′ if (5) takes place.
We start by establishing these results for A1.
Theorem 4.1. If there exists the point x∗ ∈ [a, b] from (2), then x∗ will be the

unique limit point of the sequence {xn} of trial points generated by A1.
Proof. Since, due to the A1 scheme for all n ≥ 1 we use

mi(n) = K, L ≤ K <∞, 1 < i ≤ n,
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Table 1
Characteristics of the functions utilized for numerical experiments.

then the auxiliary functions φi(x) from (11) constructed by the algorithm will be the
support ones for all i, 1 < i ≤ k(n), where k is from (9); that is,

f(x) ≥ φi(x), x ∈ [xi−1, xi], 1 < i ≤ k(n).

Denote by t = t(n) the number of an interval [xt−1, xt] such that

x∗ ∈ [xt−1, xt](32)

in the course of the nth iteration. Due to (16), (17) its characteristic Rt is such that

Rt < 0.(33)

Since K <∞ there exists an infinite sequence of iteration numbers {d} such that

Rj > 0, 1 < j < t(d), d ∈ {d}.(34)

This means that every trial with the number d + 1, d ∈ {d}, will fall in the interval
[xt−1, xt]. Using again the inequality L ≤ K <∞ and (29)–(31) we obtain that

lim
d→∞

xd+1 = x∗.

To conclude the proof we show that x∗ is the unique accumulation point of {xn}.
The presence of another limit point x on the right of x∗ is impossible because of Step
1 of A1 and (9). The situation x < x∗ cannot take place for the following reason.
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Table 2
Comparison between grid technique and the methods using smooth auxiliary functions.

Let x ∈ [xc(n)−1, xc(n)] in the course of the nth iteration. Then, if x is a limit
point of {xn}, the characteristic Rc(n) of the interval [xc(n)−1, xc(n)] should be less
than 0 infinitely many times, but this is impossible because of (2) and the limitness
of K.

Theorem 4.2. If (5) takes place, then all global minimizers will be limit points
of the trial sequence {xk} generated by A1.

Proof. Due to (5) and the fact that the constant K < ∞ there is an iteration
number p such that

Rj > 0, 1 < j ≤ p.(35)

This means that for n > p Step 5 will never be executed and A1 functions as the
global optimization method 1 from [20], where the corresponding convergence results
are given.
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Table 2
(Cont.).

Let us consider now the performance of the algorithm A2. First, note that for
a correct functioning of the method it is necessary to choose mi in accordance with
the information obtained from the trials executed at the points xi−1, xi. If mi is
underestimated it is possible to obtain yi, y

′
i /∈ [xi−1, xi].

Proposition 4.1. The choice of mi by the formula (22) provides that yi, y
′
i ∈

[xi−1, xi].
Proof. The accordance of the choice of mi with the local information is done

by the presence of λi in (22). This value is determined by (23), (24). A complete
discussion of this result can be found in [20].

Theorem 4.3. Let Lt be the local Lipschitz constant of f(x) over the interval
[xt−1, xt] 3 x∗, t = t(n), during the nth iteration of A2. If there exists an iteration
number n∗ such that for all n > n∗ the inequality

mt ≥ Lt(36)

holds, then the point x∗ will be the unique limit point of the trial sequence {xn}
generated by A2.
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Table 2
(Cont.).

Proof. As the values mj , 2 ≤ j < t, are bounded (see (22)) thusly,

rξ ≤ mj ≤ r ·max{ξ, L}, 2 ≤ j < t,(37)

then there exists an iteration number n after which a sequence {d} from (34) will exist
and (34) will take place. Thus, considering iterations with numbers n > {n∗, n}, we
obtain that both (33) and (34) hold, and the theorem is proved following the proof of
Theorem 4.1.

Remark 1. Note that to have convergence to the point x∗ it is not necessary to
estimate the global Lipschitz constant correctly over the whole region [a, b]. It is enough
to do it only for the local constant Li for the subinterval [xt−1, xt]. This condition is
significantly weaker than the corresponding convergence results for the methods using
estimates of Lipschitz constants (see [8], [9], [16], [21]).

Theorem 4.4. Let (5) be true and Lt be the local Lipschitz constant of f(x) over
the interval [xt−1, xt] 3 x′, where x′ is a global minimizer and there exists a number
n′ such that (36) takes place. Then x′ will be the limit point of the trial sequence
generated by A2.
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Table 2
(Cont.).

Proof. It follows from (37) and (5) that there exists a number p from (35) such
that (35) holds. From (36) we obtain

φt(x) ≤ f(x), x ∈ [xt−1, xt].

Thus, from the iteration number x̂ = max{p, n′}, A2 functions as the global
optimization algorithm 3 from [20] and (36) is its sufficient condition of convergence
to the point x′.

5. Numerical experiments. In this section we present the results of numer-
ical experiments carried out in order to demonstrate the performance of the new
algorithms and to compare them with the grid technique mainly used by engineers to
solve the problem (1)–(4).

In the first series of experiments 20 test functions were chosen over the interval
[0.2, 7]. Their analytic expressions and characteristics are given in Table 1. We denote
by FRL the first root from the left. The functions are reported in Table 2 and concern
general real cases that can be found in many different applications, such as filtering
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Fig. 8. Plot of function (38) for determining the cutoff frequency for the Chebyshev filter.

Fig. 9. Plot of function (39) for determining the cutoff frequency for the passband filter.

and harmonic analysis in electrical or electronic systems, image processing, wavelet
theory, and so on (see [1], [3], [5], [6], [11], [12], [13], [14], [17], [22]).

The parameters of the algorithms have been chosen as follows: ξ = 10−6, r = 1.2
for the algorithm A2 and σ = 10−4(b−a) for the algorithms A1 and A2 and for the grid
method. We used exact Lipschitz constants for f ′(x) in A1 in all the experiments.
Table 2 contains the numbers of trials required by A1, A2, and the grid method
working with the step σ before satisfaction of the stopping rule.

In the second part of the experiments we solved practical electrotechnical problems
by finding the cutoff frequency for the filters presented in section 2. The parameters
for the Chebyshev filter were the following: R = 1Ω; L = 2H; C = 4F . The cutoff
frequency was found as the first zero crossing for the function

f(ω) = F (ω)2 − 0.5F 2
max(38)

(see Figure 8), where F (ω) is from (7) and was found in the point ω = 0.8459rad/s.
This result was obtained in 2745 iterations by the grid method, in 11 iterations by
the algorithm A1, and in 10 iterations by the algorithm A2.

The second filter is a passband filter (see section 2). The parameters for this filter
have been chosen as follows: R1 = 3108Ω, L1 = 40e−3H, C1 = 1e−6F , R2 = 477Ω,
L2 = 350e−2H, C2 = 0.1e−6F . The cutoff frequency was found as the first zero
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crossing for the function

f(ω) = −(F (ω)2 − 0.5F 2
max)(39)

(see Figure 9), where F (ω) is from (8) and was found in the point ω = 4824.43rad/s.
This result was obtained in 4474 iterations by the grid method, in 44 iterations by
the algorithm A1, and in 27 iterations by the algorithm A2.

6. Conclusions. In this paper we have considered the problem of finding the
first root from the left of an equation f(x) = 0, where f(x) satisfies condition (1).
This problem very often arises in practice, and we have presented two applications
from signal filtering.

To solve this problem we have proposed two methods. The first one uses the
exact a priori given Lipschitz constant L. When L is not known a priori the second
method solves the problem using adaptive estimation of the local Lipschitz constant
in the course of the search. It uses the obtained estimates in order to accelerate the
search.

Numerical experiments executed with real problems and with a set of test func-
tions demonstrate good performance of the new techniques in comparison with the
method usually used by engineers. Comparing numerically the first algorithm with
the second, we can see that, on the set of functions considered in the experiments,
the use of local estimates accelerates the search.

Acknowledgment. We would like to thank the first referee for helpful sugges-
tions.
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COMPUTING THE MINIMUM COST PIPE NETWORK
INTERCONNECTING ONE SINK AND MANY SOURCES∗
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Abstract. In this paper, we study the problem of computing the minimum cost pipe network
interconnecting a given set of wells and a treatment site, where each well has a given capacity and
the treatment site has a capacity that is no less than the sum of all the capacities of the wells. This
is a generalized Steiner minimum tree problem which has applications in communication networks
and in groundwater treatment. We prove that there exists a minimum cost pipe network that is
the minimum cost network under a full Steiner topology. For each given full Steiner topology, we
can compute all the edge weights in linear time. A powerful interior-point algorithm is then used
to find the minimum cost network under this given topology. We also prove a lower bound theorem
which enables pruning in a backtrack method that partially enumerates the full Steiner topologies
in search for a minimum cost pipe network. A heuristic ordering algorithm is proposed to enhance
the performance of the backtrack algorithm. We then define the notion of k-optimality and present
an efficient (polynomial time) algorithm for checking 5-optimality. We present a 5-optimal heuristic
algorithm for computing good solutions when the problem size is too large for the exact algorithm.
Computational results are presented.

Key words. minimum cost pipe network, generalized Steiner minimum tree problem, bounding
theorem, backtrack, interior-point methods, k-optimal
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1. Introduction. In the Euclidean Steiner minimum tree (ESMT) problem [21,
13], we are seeking a minimum cost network interconnecting a set of given points on
the Euclidean plane, where the cost of a network is measured as the sum of edge
lengths. Note that additional points joining the line segments may be added in order
to reduce network cost. These added points are called Steiner points and the given
points are called regular points. There is a large literature on the ESMT problem
[6, 7, 31]. We refer readers to the survey paper [16] and the book [17].

In this paper, we study a generalization of the ESMT problem, which arises from
communication networks [13] and groundwater treatment in civil and environmental
engineering. Here we are also given a set of points on the Euclidean plane and are
seeking the minimum cost network interconnecting these given points. In this problem,
the cost of the network is the sum of the costs of all the edges in the network, but
the cost of an edge is defined differently. One of the given points is a sink (or service
center) and the rest of the given points are sources (or clients). For each source,
there is a given positive capacity. The sink has a capacity that is no less than the sum
of the capacities of the sources. For a given network, there is a flow on each edge,
and the cost of that edge is the product of the length of the edge with the cost per
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unit length (CPUL) of that edge, which is a function of the flow of that edge. For
example, a larger diameter pipe is needed for an edge with a bigger flow and a smaller
diameter pipe is needed for an edge with a smaller flow. In most cases, the CPUL is
a monotonically nondecreasing function of the flow, which is zero for zero flow and
positive for positive flows. Related problems have been studied [3, 19, 36], where
algorithms for computing a suboptimal solution were proposed. In this paper, we
present exact and heuristic algorithms for solving this generalized Steiner minimum
tree problem. We will use groundwater treatment as a motivating example. For
applications in communication networks, we refer the readers to Gilbert [13].

The rest of this paper is organized as follows. In section 2, we present the physical
problem and define the mathematical model. The notion of topology is also introduced
in that section. In section 3, we present the notion of full Steiner topology and
prove that there exists a minimum cost pipe network, which is the minimum cost
network under a full Steiner topology. In section 4, we show that for a given full
Steiner topology, we can compute the CPUL for all the edges in the topology in
linear time. Then the minimum cost network under the given topology is solved using
a powerful interior-point method [34]. In section 5, we prove a bounding theorem
which enables the application of a backtrack algorithm that partially enumerates
the full Steiner topologies in search of the minimum cost pipe network. A max-min
heuristic ordering algorithm is proposed to enhance the performance of the backtrack
algorithm. In section 6, we define the notion of k-optimality and present an efficient
algorithm for checking 5-optimality. When a network is found to be not 5-optimal,
we can easily change the topology to one with a lower cost. This leads to a heuristic
algorithm for computing 5-optimal networks when the problem size is too large for the
backtrack algorithm. We present some preliminary computational results in section
7 and conclude the paper in section 8.

2. The physical problem and its mathematical model. To treat contami-
nated groundwater in a given region, several wells are constructed in that region and
contaminated water from within these wells is piped to a treatment site. Each well
has a known location and a known flow-rate (or capacity). The treatment site has a
known location and a known capacity, which is no less than the sum of the capacities
of all wells. We need to build a pipe network to transport water from the wells to
the treatment site. Given the type of materials to be used, it is desirable to build a
pipe network that has the minimum cost. In contrast to many water supply prob-
lems, service reliability is not a significant requirement here, so no redundant arcs are
needed in this problem. Depending on different flow-rates through different edges of
the network, we need to use pipes of different sizes for edges with different flow-rates.
For a given type of material, the CPUL of the pipe is a function of the flow-rate of
that pipe. In many situations, this function, denoted by f(•), is monotonically non-
decreasing with the flow-rate and is also concave (i.e., f(x+y

2 ) ≥ 1
2 (f(x) + f(y)) for

any x, y in the domain of the function [28]). In addition, f(0) = 0 and f(x) > 0 for
any x ∈ (0,∞). We will assume this property for f(•) throughout this paper. The
cost of an edge in the network is the product of the length of the edge with the CPUL
of that edge. The cost of the network is the sum of the costs of all the edges. We are
interested in computing a minimum cost pipe network.

In the following, we will present a precise mathematical model for this problem.
Let n ≥ 3 be a given integer. Let P = {p1, p2, . . . , pn} be a set of n points on
the Euclidean plane R2, where p1 represents the location of the treatment site and
p2, p3, . . . , pn represent the locations of the n− 1 wells, respectively. Let c(p1), c(p2),
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. . . , c(pn) be n positive numbers such that c(p1) ≥∑n
k=2 c(pk). One may think of c(p1)

as the capacity of the treatment site and of c(p2), c(p3), . . . , c(pn) as the capacities of
the n− 1 wells, respectively.

Since we need to transport water from all the wells to the treatment site, the pipe
network will form a connected graph G = (V,E), where E is the set of edges that
correspond to the pipes and V = {v1, . . . , vn, vn+1, . . . , vn+m} is the set of vertices
such that v1, v2, . . . , vn correspond to the points p1, p2, . . . , pn, respectively. The m
additional vertices vn+1, . . . , vn+m correspond to some possible Steiner points in the
pipe network where two or more pipes meet. For the moment, we assume that m can
be any nonnegative integer. In section 3, we will prove that m can be restricted to
nonnegative integers less than or equal to n− 2. The previous discussion leads to the
following definition.

Definition 2.1. A topology T (P ) for a given point set P = {p1, p2, . . . , pn}
is an undirected connected graph G = (V,E), where E is the set of edges and V =
{v1, . . . , vn, vn+1, . . . , vn+m} is the set of vertices such that v1, v2, . . . , vn correspond
to the points p1, p2, . . . , pn, respectively, and vn+1, . . . , vn+m correspond to m Steiner
points. A realization R(T, P, S,A,X) of T (P ) is given by the tuple (S,A,X), where
S is a set of points {pn+1, . . . , pn+m} ∈ R2, A is a set of arcs that is a subset of
{(i, j), (j, i)|{i, j} ∈ E}, and X is a set of flows {x(i, j) ≥ 0|(i, j) ∈ A} satisfying the
following conditions:∑

(i,1)∈A
x(i, 1)−

∑
(1,j)∈A

x(1, j) ≤ c(p1),(2.1)

∑
(k,j)∈A

x(k, j)−
∑

(i,k)∈A
x(i, k) = c(pk), k = 2, 3, . . . , n,(2.2)

∑
(k,j)∈A

x(k, j)−
∑

(i,k)∈A
x(i, k) = 0, k = n+ 1, n+ 2, . . . , n+m.(2.3)

The cost of realization R is given by

F (R) =
∑

(i,j)∈A
f(x(i, j))||pi − pj ||,(2.4)

where || • || stands for the Euclidean norm. The cost of topology T is given by

F (T ) = min{F (R)|R is realization of T}.(2.5)

A realization of a topology for P is called a pipe network interconnecting P .
Note that in the above definition, the number of vertices in a topology for point

set P may be any integer greater than or equal to |P |. We assume implicitly that
the vertices v1, v2, . . . , vn correspond to the points p1, p2, . . . , pn. In a realization, the
vertices v1, . . . , vn are always fixed at points p1, . . . , pn and the vertices vn+1, . . . , vn+m

are fixed at some points pn+1, . . . , pn+m. A realization also specifies the way the water
is transported to the treatment site. Condition (2.1) says that the net flow into the
treatment site is at most c(p1). Condition (2.2) says that the net flow out of the kth
well is c(pk). Condition (2.3) says that the flow into any Steiner point equals the flow
out of that Steiner point. For any two vertices i and j, we use {i, j} to represent the
(undirected) edge interconnecting i and j and use (i, j) to represent the (directed) arc
from i to j. For graph notations not defined in this paper, we refer readers to [15].

It is clear that, given a realization R of a topology for a point set, we can obtain
another realization R1 of the same topology for the point set by deleting all the zero
flows and arcs with zero flows in R. Realization R1 has the property that every arc
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has a positive flow and that the cost of R1 is less than or equal to that of R. This
observation will help us in reducing the number of topologies to be considered.

Now we can state the minimum cost pipe network problem formally as follows.
Problem 2.1. Given the point set P containing p1, p2, . . . , pn ∈ R2, the posi-

tive constants c(p1), c(p2), . . . , c(pn) where c(p1) ≥∑n
k=2 c(pk), and the function f(•)

which is concave, monotonically nondecreasing such that f(0) = 0 and f(x) > 0 for
any x ∈ (0,∞), compute a minimum cost pipe network interconnecting P .

Note that Problem 2.1 becomes the ESMT problem [21] when the cost function
f(•) always equals 1. Since the ESMT problem is NP-hard [12], polynomial time
algorithms for solving Problem 2.1 do not seem to exist.

3. Full Steiner topologies.
Definition 3.1. Given a point set P containing n points {p1, . . . , pn} on the

Euclidean plane, a Steiner topology for P is a topology for P that is a tree graph such
that every vertex corresponding to a Steiner point has degree 3.

We will prove that there is a minimum cost pipe network that is a realization of
a Steiner topology. The following notation is needed in the proof.

Definition 3.2. Given a path in a pipe network, the flow of this path is the
minimum of the flows on the arcs of the path.

Theorem 3.1. For any given topology G = (V,E) for P , there exists a Steiner
topology T for P such that

1. T is a subgraph of G;
2. The cost of T is no greater than the cost of G.

Proof. Let R be a minimum cost realization of G. As discussed in section 2, we
may assume that every arc of R has a positive flow, without loss of generality. For any
edge {i, j} of G, at most one of (i, j) and (j, i) may be an arc of R, because otherwise
we can reduce the network cost by reducing the flows on (i, j) and (j, i).

Let E′ be the set of all edges {i, j} such that either (i, j) or (j, i) is an arc in
R. Let G′ = (V ′, E′) be the subgraph of G induced by E′. It is clear that G′ is
also a topology for P and that R is a realization of both G and G′. If the arcs of R
constitute a directed tree (with v1 as the unique sink), then G′ is a Steiner topology
for P and the cost of G′ is no greater than the cost of R (which is the cost of G) and
the theorem is proved.

In the rest, we will prove that there exists a minimum cost realization of G whose
arcs constitute a directed tree (with v1 as the unique sink).

It follows from the definition of a realization that there is at least one directed
path from u to v1 for any vertex v1 6= u of R. If the u–v1 path is unique for any
u 6= v1, the arcs of R constitute a directed tree (with v1 as the unique sink) and there
is nothing that needs to be proved.

Suppose that for some k, there are two paths from vk to v1 with positive flows.
Let the two paths be

π1 = (vi0 , vi1 , vi2 , . . . , vim1
) and π2 = (vj0 , vj1 , vj2 , . . . , vjm2

),

where i0 = j0 = k and im1
= jm2

= 1. Let the flow of π1 be r1 and the flow of π2

be r2. Let r = min{r1, r2}. Since both r1 and r2 are positive, r is also positive. Let
the flow on arc (vit−1 , vit) be αt + r (t = 1, 2, . . . ,m1) and the flow on arc (vjt−1

, vjt)
be βt + r (t = 1, 2, . . . ,m2). Then the αt’s and the βt’s are all nonnegative. Now
consider the function

F (z) =

m1∑
t=1

||vit − vit−1 ||f(αt + r − z) +

m2∑
t=1

||vjt − vjt−1 ||f(βt + r + z)(3.1)
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defined for z ∈ [−r, r]. Since f(•) is a concave function, F (•) is also concave. It
follows from the property of concave functions [28] that

F (0) ≥ 1

2
(F (−r) + F (r)) ≥ min{F (−r), F (r)}.(3.2)

However, for any z ∈ [−r, r], F (z) − F (0) is the increase in the network cost caused
by shifting z amount of the flow from π1 to π2. Inequality (3.2) says that we can
shift r amount of flow from π1 to π2 without increasing the cost of the network when
F (r) = min{F (−r), F (r)} and shift r amount of flow from π2 to π1 without increasing
the cost of the network when F (−r) = min{F (−r), F (r)}. Whenever we perform such
a shift, there is at least one edge of G whose corresponding flow will be changed from
a nonzero value to zero. Furthermore, if an edge of G has zero flow before the shift, it
will still have zero flow after the shift because we are shifting some flow to a path that
has a positive flow. Therefore, after a finite number of such shifts, we can eliminate
all the duplicate paths, without increasing the cost of the network. Therefore, there
exists a minimum cost pipe network R′ such that there is a unique path from vk to
v1 in N that has a positive flow for every k = 2, 3, . . . , n.

Definition 3.3. Given a point set P containing n points {p1, . . . , pn} on the
Euclidean plane, a full Steiner topology for P is an undirected connected graph G =
(V,E), where the vertex set V contains 2n − 2 vertices {v1, . . . , vn, vn+1, . . . , v2n−2}
and the edge set E contains exactly 2n − 3 edges such that the degree of each of the
first n vertices is 1 and the degree of each of the last n − 2 vertices is 3. In other
words, a full Steiner topology is a tree whose leaves correspond to the points in P and
whose interior vertices (which correspond to Steiner points) all have degree 3.

Definition 3.4. Let T be a Steiner topology. An edge is called a Steiner-regular
edge if exactly one end point of this edge corresponds to a Steiner point (the other
corresponds to a regular point). Let e = {u, v} be a Steiner-regular edge where u
corresponds to a regular point p; we can shrink this edge by deleting the edge e and
replacing the two vertices u and v by a new vertex that corresponds to the regular
point p. Any vertex other than u and v is connected to this new vertex if and only if it
was connected to u or v before the shrinking operation. Notice that a Steiner topology
changes to another Steiner topology when a Steiner-regular edge is shrunk, provided
that the degree of the resulting new vertex is no more than 3. A Steiner topology T ′

is called a degeneracy of T if T ′ can be obtained from T using zero or more shrink
operations. We use D(T ) to denote the set of Steiner topologies that are degeneracies
of‘T .

In the rest of this section, we will prove that there exists a full Steiner topology
that has a realization that is a minimum cost pipe network interconnecting P . In other
words, any Steiner topology T is a degeneracy of some full Steiner topology. Therefore,
we only need to consider pipe networks that are realizations of full Steiner topologies.
This is largely due to the fact that realizations permit all Steiner topologies to be
handled as if they were full, by allowing zero-length edges. Note that the number of

full Steiner topologies for n regular points is (2n−4)!
(n−2)!2n−2 , while the number of Steiner

topologies is
∑n−2
s=0

(
n
s+2

) (n+s−2)!
s! . Therefore, the number of Steiner topologies is much

larger than the number of full Steiner topologies [17, 32].
Theorem 3.2. There is a minimum cost pipe network interconnecting a point

set P that is a realization of a full Steiner topology for P .
Proof. From Theorem 3.1, we know that there exists a minimum cost pipe

network interconnecting P that is a realization of a Steiner topology T . Assume
that P = {p1, p2, . . . , pn} and that the vertices of the topology are {v1, v2, . . . , vn,
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vn+1, . . . , vn+m}, where the first n vertices correspond to the points {p1, p2, . . . , pn}.
The rest of the proof is composed of four parts.

1. vi (i = 1, 2, . . . , n) is a leaf vertex in T . Let vi be the interior vertex with
the smallest index. If i > n, there is nothing to be proved. Now assume that i ≤ n.
Let b1, b2, . . . , bk be all the vertices that are adjacent to vi in T . We can change the
name of vertex vi to a new name vn+m+1, then add a new vertex vi and an edge
{vi, vn+m+1} to obtain a new Steiner topology T1. We note that for any realization of
T , there is a realization of T1 with the same cost (obtained by forcing pn+m+1 = pi).
Repeating this process, we can obtain a Steiner topology in which the first n vertices
are all leaf vertices.

2. vj (j > n) is an interior vertex in T . In any realization, the sum of flows into
a Steiner point equals the sum of flows out of that Steiner point. Therefore, having
a leaf Steiner vertex does not reduce the cost of the minimum cost realization of the
topology. Hence, if vj is a leaf vertex in T and j > n, we may delete vj from T to
obtain a new topology whose cost is no greater than the cost of T .

3. Degree-2 interior vertices can be removed without increasing the cost. This
follows from the fact that the shortest connection between points is the straight line
segment connecting them.

4. A degree-k interior vertex can be split into k − 2 degree-3 interior vertices
without increasing the network cost (k ≥ 4). Let k be an integer greater than or
equal to 4. Let a be an interior vertex of degree k. Assume that the neighbors of a
are b1, b2, . . . , bk. We may split the vertex a into a1 and a2, which are connected by
an edge {a1, a2}, and replace the edges {a, b1} and {a, b2} by {a1, b1} and {a1, b2},
replace the edges {a, bj} by {a2, bj} for j = 3, . . . , k. The resulting topology has a
cost that is no greater than the cost of the previous topology. Repeating the above
process, we can obtain a topology in which every interior vertex has degree exactly 3.
This completes the proof of part 4 and also the proof of the theorem.

4. Minimum cost network under a given topology. In this section, we
show that the minimum cost pipe network under a given full Steiner topology can be
computed efficiently. We will first show that the flows in the minimum cost realization
of a given full Steiner topology can be computed in O(n) time, without knowing the
optimal locations of the Steiner points. We then show that computing the minimum
cost network under a full Steiner topology is a special case of the well-studied problem
of minimizing a sum of Euclidean norms [1, 2, 4, 5, 8, 24, 9, 34]. In [34], Xue and Ye
presented a primal-dual interior-point algorithm for computing an ε-optimal solution
[22] to the problem of minimizing a sum of Euclidean norms and proved that their
algorithm requires O(n1.5(log(n) + log( cε ))) arithmetic operations if the problem has
a tree structure, where c is a constant dependent on the input. We will show that this
algorithm is also a polynomial time approximation scheme (PTAS) [18] for computing
the minimum cost network under a given full Steiner topology that computes a (1+ε)-
approximation in O(n1.5(log(n) + log(1

ε ))) time.

4.1. Computing the flows of the minimum cost network. Suppose that we
are given a full Steiner topology. We may consider the tree to be rooted at v1, which
corresponds to the treatment site p1. The root vertex has one child. Every other
interior vertex has exactly two children. The leaf vertices v2, v3, . . . , vn correspond to
the wells p2, p3, . . . , pn. Clearly, in a minimum cost realization of the given topology,
the flow from vertex vk to its parent vertex must be c(pk) for k = 2, 3, . . . , n. The
flow from any interior vertex to its parent vertex must equal the sum of the flows
into this vertex from its two children. Therefore, we can use a dynamic programming
algorithm to compute the flows on all edges in linear time.



28 G. XUE, T. P. LILLYS, AND D. E. DOUGHERTY

4.2. Approximating the optimal locations of the Steiner points. Once
the flows of the minimum cost network under a given Steiner topology are computed,
the problem of finding the optimal locations of the Steiner points becomes a special
case of the following problem of minimizing a sum of Euclidean norms [24].

Problem 4.1. Let c1, c2, . . . , cM ∈ R2 be column vectors in the Euclidean 2-space
and A1, A2, . . . , AM ∈ RN×2 be N -by-2 matrices each having full column rank. Find
a point u ∈ RN such that the following sum of Euclidean norms is minimized:

min

M∑
i=1

||ci −ATi u||

s.t. u ∈ RN .
(4.1)

This problem has been studied by Calamai and Conn [4, 5] and Overton [24],
where second-order methods were proposed to solve the problem. Recently, Andersen
[1], Conn and Overton [8], and Andersen and Christiansen [2] proposed computation-
ally effective interior-point algorithms for solving (4.1). Xue and Ye [34] also proposed
an interior-point algorithm for solving this problem and proved that their algorithm
produces an ε-optimal solution in polynomial time.

Definition 4.1. Consider a minimization problem. Let ε be a positive number.
A (1 + ε)-approximation is a feasible solution whose corresponding objective function
value is no more than the product of the optimal objective function value and (1 + ε).
An ε-optimal solution is a feasible solution whose corresponding objective function
value is no more than the sum of the optimal objective function value and ε.

The notion of (1 + ε)-approximations can be found in [18], and the notion of
ε-optimal solutions can be found in [22, 23, 34, 35].

In [34], a primal-dual interior-point algorithm was presented that computes an ε-
optimal solution to problem (4.1) in polynomial time. They also proved that when the
instance of problem (4.1) is obtained from a Euclidean multifacility location problem
with a tree structure (as in the case of computing the minimum cost pipe network
under a given tree topology), the total number of arithmetic operations required is
O(N1.5(log(N) + log( cε ))), where c = max1≤i≤M ||ci||. We will show that this same
algorithm is a PTAS that computes a (1 + ε)-approximation to the minimum cost
network under a given full Steiner topology using O(n1.5(log(n) + log(1

ε ))) arithmetic
operations.

Let x(vi, vj) be the flow on arc (vi, vj), so that f(x(vi, vj)) is the CPUL for the
pipe interconnecting pi and pj . Therefore, optimal locations for the Steiner points
can be determined by solving the following optimization problem:

minF(pn+1, pn+2, . . . , pn+n−2) =
∑

vj is the parent of vi

f(x(vi, vj))||pi − pj ||.(4.2)

The function in (4.2) is a nonsmooth, continuous, convex function. It is a special
case of (4.1), where N = 2n − 4, M = 2n − 3; c1 = f(x(child(v1), v1))p1; ci =
f(x(vi,parent(vi)))pi for i = 2, 3, . . . , n; and ci = 0 for i = n+ 1, n+ 2, . . . , n+ n− 2.
The parent and child notations are those used in section 4.1.

Since problem (2.1) does not change if we translate the locations of the treatment
site and all the wells by the same vector, we may assume, without loss of generality,
that p1 is at the origin, i.e., p1 = 0. For i = 2, 3, . . . , n, ||ci|| = f(x(vi,parent(vi)))||pi||
is the cost of transporting the water from pi to the treatment site via a straight line
segment between pi and p1. Therefore, max1≤i≤n+n−2 ||ci|| is less than or equal to
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Fig. 1. The correspondence between n− 3 vectors and full Steiner topologies.

the cost of the minimum cost network under the given topology (note that p1 = 0
and ci = 0, i = n + 1, n + 2, . . . , n + n − 2). Therefore, a cε-optimal solution is
also a (1 + ε)-approximation for the minimum cost network under a given full Steiner
topology. To summarize, we have proved the following theorem.

Theorem 4.1. For any given full Steiner topology, a (1+ε)-approximation to the
minimum cost pipe network under this topology can be computed in O(n1.5(log(n) +
log( 1

ε ))) time.

5. Partially enumerating the topologies. In [29], Smith proved the following
theorem, which establishes a one-to-one correspondence between the set of full Steiner
topologies on n regular points and a special set of (n− 3)-element vectors.

Theorem 5.1. There is a one-to-one correspondence between full Steiner topolo-
gies on n ≥ 3 fixed points, and (n − 3)-element vectors t = (t1, t2, . . . , tn−3), whose
ith entry ti is an integer in the range 1 ≤ ti ≤ 2i + 1. Therefore, the number of full
Steiner topologies on n fixed points is 1 · 3 · · · (2n− 5).

Figure 1 illustrates the one-to-one correspondence for the case of n = 5 and
t = (2, 5). Figure 1(a) illustrates the topology for three fixed points where the three
edges are labeled e1, e2, and e3. The only moving point is labeled s1. To add the
fourth fixed point into the network, we connect p4 to an interior point on the edge
labeled e2 (since t4−3 = 2 in the topological vector). This point then becomes the
second moving point s2. Edge e2 is broken into two parts, one part still labeled e2

and the other labeled e5 (= 2× 4− 3). The edge interconnecting p4 and s2 is labeled
e4 (= 2 × 4 − 4). After the above process, we obtain the topology for the first four
fixed points, which is illustrated in Figure 1(b). Similarly, Figure 1(c) illustrates the
topology for the first five fixed points, which is obtained by breaking the edge labeled
e5 (= t5−3).

A brute-force algorithm for solving problem (2.1) is to compute the minimum cost
network under a full Steiner topology for every full Steiner topology interconnecting
the n fixed points. Since there are 1×3×· · ·×(2n−5) different full Steiner topologies
for a set of n fixed points, a complete enumeration method is very expensive, even
with the aid of the efficient algorithm of [34].

One way to tackle this problem is to use a backtrack algorithm that enumerates
only part of the topologies. We need a bounding theorem that can be used to prune
hopeless branches. Such a bounding theorem will be proved in the next subsection.

5.1. A bounding theorem.
Theorem 5.2. For any k = 3, 4, . . . , n− 1 and any tk−2 ∈ {1, 2, . . . , 2k− 3}, the

cost of a full Steiner topology (interconnecting the points p1, p2, . . . , pk) with the topo-
logical vector (t1, t2, . . . , tk−3) is no greater than the cost of the full Steiner topology
(interconnecting the points p1, p2, . . . , pk+1) with the topological vector (t1, t2, . . . , tk−3,
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tk−2). Note that we assumed that the topological vector for p1, p2, . . . , pk is a prefix of
the topological vector for p1, p2, . . . , pk+1.

Proof. This is a generalization of Theorem 4 in [29], which deals with flow-
independent minimum cost networks. Suppose we have found a minimum cost real-
ization of the topology for p1, p2, . . . , pk+1. Delete the leaf vertex corresponding to
pk+1 from the rooted tree. This will reduce the CPUL for all the arcs along the path
from the parent vertex of pk+1 to the root p1, due to the assumption that f(•) is
a monotonically nondecreasing function. In addition, the parent vertex of pk+1 can
now be removed (since it is now a degree-2 interior vertex) to shorten the network.
Optimizing the modified network will further reduce the cost.

5.2. The backtrack algorithm. A backtrack algorithm for computing the min-
imum cost pipe network is given as Algorithm 1. It follows from Theorem 5.2 that
Algorithm 1 correctly computes the minimum cost feasible network. However, for the
algorithm to be practically efficient, we need to have a good initial upper bound and
a good ordering of the regular points so that the backtrack algorithm will generate
only a small portion of the whole tree.

Algorithm 1. Partially enumerating the topologies by backtracking.

Step 1 Compute an upper bound UB or set UB :=∞. Set k := 4 and t1 := 3.
Step 2 Compute the minimum cost network under the topology with topological

vector (t1, t2, . . . , tk−3). Let C be the cost of the current network.
Step 3 if C ≥ UB then goto Step 4 else goto Step 5 endif
Step 4 if tk−3 > 1 then

tk−3 := tk−3 − 1
goto Step 2

elseif k = 4 then
stop ; UB is the minimum cost and (bt1, bt2, . . . , btn−3) is the optimal
topological vector.

else
k := k − 1
goto Step 4

endif
Step 5 if k = n then

Set UB := C and save the current topological vector in
(bt1, bt2, . . . , btn−3).
goto Step 4.

else
k := k + 1
tk−3 := 2k + 1
goto Step 2

endif

5.3. Initial upper bound. In order for the backtrack algorithm to be effective,
we also need a good initial upper bound. In the flow-independent case, one can always
use the cost of the minimum spanning tree as the initial upper bound. In the flow-
dependent case, even such an initial upper bound is not available. In this section, we
present a min-min heuristic algorithm for computing the initial upper bound. The
min-min heuristic builds up a tree network in the following way. Initially, only the
treatment site p1 is on the tree. The cost of this tree is zero. For each point p ∈ P , we
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Algorithm 2. The min-min heuristic algorithm for initial upper bound.

Step 1 Let q1 := p1 and c(q1) := c(p1). Let Q := {q1}. Delete p1 from P .
Step 2 for each p ∈ P do

compute w(p) = c(p)||q1 − p||
endfor
Let q2 := pj and c(q2) := c(pj), where pj is a point in P and w(pj) :=
min{w(p)|p ∈ P}. Add q2 to Q. Delete pj from P .

Step 3 for each p ∈ P do
compute the minimum cost network interconnecting q1, q2, and p.
Let w(p) be the minimum cost.

endfor
Let q3 := pj and c(q3) := c(pj), where pj is a point in P and w(pj) :=
min{w(p)|p ∈ P}. Add q3 to Q. Delete pj from P .
Let T3 be the empty topological vector for Q.

Step 4 Let k := |Q|.
for each p ∈ P do

Let qk+1 := p and c(qk+1) := c(p).
for i := 1 to 2k − 3 do

Let f(p, i) be the cost of the topology (Tk, i) interconnecting
Q ∪ {qk+1}.

endfor
Let w(p) := min{f(p, i)|1 ≤ i ≤ 2k − 3}.

endfor
Let qk+1 := pj and c(qk+1) := c(pj), where pj is a point in P and w(pj) :=
min{w(p)|p ∈ P}. Add qk+1 to Q. Delete pj from P .
Let Tk+1 be the topological vector for Q which has a cost of f(qk+1, i) :=
w(qk+1) which is generated in the (appropriate) inner for loop.

Step 5 if P = ∅ then stop ; otherwise goto Step 4.

can add p to the current tree by directly interconnecting p with p1. The associated
(minimum) cost of adding this point to the current tree is given by c(p)||p1 − p||. We
select the point whose associated cost is minimum and add it to the current tree. This
point is then deleted from P . Suppose that the current tree has k vertices and we
are trying to add another point from P to the current tree, which has 2k − 3 edges.
Let p be a point in P . To connect p to the current tree, we may select an edge in the
current tree and connect p to this edge (creating a new Steiner point). There are 2k−3
such choices. Each such choice corresponds to a full Steiner topology interconnecting
the regular points in the current tree and the point p. For each of these full Steiner
topologies, there is an associated cost of the topology. We define the minimum of the
costs of these topologies as the cost of point p. In the min-min heuristic, the point
with minimum cost is selected to be the next point to be added to the current tree.
This process continues until we have a tree interconnecting all the regular points.

Our min-min heuristic can be considered as a generalization of Prim’s algorithm
[26] for computing a minimum spanning tree; i.e., we are always selecting the next
vertex whose addition to the tree will result in the smallest additional cost. Our
motivation, however, comes from the incremental optimization heuristic of Dreyer
and Overton [9].

The heuristic of Dreyer and Overton requires O(n2) local minimizations (solving
an instance of Problem 4.1). Our min-min heuristic is more expensive: it requires
O(n3) local minimizations. To see why this is so, we note that there are 2k − 3
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edges in the tree interconnecting k regular points and that there are n − k regular
points left to be selected to join the tree. Therefore, we need to perform (n − k) ×
(2k − 3) local minimizations to select the (k + 1)th point to join the tree. Therefore,
the min-min heuristic requires O(n3) local minimizations. This time complexity is
affordable, compared with the exponential time required by the backtrack algorithm.
Our limited computational experiments show that this heuristic produces better initial
upper bounds than using a random topology or the max-min heuristic to be discussed
in the next section.

5.4. A heuristic ordering. In the backtrack algorithm, a branch is cut off only
if its associated cost is no less than the cost of the current incumbent. If we use the
ordering determined by the min-min heuristic, a cut-off is not likely to happen high
in the search tree, because the cost of the current tree could be relatively small and a
small mistake may not lead to a cost greater than the cost of the current incumbent.

Algorithm 3. The max-min heuristic ordering algorithm.

Step 1 Let q1 := p1 and c(q1) := c(p1). Let Q := {q1}. Delete p1 from P .
Step 2 for each p ∈ P do compute w(p) = c(p)||q1 − p|| endfor

Let q2 := pj and c(q2) := c(pj) where pj is a point in P and w(pj) :=
max{w(p)|p ∈ P}. Add q2 to Q. Delete pj from P .

Step 3 for each p ∈ P do
compute the minimum cost network interconnecting q1, q2, and p.
Let w(p) be the minimum cost.

endfor
Let q3 := pj and c(q3) := c(pj), where pj is a point in P and w(pj) :=
max{w(p)|p ∈ P}. Add q3 to Q. Delete pj from P .
Let T3 be the empty topological vector for Q.

Step 4 Let k := |Q|.
for each p ∈ P do

Let qk+1 := p and c(qk+1) := c(p).
for i := 1 to 2k − 3 do

Let f(p, i) be the cost of the topology (Tk, i) interconnecting
Q ∪ {qk+1}.

endfor
Let w(p) := min{f(p, i)|1 ≤ i ≤ 2k − 3}.

endfor
Let qk+1 := pj and c(qk+1) := c(pj), where pj is a point in P and w(pj) :=
max{w(p)|p ∈ P}. Add qk+1 to Q. Delete pj from P .
Let Tk+1 be the topological vector for Q which has a cost of f(qk+1, i) :=
w(qk+1) which is generated in the (appropriate) inner for loop.

Step 5 if P = ∅ then stop ; otherwise goto Step 4.

In this section, we present a max-min heuristic ordering such that cut-offs are
likely to happen high in the search tree. In the max-min heuristic, we also start with
the treatment site. For each point p in P , the associated cost is defined in the same
way as in the min-min heuristic. However, we select the point that has the maximum
cost as the next point to be included in the tree. This heuristic ordering algorithm is
given as Algorithm 3.

The max-min heuristic algorithm also requires O(n3) local minimizations. Our
computational results show that the initial upper bound produced by the max-min
heuristic is usually not as good as that produced by the min-min heuristic. However,
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Table 1
Number of full Steiner topologies T (n) as a function of the number of regular points n.

n T (n) n T (n)
3 1 8 10395
4 3 9 135135
5 15 10 2027025
6 105 11 34459425
7 945 12 654729075

the max-min ordering reduces dramatically the number of topologies to be considered
in the backtrack algorithm.

6. A 5-optimal heuristic algorithm. Because the minimum cost pipe network
problem is NP-hard, the exact algorithm described in the previous section is too
expensive to be practical when n is large. For n regular points, the number of different
full Steiner topologies is 1 × 3 × 5 × · · · × (2n − 5). These values for 3 ≤ n ≤ 12 are
illustrated in Table 1. Although we can compute the minimum cost network under a
given full Steiner topology very efficiently, the backtrack algorithm is impractical for
large n, limited by the huge number of topologies.

In this section, we introduce the notion of k-optimality of a pipe network and
present efficient algorithms for checking whether a given pipe network is 5-optimal.
In case the given pipe network is not k-optimal, our algorithm also provides a pipe
network that has a lower cost. Our notion of k-optimality for pipe networks is moti-
vated by the notion of k-optimality for ESMTs discussed in a private communication
of Overton and Xue [25] and the ideas in [11].

Definition 6.1. Let T be a full Steiner topology interconnecting the points in P .
Let k be an integer such that 3 ≤ k ≤ n. A size-k component (C) of T is a subtree of
T which has k leaf vertices (in C) and no degree-2 vertices (in C).

Definition 6.2. Let T be a full Steiner topology interconnecting the points in P .
Let R be the minimum cost network under topology T . A size-k component C of T
defines a minimum cost pipe network problem with k regular points, where the point
in R that corresponds to the unique vertex in C that is the ancestor of all the other
vertices in C is the new treatment site and every other point in R that corresponds
to a leaf vertex of C is a new well whose new capacity is defined to be the amount of
flow that needs to be transmitted from its corresponding vertex to v1 in T . T is said
to be a k-optimal topology if for any size-k component C of T , its corresponding leaf
vertices are connected optimally in the minimum cost realization R of T .

Note that, given a full Steiner topology, the optimal flows (flows in the minimum
cost network under the given topology) on the edges can be computed without knowing
the locations of the Steiner points. Therefore, given locations of the leaf vertices of
a component C in R, we can formulate another minimum cost pipe network problem
where the leaf vertices of C are treated as regular points located at the corresponding
locations given in R. In order to check for k-optimality, we need to be able to select
all the size-k components and to be able to find the minimum cost pipe network for
k given points efficiently. In the following, we illustrate how to check for 5-optimality
efficiently.

Figure 2 illustrates a size-5 component. If the vertices a, b, c, d, e are treated as
regular points, then the vertices x, y, z are the Steiner points. Note that such a size-5
component is uniquely determined by the center vertex y and the vertex c. For any
Steiner point y, there are at most three choices of vertex c (since the degree of y is
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Fig. 2. A size-5 component.

3). Once y and c are chosen, we can find the set of vertices {a, b, d, e} if the other two
neighbor vertices of y are both Steiner points. Since there are n−2 Steiner points in a
full Steiner topology interconnecting n regular points, there are at most n− 2 choices
for y. Therefore, there are at most 3n−6 size-5 components in a full Steiner topology
interconnecting n regular points. Since there are fifteen possible full Steiner topologies
interconnecting five regular points, we need to solve at most 45n− 90 minimum cost
networks under a full Steiner topology interconnecting five points. Therefore, we have
proved the following theorem.

Theorem 6.1. Let R be the minimum cost realization of a full Steiner topology
T interconnecting P . We can check that T is 5-optimal or find a topology whose cost
is lower than the cost of T after solving at most 45n − 90 minimum cost networks
under a full Steiner topology interconnecting five points.

Now we can present our heuristic algorithm for computing a 5-optimal pipe net-
work interconnecting n regular points. This algorithm is presented as Algorithm 4.

Algorithm 4. A 5-optimal heuristic algorithm.

Step 1 Run either the min-min heuristic or the max-min heuristic to obtain a topol-
ogy T and its minimum cost realization R.

Step 2 if running out of time then
Output the current topology T and its realization R; stop

endif
Step 3 for each size-5 component C of T do

if C is not optimally connected in T do
Change topology T by replacing the connections of C by
its optimal connection;
Compute the realization R of this new topology T .
goto Step 2.

endif
endif

Step 4 The topology T is 5-optimal. Output T and its realization R.

We do not know the time complexity of Algorithm 4 because we do not know
how many changes of topology are needed to reach a 5-optimal topology. All we
know is the following. Step 1 requires O(n3) local minimizations. After that, we
need to perform at most 45n − 90 local minimizations (for five-point instances) to
either find a better topology or confirm that the current topology is 5-optimal. Our
computational results show that this algorithm finds an optimal solution or a good
suboptimal solution in much less time, compared with the backtrack algorithm.

7. Computational results. In this section, we present preliminary computa-
tional results for both the backtrack algorithm and the 5-optimal heuristic algorithm.
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Table 2
Constants used in the computation of the CPUL.

ε g Sf ν α β γ
0.000015 32.2 0.003 0.0000166 4.7156213 40.406146 1.0727788

Table 3
The eight regular points in test problem 1.

i x(i) y(i) Capacity i x(i) y(i) Capacity
01 1647846.62 432550.91 05 1648180.00 433210.00 0.0278
02 1646685.00 432430.00 0.1114 06 1648440.00 433470.00 0.0278
03 1647540.00 433210.00 0.0278 07 1648960.00 432950.00 0.0278
04 1647545.00 432690.00 0.1114 08 1649220.00 431650.00 0.0836

Both algorithms were implemented in F77 and run on a 100-MHz SGI Indy worksta-
tion with MIPS R4000 CPU and 1-MB secondary cache. In all cases, the duality gap
tolerance was chosen as 0.00001.

In our first three test problems, we have used data from an application to a
groundwater remediation problem at the Lawrence Livermore National Laboratory in
Livermore, CA. The locations of the wells were the result of a particular management
policy imposed upon an optimization method presented by Rizzo and Dougherty [27].
Treatment sites were located as the weighted center of each of three well fields. To
further test the performances of the backtrack algorithm and the 5-optimal heuristic
algorithm, we combine the well fields of test problems 2 and 3 to form a field of 18
wells. We then apply the algorithms to the first 15 and first 16 regular points in this
list. The fifth test problem was randomly generated to test the 5-optimal heuristic
algorithm. For all but one of the cases in the first four test problems, the 5-optimal
heuristic that starts with the min-min heuristic found the optimal solution. The 5-
optimal heuristic that starts with the max-min heuristic found the optimal solution
in all of the first four test problems. Based on our computational result, we estimate
that the run time of the backtrack algorithm on the fifth problem is about 800 years
of CPU time on our SGI workstation. Therefore, we did not apply that backtrack
algorithm on this problem. As a result, we do not know if the result of the 5-optimal
heuristic algorithm is optimal or suboptimal.

For all test problems, the CPUL is computed in the following way [30]. For a
given flow-rate q, the diameter d of the pipe is computed by

d(q) = 0.66

[
ε1.25

(
q2

gSf

)4.75

+ νq9.4

(
1

gSf

)5.2
]0.04

,(7.1)

and the CPUL is f(q), which is defined as

f(q) = α+ βd(q)γ ,(7.2)

where the constants are given in Table 2.
Those constants are determined by the energy gradient, the material properties

of the pipe and fluid, the cost of digging a trench, etc. For more details on those
engineering properties, we refer readers to Lillys [20].

The input data for test problem 1 are given in Table 3. For each regular point, the
table shows its index, its x-coordinate, its y-coordinate, and its capacity. Note that
the capacity entry for the first regular point is empty. This means that the first regular
point is the treatment site, whose capacity can be computed as the sum of the capaci-
ties of the other regular points. We will use the same format for all the other problems.
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Table 4
Test results for test problem 1.

Initial bound Final func Time (sec) Search perc
Original ordering 87015.910155 73314.693982 230.56 0.10E+01
max-min ordering 84202.713809 73314.693982 21.57 0.84E-01

min-min 5-opt 84235.450263 73314.693982 2.81
max-min 5-opt 84202.713809 73314.693982 3.70
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Fig. 3. The optimal pipe network for test problem 1.

Computational results for the first test problem are presented in Table 4. The
first row of the table reports the result of the backtrack algorithm without any
ordering heuristic, i.e., using the ordering given in the input. The initial upper
bound 87015.910155 is obtained from the topological vector whose ith entry is 2i+ 1
(i = 1, 2, . . . , n − 3). The final cost 73314.693982 (which is the optimal cost in this
case) can be found in the column “Final func.” The run time of the algorithm is
230.56 seconds. The last column shows the percentage of the total number of topolo-
gies searched. In this case, we have searched all the different topologies. The second
row of the table reports the result of the backtrack algorithm with the max-min heuris-
tic. Note that the number of topologies searched is only 8.4% of the total number of
topologies. As a result, the run time required is only 21.57 seconds. The third row
of the table reports the result of the 5-optimal heuristic algorithm. The last entry is
left empty because it is hard to compare the minimization of a size-5 component with
the minimization of a size-n component. For this problem, the 5-optimal heuristic al-
gorithm using the min-min heuristic found the optimal solution in 2.81 seconds. The
5-optimal heuristic algorithm using the max-min heuristic found the optimal solution
in 3.70 seconds. The minimum cost pipe network for this problem is illustrated in
Figure 3, where a regular point is denoted by an o and a Steiner point is denoted by
a +. To keep the picture clean, we only labeled the first regular point by the label 1
to the right of the regular point.
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Table 5
The nine regular points in test problem 2.

i x(i) y(i) Capacity i x(i) y(i) Capacity
01 1652303.48 434129.13 06 1651820.00 434250.00 0.0334
02 1652340.00 433730.00 0.0278 07 1652860.00 434250.00 0.0278
03 1652860.00 433730.00 0.0278 08 1652080.00 434510.00 0.0334
04 1651560.00 433990.00 0.0334 09 1652600.00 434510.00 0.0278
05 1652600.00 433990.00 0.0278

Table 6
Test results for test problem 2.

Initial bound Final func Time (sec) Search perc
Original ordering 46876.355882 36139.255833 485.59 0.16E+00
max-min ordering 42078.166784 36139.255833 121.63 0.44E-01

min-min 5-opt 42115.487371 36649.223822 5.39
max-min 5-opt 42078.166784 36139.255833 3.68
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Fig. 4. The optimal (left) and suboptimal (right) pipe network for test problem 2.

The input data for test problem 2 are given in Table 5. The computational result
for this problem is given in Table 6. For this problem, the backtrack algorithm with-
out heuristic ordering found the optimal solution in 485.59 seconds, searching 16% of
the total number of topologies. The backtrack algorithm with the max-min heuristic
ordering found the optimal solution in 121.63 seconds, searching 4.4% of the total
number of topologies. The 5-optimal heuristic algorithm using the min-min heuristic
spent 5.39 seconds finding a suboptimal solution whose cost is 1.014 times the opti-
mal cost. The 5-optimal heuristic algorithm using the max-min heuristic spent 3.68
seconds. It successfully found the optimal solution.

The minimum cost pipe network (left) and the suboptimal pipe network (right) for
test problem 2 are illustrated in Figure 4. Note that the 5-optimal heuristic algorithm
using the min-min heuristic failed to connect the two regular points at the top-right
corner with a Steiner point. This is as expected, because the 5-optimal heuristic only
checks for size-5 components. A k-optimal heuristic algorithm with a larger k might
produce better solutions, at the cost of longer run time.

Table 7 illustrates the input data and the computational result for test problem
3. For this problem, the backtrack algorithm without heuristic ordering found the
optimal solution in 29309.47 seconds, searching 3.2% of the total number of topolo-
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Table 7
The input data (top) and test results (bottom) for test problem 3.

i x(i) y(i) Capacity i x(i) y(i) Capacity
01 1652204.14 432529.22 07 1652860.00 432690.00 0.0334
02 1652340.00 431650.00 0.0334 08 1652600.00 432950.00 0.0334
03 1652860.00 431650.00 0.0334 09 1651820.00 433210.00 0.0334
04 1651040.00 431910.00 0.0500 10 1652340.00 433210.00 0.0334
05 1651560.00 432430.00 0.0334 11 1652860.00 433210.00 0.0334
06 1652340.00 432690.00 0.0334

Initial bound Final func Time (sec) Search perc
Original ordering 88021.645072 66484.340380 29309.47 0.32E-01
max-min ordering 86697.786286 66484.340380 340.99 0.41E-03

min-min 5-opt 79166.346702 66484.340380 9.72
max-min 5-opt 86697.786286 66484.340380 9.39
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Fig. 5. The optimal pipe network for test problem 3.

gies. The backtrack algorithm with the max-min heuristic ordering found the optimal
solution in 340.99 seconds, searching only 0.041% of the total number of topologies.
The 5-optimal heuristic algorithm using the min-min heuristic found the optimal solu-
tion in 9.72 seconds. The 5-optimal heuristic algorithm using the max-min heuristic
found the optimal solution in 9.39 seconds. Figure 5 illustrates the minimum cost
pipe network for this problem.

The regular points and associated capacities for test problem 4 are given in
Table 8. We have applied the algorithms to the first 15 regular points and the first
16 regular points, respectively. Table 9 illustrates the computational results. In both
cases, the 5-optimal heuristic algorithm found the optimal solutions within a minute.
The backtrack algorithm spent 3.36 hours for the 15-point case and 7.82 hours for the
16-point case. This shows that the run time of the backtrack algorithm is doubled
with an additional regular point. Therefore, to apply the backtrack algorithm to the
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Table 8
The 16 regular points in test problem 4.

i x(i) y(i) Capacity i x(i) y(i) Capacity
01 1652296.67 433253.33 09 1652340.00 432690.00 0.0334
02 1651040.00 431910.00 0.0500 10 1652340.00 433210.00 0.0334
03 1651560.00 432430.00 0.0334 11 1652340.00 433730.00 0.0278
04 1651560.00 433990.00 0.0334 12 1652600.00 432950.00 0.0334
05 1651820.00 433210.00 0.0334 13 1652600.00 433990.00 0.0278
06 1651820.00 434250.00 0.0334 14 1652600.00 434510.00 0.0278
07 1652080.00 434510.00 0.0334 15 1652860.00 431650.00 0.0334
08 1652340.00 431650.00 0.0334 16 1652860.00 432690.00 0.0334

Table 9
Test results for test problem 4.

n = 15 Initial bound Final func Time (sec) Search perc
max-min ordering 157470.028030 98133.591436 12127.08 0.50E-07

min-min 5-opt 147002.048885 98133.591436 31.96
max-min 5-opt 157470.028030 98133.591436 36.15

n = 16 Initial bound Final func Time (sec) Search perc
max-min ordering 166726.146322 103061.764655 28141.68 0.41E-08

min-min 5-opt 157363.223440 103061.764655 43.00
max-min 5-opt 166726.146322 103061.764655 47.37
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Fig. 6. The optimal pipe networks for 15 points (left) and 16 points (right).

36-point case is not realistic with the current computing power. On one hand, our
computational results show that 17 or 18 regular points are about the limit for com-
puting an optimal solution using the exact algorithm in one workstation CPU day.
On the other hand, these results show that the 5-optimal heuristic is very practical.
The optimal pipe network for both cases in test problem 4 are illustrated in Figure 6.

In test problem 5, we used 36 regular points which are selected from a huge set of
grid points [20]. The coordinates and capacities of the regular points are illustrated
in Table 10. For this problem, we applied the 5-optimal heuristic algorithm with
the min-min heuristic and produced a network with a cost of 693567.504664. The
5-optimal heuristic found a network whose cost is 416116.527856, after making 84
changes in the topology. Note that this is a 40% reduction in the initial cost. The
total run time is 1042.43 seconds. We suspect that the result is suboptimal but did
not verify it because the estimated run time of the exact algorithm is about 800 years
on a workstation. The resulting network is illustrated in Figure 7.
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Table 10
The 36 regular points in test problem 5.

i x(i) y(i) Capacity i x(i) y(i) Capacity
01 1647400 432950 19 1651040 433730 0.032801
02 1651820 432170 0.071895 20 1649220 433990 0.050551
03 1651560 433210 0.036717 21 1652860 431650 0.070822
04 1648960 434250 0.105160 22 1650520 433210 0.128993
05 1648960 433990 0.121502 23 1651040 431910 0.187886
06 1647400 433730 0.119121 24 1648700 434510 0.189312
07 1647140 431910 0.064512 25 1652080 432170 0.144190
08 1651040 434250 0.011117 26 1648960 434510 0.045043
09 1647400 432170 0.066358 27 1646880 431650 0.038324
10 1650000 433730 0.115583 28 1651820 432950 0.136873
11 1649220 434250 0.069011 29 1646880 431910 0.127853
12 1649480 433990 0.198850 30 1651820 434250 0.138132
13 1648700 433210 0.166491 31 1650520 434510 0.009700
14 1649480 432430 0.156950 32 1652600 433470 0.080098
15 1652340 433210 0.063542 33 1648440 432950 0.085227
16 1647400 432430 0.040603 34 1648180 432170 0.038722
17 1651300 433210 0.035788 35 1648700 433990 0.130234
18 1649220 432170 0.034979 36 1651820 433990 0.174764
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Fig. 7. The 5-optimal network for the 36 points in test problem 5.

8. Conclusions. We have presented a backtrack algorithm for computing the
minimum cost pipe network interconnecting a single sink and many sources. This
algorithm, when used with the max-min heuristic ordering, can solve problems with
11 regular points on a workstation in several minutes. It can also solve a problem
with 15 regular points on a workstation in an hour. For larger problems, the algo-
rithm becomes too expensive. In order to provide good suboptimal solutions to larger
problems, we have also presented a 5-optimal algorithm for computing 5-optimal pipe
networks. This algorithm, which starts from a min-min heuristic, can change to a
better pipe network in O(n) time if the current one is not 5-optimal. Our computa-
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tional results show that this algorithm is very fast and often finds optimal or close to
optimal solutions. Several interesting problems remain unsolved. We mention a few
of them to conclude this paper.

The first one concerns the quality of the initial upper bound. For the ESMT
problem, the cost of the minimum spanning tree is within a factor of 2√

3
of the cost of

the Steiner minimum tree [10, 14]. For the problem considered in this paper, there is
no known polynomial time algorithm that can compute a solution whose cost is within
a constant factor of the optimal cost. We suspect that both the min-min heuristic and
the max-min heuristic produce 2-approximations to the minimum cost pipe network.
Our computational results support this conjecture. However, we have not been able
to arrive at a proof.

Although the number of full Steiner topologies is much smaller than the number
of Steiner topologies, it is still superexponential in n. Therefore, it is very important
to limit the number of topologies considered. For the ESMT problem, Winter and
Zachariasen [32, 33] have developed a very effective technique of enumerating equilat-
eral points (eq-points for short). They can rule out the vast majority of full topologies
that cannot possibly have a degeneracy corresponding to the optimal topology. Gen-
eralizing the concept of eq-points to the pipe network problem is an intriguing topic
for further research.

When there are several treatment sites and several wells, the problem becomes
harder and more interesting. We are currently investigating this problem. Also, the
5-optimal algorithm can be implemented in parallel because the checking of different
size-5 components can be done independently. Results on parallel implementations of
the 5-optimal heuristic algorithm will be reported in a separate paper.
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Abstract. The Nelder–Mead algorithm can stagnate and converge to a nonoptimal point, even
for very simple problems. In this note we propose a test for sufficient decrease which, if passed
for all iterations, will guarantee convergence of the Nelder–Mead iteration to a stationary point if
the objective function is smooth and the diameters of the Nelder–Mead simplices converge to zero.
Failure of this condition is an indicator of potential stagnation. As a remedy we propose a new step,
which we call an oriented restart, that reinitializes the simplex to a smaller one with orthogonal
edges whose orientation is determined by an approximate descent direction from the current best
point. We also give results that apply when the objective function is a low-amplitude perturbation
of a smooth function. We illustrate our results with some numerical examples.
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1. Introduction. In this paper we consider the Nelder–Mead [16] direct search
algorithm for the unconstrained minimization of a possibly nonconvex or even discon-
tinuous function f . The problem is

min
x∈RN

f(x).(1.1)

As in [10], we also consider objective functions that are small perturbations of smooth
and easy-to-minimize functions.

The Nelder–Mead algorithm maintains a simplex of approximations to an optimal
point. We assume throughout that the vertices {xj}N+1

j=1 are sorted according to the
objective function values

f(x1) ≤ f(x2) ≤ · · · ≤ f(xN+1).(1.2)

We will refer to x1 as the best vertex and xN+1 as the worst. The algorithm attempts
to change the worst vertex xN+1 to a new point of the form

x(δ) = (1 + δ)x− δxN+1,(1.3)

where x is the centroid of the sequence {xi}Ni=1,

x =
1

N

N∑
i=1

xi.(1.4)

A typical sequence [14] of candidate values for δ is{
δr, δe, δoc, δic

}
=

{
1, 2,

1

2
,−1

2

}
,
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corresponding to the reflection, expansion, outside contraction, and inside contraction
steps of the Nelder–Mead iteration. In general, we require that

−1 < δic < 0 < δoc < δr < δe.

Algorithm 1.1 (nm) is a formal description of the iteration, with a termination condi-
tion on small differences in the function values at the vertices. The input is the initial
simplex, the objective, and a tolerance for termination based on the difference between
the best and worst values. We require that the initial simplex be nondegenerate (i.e.,
that the vectors {x1 − xj}Nj=1 be linearly independent).

Algorithm 1.1. nm(S, f, τ).

1. Sort the vertices of S so that (1.2) holds.
2. While f(xN+1)− f(x1) > τ

a. Compute x, (1.4), x(δr), (1.3), and fr = f(x(δr)).
b. Reflect: If f(x1) ≤ fr < f(xN ), replace xN+1 with x(δr) and go to

step 2g.
c. Expand: If fr < f(x1) compute fe = f(x(δe)). If fe < fr replace xN+1

with x(δe); otherwise replace xN+1 with x(δr). Go to step 2g.
d. Outside Contraction: If f(xN ) ≤ fr < f(xN+1) compute fc =

f(x(δoc)). If fc ≤ fr replace xN+1 with x(δoc) and go to step 2g; other-
wise go to step 2f .

e. Inside Contraction: If fr ≥ f(xN+1) compute fc = f(x(δic)). If
fc < f(xN+1) replace xN+1 with x(δic) and go to step 2g; otherwise go
to step 2f .

f. Shrink: For 2 ≤ i ≤ N + 1: xi = x1 + xi−x1

2 ; compute f(xi).
g. Sort: Sort the vertices of S so that (1.2) holds.

The sort step is not precisely defined by Algorithm 1.1. One could simply use a
sort from one’s computing environment, or specify a sort algorithm with a tie-breaking
rule. Our results require only that each simplex satisfy (1.2), so we can follow [16]
and accept any sort. One specific tie-breaking rule was proposed in [14].

As one can see from the algorithm, if reflection, expansion, and the two types of
contractions do not succeed, the simplex is reduced in size, keeping only the vertex x1

with the lowest objective function value. This last scenario, the shrink step, is rare,
and the analysis we present will assume that shrinks do not occur.

We regard the simplex, and not just the best point, as the state of the iteration.
If a shrink step is not taken, then the worst vertex is replaced with the new, better,
vertex; the vertices are resorted; and the average objective function value

f =
1

N + 1

N+1∑
j=1

f(xj)(1.5)

has been decreased.

Unlike the pattern search algorithms [5], [8], [11], [20], [21] that maintain the
shape of the simplex, or the hybrid algorithm from [22], the Nelder–Mead algorithm
can stagnate and converge to a nonoptimal point [15], [9], [25], [14], [26], even for very
simple, smooth, and convex objective functions. Our results and analysis are simplex
oriented and assume, even if f is discontinuous or nonsmooth, an underlying smooth
structure of the objective that, while not present in the general case, is present in
many applications.



NELDER–MEAD ALGORITHM 45

In section 2 we define our notation and state a few simple lemmas. In particular,
we define a simplex gradient, which we use to monitor the performance of the Nelder–
Mead iteration and for our modification of the shrink step. We use those ideas in
section 3, where we describe our condition for sufficient decrease (3.1), and we show
in section 3.1 that if the objective function f is sufficiently smooth, the Nelder–Mead
iterates satisfy this sufficient decrease condition, and the simplex diameters converge
to zero in a certain way, then any limit point of the simplex vertices is stationary.
Our decrease condition is simpler than the one in [22], reflecting our interest in high-
frequency low-amplitude perturbations of smooth functions and in exploiting the one
function evaluation per iteration cost of the Nelder–Mead algorithm as aggressively
as safely possible.

In section 3.2 we propose an alternative to the shrink step that is to be used
when (3.1) fails to hold. This new step, which we call an oriented restart, reinitial-
izes the simplex to a smaller one with orthogonal edges which contains a difference
approximation to the steepest descent step from the current best point.

Throughout the paper we present results that apply when the objective function
is a low-amplitude perturbation of a smooth function. Finally, in section 4 we show
how a modified Nelder–Mead algorithm that incorporates our ideas performs on the
examples in [15].

2. Notation. In this paper ‖ · ‖ will denote the l2 norm or the induced matrix
norm. We consider algorithms that maintain a simplex S of potential optima with
vertices {xj}N+1

j=1 that satisfy (1.2).

We let V (or V (S)) denote the N ×N matrix of simplex directions by

V (S) = (x2 − x1, x3 − x1, . . . , xN+1 − x1) = (v1, . . . , vN ),

and diam(S), the simplex diameter, by

diam(S) = max
1≤i,j≤N+1

‖xi − xj‖.

We will refer to the l2 condition number κ(V ) of V as the simplex condition. We let
δ(f, S) denote the vector of objective function differences

δ(f : S) = (f(x2)− f(x1), f(x3)− f(x1), . . . , f(xN+1)− f(x1))T .

We will not use the simplex diameter directly in our estimates or algorithms. Rather,
we will use two oriented lengths

σ+(S) = max
2≤j≤N+1

‖x1 − xj‖ and σ−(S) = min
2≤j≤N+1

‖x1 − xj‖.

Clearly,

σ+(S) ≤ diam(S) ≤ 2σ+(S).

Definition 2.1. Let S be a simplex with vertices {xj}N+1
j=1 ordered so that (1.2)

holds and V (S) is nonsingular. The simplex gradient D(f : S) is

D(f : S) = V −T δ(f : S).
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This definition of simplex gradient is motivated by the following first-order esti-
mate.

Lemma 2.2. Let S be a simplex with vertices ordered so that (1.2) holds. Let ∇f
be Lipschitz continuous in a neighborhood of S with Lipschitz constant 2Kf . Then
there exists K > 0, depending only on Kf , such that

‖∇f(x1)−D(f : S)‖ ≤ Kκ(V )σ+(S).(2.1)

Proof. Our smoothness assumptions on f and Taylor’s theorem imply that for all
1 ≤ j ≤ N , ∥∥∥∥f(x1)− f(xj) +

∂f(x1)

∂vj
vj

∥∥∥∥ = ‖f(x1)− f(xj) + vTj ∇f(x1)‖

≤ Kf‖vj‖2 ≤ Kfσ+(S)2.

Hence

‖δ(f : S)− V T∇f(x1)‖ ≤ N1/2Kfσ+(S)2

and, setting K = N1/2Kf ,

‖∇f(x1)−D(f : S)‖ ≤ K‖V −T ‖σ+(S)2.

The conclusion follows from the fact that σ+(S) ≤ ‖V ‖.
Objective functions of the form

f(x) = g(x) + φ(x),(2.2)

where g is to be thought of as a smooth and easy-to-optimize function and φ as a
low-amplitude perturbation, arise naturally in applications [2], [3], [6], [10], [18], [19],
[23], [24]. In this paper we will assume only that φ is everywhere defined and bounded
in RN . Algorithms that use difference approximations to the gradient of f have been
proposed for bound-constrained [18], [10] and unconstrained [27] problems as a way to
avoid entrapment in local minima caused by the perturbation. The implicit filtering
algorithm described in [10] and [18] also attempts to obtain superlinear convergence
in the terminal phase of the iteration if φ(x) → 0 as x tends to the optimal point.
Like the pattern search algorithms, these difference methods require O(N) function
evaluations per iteration and, therefore, may be much less efficient in the initial phase
of the iteration than a simplex algorithm like Nelder–Mead that requires only O(1)
evaluations or iterations.

One purpose of this paper is to apply simplicial algorithms that use fewer than
O(N) function evaluations per iteration to such objective functions. One would hope
that the varying sizes of the simplices during the iteration would help avoid local
minima. We will need to measure the perturbations on each simplex. To that end,
we define for a simplex S

‖φ‖S = max1≤j≤N+1‖φ(xj)‖.

A first-order estimate also holds for the simplex gradient of an objective function that
satisfies (2.2).
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Lemma 2.3. Let S be a simplex with vertices ordered so that (1.2) holds. Let f
satisfy (2.2) and let ∇g be Lipschitz continuous in a neighborhood of S with Lipschitz
constant 2Kg. Then, there exists K > 0, depending only on Kg, such that

‖∇g(x1)−D(f : S)‖ ≤ Kκ(V )

(
σ+(S) +

‖φ‖S
σ+(S)

)
.(2.3)

Proof. Lemma 2.2 (applied to g) implies

‖∇g(x1)−D(g : S)‖ ≤ KgN
1/2κ(V )σ+(S).

Now, since ‖δ(φ : S)‖ ≤ 2
√
N ‖φ‖S , and σ+(S) ≤ ‖V ‖,

‖D(f : S)−D(g : S)‖ ≤ ‖V −T ‖‖δ(f : S)− δ(g : S)‖ = ‖V −T ‖‖δ(φ : S)‖

≤ 2N1/2‖V −T ‖‖φ‖S ≤ 2N1/2κ(V )
‖φ‖S
σ+(S)

.

This completes the proof with K = N1/2Kg + 2N1/2.

The constants K in (2.1) and (2.3) depend on S only through the Lipschitz
constant of f (or g) in a neighborhood of S. We will express that dependence as
K = K(S) when needed.

We will denote the vertices of the simplex Sk at the kth iteration by {xkj }N+1
j=1 .

We will simplify notation by suppressing explicit mention of Sk in what follows by
defining

V k = V (Sk), δkf = δ(f : Sk), Kk = K(Sk), and Dkf = D(f : Sk).

If V 0 is nonsingular, then V k is nonsingular for all k > 0 [14]. Hence, if V 0 is
nonsingular, Dkf is defined for all k.

Our assumptions on the sequence of simplices are modest.

Assumption 2.1.

• V 0 is nonsingular.
• The vertices satisfy (1.2).
• For each k, fk+1 < fk.

Assumption 2.1 is satisfied by the Nelder–Mead sequence if no shrink steps are
taken and the initial simplex directions are linearly independent. Assumption 2.1
need not be satisfied by the pattern search methods considered in [21], where only
conditions on the best value are enforced. One way to illustrate the difference between
pattern search methods and methods like Nelder–Mead is to note that the pattern
search methods require that the simplices be geometrically similar (so the simplex
condition is bounded) and require improvement in the best point. Nelder–Mead de-
mands that the average function value improve, but no control is possible on which
value is improved, and the simplex condition number can become unbounded.

3. Sufficient decrease and the oriented restart. Motivated by conventional
line search decrease criteria for optimization and nonlinear equations [1], [7], [12], [17],
we will ask that the (k + 1)st iteration satisfy

fk+1 − fk < −α‖Dkf‖2.(3.1)
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Here α > 0 is a small parameter. Our choice of sufficient decrease condition is
motivated by the smooth case, where the sufficient decrease condition for the steepest
descent direction is

f(xc + λ∇f(xc))− f(xc) < α0λ‖∇f(xc)‖2,

where λ is a line search parameter. In the smooth case, one typically obtains a lower
bound λ− for λ and arrives at a smooth analogue of (3.1),

f(xc + λ∇f(xc))− f(xc) < α0λ−‖∇f(xc)‖2.

Unlike the smooth case, however, we have no descent direction and must incorporate
λ− into α. This leads to the possibility that if the simplex diameter is much smaller
than ‖Dkf‖, (3.1) could fail on the first iterate. We address this problem with the
scaling

α = α0
σ+(S0)

‖D0f‖ .

A typical choice in line search methods, which we use in our numerical results, is
α0 = 10−4. We propose to use failure of (3.1) as a test for impending stagnation at a
nonminimizer.

3.1. Convergence results. The convergence result for smooth functions follows
easily from Lemma 2.2.

Theorem 3.1. Let a sequence of simplices satisfy Assumption 2.1 and let the
assumptions of Lemma 2.2 hold, with the Lipschitz constants Kk bounded. Assume
that {fk} is bounded from below. Then if (3.1) holds for all but finitely many k and the

product σ+(Sk)κ(V k)→ 0, then any accumulation point of the simplices is a critical
point of f .

Proof. The boundedness from below of {fk} and (3.1) implies that {fk} converges

to a constant. Assumption 2.1 and (3.1) imply that limk→∞Dkf = 0. Hence (2.1)
implies

lim
k→∞

‖∇f(xk1)‖ ≤ lim
k→∞

(
Kkκ(V k)σ+(Sk) + ‖Dkf‖) = 0.

Hence, if x∗ is any accumulation point of the sequence {xk1}, then ∇f(x∗) = 0. This
completes the proof, since κ(V k) ≥ 1 implies that σ+(V k)→ 0 and, hence, the vertices
have a common accumulation point.

Note that the conclusion of Theorem 3.1 also holds [17] if the sufficient decrease
condition (3.1) is replaced by

fk+1 − fk < −Φ(‖Dkf‖),(3.2)

where Φ is a monotonically increasing function on [0,∞) with Φ(0) = 0.

The result for the noisy functions that satisfy (2.2) with g smooth reflects the
fact that the resolution is limited by the size of φ; hence the assumption (3.3), which
implies that ‖φ‖Sk → 0 sufficiently rapidly. To see why this is important for the
theory, assume that ‖φ‖Sk ≥ ε for all k. In this case, once σ(Sk)� ε, then the noise
is larger than the variation in g over Sk and one should terminate the iteration. If
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σ(Sk) � ε1/2, the error term
‖φ‖

Sk

σ(SK)
on the right side of (2.3) is dominant and the

simplex gradient of f is no longer nicely related to the gradient of g.
Theorem 3.2. Let a sequence of simplices satisfy Assumption 2.1 and let the

assumptions of Lemma 2.3 hold with the Lipschitz constants Kk
g uniformly bounded.

Assume that {fk} is bounded from below. Then if (3.1) holds for all but finitely many
k and if

lim
k→∞

κ(V k)

(
σ+(Sk) +

‖φ‖Sk
σ+(Sk)

)
= 0,(3.3)

then any accumulation point of the simplices is a critical point of g.
Proof. Our assumptions, as in the proof of Theorem 3.1, imply that Dkf → 0.

Lemma 2.3 implies that

‖Dkg‖ ≤ ‖Dkf‖+Kkκ(V k)

(
σ+(Sk) +

‖φ‖Sk
σ+(Sk)

)
,(3.4)

and the sequence {Kk} is bounded. Hence, by (3.3), Dkg → 0 as k →∞.
We close this subsection with a partial converse of Theorem 3.2 that shows how

the connection between the condition number, simplex size, and amplitude of the
noise leads to a necessary condition for convergence to a critical point that is different
from that for smooth problems. In the smooth case, if xk → x∗ and x∗ is a critical
point of f , then ∇f(xk) → 0. In the present case, we must require that the entire
simplex converge to x∗ rapidly enough to control potential growth in the condition
number and also demand that the noise die out near the critical point.

Theorem 3.3. Let {Sk} be a sequence of simplices with the assumptions of
Lemma 2.3 holding for each k. Assume that

lim
k→∞

κ(V k)

(
σ+(Sk) +

‖φ‖Sk
σ+(Sk)

)
= 0

and that xk1 → x∗, a critical point of g. Then

lim
k→∞

Dkf = 0.

Proof. The result follows from (2.3) and the fact that ∇g(xk1)→ 0.

3.2. Oriented restarts. One can monitor a simplex-based iteration to see if
(3.1) holds. However, unlike the case of a gradient-based line search method, simply
reducing the size of the simplex (for example, a shrink step in Nelder–Mead) will
not remedy the problem. We propose performing an oriented restart when (3.1)
fails but fk+1 − fk < 0. This means replacing the current simplex with vertices

{xj}N+1
j=1 , ordered so that (1.2) holds, with a new, smaller simplex having vertices

(before ordering!) {yj}N+1
j=1 with y1 = x1 and

yj = y1 + βj−1ej−1 for 2 ≤ j ≤ N + 1,(3.5)

where el is the kth coordinate vector,

βl =
1

2

 σ−(Sk)sign((Dkf)l), (Dkf)l 6= 0,

σ−(Sk), (Dkf)l = 0,
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and (Dkf)l is the lth component of Dkf . If Dkf = 0 we assume that the Nelder–
Mead iteration would have been terminated at iteration k because of no difference
between best and worst values.

So, before ordering, the new simplex has the same first point as the old. The di-

ameter of the new simplex is σ−(Sk)√
2

. Therefore, after reordering, σ+(Sk+1) ≤ σ−(Sk).

As for κ, after the oriented shrink, but before reordering, κ(V ) = 1. After reordering,
of course, the best point may no longer be x1. If the best point is unchanged, V k+1

is a diagonal matrix with entries ±1. If the best point has been changed, then, up

to row permutation and multiplication by the scalar ±σ−(Sk)
2 , V k+1 is given by the

upper triangular matrix

V k+1 = (V k+1)−1 =



1 1 1 . . . 1
0 −1 0 . . . 0
... 0 −1

. . .
...

0
. . .

. . . 0
0 . . . . . . 0 −1

 .

Hence either V k+1 = I and κ(V ) = 1 or the l1 condition number is κ1(V k+1) =
‖V k+1‖21 = 4. The l2 condition number can be estimated by

κ(V k+1) = ‖V k+1‖2 ≤ (1 +
√
N)2.

In any case, the new simplex is well conditioned.
The new orientation of the simplex is intended to compensate for the kind of

stagnation that was exhibited in [15], in which the best vertex, not a minimizer,
remained unchanged throughout the entire iteration, and the simplices converged to
that vertex. The expectation, at least partially realized in our examples, is that while
the simplex gradient may be a poor approximation of the gradient, especially when
the simplex condition is large, the simplex diameter is small, and the gradient either
is nonzero or does not exist (all of which happen in the examples), there is enough
information in the simplex gradient to determine an orthant in which to locate the
new simplex. This is why we use only the signs of the components of the simplex
gradient.

The reduction in the simplex size, like the reduction in steplength in a line search
method, should, for smooth problems, make it easier to satisfy (3.1), especially when
the new simplex has orthogonal edges. While there is nothing special about the factor
of 1

2 in (3.5), there is no reason to expect that more elaborate line search schemes
based on polynomial models, such as those presented in [7], would be effective in the
context in which Nelder–Mead and related algorithms are used.

This approach improves the robustness of Nelder–Mead, but it does not solve all
the problems. It is possible that (3.1) may fail even after several restarts. In fact, in
the results reported in section 4, that happens for one example. Our implementation
terminates with failure after three such unsuccessful restarts. One can envision hybrid
algorithms that combine Nelder–Mead with a more robust search algorithm, such as
implicit filtering [10], multidirectional search [20], or the Hooke–Jeeves iteration [11].
These methods can all be analyzed with the simplex gradient [4], [13] to derive results
like Theorem 3.3 without any concern for the growth of κ, which is bounded for all
of these methods. However, the cost of O(N) evaluations of f per iteration for these
alternatives makes the Nelder–Mead algorithm attractive in those cases where it does
not stagnate.
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Fig. 4.1. Unmodified Nelder–Mead, (τ, θ, φ) = (1, 15, 10).

4. Numerical testing. We show how the detection of stagnation and the mod-
ification of the Nelder–Mead algorithm proposed in section 3 perform in the examples
from [15]. Here N = 2 and

f(x, y) =

 θφ|x|τ + y + y2, x ≤ 0,

θxτ + y + y2, x > 0.

The examples in [15] consider the parameter sets

(τ, θ, φ) =

 (3, 6, 400),
(2, 6, 60),
(1, 15, 10).

The initial simplex was

x1 = (1, 1)T , x2 = (λ+, λ−)T , x3 = (0, 0)T , where λ± =
1±√33

8
.

With this data, the Nelder–Mead iteration will stagnate at the origin, which is not a
critical point for f .

We terminated the iteration when the difference between the best and worst
function values was < 10−8 or, in the modified algorithm, after three restarts, using
this as a test for stagnation.

We illustrate the behavior of the unmodified Nelder–Mead algorithm in Fig-
ures 4.1, 4.3, and 4.5. In all the figures we plot, as functions of the iteration index,
the difference between the best and worst function values, σ+, the maximum oriented
length, the norm of the simplex gradient, and the l2 condition number of the matrix
of simplex directions. In all three problems stagnation is evident from the behavior of
the simplex gradients. Note also how the simplex condition number is growing rapidly.



52 C. T. KELLEY

0 10 20 30 40 50
10

−4

10
−2

10
0

10
2

Function Differences

0 10 20 30 40 50
10

−4

10
−2

10
0

10
2

Max Oriented Length

0 10 20 30 40 50
10

1

10
2

10
3

Simplex Gradient Norm

0 10 20 30 40 50
10

0

10
2

10
4

10
6

10
8

Simplex Condition

Fig. 4.2. Modified Nelder–Mead, (τ, θ, φ) = (1, 15, 10).
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Fig. 4.3. Unmodified Nelder–Mead, (τ, θ, φ) = (2, 6, 60).

In Figures 4.2, 4.4, and 4.6 we present the same data for the modified algorithm, with
stars on the graphs to indicate where oriented restarts were done.

Two of the examples in [15] are smooth. For the less smooth of these two,
(τ, θ, φ) = (2, 6, 60), the modified form of Nelder–Mead took a single oriented restart
at the 19th iteration. For the smoothest example, (τ, θ, φ) = (3, 6, 400), the modi-
fied form of Nelder–Mead took a single oriented restart at the 21st iteration. As one
can see from Figures 4.4 and 4.6 the restart had an immediate effect on the simplex
gradient norm and overcame the stagnation.
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Fig. 4.4. Modified Nelder–Mead, (τ, θ, φ) = (2, 6, 60).
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Fig. 4.5. Unmodified Nelder–Mead, (τ, θ, φ) = (3, 6, 400).

For the nonsmooth example, (τ, θ, φ) = (1, 15, 10), in Figure 4.1, the modified
algorithm terminated with failure after restarting on the 44th, 45th, and 46th itera-
tions. Since the objective is not smooth at the stagnation point, this is the best we
can expect and is far better than the behavior of the unmodified algorithm, which
stagnates with no warning of the failure.

All computations reported here were done using MATLAB 5.0 on a Sun Ultra
Enterprise 1 running Sun Solaris v2.1.
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Fig. 4.6. Modified Nelder–Mead, (τ, θ, φ) = (3, 6, 400).
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Abstract. In this paper we consider several algorithms for reducing the storage when using a
quasi-Newton method in a dogleg–trust region setting for minimizing functions of many variables.
Secant methods require O(n2) locations to store an approximate Hessian and O(n2) operations per
iteration when minimizing a function of n variables. This storage requirement becomes impractical
when n becomes large. Our algorithms use a BFGS update and require kn storage and 4kn +
O(k2) operations per iteration, but they may require more iterations than the standard trust region
techniques. Typically k is between 10 and 100. Our dogleg–trust region strategies involve expressions
with matrix products with both the inverse of this Hessian and with the Hessian itself. Our techniques
for updating expressions for the Hessian and its inverse can be used to improve the performance of
line search, limited memory algorithms.
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1. Introduction. Quasi-Newton methods are iterative methods for minimizing
a function f(x), where x ∈ Rn, using only first derivative and function information. If
f(x) is a quadratic function, quasi-Newton methods converge in at most n iterations
in exact arithmetic with exact line searches. At each iteration a linear system is
solved using a matrix B which is an approximation to the true Hessian G, which

has components gi,j = ∂2f(x)
∂xi∂xj

. At each iteration the matrix B is updated to the

matrix B+ by a rank 1 or 2 update so that at the next iterate x+, B+ satisfies the
quasi-Newton condition

B+s = y,(1.1)

where s = x+ − x and y = ∇f(x+)−∇f(x).
Quasi-Newton methods with reduced storage have been discussed by Nocedal [14],

Buckley and LeNir [2], Liu and Nocedal [11], and Byrd, Nocedal, and Schnabel [4].
Their main idea is that by saving the s’s and y’s of the last k iterations and some
of their inner products, one can easily generate a quasi-Newton search direction that
is based on the previous k iterations. Thus one would choose a value of k based on
the amount of storage or the expense of each iteration for the particular application,
and for the first k iterations, the iterates from the reduced storage scheme and the
quasi-Newton method would coincide, but on iteration k + 1, information from the
first iteration would be discarded and the approximation would not necessarily agree
with the (k + 1)st step of the traditional quasi-Newton approach.

Dogleg–trust region approaches, as in Dennis, Gay, and Welsch [6] and Dennis
and Mei [7] for minimizing a function f(x), determine a radius of trust τ which defines
the region where one trusts the second-order model of the function to be minimized.
The next iterate x+ must satisfy

||x+ − x||2 ≤ τ.(1.2)
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Fig. 1.1. The double-dogleg path.

In most trust region approaches, the person who wishes to minimize f(x) initially
chooses τ , and its value is gradually changed by the trust region algorithm as the
method proceeds.

At each iteration, dogleg–trust region methods consider φ(d), a quadratic model
of f(x+ d), of the form

φ(d) =
1

2
dTBd+∇fT d+ f(x).(1.3)

Here B is an approximate Hessian that has been updated according to condition (1.1).
If the “quasi-Newton” point xQN = x − B−1∇(fx) satisfies (1.2) it becomes a trial
step; otherwise the trial step xT in the double-dogleg strategy is taken as the largest
step that satisfies (1.2) and lies on the polygonal line that runs from x to the Cauchy
point, xCP (the minimum of (1.3) along the steepest descent direction), to a point
xDD in the quasi-Newton direction, up to the xQN , as shown in Figure 1.1. The point
xDD is chosen as in Dennis and Mei [7] so that φ is guaranteed to monotonically
decrease along the polygonal line. If f(xT ) > f(x), τ is decreased and the process is
repeated.

The calculation of the dogleg–trust region step involves considering both the
quasi-Newton direction and the steepest descent direction at each iteration. De-
termining the quasi-Newton direction requires the solution of a linear system with B.
Adjusting the radius of trust and determining whether the Cauchy point along the
steepest descent direction is within that region requires expressions with B.

For more than a decade, the quantum chemistry group at Bell Laboratories has
been successfully using the double-dogleg strategy of Dennis and Mei [7], as imple-
mented in MINOP, an early trust region code, which had been changed by the current
author to work with the LDLT decomposition of B updated according to the BFGS
formula. The chemists had been drawn to this type of algorithm because their models
could be trusted only locally; this paper was prompted by a chemist’s reduced storage
request.

In section 2 of this paper we construct an algorithm that combines the limited
storage algorithms of Byrd, Nocedal, and Schnabel [4] with a dogleg–trust region
approach in which a step s can be written as s = αη+ β∇f(x), where η is the quasi-
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Newton step and α and β are determined so that the step lies within the region of
trust. Our algorithm requires at most 4nk + O(k2) multiplications in overhead per
iteration. The highest order term is the same as the highest order term required by
a line search technique based on [4] that updates B−1. If an algorithm requires B,
the schemes given in [4] require 4nk + k3/6 + O(k2) multiplications. The updating
techniques given in this paper can be combined with a limited memory line search
approach to yield an algorithm that does not require O(k3) operations per iteration
even when B is required. In section 3 we present some computational evidence that
indicates that the limited memory dogleg approach is a viable alternative.

Burke and Weigmann [3] have recently proposed an algorithm for limited memory
based on the trust region framework given in Moré and Sorensen [12], which does not
use a double-dogleg step but is based on solving (B + µI)d = ∇f(x) for a prescribed
value of µ. Their updating scheme also is based on [4] and sometimes has a k3/6
component in the operation count for an iteration.

2. Algorithms. In dogleg–trust region methods the matrix B, the approximate
quasi-Newton Hessian, and its inverse appear in several contexts. Given the current
iterate x, its function value f(x), the ∇g at x, and the current approximation of
the Hessian B, each iteration of the algorithm of Dennis and Mei [7] as explained in
Dennis and Schnabel [8] is essentially as follows.

1. Compute the quasi-Newton direction η = −B−1g.
2. If the quasi-Newton step is within the trust region, i.e., if ||η||2 ≤ τ , then

set s = η,
else

if the trust region includes a point between DD and
QN in Figure 1.1, i.e., if ||tη|| ≤ τ where c = ||g||4/((gTB−1g)(gTBg))
and t = 0.2 + 0.8c, then

set s = τ/||η||η,
else

if the Cauchy step, p = −(||g||/gTBg)g, is outside the radius
of trust, i.e., ||p|| ≥ τ , then

set s = −(τ/||g||)g
else

set s = p+ θw, where w = tη − p,
θ = σ/(φ+ (φ2 + ||w||2σ)1/2), σ = τ2 − ||p||2, and φ = pTw.

3. Set the new x, x+ = x+ s. If f(x+) > f(x),
set τ = τ/2 and go to step 2.

4. The radius τ can be updated as follows:
The predicted function difference, dfm, is gT s+ 0.5sTBs.
If (f(x)− f(x+)) > 0.1dfm, then

set τ = 0.5||s|| and go to step 5
else

if |dfm − (f(x)− f(x+))| ≤ 0.1(f(x)− f(x+)) or
(f(x)− f(x+)) < .75dfm or gT s ≥ 2xT∇f(x+), then

set τ = 2||s||,
else

set τ = ||s||.
5. Update the B matrix.
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From step 1 on the trust region double-dogleg algorithm we see that we need to
compute

η = B−1∇f(x).(2.1)

From step 2 we might need

∇f(x)TB∇f(x).(2.2)

From step 4 we need to compute

sTBs.(2.3)

The fact that one often can write

s = αη + β∇f(x)(2.4)

means that Bs = −α∇f(x) + βB∇f(x), so that the product Bs implied in (2.3)
really does not have to be computed as long as B∇f(x) itself is available or β is
zero. In [6], s = αη + βD∇f(x) for some diagonal matrix D, but (2.2) is changed to
∇f(x)TDBD∇f(x). Thus it appears that at each iteration one needs a representation
of B−1 that can be inserted into (2.1), and if the quasi-Newton step is outside the
trust radius, one needs a representation of B to insert into (2.2).

The ease with which the quantities in (2.1)–(2.3) are computed depends on one’s
representation of B. In [4] Byrd, Nocedal, and Schnabel suggest the following compact
representation based on the BFGS update scheme for the approximate Hessian.

Let xk represent the kth quasi-Newton iterate, g(xk) = ∇f(xk), sk = xk − xk−1,

and yk = gk− gk−1. Let p = max(1, k− k̂), where k̂ represents the number of iterates

for which one has sufficient storage, and let k′ = min(k̂, k). Let

Sk = [sp, . . . , sk], Yk = [yp, . . . , yk].

Let Ek be the k′ × k′ diagonal matrix

Ek = diag[sTp yp, . . . , s
T
k yk]

and let Z(k) be the k′ × k′ lower triangular matrix

z
(k)
i,i′ =

{
sTi+p−1yi′+p−1 if i > i′,
0 otherwise.

(2.5)

Let Ck be the 2k′ × 2k′ symmetric indefinite matrix

Ck =

[ −Ek Z(k)T

Z(k) δSTk Sk

]
.(2.6)

Then, as Byrd, Nocedal, and Schnabel show in [4], the BFGS approximation Bk
to the Hessian matrix can be written as

Bk = δI − [Yk : δSk]C−1
k

[
Y Tk
δSTk

]
.(2.7)

If we let

Ak = [Yk : Sk] ,
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then we may write (2.7) as

Bk = δI −AkWkA
T
k ,(2.8)

where

Wk =

[
I 0
0 δ

]
C−1
k

[
I 0
0 δ

]
.

As shown in [4], one can express C−1
k as

C−1
k =

[
−E1/2

k E
−1/2
k Z(k)T

0 JTk

]−1
[

E
1/2
k 0

−Z(k)E
−1/2
k Jk

]−1

,(2.9)

where Jk is a lower triangular matrix satisfying

JkJ
T
k = Vk = δSTk Sk + Z(k)E−1

k Z(k)T .(2.10)

Because we are implementing a quasi-Newton method, we may assume that sk =
Bkyk, which implies that yTk sk = yTk Bkyk > 0 since B is positive definite. Thus E is
positive definite, and E1/2 exists and can be written as a positive definite diagonal
matrix. Also, Vk in (2.10) must be positive definite and Jk must exist.

Byrd, Nocedal, and Schnabel [4] show that for the BFGS update in (2.7), the
matrix B−1

k = Hk can be expressed as

Hk = δ−1I+Ak

[
0 δ−1I

T (k)−T 0

] [
(Ek + δ−1Y Tk Yk) −I

−I 0

] [
0 T (k)−1

δ−1I 0

]
ATk ,

(2.11)
where

t
(k)
i,i =

{
sTi+p−1yi′+p−1 if i ≤ i′,
0 otherwise.

(2.12)

Since the matrix T is upper triangular, it is easy to apply T−1 to a vector by simply
solving the appropriate upper triangular system.

Thus determiningHk does not require refactoring any matrix and is quite straight-
forward.

Given the representation in (2.11) one can compute η = −Hk∇f(xk) in (2.1) as
follows.

Algorithm QN.
1. Determine uk = ATk∇f(xk).

2. Partition u as
[ u1

u2

] k′
k′ .

3. Solve T (k)w = u2

4. Set m = (Ek + δ−1Y Tk Yk)w − δ−1u1.

5. Solve T (k)T p = m .

6. Set η = −δ−1gk −Ak
[ −δ−1w

p

]
.

Because Ek is diagonal and T (k) is triangular, Algorithm QN requires 4k′n +
2k′2 + O(k′) + O(n) multiplications. If u is available from a previous computation,
then only 2k′n+ 2k′2 +O(k′) +O(n) multiplications are necessary.

If the quasi-Newton step is not within the trust region, then one needs to compute
gTk Bkgk, which can be determined using the intermediate quantities of Algorithm QN
as follows.
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Algorithm CBG.

1. Solve
[ E

1/2
k

0

−Z(k)E
−1/2
k

Jk

]
t =

[ u1

δu2

]
.

2. Partition t as
[ t1
t2

] k′
k′ .

3. ∇f(xk)TBk∇f(xk) = δ∇f(xk)T∇f(xk) + tT1 t1 − tT2 t2.

Because Ek is diagonal and Z(k) is triangular, the cost of Algorithm GBG is only
k′2+O(n)+O(k′) multiplications. There is no nk′ term in the operation count because
we were able to use partial results from Algorithm QN. This same saving does not
occur with the standard Cholesky factorization of Bk and is one of the major benefits
of this approach.

Once a step has been determined one needs to adjust the trust radius τ and
update the representations of Bk and Hk. The calculation of the trust region depends
on (2.3). For (2.3), we get

sTk+1Bksk+1 = −α2ηT gk + β2gTk Bkgk − 2αβgTk gk,(2.13)

since Bkη = −gk. Computing the right-hand side of (2.13) requires at most O(n)
multiplications because either β = 0 or gTk Bkgk has been precomputed.

2.1. Updating Bk and Hk. At the kth iteration the computation of Hk+1

requires the matrix products Y Tk yk+1 and STk yk+1, i.e., ATk yk+1. Since yk+1 =
∇f(xk+1)−∇f(xk) , ATk yk+1 = ATk∇f(xk+1)−ATk∇f(xk) = ATk∇f(xk+1)−uk, where
uk was used and computed in Algorithm QN. If one computes uk+1 = ATk+1∇f(xk+1)
and saves it for the next application of Algorithm QN, then the work involved in
Algorithm QN is reduced by 2nk′ multiplications.

In general, to have a representation of C−1
k+1 in the formula for Bk+1, one needs

Z(k+1) and STk+1Sk+1, which in turn requires Y Tk sk+1 and STk sk+1, i.e., ATk sk+1.

Normally one would expect that the computation of ATk sk+1 would require 2nk′ mul-
tiplications. However, from (2.4), if α = 0, we get ATk sk+1 = βuk, which requires only
O(n) multiplications, and if α 6= 0, from (2.11) and Algorithm QN, we see that

ATk sk+1 = (β − αδ−1)uk − αATkAk
[ −δ−1w

p

]
,(2.14)

which costs 4k′2 multiplications because the matrix ATkAk is readily available.
We now turn our attention to the computation of Jk in (2.10). Byrd, Nocedal,

and Schnabel [4] assume that k′ is so small compared to n that the O(k′3) work
involved with computing Jk from scratch each iteration will be dwarfed by the O(nk′)
operations involved in multiplying ATk∇f(xk). In our work we will not make that
assumption and we will try to avoid operations that involve O(k′3) multiplications.

If k < k̂, at the next iteration, Sk will gain a column and Z(k), a strictly lower
triangular matrix, will gain a row. Thus the matrix Vk in (2.10) will gain another row
and column, and we find that Vk+1 will have the form

Vk+1 =

[
Vk v
vT β

]
,(2.15)

where vT = δsTk+1Sk + zTE−1
k Z(k)T , β = δsTk+1sk+1 + zT z/ek+1, and zT is the kth

row of Z(k). Similarly, Jk+1 has the form

Jk+1 =

[
Jk 0
pT γ

]
,(2.16)
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where p = J−1
k v and γ2 = β − (pT p). Updating J requires k2 +O(k) multiplications.

When k > k̂, information must first be removed from Sk before the above algo-
rithm is begun. Downdating essentially means that Sk would lose its first column and
the lower triangular matrix Z(k) its first column, z1. Removing the z1 information
from J entails forming the Cholesky factorization J̃ J̃T of the matrix

Ṽ = Vk − e−1
1 z1z

T
1(2.17)

for which five algorithms are given in [10]. In our implementation we have used the
second one which requires 1.5k′2 +O(k′) multiplications.

An algorithm for removing the S information from Jk can be derived by noticing
that Jk is the transpose of the R matrix in the QR decomposition of the matrix

F =

[
δ1/2Sk

E
−1/2
k Z(k)T

]
,(2.18)

since Vk = FTF . Note that F initially has the structure

x x x x
.. . . .
x x x x
− − − −

x x x
x x

x


.(2.19)

Since the QR decomposition of F is given by

F = QF

[
JTk
0

]
,(2.20)

eliminating the first column of Sk is equivalent to removing the first column of F in
(2.19). This, in turn, is equivalent to deleting the first row from Jk, which is also the
first row of J̃ . This leaves us with a matrix J̃ of the form

x x
x x x
.. . . x
.. . . . x
x x x x x

 .(2.21)

Because J̃T is part of the QR decomposition of the F matrix, we are free to apply
orthogonal transformations to its rows (i.e., to the columns of (2.21)) to return it
to triangular form. Givens transformations applied successively to the columns of
(2.21) in the planes (1, 2), (2, 3), . . . , (k′, k′ − 1) can be used to return it to lower
triangular form. Assuming four multiplications per Givens transformation, this part
of the algorithm requires 2k′2 + o(k′) multiplications.

Table 2.1 below summarizes the operation count for the whole algorithm according
to the type of step taken. In the rest of the paper we will call this approach ATA,
indicating that it is based on ATA .

Computing a decomposition of J from scratch each time rather than performing
downdates and updates incurs a cost of k′2/2 + k′3/6 multiplications per iteration,
which is efficient only if k′ < 18 and there are many iterations.
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Table 2.1
Multiplication counts of each iteration depending on the type of step.

Task Quasi-Newton step Not quasi-Newton step

Compute QN step 2nk′ + 2k′2 2k′n+ 2k′2
Compute gTBg k′2

Updating ATA 2nk′ + 4k′2 2nk′ + 4k′2

Downdating J 3.5k′2 3.5k′2
Updating J k′2 k′2

Total 4nk′ + 10.5k′2 4nk′ + 11.5k′2

The line search quasi-Newton algorithms in [4] require at least 4k′n + O(k′2)
multiplications, so that the line search schemes and ATA have the same leading term.
Those in [4] based on updating B compute a decomposition of Vk in (2.9) rather than
updating the decomposition as detailed in (2.15)–(2.21), and thus incur an additional
cost of k′3/6 multiplications per iteration, which is consequential when, say, k > 18.
Thus the algebraic overhead costs for the trust region approach per iteration are not
greater than those for the line search approach. On any given problem any comparison
between the two limited memory algorithms rests mainly on the effectiveness of the
line search scheme versus the trust region mechanism. In our experience the line
search approach usually requires more function evaluations per iteration but may
require fewer iterations than the trust region method if the quadratic model used
by the trust region approach is not “trustworthy.” In the limited memory approach,
where some information is discarded, the reliability of the model tends to be more
sensitive to the value of δ than the nonlimited memory trust region algorithm and
may require higher values of k than the limited memory line search approach.

2.2. Using the QR decomposition. Throughout our description of the algo-
rithm we have encountered submatrices of ATkAk. Rather than forming this matrix
explicitly, one could take a hint from Nazareth [13] and form the QR decomposition
of the n× 2k′ matrix Ak of rank m, given by

Ak = Qk

[
Rk
0

]
,(2.22)

where Qk is an orthogonal matrix and Rk is an m × 2k′ upper trapezoidal matrix.
Rather than storing Qk, one would store only its first m columns, which we will call
Q̂k. The main advantage of using (2.22) is numerical stability. The Ak matrix itself
would not have to be stored. Whenever it is needed for matrix-vector multiplication,
(2.22) would be used. If one denoted the first k′ columns of Rk as RY , then Y TY
in (2.11) could be written simply as RTYRY . The product would never be formed,
but to produce z = Y TY x one would set v = RY x followed by z = RTY v. Actually,
it would be more practical to interleave the columns of Ak to form the matrix Ãk.
At each iteration Ãk would gain two columns corresponding to sk and yk. Using the
Gram–Schmidt procedure with reorthogonalization, updating the QR decomposition
of Ãk would cost 2nm(l + 1) + O(n) + O(k′) multiplications, where l represents the
number of reorthogonalization steps [5]. If m = 2k′, this cost is about double the cost
of updating ATkAk.

The cost of updating and downdating the decomposition depends on the rank of
the matrix Ãk. We will show that for k ≤ 2k̂, the rank mk of Ak satisfies mk ≤ k+ 1.
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Our proof depends on the matrix Φk, which has the structure

Φk = [s1, g1, s2, g2, . . . , sk, gk].(2.23)

Theorem 1. Assuming the search direction is a linear combination of the steepest
descent direction and the quasi-Newton direction, then for k < 2k̂ the rank m′k of Φk
satisfies m′k ≤ k + 1.

Proof. The proof is by induction on k. For k = 1, the matrix Φk has at most two
linearly independent columns.

Assume k < 2k̂ and Φk has rank m′k, where m′k ≤ k + 1. The vectors sk+1

and gk+1 are appended to Φk to form Φk+1. Now from (2.4) and the intermediate
quantities of Algorithm QN, we see that

sk+1 = (β − αδ−1)gk + δ−1αYkw − αSkp.(2.24)

Since yk = gk − gk−1, the columns of Yk are linear combinations of the columns of
Φk. Thus sk+1 is a linear combination of the columns of Φk, the rank of (Φk|sk+1) is
m′k, and the rank of Φk+1 is at most m′k + 1. From our induction hypothesis we get
that m′k+1 ≤ k + 2, thus proving the theorem.

From Theorem 1, we can prove the following theorem.
Theorem 2. Assuming the search direction is a linear combination of the steepest

descent direction and the quasi-Newton direction, then for k < 2k̂ the rank mk of Ãk
satisfies mk ≤ k + 1.

Proof. Consider the matrix Ψk a 2k × 2k matrix that has the form

Ψk =



1 ψ
1 −1

1
1 −1

1
1 −1

1
1


,

where ψ = −||g0||/τ . Note that s1 = ψ−1g0. The matrix Ãk = ΦkΨk and hence has
the same rank as Φk, since Ψk is nonsingular.

In practice one would work with and save Q̂k, the first mk columns of the Q
matrix from the QR of Φk. Since Q̂k has at most k + 1 columns, Q̂k occupies about
half the space of Ak, which is why Theorems 1 and 2 consider k < 2k̂ rather than
k ≤ k̂. Applying Ak to a vector x using (2.22) requires kn + k2 + O(k) + O(n)
multiplications rather than 2nk multiplications if A itself were used. Updating (2.22)
requires 2nk(l+1)+O(n+k) multiplications, and, without reorthogonalization, about
the same amount required to compute ATkAk.

Downdating the Gram–Schmidt QR decomposition of Ãk is much more expensive
than the downdating in (2.10) because, as shown in [5], here one has to apply trans-
formations to Q̂k, which means that we will be dealing with O(nk) multiplications

rather than O(k2). Between iterations k̂ and 2k̂, one can cite two reasons for delaying

the downdating process. First, if k̂ is large enough, one may converge to the solu-
tion of the optimization problem before iteration 2k̂, so that the downdating process
might be superfluous. Second, it costs less to wait, assuming that shedding the first
two columns each time does not decrease the rank of Ãk. From Theorem 2 we gather
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Table 2.2
Multiplication count with several options assuming “combination step.”

Determining step Updating Downdating Total
and radius matrices matrices

ATA(k < k̂) 2k′n+ 3k′2 2k′n+ 5k′2 4k′n+ 8k′2

QR (k < k̂) k′n+ 5k′2 2k′n+ 2k′2 3k′n+ 7k′2

ATA(k ≥ k̂) 2k′n+ 3k′2 2k′n+ 5k′2 3.5k′2 4k′n+ 11.5k′2

QR kn+ 3k′2+ 2kn+ 2k2 3kn+ 3k′2+

(k̂ ≤ k < 2k̂) 2k2 4k2

QR 4k′n+ 7k′2 4k′n+ 2k′2 2k′2n 2k′2n+ 8k′n+

(k = 2k̂) 9k′2

QR (k > 2k̂) 4k′n+ 7k′2 4k′n+ 2k′2 10k′n+ 13k′2 18k′n+ 22k′2

that the matrix R̃k (corresponding to Ã) has the structure of (2.25). Downdating
each iteration requires a sequence of three-plane Householder transformations that
require about five multiplications per transformation. By iteration 2k̂ one would need
k̂2 such transformations, so that the total cost of applying these transformations to
Q̂k is about 5k̂2n multiplications. If one waited until iteration 2k̂ and eliminated the
first 2k̂ columns of Rk and reduced the next 2k̂ columns to triangular form, then one
would be using longer Householder transformations, and the application of these to
Q̂ would require at most 2k̂2n multiplications. Thus postponing is cost effective.

x x x x x . x x x
x x x x . x x x

x x . x x x
. x x x
. x x x
x x x

x


.(2.25)

After iteration 2k̂ downdating costs 10k′n + 10k′2 multiplications to apply the
transformations to Q̂k and R̃k. Referring to Table 2.2 one realizes that downdat-
ing swamps all the other algebraic computations. Moreover, the k′n term in the
downdating multiplication count refers to vector operations and not to matrix-vector
operations, which could be implemented with fast BLAS [3]. For some problems it
may make sense just to begin again, throwing out old information, recomputing δ,
and taking a steepest descent step. In the next section we will call this option RSQR,
for “restart using the QR decomposition.”

Table 2.2 provides the cost of the ATA-based and the QR-based algorithms,
assuming both α and β in (2.4) are nonzero. The major lesson one gleans from the
table is that downdating using the QR decomposition is expensive.

3. Numerical examples. The reduced storage algorithms defined in section 2
were inserted into Dennis and Mei’s MINOP [7] code restricted to the BFGS update.
These modified codes were applied to two problems to determine if in practice there
were significant differences between the algorithms. The codes were run on a four-
processor SGI machine and terminated when the gradient decreased to 1× 10−6.

The first problem is the journal bearing problem discussed in [1] without the
nonnegativity constraints. In that problem we set the eccentricity ε to .1 and b to 1.
For the journal bearing problem, function and gradient evaluations account for about
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Table 3.1
Function evaluations and time (sec) for the journal bearing problem.

n = 400 n = 1600 n = 2500
Fn. eval. Time Fn. eval. Time Fn. eval. Time

MINOP, k̂= n 35 6.7

LBFGS, k̂= 50 55 .54 96 3.6 111 8.4

RSQR, k̂= 50 43 .57 70 3.7 87 7.2

ATA, k̂= 50 43 .52 68 4.0 85 8.5

LBFGS, k̂= 25 55 .55 96 3.9 111 7.2

RSQR, k̂= 25 41 .48 117 5.3 166 11.1

ATA, k̂= 25 43 .53 65 3.3 88 6.8

LBFGS, k̂= 10 55 .50 102 3.6 111 6.0

RSQR, k̂= 10 60 .64 163 6.4 238 15.1

ATA, k̂= 10 42 .45 71 3.0 109 6.6

half the total computation time in the limited memory codes we tested.
In Table 3.1 we compare the original MINOP code algorithm to ATA and RSQR

and LBFGS, a limited memory line search BFGS code discussed in [11]. For n = 400
the decrease in the number of linear algebra computations per iteration with the
reduced storage schemes significantly reduces the overall time. This is definitely a
situation in which one would want to use these types of schemes over the straight
quasi-Newton codes.

From Table 3.1 one can make several observations. There was not a great deal
of difference between the timings of the line search routine and ATA. The line search
routine tended to take two function evaluations per iteration, while ATA usually took
one, so that the number of function evaluations of LBFGS tended to be higher but
fewer iterations were required. For this problem the trust region routines were more
sensitive to the value of k̂ and the smaller the value of k̂, the more function evaluations
were required. This was particularly true of the algorithm RSQR that restarted every
k̂ iterations.

The results for ATA and RSQR were very dependent on the choice of δ. We
followed the suggestion of Shanno and Phua [16] and Oren and Spedicato [15] that
δ be set initially to yT y/sT y, where y = ∇f(x1) − ∇f(x2) and s = x1 − x2. For
restarting RSQR, this formula was used. For this choice of δ, most of the steps
were in the quasi-Newton direction. For the problem with n = 2500 and k̂ = 25, we
multiplied the initial δ by 10 and found that most of the steps were combination steps,
and for the same accuracy, 204 function evaluations were needed and the computation
required 19 seconds. When we divided the initial δ by 10, again most of the steps
were combination steps, the number of function evaluations increased to 333, and the
computation required 22 seconds.

The second example was a small (n = 167) version of a molecular dynamics
problem involving silicon and oxygen, which had prompted this research. The problem
involved finding “unique” vectors zi in 3-space, which minimized

f =
∑
i

∑
j

aij/dij + bij/d
6
ij + cije

(hij−dij),(3.1)

where dij = ||zi − zj ||22 and the a’s, b’s , c’s, and h’s were known constants. Unfortu-
nately, there were some negative values of bi,j , and for these values, if zi = zj , then
f = −∞. The application had many local minima, and different minima were found
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Fig. 3.1. Number of iterations for various values of k̂ for the silicon problem.
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Fig. 3.2. Times for various values of k̂ for the silicon problem.

as k̂ and δ were varied. This made an exact comparison rather difficult.

Figure 3.1 plots the function values versus the number of function evaluations for
the original nonreduced storage algorithm to the ATA scheme for several values of k̂,
and Figure 3.2 compares the time in seconds on our SGI machine.

Analytic gradients were computed along with the function values to take advan-
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tage of common subexpressions. The initial value of δ given above was also used here.
As expected, the original scheme, which does not try to minimize storage, required
the least number of iterations, and the smaller the value of k̂, the larger the number of
function evaluations. However, in terms of time, all the runs were similar. Increasing
δ by a factor of 10 sometimes improved the results and sometimes led to a different
minimum. The restarting scheme RSQR tended to require more iterations than the
ATA scheme near the local minima. The function evaluation profile and time profile
for RSQR with k̂ = 45 resembled that of ATA with k̂ = 5. The line search routine
found the solution at −∞ and balked whenever the user-specified bound on the line
search step was shortened or a penalty term was added to (3.1) to prevent the dij ’s
from going to zero.

4. Conclusion. We have shown that one can construct a reduced storage dogleg–
trust region quasi-Newton code that not only reduces the storage significantly, but
can also reduce the total computation time over the traditional quasi-Newton dogleg–
trust region methods on some problems. This scheme is competitive with the limited
memory line search program LBFGS. Its algebraic overhead per iteration theoreti-
cally is either the same or less than limited memory line search program algorithms
depending on how the line search routine is implemented. The same updating tech-
niques that were described here could be introduced in some line search algorithms to
lower their operation count. In practice, the reduced storage dogleg approach is very
sensitive to the settings of some of its parameters and its performance is dependent
on whether the model is “trustworthy.”

Acknowledgment. I would like to thank the referees for their insightful com-
ments and careful reading of the manuscript.
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Abstract. We consider the class of shaped partition problems of partitioning n given vectors in
d-dimensional criteria space into p parts so as to maximize an arbitrary objective function which is
convex on the sum of vectors in each part, subject to arbitrary constraints on the number of elements
in each part. This class has broad expressive power and captures NP-hard problems even if either d
or p is fixed. In contrast, we show that when both d and p are fixed, the problem can be solved in
strongly polynomial time. Our solution method relies on studying the corresponding class of shaped
partition polytopes. Such polytopes may have exponentially many vertices and facets even when one
of d or p is fixed; however, we show that when both d and p are fixed, the number of vertices of any

shaped partition polytope is O(n
d
(
p
2

)
) and all vertices can be produced in strongly polynomial time.

Key words. partition, cluster, optimization, convex, polytope, enumeration, polynomial time,
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1. Introduction. The partition problem concerns the partitioning of vectors
A1, . . . , An in d-space into p parts so as to maximize an objective function which
is convex on the sum of vectors in each part; see [3]. Each vector Ai represents d
numerical attributes associated with the ith element of the set [n] = {1, . . . , n} to be
partitioned. Each ordered partition π = (π1, . . . , πp) of [n] is then associated with the

d × p matrix Aπ =
[∑

i∈π1
Ai, . . . ,

∑
i∈πp A

i
]

whose jth column represents the total

attribute vector of the jth part. The problem is to find an admissible partition π which
maximizes an objective function f given by f(π) = C(Aπ), where C is a real convex
functional on Rd×p. Of particular interest is the shaped partition problem, where the
admissible partitions are those π whose shape (|π1|, . . . , |πp|) lies in a prescribed set
Λ of admissible shapes. In this article we concentrate on this later situation.

The shaped partition problem has applications in diverse fields that include circuit
layout, clustering, inventory, splitting, ranking, scheduling, and reliability; see [5,
9, 14, 15] and references therein. Further, as we demonstrate later, the problem
has expressive power that captures NP-hard problems such as the max-cut problem
and the traveling salesman problem, even when the number p of parts or attribute
dimension d is fixed.

Our first goal in this article is to demonstrate constructively that a polynomial
time algorithm for the shaped partition problem does exist when both p and d are
fixed. This result is valid when the set Λ of admissible shapes and the function C are
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presented by oracles. Our first result (formally stated and proved in section 4) is the
following:

• Theorem 4.2: Any shaped partition problem is solvable in polynomial oracle
time using O(ndp

2

) arithmetic operations and queries.
Our solution method is based on the observation that since C is convex, the shaped
partition problem can be embedded into the problem of maximizing C over the shaped
partition polytope PΛ

A defined to be the convex hull of all matrices Aπ corresponding to
partitions of admissible shapes. The class of shaped partition polytopes is very broad
and generalizes and unifies classical permutation polytopes such as Birkhoff’s polytope
and the permutohedron (see, e.g., [8, 19, 21]). Its subclass of bounded shaped partition
polytopes with lower and upper bounds on the shapes was previously studied in [3],
under the assumption that the vectors A1, . . . , An are distinct. Therein a polynomial
procedure for testing whether a given Aπ is a vertex of PΛ

A was obtained. This
procedure was simplified and extended in [11]. A related but different generalization
of classical permutation polytopes, arising when algebraic (representation-theoretical)
constraints, rather than shape constraints, are imposed on the permutations involved,
was studied in [19] and references therein.

Since a shaped partition polytope is defined as the convex hull of an implicitly
presented set whose size is typically exponential in the input size even when both
p and d are fixed, an efficient representation as the convex hull of vertices or as
the intersection of half-spaces is not readily expected. Our second objective is to
prove that, nevertheless, for fixed p and d, the number of vertices of shaped partition
polytopes is polynomially bounded in n, and that it is possible to explicitly enumerate
all vertices in polynomial time. Thus, our second result (formally stated and proved
in section 4) is the following:

• Theorem 4.3: Any shaped partition polytope PΛ
A has O(nd(

p
2)) vertices which

can be produced in polynomial oracle time using O(nd
2p3

) arithmetic opera-
tions and queries.

An immediate corollary of Theorem 4.3 is that, for fixed d, p, the number of facets of
PΛ
A is polynomially bounded as well and that all facets can be produced in polynomial

oracle time (Corollary 4.4). Theorem 4.3 shows, in particular, that it is possible to
compute the number of vertices efficiently. This might be extendable to the situation
of variable d and p, where counting vertices is generally a hard task (cf. [16]), as
is counting partitions with various prescribed properties (see [4, 10]). The vertex
counting problem for variable d and p will be addressed elsewhere.

A special role in our development is played by separable partitions, defined as
partitions where vectors in distinct sets are (weakly) separable by hyperplanes. In
the special case d = p = 2, such partitions had been studied quite extensively (see,
e.g., [2, 5, 7, 17]). The case d = 3, p = 2 has also been considered quite recently in
[6]. Here we study such partitions for all d, p, as well as a class of generic partitions,
and provide an upper bound on their number and an algorithm for producing them.
In our recent related work [1], the precise extremal asymptotical behavior of such
partitions is determined.

The embedding of the partition problem into the problem of maximizing the
convex function C over the partition polytope is useful due to the optimality of vertices
in the latter problem. When Λ consists of a single shape, the optimality of vertices
holds for the more general class of asymmetric Schur convex functions, introduced in
[13]; see [8]. All of our results apply with C as any asymmetric Schur convex function
and Λ consisting of a single shape.
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The article is organized as follows. In the next section we formally define the
shaped partition problem and shaped partition polytope. We demonstrate the ex-
pressive power of this problem by giving four examples. For the first two examples,
in which the parameters d, p are typically small and fixed, Theorem 4.2 provides a
polynomial time solution. The last two examples show that the max-cut problem
and traveling salesman problem can be modeled as shaped partition problems with
fixed p = 2 and d = 1, respectively, and that the corresponding polytopes have ex-
ponentially many vertices. In section 3 we study separability properties of vertices of
shaped partition polytopes and discuss separable and generic partitions. In the final
section, section 4, we use our preparatory results of section 3 to establish Theorems
4.2 and 4.3 and Corollary 4.4.

2. Shaped partition problems and polytopes. A p-partition of [n] :=
{1, . . . , n} is an ordered collection π = (π1, . . . , πp) of p disjoint sets (possibly empty)
whose union is [n]. A p-shape of n is a tuple λ = (λ1, . . . , λp) of nonnegative integers
λ1, . . . , λp satisfying

∑p
i=1 λi = n. The shape of a p-partition π is the p-shape of n

given by |π| := (|π1|, . . . , |πp|). If Λ is a set of p-shapes of n, then a Λ-partition is any
partition π whose shape |π| is a member of Λ.

Let A be a real d×n matrix; for i = 1, . . . , n, we use Ai to denote the ith column
of A. For each p-partition π of [n] we define the A-matrix of π to be the d× p matrix

Aπ =

∑
i∈π1

Ai, . . . ,
∑
i∈πp

Ai

 ,
with

∑
i∈πj A

i := 0 when πj = ∅. We consider the following algorithmic problem.

Shaped Partition Problem. Given positive integers d, p, n, matrix A ∈ Rd×n, the
nonempty set Λ of p-shapes of n, and the objective function on Λ-partitions given by
f(π) = C(Aπ) with C convex on Rd×p, find a Λ-partition π∗ that maximizes f and,
specifically, satisfies

f(π∗) = max{f(π) : |π| ∈ Λ}.

Of course, the complexity of this problem depends on the presentation of Λ and
C, but we will construct algorithms that work in strongly polynomial time and can
cope with minimal information on Λ and C. Specifically, we assume that the set of
admissible p-partitions Λ can be represented by a membership oracle that, on query
λ, answers whether λ ∈ Λ. The convex functional C on Rd×p can be presented by an
evaluation oracle that, on query Aπ with π a Λ-partition, returns C(Aπ).

Since C is convex, the shaped partition problem can be embedded into the prob-
lem of maximizing C over the convex hull of A-matrices of feasible partitions, defined
as follows.

Shaped Partition Polytope. For a matrix A ∈ Rd×n and nonempty set Λ of p-
shapes of n, we define the shaped partition polytope PΛ

A to be the convex hull of all
A-matrices of Λ-partitions, that is,

PΛ
A := conv {Aπ : |π| ∈ Λ} ⊂ Rd×p.

We point out that for any A, the polytope PΛ
A is the image of the shaped partition

polytope PΛ
I , with I the n×n identity, under the projection X 7→ AX. In [12] this is

exploited, for the situation where the function C is linear and Λ = {λ : l ≤ λ ≤ u} is
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a set of bounded shapes, to solve the corresponding shaped partition problem for all
n, d, p in polynomial time by linear programming over PΛ

I .
We now demonstrate the expressive power of the shaped partition problem. In

particular, we show that even if one of d or p is fixed, the shaped partition problem
may be NP-hard, and the number of vertices of the shaped partition polytope may
be exponential. Therefore, polynomial time algorithms for optimization and vertex
enumeration are expected to (and, as we show, do) exist only when both d and p are
fixed. We start with two examples in which it is natural to have d and p small and
fixed.

Example 2.1 (splitting). The n assets of a company are to be split among its
p owners as follows. For j = 1, . . . , p, the jth owner prescribes a nonnegative vector
Aj = (Aj,1, . . . , Aj,n) with

∑n
j=1Ai,j = 1, whose entries represent the relative values

of the various assets to this owner. A partition π = (π1, . . . , πp) is sought which

splits the assets among the owners and maximizes the lq-norm (
∑p
j=1 |

∑
i∈πj Aj,i|q)

1
q

of the total value vector whose jth entry
∑
i∈πj Aj,i is the total relative value of the

assets allocated to the jth owner by π. An alternative interpretation of the splitting
problem concerns the division of an estate consisting of n assets among p inheritors
having equal rights against the estate. With p = 2, the model captures a problem of a
divorcing couple dividing their joint property [5, 9].

Formulation: n, d = p, A = (Aj,i), Λ = {All p-shapes}, f(π) = C(Aπ) with

C : Rp×p −→ R : M 7→
p∑
i=1

|Mi,i|q.

For fixed p, Theorem 4.2 asserts that we can find an optimal partition in polynomial
time O(np

3

), while the number pn of Λ-partitions is exponential. We note that other
(convex) functions C can be used within our framework. In particular, if C is linear
on Rp×p+ , e.g., when q = 1, our results of [12] apply and yield a polynomial time
solution even when p is variable.

Example 2.2 (balanced clustering). Given are n = pm objects represented by
attribute vectors A1, . . . , An ∈ Rd. The objects are to be grouped in p clusters, each
containing m points, so as to minimize the sum of cluster variance of a partition π

given by
∑p
i=1

(
1
|πi|
∑
j∈πi ||Aj − Āπi ||2

)
, where || · || denotes the l2-norm and Āπi :=

1
|πi|
∑
j∈πi A

j is the barycenter of the ith cluster.

Formulation: n = pm, d, p, A = (A1, . . . , An), Λ = {mp = (m, . . . ,m)}, f(π) =
C(Aπ) with

C : Rd×p −→ R : M 7→ ||M ||2 =

d∑
i=1

p∑
j=1

M2
i,j .

Here, we use the fact that f(π) = 1
m2

∑n
i=1 ||Ai||2− 1

m2

∑p
j=1 ||

∑
i∈πj A

i||2. For fixed
d, p, by Theorem 4.2 we can find an optimal balanced clustering in polynomial time

O(ndp
2

), while the number of Λ-partitions is exponential Ω(pnn
1−p

2 ).
The next two examples show that unless both d and p are fixed, the shaped

partition problem may be NP-hard. The idea is simple: the formulation is such that
every Λ-partition π gives a distinct vertex Aπ of the shaped partition polytope PΛ

A.
Then, any function f on Λ-partitions factors as f(π) := C(Aπ) for suitable convex C
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on PΛ
A, say, the one given by

C(X) := inf

∑
|π|∈Λ

θπf(π) :
∑
π

θπA
π = X,

∑
π

θπ = 1, θπ ≥ 0

 .

In the following examples, the membership oracle for Λ and the evaluation oracle for
f(π) := C(Aπ), restricted to A-matrices, are easily polynomial time realizable from
the natural data for the problem.

Example 2.3 (max-cut problem and unit cube). Find a cut with maximum
number of crossing edges in a given graph G = ([n], E).

Formulation: n = d, p = 2, A = In, Λ = {all 2-shapes},
f(π) = #{e ∈ E : |e ∩ π1| = 1}.

Here, the A-matrices of Λ-partitions are precisely all (0, 1)-valued n× 2 matrices with
each row sum equal to 1; in particular, each such matrix is determined by its first
column. It follows that the shaped partition polytope PΛ

A has 2n vertices that stand in
bijection with Λ-partitions and is affinely equivalent to the n-dimensional unit cube by
projection of matrices onto their first column. So, each Aπ is a distinct vertex of PΛ

A

and there is a convex C on Rd×2 such that f(π) = C(Aπ) for all π.
Example 2.4 (traveling salesman problem and permutohedron). Find a shortest

Hamiltonian path on n sites under a given symmetric nonnegative matrix D, where
Di,j represents the distance between sites i and j.

Formulation: n = p, d = 1, A = (1, . . . , n), Λ = {1n = (1, . . . , 1)},

f(π) = −
n−1∑
j=1

Dπj ,πj+1 ,

where we regard a partition simply as the corresponding permutation. The matrices Aπ

in this case are simply all permutations of A. The shaped partition polytope PΛ
A has n!

vertices that stand in bijection with Λ-partitions, and is the so-called permutohedron.
Since each Aπ is a distinct vertex of PΛ

A, there is again a convex C on Rn such that
f(π) = C(Aπ) for all π.

3. Vertices and generic partitions. In this section we show that every ver-
tex of any shaped partition polytope PΛ

A equals the A-matrix Aπ of some A-generic
partition, a notion that we introduce and develop below.

The convex hull of a subset U in Rd will be denoted conv(U). Two finite sets
U, V of points in Rd are separable if there is a vector h ∈ Rd such that hTu < hT v
for all u ∈ U and v ∈ V with u 6= v; in this case, we refer to h as a separating vector
of U and V . The proof of the following characterization of separability is standard
and is left to the reader. It implies, in particular, that if U and V are separable, then
|U ∩ V | ≤ 1.

Lemma 3.1. Let U and V be finite sets of Rd. Then U and V are separable if
and only if their convex hulls either are disjoint or intersect in a single point that is
a common vertex of both.

Let A be a given d × n matrix. For a subset S ⊆ [n], let AS = {Ai : i ∈ S} be
the set of columns of A indexed by S (with multiple copies of columns identified). A
p-partition π = (π1, . . . , πp) is A-separable if the sets Aπr and Aπs are separable for
each pair 1 ≤ r < s ≤ p, that is, if for each pair 1 ≤ r < s ≤ p there is a vector
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hr,s ∈ Rd such that hTr,sA
i < hTr,sA

j for all i ∈ πr and j ∈ πs with Ai 6= Aj . We
have the following lemma, which generalizes a result of [3] from matrices with no zero
columns and no repeated columns.

Lemma 3.2. Let A be a matrix in Rd×n, let Λ be a nonempty set of p-shapes
of n, and let π be a Λ-partition. If Aπ is a vertex of PΛ

A, then π is an A-separable
partition.

Proof. The claim being obvious for p = 1, suppose that p ≥ 2. Let Aπ be a
vertex of PΛ

A. Then there is a matrix C ∈ Rd×p such that the linear functional on

Rd×p given by the inner product 〈C,X〉 =
∑d
i=1

∑p
j=1 C

j
iX

j
i is uniquely maximized

over PΛ
A at Aπ. Pick any pair 1 ≤ r < s ≤ p, and let hr,s = Cs − Cr. Suppose

there are i ∈ πr and j ∈ πs with Ai 6= Aj (otherwise Aπr and Aπs are trivially
separable). Let π′ be the Λ-partition obtained from π by switching i and j, i.e.,
taking π′r := πr ∪ {j} \ {i}, π′s := πs ∪ {i} \ {j}, and π′t := πt for all t 6= r, s. Then
(Aπ

′
)r = (Aπ)r +Aj −Ai 6= (Aπ)r, and hence Aπ

′ 6= Aπ. By the choice of C, we have
〈C,Aπ′〉 < 〈C,Aπ〉 and so

hTr,s(A
j−Ai) = (Cs−Cr)T (Aj−Ai) =

p∑
t=1

(Ct)T ((Aπ)t−(Aπ
′
)t) = 〈C,Aπ−Aπ′〉 > 0.

This proves that Aπr , Aπs are separable for each pair 1 ≤ r < s ≤ p, hence π is
A-separable.

We need some more terminology. Let A ∈ Rd×n. A p-partition π = (π1, . . . , πp) of
[n] is A-disjoint if conv(Aπr ) and conv(Aπs) are disjoint for each pair 1 ≤ r < s ≤ p.
As the convex hulls of finite sets are disjoint if and only if the sets can be strictly
separated by a hyperplane, we have that π is A-disjoint if and only if for each pair
1 ≤ r < s ≤ n there exists a vector hr,s ∈ Rd such that (hr,s)

TAi < (hr,s)
TAS for

all i ∈ πr and j ∈ πs. Of course, A-disjointness implies A-separability, and the two
properties coincide when the columns of A are distinct.

For v ∈ Rd denote by v̄ ∈ Rd+1 the vector obtained by appending a first coordinate
1 to v. For a matrix A ∈ Rd×n and indices 1 ≤ i0 < · · · < id ≤ n, denote

signA(i0, . . . , id) := sign(det[Āi0 , . . . , Āid ]) ∈ {−1, 0, 1}.
A matrix A is generic if its columns are in affine general position, that is, if any set
of d + 1 vectors or less from among {Āi : i = 1, . . . , n} are linearly independent; in
particular, if n > d this is the case if and only if all signs signA(i0, . . . , id) for indices
1 ≤ i0 < i1 < · · · < id ≤ n are nonzero. Also, the columns of a generic matrix are
distinct.

We next provide a representation of the set of A-disjoint 2-partitions for generic
matrices A. The case where n ≤ d is simple.

Lemma 3.3. Let A ∈ Rd×n be generic, p ≤ 2, and n ≤ d. Then every p-partition
of [n] is A-disjoint.

Proof. It suffices to consider the case p = 2. A standard result from linear algebra
shows that as Ā1, . . . , Ān are linearly independent, the range of [Ā1, . . . , Ān]T is Rn.
Hence, given a 2-partition π of [n], there is a vector µ ∈ Rd+1 with µTAi > 0 for each
i ∈ π and µTAj < 0 for each j ∈ π2; with C obtained from µ by truncating its first
coordinate µ1, we then have CTAi > −µ1 > CTAj for all i ∈ π1 and j ∈ π2, proving
that π is A-disjoint.

Let A ∈ Rd×n be generic with n ≥ d. For any d-subset I = {i1, . . . , id} of [n] with
i1 < · · · < id, define

I−A := {i0 ∈ [n] : signA(i0, i1, . . . , id) = −1}, I+
A := {i0 ∈ [n] : signA(i0, i1, . . . , id) = 1}.
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Of course, {I−A , I+
A} is a 2-partition of [n]\I. Let I ⊆ [n] be a d-set and (J−, J+) be a 2-

partition of I. The 2-partitions of [n] associated with A, I, and (J−, J+) are defined to
be either of the two 2-partitions π− := (I−A∪J−, I+

A∪J+) and π+ := (I+
A∪J+, I−A∪J−).

Lemma 3.4. Let A ∈ Rd×n be generic, with n ≥ d. Then the set of A-disjoint 2-
partitions is the set of all 2-partitions associated with A, d-sets I ⊆ [n] and 2-partitions
(J−, J+) of I.

Proof. We will show that for each d-set I ⊆ [n] and 2-partition (J−, J+) of I,
the two 2-partitions associated with A, I, and (J−, J+) are A-disjoint and that each
A-disjoint 2-partition is generated in this way.

First, let I ⊆ [n] have d-elements, say, i1 < · · · < id, and let (J−, J+) be a
2-partition of I. Then H := {x ∈ Rd : det[x̄, Āi1 , . . . , Āid ] = 0} is a hyperplane
that contains the columns of A indexed by I; this hyperplane can be written as
{x ∈ Rd : hTx = γ} for some h ∈ Rd and γ ∈ R such that I−A = {i ∈ [n] : hTAi < γ}
and I+

A = {i ∈ [n] : hTAi > γ}. Thus, hTAi < hTAU < hTAj for all i ∈ I−A , u ∈ I,
and j ∈ I+

A . We next observe that B = [Ai1 , . . . , Aid ] is generic, hence Lemma 3.3
ensures that the 2-partition {j : ij ∈ J−}, {j : ij ∈ J+} of [d] is B-disjoint. Thus,
there exists a vector d ∈ Rd with dTAi > dTAj for all i ∈ J− and j ∈ J+. For
sufficiently small positive t, we then have that (C + td)Ai < (C + td)TAj for all
i ∈ I−A ∪ J− and j ∈ I+

A ∪ J+, proving that (I−A ∪ J−, J+
A ∪ J+) is A-disjoint. It

follows immediately that (I+
A ∪ J+, I−A ∪ J−) is A-disjoint too, proving that the two

2-partitions of [n] associated with A, I and the 2-partition (J−, J+) of I are A-disjoint.
Next assume that π is an A-disjoint 2-partition. Then there exists a hyperplane

strictly separating Aπ1 and Aπ2 . Any such hyperplane can be perturbed to a hy-
perplane that is spanned by d columns of A and weakly separates Aπ1 and Aπ2 (the
details of constructing such a perturbation are left to the reader). In particular, if
Ai1 , . . . , Aid span the hyperplane and 1 ≤ i1 < · · · ≤ id ≤ n, then for I := {i1, . . . , id}
either π1

1 ⊆ I−A ∪ I and π2 ⊆ I+
A ∪ I or π1 ⊆ I+

A ∪ I and π2 ⊆ I−A ∪ I. In the former
case we have π = (I−A ∪ J−, I+

A ∪ J+) for J− = π1 ∩ I and J+ = π2 ∩ I, and in the
latter case π = (I+

A ∪ J+, I−A ∪ J−) for J+ = π1 ∩ I and J− = π2 ∩ J .
Let p ≥ 2. With each list [πr,s = (πr,s1 , πr,s2 ) : 1 ≤ r < s ≤ p] of

(
p
2

)
2-partitions

of [n] associate a p-tuple π = (π1, . . . , πp) of subsets of [n] as follows: for r = 1, . . . , p
put

πr :=
(
∩pj=r+1π

r,j
1

)⋂(
∩r−1
j=1π

j,r
2

)
.

Since πr ⊆ πr,s1 and πs ⊆ πr,s2 for all 1 ≤ r < s ≤ p, the elements πi of the p-tuple
associated with the given list are pairwise disjoint. If ∪pi=1πi = [n] holds as well, then
π is a p-partition that will be called the partition associated with the given list.

Lemma 3.5. For A ∈ Rd×n and p ≥ 2, the set of A-disjoint p-partitions equals
the set of p-partitions associated with lists of

(
p
2

)
A-disjoint 2-partitions.

Proof. First, consider a p-partition π associated with a list of
(
p
2

)
A-disjoint

2-partitions. Then, for each 1 ≤ r < s ≤ p,
conv(Ai : i ∈ πr) ∩ conv(Ai : i ∈ πs) ⊆ conv(Ai : i ∈ πr,s1 ) ∩ conv(Ai : i ∈ πr,s2 ) = ∅,

so π is A-disjoint. Conversely, let π = (π1, . . . , πp) be an A-disjoint p-partition.
Consider any pair 1 ≤ r < s ≤ p. Since conv(Aπr ) and conv(Aπs) are disjoint, there
is a hyperplane Hr,s that contains no column of A and defines two corresponding half-
spaces H−r,s and H+

r,s that satisfy Aπr ⊂ H−r,s and Aπs ⊂ H+
r,s. Let πr,s := (πr,s1 , πr,s2 )

be the A-disjoint 2-partition defined by πr,s1 := {i ∈ [n] : Ai ∈ H−r,s} and πr,s2 := {i ∈
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[n] : Ai ∈ H+
r,s}. Let π′ be the p-tuple associated with the constructed πr,s’s. Then

the sets of π′ are pairwise disjoint, and for i = 1, . . . , p, we have

πi ⊆
(
∩pj=i+1π

i,j
1

)⋂(
∩i−1
j=1π

j,i
2

)
= π′i.

Since [n] = ∪pi=1πi ⊆ ∪pi=1π
′
i, it follows that π = π′ is the p-partition associated with

the constructed list of
(
p
2

)
A-disjoint 2-partitions.

For each ε > 0 define the ε-perturbation A(ε) ∈ Rd×n of A as follows: for i =
1, . . . , n, let the ith column of A(ε) be A(ε)i := Ai + εM i

d, where M i
d := [i, i2, . . . , id]T

is the image of i on the moment curve in Rd. Consider any 1 ≤ i0 < · · · < id ≤ n.
Then the determinant

D(ε) := det[Ā(ε)i0 , . . . , Ā(ε)id ] =
d∑
j=0

Djε
j

is a polynomial of degree d in ε, with Dd being the Van der Monde determinant
det[M̄ i0

d , . . . , M̄
id
d ], which is known to be nonzero. So for all sufficiently small ε > 0,

signA(ε)(i0, . . . , id) = sign(D(ε)) equals the sign of the first nonzero coefficient among
D0, . . . , Dd and is either −1 or 1 and independent of ε. We define the generic sign of
A at (i0, . . . , id), denoted χA(i0, . . . , id), as the common value of signA(ε)(i0, . . . , id)
for all sufficiently small positive ε.

Lemma 3.6. Let A ∈ Rd×n and p ≥ 1. For all sufficiently small ε > 0, A(ε) is
generic and the set of A(ε)-disjoint p-partitions is the same. Further, for every d-set
I ∈ [n], the sets I−A(ε) and I+

A(ε) are independent of ε.

Proof. By Lemma 3.5, the set of A(ε)-disjoint p-partitions is entirely determined
by the set of A(ε)-disjoint 2-partitions. Thus, it suffices to consider only p = 2.

First assume that n < d. In this case augment A with n + 1 − d zero vectors to
obtain a matrix A′ ∈ Rd×(d+1). The above arguments show that for sufficiently small
positive ε, det Ā′(ε) is nonzero, implying that Ā(ε)1, . . . , Ā(ε)n are linearly indepen-
dent. From Lemma 3.3 it follows that for such ε, the set of A(ε)-disjoint 2-partitions
of [n] is the set of all 2-partitions of [n].

Next assume that n > d. As explained above, for all sufficiently small ε > 0,
signA(ε) (i0, . . . , id) equals the nonzero generic sign χA(i0, . . . , id) for all 1 ≤ i0 <
· · · < id ≤ n. It follows that for all sufficiently small ε, the matrix A(ε) is generic, and
for every d-set I, the sets I−A(ε) and I+

A(ε) are independent of ε. By Lemma 3.4, the set

of A(ε)-disjoint 2-partitions is the set of all pairs of 2-partitions of [n] associated with
A, d-sets I ⊆ [n], and 2-partitions (J−, J+) of I; but each such pair depends only on
I−A(ε), I

+
A(ε), J

−, and J+. Hence the set of A(ε)-disjoint 2-partitions is the same for all

sufficiently small ε > 0.
Let A ∈ Rd×n. A p-partition of [n] is A-generic if it is A(ε)-disjoint for all

sufficiently small ε > 0. Denote by Πp
A the set of A-generic p-partitions.

Lemma 3.6 shows that for all sufficiently small ε > 0, the set of A(ε)-disjoint
partitions is the same and equals Πp

A. The final lemma of this section links vertices
of shaped partition polytopes with generic partitions.

Lemma 3.7. Let A ∈ Rd×n and let Λ be a nonempty set of p-shapes of [n]. Then
every vertex of the polytope PΛ

A has a representation as the A-matrix Aπ of some
A-generic Λ-partition.

Proof. Let B ∈ Rd×p be a vertex of PΛ
A and let C ∈ Rd×p be a matrix such that

〈C, ·〉 is uniquely maximized over PΛ
A at B. Let Π := {π : |π| ∈ Λ} be the set of
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Λ-partitions and let Π∗ := {π ∈ Π : Aπ = B}. Then there is a sufficiently small ε > 0
such that 〈C,A(ε)π

∗〉 > 〈C,A(ε)π〉 for all π∗ ∈ Π∗ and π ∈ Π \ Π∗, and in addition,
as guaranteed by Lemma 3.6, A(ε) is generic and the set of A(ε)-disjoint p-partitions
equals Πp

A. For such ε, 〈C, ·〉 is maximized over the perturbed polytope PΛ
A(ε) at a

vertex of the form A(ε)π
∗

for some π∗ ∈ Π∗. By Lemma 3.2, π∗ is A(ε)-separable.
Since A(ε) is generic it has distinct columns, and therefore π∗ is also A(ε)-disjoint.
We conclude that π∗ is A-generic, proving that π∗ contains a generic partition.

4. Optimization and vertex enumeration. We now use the facts established
in the previous section to prove our main results. Our computational complexity
terminology is fairly standard (cf. [20]). In all our algorithms, the positive integer n
will be input in unary representation, whereas all other numerical data such as the
matrix A will be input in binary representation. An algorithm is strongly polynomial
time if it uses a number of arithmetic operations polynomially bounded in n, and
runs in time polynomially bounded in n plus the bit size of all other numerical input.

Lemma 4.1. Let d, p be fixed. For any A ∈ Rd×n, the set Πp
A of A-generic

p-partitions has |Πp
A| = O(nd(

p
2)). Further, there is an algorithm that, given n ∈ N

and A ∈ Qd×n, produces Πp
A in strongly polynomial time using O(ndp

2

) arithmetic
operations.

Proof. If n ≤ d, the set of A-generic p-partitions is the set of all partitions,
of which there are pn ≤ pd. Henceforth we assume that n > d. If p = 1, then
Πp
A := {([n])} consists of the single p-partition ([n]). Suppose now that p ≥ 2. For

each choice 1 ≤ i0 < · · · < id ≤ n, compute the generic sign χA(i0, . . . , id) as follows.
Evaluate the polynomial

D(ε) := det[Ā(ε)i0 , . . . , Ā(ε)id ] =
d∑
j=0

Djε
j

at ε = 0, 1, . . . , d to obtain D(0), D(1), . . . , D(d). Each evaluation involves the compu-
tation of the determinant of a matrix of order d+1 and can be done, say, by Gaussian
elimination, using O(d3) arithmetic operations and, for rational A, in strongly poly-
nomial time. Then, solve the following linear system of equations:

d∑
j=0

εjDj = D(ε), ε = 0, . . . , d,

to obtain the indeterminates D0, . . . , Dd. This can be done by inverting the nonsingu-
lar Vandermonde matrix of coefficients of this system, again by Gaussian elimination.
The generic sign χA(i0, . . . , id) is then the sign of the first nonzero Di. So, for fixed
d, the number of arithmetic operations needed to compute all

(
n
d+1

)
generic signs is

O(
(
n
d+1

)
d4) = O(nd+1).

By Lemma 3.6, for sufficiently small positive ε, for each d-set I ⊆ [n], I−A(ε)

and I+
A(ε) are independent of ε. For a d-set I ⊆ [n] and such ε, I−A(ε) and I+

A(ε)

are available from the above signs that determine det[Āi, Āi1 , . . . , Āiq ] for each i ∈
[n] \ J (a permutation that puts Āi into the right location may be applied). Further,
from Lemmas 3.6 and 3.4, Π2

A equals the common set of A(ε)-disjoint partitions for
sufficiently small positive ε, and this set is the set of partitions of [n] of the form
(I−A(ε) ∪ J−, I+

A(ε) ∪ J+) or (I+
a(ε) ∪ J+, I−A(ε) ∪ J−), where I is a d-subset of [n] and
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(J−, J+) is a 2-partition of I. For each d-set I ⊆ [n], the common 2-partitions
(I−A(ε), I

+
A(ε)) for sufficiently small positive ε have been determined; hence a list of the

2-partitions in Π2
A is available (the construction may contain duplicates). As there

are
(
n
d

)
d-subsets I and 2d 2-partitions (J−, J+) of each I, we have |Π2

A| ≤ 2d+1
(
n
d

)
=

O(nd) and all partitions in Π2
A can be obtained from the generic signs, again using

O(nd+1) operations.
For sufficiently small positive ε, Πp

A is the common set of A(ε)-disjoint p-partitions
and Π2

A is the common set of A(ε)-disjoint 2-partitions. It follows from Lemma 3.5
that Πp

A is the set of all p-partitions associated with lists of
(
p
2

)
2-partitions from Π2

A.
This shows that

|Πp
A| ≤ |Π2

A|(
p
2) = O(nd(

p
2)).

To construct Πp
A, produce all such lists of

(
p
2

)
2-partitions from Π2

A; for each list, form
the associated p-tuple π and test if it is a partition (i.e., if ∪pi=1πi = [n]). As there are

O(nd(
p
2)) lists, all this work can be done easily using O(ndp

2

) arithmetic operations,
which subsumes the work for computing the generic signs and constructing Π2

A, and
is the claimed bound.

We can now provide the solution of the shaped partition problem. The set of
admissible p-partitions Λ can be represented by a membership oracle that, on query,
λ answers whether λ ∈ Λ. The convex functional C on Rd×p can be presented by an
evaluation oracle that, on query Aπ with π a Λ-partition, returns C(Aπ). The oracle
for C will be called M -guaranteed if C(Aπ) is guaranteed to be a rational number
whose absolute value is no larger than M for any Λ-partition π. The algorithm is
then strongly polynomial oracle time if it uses a number of arithmetic operations and
oracle queries polynomially bounded in n and runs in time polynomially bounded in
n plus the bit size of A and M .

Theorem 4.2. For every fixed d, p, there is an algorithm that, given n,M ∈ N,
A ∈ Qd×n, oracle-presented nonempty set Λ of p-shapes of n, and M -guaranteed
oracle-presented convex functional C on Qd×p, solves the shaped partition problem
in strongly polynomial oracle time using O(ndp

2

) arithmetic operations and oracle
queries.

Proof. Use the algorithm of Lemma 4.1 to construct the set Πp
A of A-generic

p-partitions in strongly polynomial time using O(ndp
2

) arithmetic operations. Then
test shapes of the partitions in the list to obtain the subset ΠΛ := {π ∈ Πp

A : |π| ∈ Λ}
of A-generic Λ-partitions by querying the Λ-oracle on each of the |Πp

A| = O(nd(
p
2))

partitions in Πp
A. Since C is convex, it is maximized over the shaped partition polytope

PΛ
A at a vertex of PΛ

A. By Lemma 3.7, this vertex equals the A-matrix Aπ of some
partition in ΠΛ. Therefore, any π∗ ∈ ΠΛ achieving C(Aπ

∗
) = max{C(Aπ) : π ∈ ΠΛ}

is an optimal solution to the shaped partition problem. To find such π∗, compute for
each π ∈ ΠΛ the matrix Aπ = [

∑
i∈π1

Ai, . . . ,
∑
i∈πp A

i], query the C-oracle for the

value C(Aπ), and pick the best. The number of operations involved and queries to the

C-oracle is again O(ndp
2

). The bit size of the numbers manipulated throughout this
process is polynomially bounded in the bit size of M and A, and hence the algorithm
is strongly polynomial oracle time.

Recall that the shaped partition polytope is defined as PΛ
A = conv{Aπ : |π| ∈ Λ}.

The number of matrices in the set {Aπ : |π| ∈ Λ} is typically exponential in n,
even for fixed d, p. Therefore, although the dimension of PΛ

A is bounded by dp, this
polytope potentially can have exponentially many vertices and facets as well. Lemmas
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3.7 and 4.1 yield the following theorem, which shows that, in fact, shaped partition
polytopes are exceptionally well behaved.

Theorem 4.3. Let d, p be fixed. For any A ∈ Rd×n and nonempty set Λ of

p-shapes of n, the number of vertices of the shaped partition polytope PΛ
A is O(nd(

p
2)).

Further, there is an algorithm that, given n ∈ N, A ∈ Qd×n, and oracle-presented Λ,
produces all vertices of PΛ

A in strongly polynomial oracle time using O(nd
2p3

) opera-
tions and queries.

Proof. By Lemma 3.7, each vertex of PΛ
A equals the A-matrix Aπ of some partition

in Πp
A. Therefore, the number of vertices of PΛ

A is bounded above by |Πp
A|, hence, by

Lemma 4.1, is O(nd(
p
2)). To construct the set of vertices given a rational matrix A,

proceed as follows. Use the algorithm of Lemma 4.1 to construct the set Πp
A of A-

generic p-partitions in strongly polynomial time using O(ndp
2

) arithmetic operations.
Test the shapes of the partitions in the list to obtain its subset ΠΛ := {π ∈ Πp

A :
|π| ∈ Λ} of A-generic Λ-partitions by querying the Λ-oracle on each of the |Πp

A| =

O(nd(
p
2)) partitions in Πp

A. Construct the set of matrices U := {Aπ : π ∈ ΠΛ}
with multiple copies identified. This set U is contained in PΛ

A, and by Lemma 3.7
contains the set of vertices of PΛ

A. So u ∈ U will be a vertex precisely when it is
not a convex combination of other elements of U . This could be tested using any
linear programming algorithm, but to obtain a strongly polynomial time procedure,
we proceed as follows. By Carathéodory’s theorem, u will be a vertex if and only
if it is not in the convex hull of any affine basis of U \ {u}. So, to test if u ∈ U is
a vertex of PΛ

A, compute the affine dimension a of U \ {u}. For each (a + 1)-subset
{u0, . . . , ua} of U \ {u}, test if it is an affine basis of U \ {u}, and if it is, compute the
unique µ0, . . . , µa satisfying u =

∑a
i=0 µiui and

∑a
i=0 µi = 1. Then u is in the convex

hull of {u0, . . . , ua} if and only if µ0, . . . , µa ≥ 0. So u is a vertex of PΛ
A if and only if

for each affine basis we get some µi < 0. Computing the affine dimension a, testing
if an (a + 1)-subset of U \ {u} is an affine basis, and computing the µi can all be
done by Gaussian elimination in strongly polynomial time. Since we have to perform

the entire procedure for each of the |U | ≤ |ΠΛ| = O(nd(
p
2)) elements u ∈ U , and for

each such u the number of affine bases of U \ {u} is at most
(|U |−1
dp+1

)
, the number of

arithmetic operations involved is O(|U |(|U |−1
dp+1

)
) = O(nd

2p3

), which absorbs the work

of constructing ΠΛ and obeys the claimed bound.
As an immediate corollary of Theorem 4.3, we get the following polynomial bound

on the number of facets of any shaped partition polytope and a strongly polynomial
oracle time procedure for producing all facets (by which we mean finding, for each
facet F , a hyperplane {X ∈ Rd×p : 〈H,X〉 = h} supporting PΛ

A at F ).
Corollary 4.4. Let d, p be fixed. For any A ∈ Rd×n and nonempty set Λ of

p-shapes of n, the number of facets of the shaped partition polytope PΛ
A is O(n

d2p3

2 ).
Further, there is an algorithm that, given n ∈ N, A ∈ Qd×n, and oracle-presented Λ,
produces all facets of PΛ

A in strongly polynomial oracle time using O(nd
2p3

) operations
and queries.

Proof. By the well-known upper bound theorem [18], the number of facets of any

k-dimensional polytope with m vertices is O(m
k
2 ). Applying this to PΛ

A with k ≤ dp

and m = O(nd(
p
2)), we get the bound on the number of facets of PΛ

A. To construct
the facets, first construct the set V of vertices using the algorithm of Theorem 4.3.
Compute the dimension a of aff(P ) = aff(V ) and compute a (possibly empty) set S of
dp−a points that, together with V , affinely span Rd×p. For each affinely independent
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a-subset T of V , compute the hyperplane {X ∈ Rd×p : 〈H,X〉 = h} spanned by
S ∪T . This hyperplane supports a facet of PΛ

A if and only if all points in V lie on one
of its closed half-spaces. Clearly, all facets of PΛ

A are obtained that way, in strongly
polynomial time and with the number of arithmetic operations and oracle queries
bounded as claimed.
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Abstract. This paper presents an approach to the stability and the Hadamard well-posedness of
the linear semi-infinite programming problem (LSIP). No standard hypothesis is required in relation
to the set indexing of the constraints and, consequently, the functional dependence between the
linear constraints and their associated indices has no special property. We consider, as parameter
space, the set of all LSIP problems whose constraint systems have the same index set, and we
define in it an extended metric to measure the size of the perturbations. Throughout the paper the
behavior of the optimal value function and of the optimal set mapping are analyzed. Moreover, a
certain type of Hadamard well-posedness, which does not require the boundedness of the optimal
set, is characterized. The main results provided in the paper allow us to point out that the lower
semicontinuity of the feasible set mapping entails high stability of the whole problem, mainly when
this property occurs simultaneously with the boundedness of the optimal set. In this case all the
stability properties hold, with the only exception being the lower semicontinuity of the optimal set
mapping.

Key words. stability, Hadamard well-posedness, semi-infinite programming, feasible set map-
ping, optimal set mapping, optimal value function
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1. Introduction. We consider the linear optimization problem in Rn:

π : Inf {c′x | a′tx ≥ bt , t ∈ T} ,

where c, x, and at belong to Rn, bt ∈ R, and y′ denotes the transpose of y ∈ Rn. π is
alternatively represented by the couple (c, σ), or by

(
c, (at, bt)t∈T

)
.

If the index set T of the constraints system, σ := {a′tx ≥ bt , t ∈ T} , is infinite,
we have a linear semi-infinite programming problem (LSIP). We shall not assume any
structure for T and, consequently, the functions t 7→ at and t 7→ bt have no particular
property.

The parameter space, in our approach, is the set Π of all the problems π =
(c, σ), with c 6= 0n, whose constraint systems have the same index set T . When
different problems are considered in Π, they and their associated elements will be
distinguished by means of sub- and superscripts. So, if π1 also belongs to Π, we write
π1 =

(
c1, σ1

)
and σ1 := {(a1

t

)′
x ≥ b1t , t ∈ T}. Obviously, we can identify Π with

(Rn\ {0n}) × (Rn × R)
T

, where the set of possible systems is itself identified with

(Rn × R)
T
.
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Many LSIP problems have coefficients whose values either are known only approx-
imately or have to be rounded off in the computing process. Therefore, we actually
solve a different problem, π1 =

(
c1, σ1

)
, proximal to the original one, π = (c, σ). An

extended distance δ : Π×Π→ [0,+∞] is introduced by means of

δ (π1, π) := max

{∥∥c1 − c∥∥∞ , supt∈T

∥∥∥∥(a1
t

b1t

)
−
(
at
bt

)∥∥∥∥
∞

}
.

(Π, δ) is a Hausdorff space, whose topology satisfies the first axiom of countability
(i.e., convergence is established by means of sequences, since each point has a count-
able base of neighborhoods), and describes the uniform convergence topology on Π. If
T is a compact Hausdorff space and the functions t 7→ at and t 7→ bt are continuous, π
is said to be continuous. We shall denote by Πo the set of continuous LSIP problems.
((Πo, δ) is a metric space.)

In this paper, we study the stability properties of π. More precisely, we analyze
the lower and upper semicontinuity of the optimal value function, ϑ, and the optimal
set mapping, F∗. The former assigns to each problem π its optimal value v (i.e.,
ϑ (π) = v), and the latter assigns to π the (possibly empty) optimal set, represented
by F ∗ (i.e., F∗ (π) = F ∗). We prove that the lower semicontinuity of the feasible
set mapping, F , assigning to π the (possibly empty) feasible set F (i.e., F (π) = F ),
and the boundedness of F ∗ (especially when both hold simultaneously), yield nice
stability properties of ϑ and F∗ at π. So, we devote section 3 to presenting different
characterizations of the lower semicontinuity of F at π, which are used throughout the
paper. As a counterpart of the important lower semicontinuity property, Lemma 4.1
states that the boundedness of the optimal set, assumed to be nonempty, is equivalent
to a certain stability of π: any sufficiently close problem, with nonempty feasible set,
also has optimal solutions.

Section 4 contains the main results concerning the optimal value function. The-
orem 4.2 deals with the continuity properties of ϑ, whereas in the second part of this
section we propose a definition of Hadamard well-posedness, based on the strategy
of solving, in an approximated way, the sequence of problems approaching π. Our
concept of Hadamard well-posedness, which does not require the uniqueness of the
optimal solution, is oriented toward the stability of the optimal value function and
can be traced out from Dontchev and Zolezzi [4]. Theorem 4.3 delimits the scope of
this new concept.

Section 5 focuses on the stability behavior of the optimal set mapping, F∗. The-
orem 5.1 clarifies the role played by the closedness of this mapping. At the end of
section 5, Table 5.1 summarizes the theory developed in the paper, emphasizing the
importance of the lower semicontinuity of F at π, and of the boundedness of F ∗, in the
global stability of π. Section 6 supplies examples showing that every unfixed possibility
in Table 5.1 can actually occur.

Some statements in sections 4 and 5 constitute extensions to the general LSIP of
different results obtained by Brosowski [2] and Fischer [5] for the continuous LSIP.
Moreover, in a forthcoming paper [3], we prove that, under the unicity of the optimal
solution, our concept of Hadamard well-posedness is equivalent to other concepts [17]
that, at first glance, seem much more restrictive.

2. Preliminaries. The optimal value function ϑ will take values in [−∞,+∞]
if we define ϑ (π) = +∞ when π is inconsistent (i.e., when F = ∅) and ϑ (π) = −∞
when π is unbounded (i.e., when c′x is not bounded from below on F ). Hereafter, Πc

represents the consistent problems subset (π ∈ Πc ⇔ F 6= ∅ ⇔ ϑ (π) < +∞), and Πb
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denotes the set of bounded problems (π ∈ Πb ⇔ ϑ (π) is finite). In addition, Πs will
be the set of solvable problems (π ∈ Πs ⇔ F ∗ 6= ∅ ⇔ ϑ (π) is attained). Obviously,
Πs ⊂ Πb ⊂ Πc.

At this point we introduce some necessary notation. Given ∅ 6= X ⊂ Rp, by
conv(X), cone(X), O+(X), and Xo we denote the convex hull of X, the conical
convex hull of X, the recession cone of X (assuming that X is convex), and the dual
cone of X (i.e., Xo = {y ∈ Rp | y′x ≥ 0 for all x ∈ X}), respectively. It is assumed
that cone (X) always contains the zero-vector, and so cone(∅) = {0n}. The Euclidean
and Chebyshev norms of x ∈ Rp will be ‖x‖ and ‖x‖∞, respectively, and the Euclidean
distance from x to X (6= ∅) is d (x,X) := inf {‖x− y‖ : y ∈ X} . The unit open ball,
in Rp, for the Euclidean norm is represented by B. From the topological side, if X
is a subset of any topological space, int(X), cl(X), and bd(X) represent the interior,
the closure, and the boundary of X, respectively. Finally, limr should be interpreted
as limr→∞.

If {Xr} is a sequence of nonempty sets in Rp, lim infrXr (lim suprXr) is the set of
all the limits (cluster points) of all the possible sequences {xr} , xr ∈ Xr, r = 1, 2, . . . ,
and it can be characterized as the set of points x such that every neighborhood of x
intersects all the sets Xr except a finite number of them (it intersects infinitely many
sets Xr). It is said that {Xr} converges to X, in the Painlevé–Kuratowski sense (see,
for instance, [15]) if X = lim infrXr = lim suprXr. In this case we write X = limrXr.

Next we recall some well-known continuity concepts for set-valued mappings. If
Y and Z are two topological spaces and S : Y →2Z is a set-valued mapping, we shall
consider the following properties of S.

If both spaces verify the first axiom of countability, we say that S is closed at
y ∈ Y if for all sequences {yr} ⊂ Y and {zr} ⊂ Z satisfying limry

r = y, limrz
r = z,

and zr ∈ S(yr), one has z ∈ S(y).
The mapping S is lower semicontinuous (lsc) at y ∈ Y if for each open set W ⊂ Z

such that W ∩ S(y) 6= ∅, there exists an open set U ⊂ Y, containing y, such that
W ∩ S(y1) 6= ∅ for each y1 ∈ U .
S is said to be upper semicontinuous (usc) at y ∈ Y if for each open set W ⊂ Z

such that S(y) ⊂ W , there exists an open neighborhood of y in Y, U , such that
S(y1) ⊂W for every y1 ∈ U .

Given a consistent system σ := {a′tx ≥ bt , t ∈ T} , with solution set F, we say
that a′x ≥ b is a consequence of σ if it is satisfied at each point of F , i.e., if a′z ≥ b
for every z ∈ F .

Throughout this paper we shall apply the so-called nonhomogeneous Farkas lemma
[19], which characterizes the linear inequalities a′x ≥ b that are consequences of a con-
sistent system σ := {a′tx ≥ bt , t ∈ T} as those satisfying(

a

b

)
∈ cl

(
cone

({(
at
bt

)
, t ∈ T ;

(
0n
−1

)}))
.(2.1)

If we introduce the cone, R(T )
+ , of all the functions λ : T → R+ taking positive

values only at finitely many points of T , (2.1) is equivalent to the existence of sequences

{λr} ⊂ R(T )
+ and {µr} ⊂ R+, such that(

a

b

)
= limr

{∑
t∈T

λrt

(
at
bt

)
+ µr

(
0n
−1

)}
,

where λr = (λrt )t∈T , r = 1, 2, . . . .
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3. Feasible set mapping. In [7, sect. 2] it is proved that the mapping F
is always closed at any π ∈ Πc. In that paper, and also in [6], different char-
acterizations of the lower semicontinuity of F at a consistent problem π are pro-
vided, most of them based upon different stability concepts taken from the liter-
ature ([11], [14], [18], etc.). The following theorem gathers some of these charac-
terizations and adds some new ones, which will be applied below. We recall here
the strong Slater condition (SS condition), which is satisfied by π if there exist a
positive scalar ρ and a feasible point x satisfying a′tx ≥ bt + ρ for all t ∈ T (x
is called an SS element of σ). The SS condition is certainly stronger than the
well-known Slater condition, which only requires the existence of a strict solution,
x, satisfying a′tx > bt for all t ∈ T (obviously, if π is continuous, both condi-
tions are equivalent). The set of all the SS elements of σ will be represented by
FSS .

Theorem 3.1. If π = (c, σ) ∈ Πc, then the following statements are equivalent:

i. F is lsc at π;

ii. π ∈ int (Πc);

iii. 0n+1 /∈ cl (conv ({(atbt) , t ∈ T}));
iv. π satisfies the SS condition;

v. For every sequence {πr} ⊂ Π converging to π, there exists an r0 such that
πr ∈ Πc if r ≥ r0, and F = limr≥r0 Fr;

vi. F = cl (FSS) .

Proof. The equivalence between the first four statements is established in [7,
Thm. 3.1]. Next we prove the equivalence of statements i and v. Let us assume first
that statement i holds. Since i ⇔ ii has already been established, from π ∈ int (Πc)
we conclude the existence of r0 such that Fr 6= ∅ if r ≥ r0. Then, if x ∈ F and W
is an open neighborhood of x, statement i yields r1 (r1 ≥ r0) such that W ∩ Fr 6= ∅
for all r ≥ r1. In other words, W intersects all the sets Fr, except a finite number of
them, which identifies x as a point of lim infr≥r0 Fr. Moreover, lim supr≥r0 Fr ⊂ F
because F is closed at every π. Since the inclusion lim infr≥r0 Fr ⊂ lim supr≥r0 Fr
always holds, one concludes that F = limr≥r0Fr.

We proceed by assuming that part v holds and statement i fails. This implies the
existence of an open set W such that F∩W 6= ∅, whereas for each r ∈ N we can find πr
such that δ(πr, π) < 1/r and Fr ∩W = ∅. Consequently, if x ∈ F ∩W , and whichever
r0 we consider, x /∈ lim infr≥r0 Fr. Thus, limr πr = π and F 6= lim infr≥r0 Fr for every
r0, contradicting the assumption.

Next we prove i⇔ vi. If statement vi holds, since F 6= ∅ by hypothesis, FSS must
be nonempty too, and we apply the equivalence between statements i and iv, already
established. Conversely, if statement i is held, given any open set W intersecting F , we
can find ρ > 0 such that F1∩W 6= ∅ if π1 := (c, σ1) with σ1 := {a′tx ≥ bt + ρ , t ∈ T}.
Since F1 = F (π1) ⊂ FSS , we obtain FSS ∩ W 6= ∅. We have just proved that
F ∩W 6= ∅ implies FSS ∩W 6= ∅, which itself implies F ⊂ cl (FSS) . The opposite
inclusion comes from the trivial relation FSS ⊂ F.

Concerning the upper semicontinuity of F at π ∈ Πc, in the characterization given
in [8, Thm. 3.1], the boundedness of F (see [5]) is not required any longer, although
this condition is still sufficient [8, Cor. 3.2]. If n ≥ 2 and {at , t ∈ T} is bounded and
different from {0n}, F will be usc at π ∈ Πc if and only if F is bounded [8, Thm. 3.4].
Finally, in the case n = 1, it is remarked in [8, Ex. 3.3] that F is always usc at every
consistent problem.
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When we confine ourselves to continuous problems, we shall denote by Πoc the set
of consistent continuous LSIP problems in Rn, all of them having constraint systems
indexed by a compact Hausdorff space T. It was proved in [7, Thm. 6.2] that the
restriction of F to Πo, represented by Fo, is lsc at π ∈ Πoc if and only if σ satisfies the
well-known Slater condition or, equivalently, if π belongs to into (Πoc), the interior
set of Πoc in the topology relative to Πo. Moreover, and since {at , t ∈ T} is compact
when π ∈ Πo, it turns out that, for n ≥ 2, Fo is usc at π ∈ Πoc if and only if either
F is bounded or F = Rn.

In section 4 we shall apply the following uniform metric regularity property.
Lemma 3.2. Given π ∈ Πc, assume that F is lsc at π and that F is bounded.

Then, there exists a pair of positive scalars ε and β such that δ (πi, π) < ε, i = 1, 2,
imply, for every xj ∈ Fj ,

d(xj , Fi) ≤ β
[
supt∈T

{
bit −

(
ait
)′
xj
}]

+
, i, j = 1, 2, i 6= j,

where [α]+ := max {0, α}.
Proof. The boundedness of F implies that F is usc at π, and ε̂ > 0 exists such that

F1 ⊂ F +B if δ (π1, π) < ε̂. Thus we can find a positive scalar µ such that
∥∥x1
∥∥ ≤ µ

for every x1 ∈ F1, provided that δ (π1, π) < ε̂. Moreover, it can be assumed, without
loss of generality, that F1 6= ∅ in this ε̂-neighborhood of π, because of the lower
semicontinuity of F at π.

Now let us consider, in this neighborhood, two problems, π1 and π2. Take, for
instance, an arbitrary x2 ∈ F2 and suppose that x2 /∈ F1 (otherwise the inequality to
be proved holds trivially). Suppose that x1 ∈ F1 satisfies the d(x2, F1) =

∥∥x1 − x2
∥∥.

Following a reasoning similar to that in [7, Thm. 3.1], we obtain

d(x2, F1) =
∥∥x1 − x2

∥∥ ≤ 4µ

ρ
supt∈T

{
b1t −

(
a1
t

)′
x2
}
,

provided that δ (πi, π) < ε := min{ε̂, ρ2
(
1 + n1/2µ

)−1}, i = 1, 2, where ρ is the “slack”
associated with an arbitrarily chosen SS element, x, of σ (i.e., a′tx ≥ bt + ρ for all
t ∈ T ). We finish the proof by taking β = 4µ

ρ .
There are, spread out in the literature, many contributions to the stability theory

of F for a class of semi-infinite systems structurally richer than our linear inequality
systems. This class is formed by those systems σ whose index set T is a compact set
in the Euclidean space, defined as a solution set of finitely many analytic constraints.
Moreover, the coefficient functions a (·) and b (·) are assumed to belong to C1 (T ) .
Obviously, this class of C1-systems is a subclass of continuous systems.

Assuming that C1 (T ) is equipped with the so-called Whitney topology, it is es-
tablished in [11] that, under the assumption of the boundedness of F , F will be
topologically stable at π (homeomorphic feasible sets in a neigborhood of π) if and
only if the Mangasarian–Fromovitz constraint qualification (MFCQ) is held. The ex-
tension of this result for an unbounded F can be found in [10]. In this semi-infinite
programming context (with C1 data), the equivalence between the MFCQ and the
metric regularity of the constraints has been established in [9]. Parametric versions
of these results are given in [12] and [13], again in the C1-data context (see also [16]).
When one is confined to the context of linear data without any structure for T , the
corresponding counterparts of these results were provided in [6] and [7], using ad hoc
techniques based exclusively upon the semi-infinite version of the alternative theo-
rems. (The analytic approach does not make sense in our context since nothing is
known about the functions a (·) and b (·).)
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4. Optimal value function and Hadamard well-posedness. Let us consider
the sublevel sets of the problem π:

L(α) := {x ∈ F | c′x ≤ α} = {x ∈ Rn | a′tx ≥ bt, t ∈ T ; c′x ≤ α} , α ∈ R.
L (α) depends on π. So, the sublevel sets of a different problem π1 will be denoted
L1 (α) .

Obviously, O+ (L(α)) = {y ∈ Rn | a′ty ≥ 0 , t ∈ T ; c′y ≤ 0} = {at, t ∈ T ; −c}o,
which is independent of α, so that all the nonempty sublevel sets will have the same
recession cone.

In the following key lemma, intc (Πs) will represent the interior of Πs in the
topology relative to Πc. Theorem 2.7 in [5] can be obtained as an immediate corollary
of this lemma together with Theorem 3.1.

Lemma 4.1. π ∈ intc (Πs) if and only if F ∗ is a nonempty bounded set.
Proof. If F ∗ is a nonempty bounded set, O+ (F ∗) = {0n} = {at , t ∈ T ; −c}o

and, consequently, 0n ∈ int (Rn) = int (cone ({at , t ∈ T ; −c})) . Now, let us note
that if δ (π1, π) is small enough one still has 0n ∈ int

(
cone

({
a1
t , t ∈ T ; −c1})) [7,

Lem. 4.2]. Thus, by reversing our previous argument, we observe that every nonempty
sublevel set of any consistent problem π1 in a certain neighborhood of π is bounded
and, then, F ∗1 is nonempty (c′x attains its minimum in a compact set).

Conversely, if π = (c, σ) ∈ intc (Πs) and F ∗ is unbounded, we shall take u ∈
O+ (F ∗), u 6= 0n, and then we shall construct the sequence of problems {πr :=(
c− 1

ru, σ
)}.

Obviously, limrπr = π and {πr} ⊂ Πc\Πb, because, whichever x∗ ∈ F ∗ we take,

one has x∗ + λu ∈ F ∗ ⊂ F = Fr for all λ > 0, and limλ→∞
(
c− 1

ru
)′

(x∗ + λu) =

v − 1
ru
′x∗−limλ→∞ λ

r ‖u‖2 = −∞. Hence, the existence of such a sequence {πr}
contradicts our current hypothesis.

The continuity properties of the optimal value function ϑ are established in the
following theorem.

Theorem 4.2. Let π = (c, σ) ∈ Πc. Then
i. F is lsc at π if and only if ϑ is usc at π.
ii. If F ∗ is a nonempty bounded set, ϑ will be lsc at π. If π ∈ Πb, the converse

statement holds.
iii. If F is lsc at π and F ∗ is a nonempty bounded set, then we can find positive

scalars, η and k, such that δ (πi, π) < η, i = 1, 2, yield the Lipschitzian inequality

|ϑ (π1)− ϑ (π2)| ≤ kδ (π1, π2) .

Proof. i. The “only if” part is a straightforward consequence of [4, Prop. 2,
Chap. IX]. In order to prove the converse statement, let us consider that ϑ is usc at
π. Let µ > v. Then, there will exist η > 0 such that δ(π1, π) < η implies v1 ≤ µ and,
necessarily, π1 ∈ Πc; i.e., π ∈ int(Πc) and, so, F is lsc at π.

ii. Given the scalar ε > 0, we have to prove that η > 0 exists such that δ (π1, π) <
η implies v1 ≥ v − ε. If ρ > 0 satisfies F ∗ ⊂ ρB, we shall take the open set W :=
{x ∈ Rn | c′x > v − (ε/2)} ∩ ρB. Obviously, W ⊃ F ∗.

Let us consider the system

σ̃ := {a′tx ≥ bt , t ∈ T ; c′x ≤ v}(4.1)

with index set T̃ := T ∪{t0}, where t0 is the index associated with the last inequality

of σ̃ (t0 /∈ T ). Obviously, its solution set, denoted by F̃ , coincides with F ∗, which
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is a nonempty bounded set by assumption. Consequently, if we represent by F̃ the
feasible set mapping defined on the parameter space Π̃ of all the LSIP problems with
constraint systems having T̃ as index set, it follows that F̃ is usc at π̃ := (c, σ̃).

Hence, η̂ > 0 exists such that, if δ̃ denotes the corresponding extended distance in Π̃,
δ̃ (π̃1, π̃) < η̂ will imply F̃1 ⊂W (although F̃1 might be empty).

Let us take any problem π1 =
(
c1, σ1

)
satisfying δ (π1, π) < η, with η := min{η̂,

ε/(2ρn1/2)}. Define the associated problem in Π̃, π̃1 =
(
c1, σ̃1

)
, where

σ̃1 :=
{(
a1
t

)′
x ≥ b1t , t ∈ T ;

(
c1
)′
x ≤ v

}
.

(The right-hand side term of the last constraint is fixed at v = ϑ (π).) It is obvious

that δ̃ (π̃1, π̃) = δ (π1, π) < η ≤ η̂ and, so, F̃1 = L1 (v) ⊂W.
Two possibilities can arise. If F̃1 = ∅, we have v1 ≥ v > v−ε (possibly, v1 = +∞).

Otherwise (i.e., when F̃1 6= ∅), if we take an arbitrary x∗ ∈ F ∗1 ⊂ F̃1, it can be written

v1 =
(
c1
)′
x∗ = c′x∗ +

(
c1 − c)′ x∗ > v − ε

2
− ∥∥c1 − c∥∥∞ ‖x∗‖ n1/2 > v − ε.

Assume now that ϑ is lsc at π ∈ Πb, and let us show that the level set L(µ), with
µ > v, is bounded, in which case π will be solvable and F ∗ bounded. Otherwise, we
can take u ∈ O+(L(µ)), u 6= 0n, and then construct the sequence {πr := (c− 1

ru, σ)}.
Obviously, limrπr = π and, reasoning as in Lemma 4.1, we prove that {πr} ⊂ Πc \Πb,
which contradicts our current hypothesis.

iii. By Theorem 3.1 and Lemma 4.1 there will exist η̂ > 0 such that δ (π1, π) < η̂
implies π1 ∈ Πs. Given ε > 0, the upper semicontinuity of ϑ at π guarantees that,
if η̂ is small enough, one also has v1 ≤ v + ε, which is equivalent in this case to
L1 (v + ε) 6= ∅, provided that δ (π1, π) < η̂.

If we consider, instead of the system introduced in (4.1), the system

σ̃ := {a′tx ≥ bt , t ∈ T ; c′x ≤ v + ε} ,

we observe that F̃ = L (v + ε) is bounded (all the nonempty sublevel sets are bounded

because F ∗ = L (v) enjoys this property) and F̃ will again be usc at π̃. Taking η̂
sufficiently small and π1 =

(
c1, σ1

)
satisfying δ (π1, π) < η̂, we have

L1 (v + ε) ⊂ L (v + ε) +B,(4.2)

since L1 (v + ε) is the feasible set of π̃1 =
(
c1, σ̃1

)
, where

σ̃1 :=
{(
a1
t

)′
x ≥ b1t , t ∈ T ;

(
c1
)′
x ≤ v + ε

}
(note that δ̃ (π̃1, π̃) = δ (π1, π)).

Statement (4.2) means that µ > 0 can be found such that ‖x‖ ≤ µ for all x ∈
L1 (v + ε) and for every π1 in the η̂-neighborhood of π.

Applying Lemma 3.2 to π̃ = (c, σ̃), we conclude the existence of η > 0 (we shall
take η < min {1, η̂}) and β > 0 such that, if πi =

(
ci, σi

)
, i = 1, 2, are contained in the

η-neighborhood of π and, since Li (v + ε), i = 1, 2, is the feasible set of π̃i =
(
ci, σ̃i

)
,
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σ̃i :=
{(
ait
)′
x ≥ bit , t ∈ T ;

(
ci
)′
x ≤ v + ε

}
, one has for x2 ∈ L2(v + ε)

d
(
x2, L1 (v + ε)

) ≤ βmax
[
supt∈T

{
b1t −

(
a1
t

)′
x2
}
,
(
c1
)′
x2 − v − ε , 0

]
= βmax

[
supt∈T

{[
b2t −

(
a2
t

)′
x2
]

+
[(
b1t − b2t

)− (a1
t − a2

t

)′
x2
]}

,(
c2
)′
x2 − v − ε+

(
c1 − c2)′ x2 , 0

]
≤ βmax

[
supt∈T

{(
b1t − b2t

)− (a1
t − a2

t

)′
x2
}
,
(
c1 − c2)′ x2 , 0

]
≤ β (1 + µn1/2

)
δ (π1, π2) = β0δ (π1, π2) ,

where β0 := β
(
1 + µn1/2

)
. Now, if x2 ∈ F ∗2 ⊂ L2 (v + ε), and taking x1 ∈ L1 (v + ε)

such that
∥∥x1 − x2

∥∥ = d
(
x2, L1 (v + ε)

)
, it follows that

v1 − v2 = v1 −
(
c2
)′
x2 ≤ (c1)′ x1 − (c2)′ x2 ≤ ∥∥c1 − c2∥∥ ∥∥x2

∥∥+
∥∥c1∥∥ ∥∥x1 − x2

∥∥
≤ µn1/2δ (π1, π2) + n1/2 (‖c‖∞ + η)β0δ (π1, π2) ≤ kδ (π1, π2) ,

provided that k := n1/2 [µ+ β0 (‖c‖∞ + 1)] .
Repeating the procedure for v2 − v1, one obtains |v1 − v2| ≤ kδ (π1, π2).
In LSIP, existence and continuous dependence of the optimal solutions from prob-

lem’s data might be established as follows.
Given {πr = (cr, σr)} ⊂ Πb such that limrπr = π, the sequence {xr} is said to be

an asymptotically minimizing sequence (a.m.s.) for π associated with {πr} if xr ∈ Fr
for all r, and

limr

{
(cr)

′
xr − vr

}
= 0;

i.e., as r increases, xr approximately solves the approximating problem πr.
The problem π ∈ Πs will be Hadamard well posed (Hwp) if for each x∗ ∈ F ∗

and for each possible sequence {πr} ⊂ Πb converging to π, there exists at least an
associated a.m.s. converging to x∗.

Theorem 4.3. Given π = (c, σ) ∈ Πs, the following statements hold:
i. If π is Hwp, then the restriction of ϑ to Πb, denoted by ϑb, is continuous at π.

If F is lsc at π, the converse statement is also true.
ii. Provided that F ∗ is bounded, π is Hwp if and only if either F is lsc at π or F

is a singleton.
iii. When F ∗ is unbounded and π is Hwp, F has to be lsc at π.
Proof. i. First, we assume that π is Hwp, and take {πr} ⊂ Πb converging to π.

We will see that limrvr = v.
The definition of Hadamard well-posedness states that, given x∗ ∈ F ∗, there will

exist a sequence {xr} tending to x∗, such that xr ∈ Fr and limr

{
(cr)

′
xr − vr

}
= 0.

Since limr (cr)
′
xr = c′x∗ = v, we obtain limrvr = v.

In order to prove the converse, we start from the continuity of ϑb at π and from
the lower semicontinuity of F at π. If {πr} ⊂ Πb converges to π and x∗ ∈ F ∗ ⊂ F,
the lower semicontinuity of F at π implies x∗ ∈ lim infrFr (condition v in Theorem
3.1). In other words, there must exist a sequence {xr} converging to x∗ and such
that xr ∈ Fr. Then {xr} turns out to be an a.m.s. for π associated with {πr} , since
limr

{
(cr)

′
xr − vr

}
= 0.

ii. Assume that π is Hwp, that F ∗ is bounded, and that, at the same time, F is
not a singleton and F fails to be lsc at π.
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Pick an optimal point x∗ ∈ F ∗ and an arbitrary y ∈ F\ {x∗} . Define u := y − x∗
and, associated with each r ∈ N, take a positive scalar kr satisfying∥∥∥∥ 1

kr
u

∥∥∥∥
∞
<

1

r
and

∣∣∣∣ 1

kr
u′y
∣∣∣∣ < 1

r
.

According to condition iii in Theorem 3.1, the unfulfillment of the lower semi-

continuity of F at π gives rise to the existence of a sequence {λp} ⊂ R(T )
+ , satisfying∑

t∈T λ
p
t = 1, p = 1, 2, . . . , and

0n+1 = limp

∑
t∈T

λpt

(
at
bt

)
.(4.3)

Let us introduce, for each r ∈ N, the problem πr = (c, σr) with

σr :=

{(
at +

1

kr
u

)′
x ≥ bt +

1

kr
u′y, t ∈ T

}
.

Obviously, δ (πr, π) < 1
r and, so, limrπr = π. Moreover, y ∈ Fr for every r, and

u′x ≥ u′y is a consequence of each σr, since (4.3) implies

limp

∑
t∈T

λpt

(
at + 1

kr
u

bt + 1
kr
u′y

)
=

1

kr

(
u

u′y

)
.

According to Lemma 4.1, the boundedness of F ∗ entails that {πr}r≥m ⊂ Πs for
a certain m.

We have realized that u′x ≥ u′y for every x ∈ Fr, but u′ (x∗ − y) = −‖u‖2 and,
so, u′x∗ < u′y. This implies that, for this optimal point x∗ and for this particular
sequence of bounded problems converging to π, there is no associated a.m.s. {xr}r≥m
converging to x∗, and the Hadamard well-posedness fails.

Let us proceed with the proof of the converse. First, we assume that F ∗ is
bounded and F is lsc at π. By Theorem 4.2, parts i and ii, we conclude that ϑ is
continuous at π and then apply the converse statement in part i. If, alternatively,
F = F ∗ = {x∗}, our first preliminary conclusion is that F is usc at π, and we shall
check that the condition for the Hadamard well-posedness of π is fulfilled in this case.

Let us consider an arbitrary sequence {πr} ⊂ Πb converging to π. Lemma 4.1
applies again, yielding m such that πr ∈ Πs if r ≥ m. Take xr ∈ F ∗r for r ≥ m and
xr ∈ Fr if r < m. Then, {xr} is obviously an a.m.s. for π associated with {πr} .

The upper semicontinuity of F at π implies that, given any open set W containing
F = {x∗} , there will exist an integer r0 such that Fr ⊂ W if r ≥ r0. In other words,
xr ∈W when r ≥ r0, and this means limrx

r = x∗.
iii. Take x∗ ∈ F ∗ and u ∈ O+ (F ∗) with ‖u‖∞ = 1. Then define µr = 1

u′x∗+r ,
with r sufficiently large to guarantee the positiveness of the denominator, and take
cr := c− µru and yr := x∗ + ru. Obviously, yr ∈ F ∗ and (cr)

′
yr = v − 1.

Now let us define the systems

σr :=

{(
at +

1

kr
cr
)′
x ≥ bt +

v − 1

kr
, t ∈ T

}
, r = 1, 2, . . . ,
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where the constants kr are chosen in such a way that∥∥∥∥ crkr
∥∥∥∥
∞
<

1

r
and

∣∣∣∣v − 1

kr

∣∣∣∣ < 1

r
.

Finally, we shall introduce the associated problems πr := (cr, σr), which obviously
verify limrπr = π and πr ∈ Πc (because yr ∈ Fr).

If F is not lsc at π, condition iii in Theorem 3.1 will fail, and a sequence {λp} ⊂
R(T )

+ exists verifying
∑
t∈T λ

p
t = 1, p = 1, 2, . . . , and (4.3). This implies, for each

r ∈ N,

limp

∑
t∈T

λpt

(
at + 1

kr
cr

bt + v−1
kr

)
=

1

kr

(
cr

v − 1

)
,

and the nonhomogeneous Farkas lemma allows us to conclude that (cr)
′
x ≥ v − 1

is a consequence of σr, which in fact entails yr ∈ F ∗r and vr = v − 1, contradicting
part i.

Corollary 4.4. Let π be a Hwp problem. If x∗ is the limit of a certain a.m.s,
then x∗ will be optimal for π (i.e., x∗ ∈ F ∗).

Proof. There must exist a sequence {πr} ⊂ Πb converging to π, and an associated
sequence {xr} , xr ∈ F (πr) for every r ∈ N, such that

limr

{
(cr)

′
xr − vr

}
= 0 and limr x

r = x∗.

Statement i in Theorem 4.3 establishes the continuity of ϑb at π, entailing limr vr = v.
Thus,

0 = limr

{
(cr)

′
xr − vr

}
= c′x∗ − v

at the same time that x∗ is feasible for π since, for every t ∈ T,

0 ≤ limr

{
(art )

′
xr − brt

}
= a′tx

∗ − bt
(convergence in (Π, δ) yields limrc

r = c, limra
r
t = at, and limrb

r
t = bt for all

t ∈ T ).
The only antecedents of the results presented in this section come from the field

of continuous LSIP, and they can be traced out from [2] and the references therein.
Most of the statements in [2, sects. 2 and 3] can be obtained as corollaries of Theorem
4.2, emphasizing the fact that our results subsume all the previous contributions to
the continuous problem. Additionally, the Lipschitzian condition given in [2, Thm.
3.5] is a trivial consequence of the inequality established in part iii of Theorem 4.2.

5. Optimal set mapping. The only theorem in this section concerns the sta-
bility behavior of F∗.

Theorem 5.1. Given π ∈ Πs, the following propositions hold:
i. F∗ is closed at π if and only if either F is lsc at π or F = F ∗.
ii. If F∗ is usc at π, then F∗ is closed at π. The converse statement holds if F ∗

is bounded.
iii. F∗ is lsc at π if and only if F is lsc at π and F ∗ is a singleton.
Proof. i. Suppose that F∗ is closed at π and that, simultaneously, F 6= F ∗ and

F is not lsc at π.
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Let y ∈ F\F ∗. Then c′y = v + α for a certain α > 0, and we shall consider a
sequence of problems {πr = (c, σr)}, where

σr :=
{(
at + r−1c

)′
x ≥ bt + r−1 (v + α) , t ∈ T

}
, r = 1, 2, . . . .

It follows that limrπr = π, that y ∈ Fr for all r, and that c′x ≥ c′y is a consequence
of σr, again for every r (we should apply the technique used in the proof of proposition
ii in Theorem 4.3). This fact actually implies y ∈ F ∗r , r = 1, 2, . . . , and the closedness
of F∗ at π gives rise to the contradiction y ∈ F ∗.

We continue with the proof of the converse statement. If F = F ∗, we take
sequences {πr} and {xr} , converging to π and x, respectively, and also verifying
xr ∈ F ∗r . Since F ∗r ⊂ Fr and F is always closed at π, one attains x ∈ F = F ∗.

Alternatively, if F is lsc at π and we have limrπr = π, limr x
r = x, and xr ∈ F ∗r ,

r = 1, 2, . . . , we shall prove that c′x ≤ c′x0 for any possible SS element of σ, x0. First,
we prove that x0 ∈ Fr if r ≥ r0 for a certain r0. Actually, if ρ > 0 satisfies a′tx

0 ≥ bt+ρ
for all t ∈ T, and δ (π0, π) < ρ

2 min{1, n−1/2
∥∥x0
∥∥−1} (writing

∥∥x0
∥∥−1

= +∞ in the
case x0 = 0n), the Cauchy–Schwarz inequality leads us to(

a0
t

)′
x0 ≥ a′tx0 − ∥∥x0

∥∥∥∥a0
t − at

∥∥ ≥ a′tx0 − ρ

2
≥ bt +

ρ

2
≥ b0t .

Once we have established x0 ∈ Fr, if r is sufficiently large, we write (cr)
′
xr ≤

(cr)
′
x0 and, taking limits for r →∞, c′x ≤ c′x0 results.

Since F is, in this case, the closure of the set of all the SS elements of σ (condition
vi in Theorem 3.1), one concludes that c′x ≤ c′y for every feasible point y ∈ F , i.e.,
x ∈ F ∗.

ii. Since (Π, δ) behaves locally as the metric space (Π, d) with d(π1, π) = min
{1 , δ(π1,π)}, we can apply any property of set-valued mappings between metric spaces
(see, for instance, [1]). In particular the upper semicontinuity of F∗ at π and the
closedness of the set F ∗ imply that F∗ is a closed mapping at π.

In order to prove the converse statement, we assume that F ∗ is bounded. If
F = F ∗, we have that F is usc at π, entailing the upper semicontinuity of F∗ at the
same problem π. When F is lsc at π, we use the following reasoning.

Let W be an open set containing F ∗, the last one being interpreted as the solution
set of the system σ̃ introduced in (4.1). The boundedness of F̃ ≡ F ∗ implies the

upper semicontinuity of F̃ at π̃ := (c, σ̃) . In other words, η1 > 0 exists such that

δ̃ (π̃1, π̃) ≤ η1 guarantees F̃1 ⊂W. In particular, if we consider π̃1 := (c, σ̃1) , with

σ̃1 := {a′tx ≥ bt , t ∈ T ; c′x ≤ v + η1} ,
we deduce the inclusion F̃1 = L (v + η1) ⊂W.

Let x be an SS element of σ (remember that F is lsc at π). If c′x < v + η1, it

is evident that x is an SS element of σ̃1 too. Otherwise, we pick x̃ ∈ F̃1 satisfying
c′x̃ < v + η1. Then, if λ is sufficiently small, λx + (1− λ) x̃ will be an SS element of

σ̃. In any case, we conclude that F̃ is lsc at π̃1, implying the existence of η2 > 0 such
that δ̃ (π̃2, π̃1) ≤ η2 leads us to F̃2 6= ∅.

Moreover, the boundedness of F̃1 = L(v + η1) implies that F̃ is also usc at π̃1,

and for a certain η3 > 0, δ̃ (π̃2, π̃1) ≤ η3 ensures F̃2 ⊂W.
Now, take a problem π2 such that δ (π2, π) < η := min {η2, η3} , and let us

associate with it the problem π̃2 :=
(
c2, σ̃2

)
in Π̃, with

σ̃2 :=
{(
a2
t

)′
x ≥ b2t , t ∈ T ;

(
c2
)′
x ≤ v + η1

}
.
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Table 5.1
Stability and Hadamard well-posedness of the LSIP problem.

F ∗ nonempty F lsc at π F non-lsc at π

F ∗ is a F = F ∗ I,II,III,IV,
I ,II,III, IV ,Hwp

singleton F 6= F ∗ Hwp
I , II ,III, IV , Hwp

F ∗ is bounded, F = F ∗
I ,II,III,IV, I ,II,III, IV , Hwp

not a singleton F 6= F ∗ Hwp
I , II , III, IV , Hwp

F ∗ is F = F ∗ Cell A:

I , IIIc ,IV

Cell C:

I , IIIb , IV , Hwp

unbounded F 6= F ∗ Cell B:

I , IIIc ,IV I , II , IIIb , IV , Hwp

Obviously, δ̃ (π̃2, π̃1) < η and, consequently, ∅ 6= F̃2 = L2 (v + η1) ⊂ W. Thus,
F ∗2 ⊂ L2 (v + η1) ⊂W and the upper semicontinuity of F∗ at π follows.

iii. Let us suppose first that F ∗ = {x∗} and that F is lsc at π. Then parts i and
ii apply, and we conclude that F∗ is usc at π.

Since F is lsc at π, there will exist η1 > 0 such that δ (π1, π) < η1 implies π1 ∈ Πc.
Lemma 4.1 allows us to write π1 ∈ Πs if η1 is small enough.

Now take an open set W containing x∗. The upper semicontinuity of F∗ at π
gives rise to the existence of η2 > 0 such that δ (π1, π) < η2 implies F ∗1 ⊂ W. If
η := min {η1, η2}, one gets ∅ 6= F ∗1 ⊂ W, when δ (π1, π) < η, so that F ∗1 ∩W 6= ∅ and
F∗ is certainly lsc at π.

Next we shall prove that the lower semicontinuity of F∗ at π implies that π has a
unique optimal solution. If this is not the case, we pick two different points in F ∗, x∗,
and y∗ and define u := y∗ − x∗. We shall introduce the sequence of problems πr :=
(cr, σ) , r = 1, 2, . . . , with cr := c − 1

r u. Obviously, limrπr = π, and a contradiction
will be attained.

Since u′ (y∗ − x∗) > 0, an open neighborhood of x∗, W , can be found such that
u′ (y∗ − x) > 0 for every x ∈W. Let us take an arbitrary x ∈W ∩ F , and notice that
(cr)

′
(y∗ − x) = c′ (y∗ − x)− 1

ru
′ (y∗ − x) < 0. Hence x /∈ F ∗r , and this contradicts the

lower semicontinuity of F∗ at π.
The last step in the proof will establish that the lower semicontinuity of F∗ at π

implies that this property also holds for F . Actually, we shall see that π ∈ int (Πc).
In fact, if W is an open set such that F ∗ ∩W is nonempty, there will exist η > 0 such
that δ (π1, π) < η yields F ∗1 ∩W 6= ∅, and F1 6= ∅ in this neighborhood of π.

In [5, Thms. 3.3 and 4.2], the continuity properties of the optimal set mapping at
a continuous solvable problem π are analyzed. The optimal set mapping considered
there is the restriction, F∗os, of F∗ to the subset of continuous solvable problems, Πos.
So, the characterization of the lower semicontinuity of F∗os at π ∈ Πos given in [5,
Thm. 4.2] requires the existence of an extreme point of F to guarantee the existence
of solvable problems in a neighborhood of π.

Table 5.1 summarizes all the results presented in the previous sections. The
following symbols are used: I ⇔ F∗ is lsc at π; II ⇔ F∗ is usc at π; III ⇔ ϑ is lsc
at π; IV ⇔ ϑ is usc at π; IIIb ⇔ ϑb is lsc at π; IIIc ⇔ ϑc is lsc at π (ϑc ≡ ϑ |Πc); I
means that I does not hold (etc.).
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6. Examples. By means of the following series of examples it is shown that
in the cells of Table 5.1 associated with the cases “F ∗ unbounded,” every possible
combination for the nonfixed properties can occur, showing that there is no additional
underlying connection between them. All the examples are LSIP problems in R2,
except Examples 6.3 and 6.4, which are posed in R3.

Cell A: F ∗ unbounded, F = F ∗, and F lsc at π
EXAMPLE 6.1. II and Hwp.

π : Inf x1

s.t. tx1 + x2 ≥ −1 , t ∈ Z,
sx2 ≥ −1 , s ∈ N.

F = F ∗ = {0} × R+ and v = 0. Moreover, 02 is an SS element and F is lsc
at π. If δ (π1, π) < 1, we have F ∗1 ⊂ F1 = F = F ∗ and F∗ is trivially usc at π. In
order to prove that π is Hwp, we have to establish the lower semicontinuity of ϑb at
π, since this function is already usc at π as a consequence of the lower semicontinuity
of F at π. In fact, π1 ∈ Πb and δ (π1, π) < 1 implies that v1 is attained in the only
extreme point of F1, namely, 02. In other words, v1 = 0 and this entails the required
continuity.

EXAMPLE 6.2. II and Hwp.

π : Inf x1

s.t. tx1 + 0x2 ≥ −1 , t ∈ Z.
F = F ∗ = {0} × R and v = 0. Since 02 is an SS element, F is lsc at π. If we

define, for r = 1, 2, . . . , the problem

πr : Inf
(
x1 + 1

rx2

)
s.t. tx1 + 1

rx2 ≥ −1 , t ∈ Z,
whose feasible set is Fr = {0} × [−r,+∞[ , we observe that limr πr = π and vr = −1.
Thus ϑb fails to be lsc at π.

EXAMPLE 6.3. II and Hwp.

π : Inf x1

s.t. tx1 + x2 + x3 ≥ −1 , t ∈ Z,
x1 + sx2 + x3 ≥ −1 , s ∈ N,
x1 + x2 + ux3 ≥ −1 , u ∈ N,
−x2 + x3 ≥ −1.

03 is an SS element and, so, F is lsc at π. It can be seen that x1 ≥ 0, −x1 ≥ 0,
x2 ≥ 0, and x3 ≥ 0 are consequent relations of the constraint system σ. To this end,
we divide the first (second, third) block of constraints by t (s, u) and take limits for
t→ ±∞ (s→ +∞, u→ +∞). Conversely, the infinitely many constraints in the first
three blocks are themselves consequences of x1 = 0, x2 ≥ 0, and x3 ≥ 0. Consequently,
F = F ∗ =

{
x ∈ R3 | x1 = 0, x2 ≥ 0, x3 ≥ 0, x3 − x2 ≥ −1

}
.

If π1 is a problem such that δ (π1, π) < ε < 1, we can write it as follows:

π1 : Inf {(1 + ε1)x1 + ε2x2 + ε3x3}
s.t. (t+ εt1)x1 + (1 + εt2)x2 + (1 + εt3)x3 ≥ −1 + εt4 , t ∈ Z,

(1 + εs1)x1 + (s+ εs2)x2 + (1 + εs3)x3 ≥ −1 + εs4 , s ∈ N,
(1 + εu1 )x1 + (1 + εu2 )x2 + (u+ εu3 )x3 ≥ −1 + εu4 , u ∈ N,

εw1 x1 + (−1 + εw2 )x2 + (1 + εw3 )x3 ≥ −1 + εw4 .
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It is also obvious that 03 ∈ F1 and that the first three blocks of constraints are
still equivalent to the finite system {x1 = 0, x2 ≥ 0, x3 ≥ 0}; i.e.,

F1 = {x ∈ R3 | x1 = 0, x2 ≥ 0, x3 ≥ 0 and (−1 + εw2 )x2 + (1 + εw3 )x3 ≥ −1 + εw4 }.

The first part of our argument consists in showing that F∗ fails to be usc at
π. Actually, if one introduces the approximating sequence (ap.s.) of problems πr,
r = 1, 2, . . . , which differ from π only in that the last constraint has been replaced
by −x2 +

(
1 + 1

r

)
x3 ≥ −1, respectively, it becomes evident that the open set W ={

x ∈ R3 | −x2 + x3 > −2
}

contains F ∗, but xr = (0, r + 2, r)
′ ∈ Fr \W = F ∗r \W.

So, F ∗r *W for every r and F∗ is not usc at π.
The second part is devoted to establishing the lower semicontinuity of ϑb at π.

Since F1 is a polyhedral set, if π1 ∈ Πb, its optimal value will be attained in any of
its two extreme points, namely,

03 and

(
0,
−1 + εw4
−1 + εw2

, 0

)′
; i.e., v1 = min

{
0,
ε2 (εw4 − 1)

εw2 − 1

}
.

Accordingly, we shall write

v1 ≥ − |ε2| (εw4 − 1)

εw2 − 1
>
−ε (1 + ε)

1− ε

and, since limε→0
ε(1+ε)

1−ε = 0, we conclude the intended property.

EXAMPLE 6.4. II and Hwp.
π : Inf x1

s.t. tx1 + x2 + x3 ≥ −1 , t ∈ Z,
x1 + sx2 + x3 ≥ −1 , s ∈ N,
x1 + x2 + ux3 ≥ −1 , u ∈ N,

−x2 ≥ −1.

03 is an SS element and F = F ∗ =
{
x ∈ R3 | x1 = 0, x3 ≥ 0 and x2 ∈ [0, 1]

}
.

Now, let us introduce the ap.s. {πr} with πr differing from π only in the last
constraint, which is replaced by −x2 + 1

rx3 ≥ −1. Consider the open set W = {x ∈
R3 | −x2 > −2}, the points xr = (0, 2, r)

′
, r = 1, 2, . . . , and observe that W ⊃ F ∗

but xr ∈ Fr \W = F ∗r \W, r = 1, 2, . . . ; i.e., F∗ is not usc at π.
Next we prove that π is not Hwp. Now we take into account the ap.s. {π̃r} ,

such that π̃r is obtained from changing the objective function of π by x1 − 1
rx3 and

substituting the last constraint of π by −x2 − 1
rx3 ≥ −1. We get F̃r = conv{03,

(0, 1, 0)′, (0, 0, r)′} and, consequently, ṽr = −1, r = 1, 2, . . . ; i.e., ϑb is not lsc at π.
Cell B: F ∗ unbounded, F 6= F ∗, and F lsc at π.
EXAMPLE 6.5. II and Hwp.

π : Inf x1

s.t. tx1 + x2 ≥ −1 , t ∈ N,
x1 + sx2 ≥ −1 , s ∈ N.

02 is an SS element of π, entailing the lower semicontinuity of F at π. The con-
straints system is obviously equivalent to x1 ≥ 0 and x2 ≥ 0, so F = {x ∈ R2 | x1 ≥ 0,
x2 ≥ 0} and F ∗ = {0} × R+. In addition, if δ (π1, π) < 1, we shall find F1 = F

and, since the objective function of π1 is
(
c1
)′
x = (1 + ε1)x1 + ε2x2, one gets(

c1
)′ (1

0

)
= 1 + ε1 > 0 =

(
c1
)′

02. Hence, the point (1, 0)
′

is not optimal for π1,
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which implies that in the nontrivial case, namely, π1 ∈ Πb, we have ∅ 6= F ∗1 ⊂ F ∗; i.e.,
F∗ is trivially usc at π. Simultaneously, v1 = 0 = v and ϑb is obviously lsc at π.

EXAMPLE 6.6. II and Hwp.
π : Inf x1

s.t. tx1 + x2 ≥ −1 , t ∈ N,
x1 + sx2 ≥ −1 , s ∈ N,
−x1 ≥ −1.

F is lsc at π because 02 is, once more, an SS element. It can be easily verified
that F = [0, 1] × R+ and F ∗ = {0} × R+. If δ (π1, π) < 1 we have c1 = (1 + ε1, ε2)

′

and F1 =
{
x ∈ R2 | x1 ≥ 0, x2 ≥ 0 and (−1 + εω1 )x1 + εω2 x2 ≥ −1 + εω3

}
. We shall

distinguish two cases:
i. εω2 < 0. Then

F1 = conv

{
02,

(
1− εω3
1− εω1

, 0

)′
,

(
0,

1− εω3
−εω2

)′}
.

ii. εω2 ≥ 0. Now F1 is unbounded, with two extreme points,

02 and

(
1− εω3
1− εω1

, 0

)′
.

In any case, if π1 ∈ Πs (or, equivalently, π1 ∈ Πb since π1 is equivalent to an
ordinary linear programming problem), the optimal value is attained at some extreme
point. Notice that (

1− εω3
1− εω1

, 0

)′
will never be optimal, because(

c1
)′

02 = 0 < (1 + ε1)
1− εω3
1− εω1

(remember that all the epsilons have absolute values smaller than 1). Consequently,
v1 will be attained at points with the first coordinate equal to zero; i.e., F ∗1 ⊂ F ∗ and
F∗ turns out to be usc at π.

Let us proceed, providing an ap.s. of problems for π, {πr} , such that vr = −1,
r = 1, 2, . . . , and, accordingly, ϑb will not be lsc at π. The problem πr is derived from
π, replacing the objective function by (cr)

′
x = x1 − 1

rx2 and the last constraint by

−x1 − 1
rx2 ≥ −1. Since Fr = conv {02, (1, 0)′, (0, r)′}, vr = (cr)

′
(0, r)′ = −1 results.

EXAMPLE 6.7. II and Hwp.
π : Inf x1

s.t. x1 + 0x2 ≥ 0.
x0 = (1, 0)′ is an SS element, F = R+ × R, and F ∗ = {0} × R.
Consider the approximating problem πr := Inf {x1 + 1

rx2 | x1 + 1
rx2 ≥ 0}, for

which δ (πr, π) = 1
r . Taking the open set W :=

{
x ∈ R2 | x1 > −1

}
and the points

xr := (−1, r)
′
, one has W ⊃ F ∗ but xr ∈ F ∗r \W, and the upper semicontinuity of F∗

does not hold at π.
In the following step, the Hadamard well-posedness of π is shown. If π1 is any

problem obtained by perturbation of π, and δ (π1, π) < ε < 1, we can write

π1 := Inf
{

(1 + ε1)x1 + ε2x2 |
(
1 + ε1

1

)
x1 + ε1

2x2 ≥ ε1
3

}
,
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with all the parameters having values in ]−1, 1[ . Then, π1 ∈ Πb if and only if

1 + ε1

1 + ε1
1

=
ε2

ε1
2

,

in which case

v1 = ε1
3

1 + ε1

1 + ε1
1

and v1 ≥ v − ε (1 + ε)

1− ε .

Since limε→0
ε(1+ε)

1−ε = 0, ϑb comes to be lsc at π.

EXAMPLE 6.8. II and Hwp.
π : Inf x1

s.t. x1 + 0x2 ≥ 0,
−x1 + 0x2 ≥ −1.

x0 = ( 1
2 , 0)′ is an SS element, F = [0, 1]×R, and F ∗ = {0}×R. On this occasion,

πr := Inf
{
x1 + 1

rx2 | x1 + 1
rx2 ≥ 0,−x1 ≥ −1

}
, and the argument uses exactly the

same terms as in the previous example to conclude that F∗ is not usc at π.
In order to check that π is not Hwp, take π̃r := Inf {x1 − 1

rx2 | x1 − 1
2rx2 ≥

0, −x1 ≥ −1}. Note that δ (π̃r, π) = 1
r and {π̃r} is an ap.s. for π. Moreover, F̃ ∗r ={

(1, 2r)
′}

and ṽr = −1, precluding the lower semicontinuity of ϑb at π.
Cell C: F ∗ unbounded, F = F ∗, and F non-lsc at π.
EXAMPLE 6.9. II.

π : Inf x1

s.t. tx1 + 0x2 ≥ −1 , t ∈ Z,
x1 + 0x2 ≥ 0,
−x1 + 0x2 ≥ 0.

F = F ∗ = {0} ×R. There is no SS element and, so, F is not lsc at π. If δ (π1, π)
is finite, F ∗1 ⊂ F1 ⊂ F = F ∗, implying II.

EXAMPLE 6.10. II.
π : Inf x1

s.t. x1 + 0x2 ≥ 0,
−x1 + 0x2 ≥ 0.

F = F ∗ = {0} × R, and we have no SS element. Defining πr := Inf{x1 + 1
rx2 |

x1 + 1
rx2 ≥ 0, −x1 − 1

rx2 ≥ 0}, one has δ (πr, π) = 1
r , x

r := (−1, r)
′ ∈ F ∗r , but

xr /∈W := {x ∈ R2 | x1 > −1} ⊃ F ∗. This yields II.
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Abstract. Inspired and motivated by the recent advances in simulated annealing algorithms,
this paper analyzes the convergence rates of a class of recursive algorithms for global optimization
via Monte Carlo methods. By using perturbed Liapunov function methods, stability results of
the algorithms are established. Then the rates of convergence are ascertained by examining the
asymptotic properties of suitably scaled estimation error sequences.
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gence, weak convergence
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1. Introduction. An important task in control, optimization, and related fields
is to locate the global minimum of f(·) : Rr 7→ [0,∞), a smooth function, which
has multiple local minima. The following situation is of interest: we cannot cal-
culate the gradient of f(·) explicitly and only noise-corrupted gradient estimates or
measurements, “∇f(x)+noise,” are available. Consequently, standard deterministic
algorithms are not able to produce desirable results. One needs to rely on stochastic
approximation algorithms. Nevertheless, a stochastic approximation algorithm of the
form

Xn+1 = Xn − an(∇f(Xn) + ξn)(1.1)

may yield convergence to a local minimum. Let Sl denote the collection of all the
minima of f(x). Under broad conditions (see, for example, Kushner and Clark [12],
Benveniste, Métivier, and Priouret [1], or the more up-to-date treatment of Kushner
and Yin [17]), Xn → Sl with probability 1 (w.p.1). But very often the iterates will
be trapped at a local minimum and will miss the global one.

In this work we examine the algorithms

Xn+1 = Xn − A

nγ
(∇f(Xn) + ξn) +

B

nγ/2
√

ln[n1−γ +A0]
Wn(1.2)

for 0 < γ < 1, and

Xn+1 = Xn − A

n
(∇f(Xn) + ξn) +

B√
n ln ln(n+A0)

Wn,(1.3)

where A, A0, and B are some positive constants. These algorithms are Monte Carlo
versions of the “simulated annealing” procedure. Notice that there are two noise
sequences, of which {ξn} is a sequence of measurement noise and {Wn} is a sequence
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of added random perturbations. Following the basic premise of the annealing scheme,
the purpose of {Wn} is to give the iterates enough excitation so that they will not
be trapped at one of the local minima. Corresponding to the two noise processes
there are two sequences of step sizes as well: the sequence an = A/nγ (respectively,
an = A/n) and the sequence bn = B/(nγ/2

√
ln(n1−γ +A0)) (respectively, bn =

B/(
√
n ln ln(n+A0))).

Our work is inspired by the algorithms developed recently by Geman and Hwang
[3], Kushner [11], and Gelfand and Mitter [6]. The focus of this paper is the rates of
convergence of global stochastic optimization algorithms.

To overcome the difficulties noted above with regard to stochastic approximation
algorithms, much effort has been made to search for suitable procedures for global
optimization. In the 1980s, one such global optimization method, simulated annealing,
started attracting the attention of researchers and practitioners. In [9], Kirkpatrick,
Gelatt, and Vecchi proposed a solution method by running the Metropolis algorithm
[19] while gradually lowering the temperature.

To some extent, these approaches can be thought of as dynamical systems per-
turbed by a small noise (see Freidlin and Wentzell [5]). Due to the nature of the
algorithms, generally we cannot expect w.p.1 convergence results. In [6], the con-
vergence, in probability, of (1.3) was proved via the use of properties of diffusion
processes (see Chiang, Hwang, and Sheu [2]). It provides sufficient conditions guar-
anteeing the convergence of the algorithms and relates the discrete iterates to the
stochastic differential equation

dx(t) = −∇f(x(t))dt+
C√
ln t

dŵ(t), x(t0) = x0 for some t0 > 1,(1.4)

where ŵ(·) is a Brownian motion and C = B/
√
A is sufficiently large. Note that

we use t0 > 1 as the initial time due to the presence of 1/
√

ln t. The requirement
B/
√
A > C0 (with C0 sufficiently large) comes from the work [2], where the critical

constant C0 is given.
It will be shown in this work that the rates of convergence mainly depend on the

step size of the perturbation terms and are determined by the random perturbation,
not the observation noise. By a suitable scaling, we show that the interpolated pro-
cesses of the normalized estimation errors converge to a diffusion process. The limit
stochastic differential equations are the same for normalized sequences resulting from
both (1.2) and (1.3). The stationary covariance of the diffusions for these cases are
the same. The scaling factors for the two algorithms are different, however.

The rest of the paper is arranged as follows. We present the main assumptions
and conditions in section 2. Section 3 is devoted to bounds and moment estimates
of a suitably scaled sequence of the estimation errors. We first prove an auxiliary
estimate, and then under appropriate conditions, we demonstrate that for algorithms
(1.2) and (1.3), the corresponding scalings are

√
ln(n1−γ +A0) and

√
ln ln(n+A0),

respectively, which indicate that (1.2) performs better than (1.3). In section 4, we
obtain a local limit result by showing that the interpolated sequences converge to
stochastic differential equations. Denoting the global minimizer of f(·) by x∗, it
follows that for algorithm (1.2),

√
ln(n1−γ +A0)(Xn − x∗), and for algorithm (1.3),√

ln ln(n+A0)(Xn − x∗), are asymptotically normal. These scaling factors and the
corresponding asymptotic covariance matrices give us the desired convergence-rate
results. Finally, we make a number of further remarks in section 5 and close the
paper with an appendix containing the proofs of two lemmas.
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2. Formulation and conditions. Since the main theme of this work is on the
rates of convergence, throughout the paper we will assume the convergence of algo-
rithms (1.2) and (1.3). To carry out the analysis, we make the following assumptions:

A1. f : Rr 7→ [0,∞) is a three times continuously differentiable function such
that min f(x) = 0; the set M = {x ∈ Rr;∇f(x) = 0} consists of finitely many
isolated points; and there is an x∗ that is the global minimum of f(·). Without loss
of generality, assume x∗ = 0 henceforth.

A2. For both algorithms (1.2) and (1.3), Xn
n−→0 in probability.

A3. The noise sequences satisfy:

a. {Wn} is a sequence of independent and identically distributed (i.i.d.) (Rr-
valued) random variables with EWn = 0 and EWnW

′
n = I, where z′ denotes

the transpose of z for any z ∈ Rr×l for some l ≥ 1. {Wn} is independent of
{ξn} and the initial estimate X1.

b. Eξn = 0 for each n, and supnE|ξn|2 <∞.
c. There exists a sequence {ρ(n)} of nonnegative real numbers such that for

j ≥ n, E
1
2 |Enξj − Eξj |2 ≤ ρ(j − n) and

∑∞
k=0 ρ(k) < ∞, where En denotes

the conditioning on Fn, the σ-algebra generated by {X1, ξj ,Wj ; j < n}.
A4. There is a twice continuously differentiable function V (·) : Rr 7→ [0,∞) such

that

a. V (x)→∞ as |x| → ∞;
b. there is a λ > 0 such that V ′x(x)∇f(x) ≥ λV (x) for all x 6∈ M, where Vx(·) de-

notes the first-order partial derivative of V (·) with respect to x and, similarly,
Vxx(·) denotes the second-order derivative;

c. for each 0 ≤ s ≤ 1, En|Vx(x + sδ(x, n))∇f(x + sδ(x, n))| ≤ K(1 + V (x)),
where δ(x, n) = −an(∇f(x)+ξn)+bnWn, Vxx(·) is bounded, and |∇f(x)|2 ≤
K(1 + V (x)).

Remarks. We make the following comments concerning the conditions:

1. The assumption that f(·) is a nonnegative real-valued function is not a restric-
tion. The condition min f(x) = 0 is purely for convenience. We can always translate

the axis; i.e., if min f(x) = c0 6= 0, we can define f̂(x) = f(x) − c0. Then f̂(·) is

nonnegative, with min f̂(x) = 0.

2. The function V (·) in A4 is simply a Liapunov function; we assume its exis-
tence together with some conditions. Such a function is frequently used in analyzing
stochastic recursive algorithms. As an alternative, f(·) itself may be considered as a
Liapunov function. In this case, additional conditions on f(·), similar to (A1) and
(A2) in [6], are needed. These conditions were originally used in [2].

3. In part a of A3, it is assumed that {Wn} is an i.i.d. sequence. We can deal with
a more complex and correlated sequence. Since the algorithm is a Monte Carlo–based
approach, the sequence {Wn} is at our disposal (we can choose it in accordance with
our needs). Thus the i.i.d. assumption appears to be sufficient.

4. In part b of A3, we require only that the sequence have zero mean and that
the second moment of the noise be finite. In view of A3, part c, for each m ≥ 1,

E

∣∣∣∣∣∣
n+m∑
j=m

Emξj

∣∣∣∣∣∣ ≤
n+m∑
j=m

E
1
2 |Emξj − Eξj |2 ≤

∞∑
j=m

ρ(j −m) <∞.(2.1)
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Thus, as n→∞,

E

∣∣∣∣∣∣ 1n
n+m∑
j=m

Emξj

∣∣∣∣∣∣ = O

(
1

n

)
→ 0,

1

n

n+m∑
j=m

Emξj → 0 in probability,

and the sequence verifies a law of large numbers type of condition in the sense of
convergence in probability. Such an averaging condition is satisfied by a large class
of stochastic processes, including i.i.d. zero mean sequences, martingale difference se-
quences, certain autoregressive moving average (ARMA) processes, mixing processes,
and functions of mixing processes. For example, if {ξn} is a stationary ϕ-mixing se-
quence, then it is strongly ergodic. The averaging condition is satisfied. This kind of
condition and similar ones have been used extensively in Kushner [13] (see also [17]
and the references therein).

5. As for part c of A3, if the noise process is stationary ϕ-mixing with mixing
rate φ̃(n) such that

∑
i φ̃(i) <∞, using the well-known mixing inequality (see Ethier

and Kurtz [4, p. 347] and [13, Lemma 4, p. 82]), this condition is easily verified.

3. Error bounds. The purpose of this section is to establish error bounds of
scaled sequences of estimation errors for algorithms (1.2) and (1.3). To do so, we first
prove an auxiliary result for the bounds on {EV (Xn)} and then modify the argument
to establish the desired results.

3.1. Bounds on EV (Xn).

Theorem 3.1. Suppose A1–A4 are satisfied. Then EV (Xn) = O(1) for {Xn}
defined by (1.2) and (1.3).

Proof. We will only work out the details for (1.2) because the argument for
(1.3) is essentially the same. We use a perturbed Liapunov function method to prove
the assertion. The idea of the perturbed Liapunov function method is to add a
small perturbation to the Liapunov function V (·) to cancel the unwanted terms in
the process of averaging. The main techniques were developed by Kushner; for many
applications in approximation of various random processes, see [13] and the references
therein.

By virtue of A3, EnWn = 0. Using A4,

EnV (Xn+1)− V (Xn)

= − A

nγ
V ′x(Xn)∇f(Xn)− A

nγ
V ′x(Xn)Enξn

+
A2

2n2γ
En(∇f(Xn) + ξn)′

∫ 1

0

Vxx(Xn + s(Xn+1 −Xn))ds(∇f(Xn) + ξn)

+
B2

2nγ ln(n1−γ +A0)
EnW

′
n

∫ 1

0

Vxx(Xn + s(Xn+1 −Xn))dsWn.

(3.1)

Define

V1(x, n) = −
∞∑
j=n

A

jγ
EnV

′
x(x)ξj .(3.2)
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By virtue of (2.1) and A4,

E|V1(x, n)| ≤ K

nγ
(1 + V (x))E

∣∣∣∣∣∣
∞∑
j=n

Enξj

∣∣∣∣∣∣ ≤ K

nγ
(1 + V (x)).(3.3)

(Here and hereafter, K denotes a generic positive constant. Its value may be different
for different uses. The expressions K + K = K and KK = K are understood in an
appropriate sense.) Moreover,

EnV1(Xn+1, n+ 1)− V1(Xn, n) =
A

nγ
V ′x(Xn)Enξn

+
1

2

∞∑
j=n+1

A2

jγnγ
En (∇f(Xn) + ξn)

′
∫ 1

0

Vxx(Xn + s(Xn+1 −Xn))dsξj .
(3.4)

Define

V̂ (n) = V (x) + V1(x, n).

In view of (3.1) and (3.4),

EnV̂ (n+ 1)− V̂ (n) = − A

nγ
V ′x(Xn)∇f(Xn) +

µn
2
,

where

µn =
A2

n2γ
En(∇f(Xn) + ξn)′

∫ 1

0

Vxx(Xn + s(Xn+1 −Xn))ds(∇f(Xn) + ξn)

+
B2

nγ ln(n1−γ +A0)
EnW

′
n

∫ 1

0

Vxx(Xn + s(Xn+1 −Xn))dsWn

+
∞∑

j=n+1

A2

jγnγ
En (∇f(Xn) + ξn)

′
∫ 1

0

Vxx(Xn + s(Xn+1 −Xn))dsξj .

(3.5)

Note that

E

∣∣∣∣∣∣
∞∑

j=n+1

Enξ
′
nξj

∣∣∣∣∣∣ ≤
∞∑

j=n+1

E|Enξ′nξj | =
∞∑

j=n+1

E|Enξ′n(En+1ξj)|

≤
∞∑

j=n+1

E
1
2 |ξn|2E 1

2 |En+1ξj − Eξj |2

≤
(

sup
n
E

1
2 |ξn|2

) ∞∑
j=n+1

ρ(j − (n+ 1)) ≤ K.

(3.6)

Owing to A3 and A4, there is a sequence of nonnegative real-valued random variables
{ζn} satisfying supnEζn <∞, and

E

∣∣∣∣∣∣
∞∑

j=n+1

A2

jγnγ
En (∇f(Xn) + ξn)

′
∫ 1

0

Vxx(Xn + s(Xn+1 −Xn))dsξj

∣∣∣∣∣∣
= O

(
1

n2γ

)
(1 + EV (Xn) + Eζn)

= O

(
1

n2γ

)
(1 + EV (Xn)).

(3.7)
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Moreover, in view of A1 and A4, there is a constant vector h ∈ Rr such that

−V ′x(Xn)∇f(Xn) = −V ′x(Xn)∇f(Xn)I{Xn 6∈M} − V ′x(Xn)∇f(Xn)I{Xn∈M}

≤ −λV (Xn)I{Xn 6∈M} − V ′x
(
Xn +

A

nγ
h

)
∇f

(
Xn +

A

nγ
h

)
I{Xn∈M}

+V ′x

(
Xn +

A

nγ

)
∇f

(
Xn +

A

nγ
h

)
I{Xn∈M}.

Note that

−V ′x
(
Xn +

A

nγ

)
∇f

(
Xn +

A

nγ

)
I{Xn∈M}

≤ −λV
(
Xn +

A

nγ
h

)
I{Xn∈M}

≤ −λV (Xn)I{Xn∈M} +

∣∣∣∣ Anγ h
∫ 1

0

V ′x(Xn + s(A/nγ)h)dsI{Xn∈M}

∣∣∣∣
≤ −λV (Xn)I{Xn∈M} +O

(
1

nγ

)
(1 + V (Xn)),

and

En

∣∣∣∣V ′x(Xn +
A

nγ
h

)
∇f

(
Xn +

A

nγ
h

)
I{Xn∈M}

∣∣∣∣
= En

∣∣∣∣ Anγ h
(∫ 1

0

V ′x(Xn + s(A/nγ)h)∇f(Xn + (A/nγ)h)ds

)
x

I{Xn∈M}

∣∣∣∣
≤ K

nγ
(1 + V (Xn)).

It follows that

−EnVx(Xn)∇f(Xn) ≤ −λV (Xn)I{Xn 6∈M} − λV (Xn)I{Xn∈M}

+O

(
1

nγ

)
(1 + V (Xn)).

Taking the expectation in (3.5) and using the estimates above, it is easy to verify
that the first and second terms in Eµn are bounded above by Kn−2γ(1 + EV (Xn))
and K(nγ ln(n1−γ + A0))−1, respectively. Putting the estimates above together, we
arrive at

EV̂ (n+ 1)

≤
(

1− Aλ

nγ

)
EV (Xn) +

(
O

(
1

nγ ln(n1−γ +A0)

)
+O

(
1

n2γ

))
(1 + EV (Xn))

≤
(

1− Aλ

nγ

)
EV̂ (n) +

(
O

(
1

nγ ln(n1−γ +A0)

)
+O

(
1

n2γ

))
(1 + EV̂ (n)).

(3.8)

The second inequality in (3.8) follows from the bound on V1(·). Iterating on (3.8)
yields

EV̂ (n+ 1) ≤ Kn +K
n∑
j=1

(
1

jγ ln(j1−γ +A0)
+

1

j2γ

)
BnjEV̂ (j),(3.9)
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where

Bnj =


n∏

l=j+1

(
1− Aλ

lγ

)
, j < n,

1, j = n,

and

Kn = Bn,0EV̂ (1) +K

n∑
j=1

1

jγ

(
1

jγ
+

1

ln(j1−γ +A0)

)
Bnj <∞.

An application of Gronwall’s inequality implies

EV̂ (n+ 1) ≤ Kn exp

K n∑
j=1

1

jγ

(
1

jγ
+

1

ln(j1−γ +A0)

)
Bnj

 <∞.

Owing to (3.3), we also have EV (Xn+1) ≤ K. The desired estimate for {EV (Xn)}
then follows.

3.2. Normalized sequences. Choosing appropriate scaling factors is crucial to
the study of the convergence speed. In this section, we derive the error bounds of
suitably scaled sequences, while the next section is on local limit results.

Define

vn =

{√
ln(n1−γ +A0)Xn for 0 < γ < 1,√
ln ln(n+A0)Xn for γ = 1.

(3.10)

To derive the desired tightness, use the Liapunov function V (·) again. We first obtain
the following result.

Theorem 3.2. Under the conditions of Theorem 3.1,

sup
n

[ln((n+ 1)1−γ +A0)]EV (Xn+1) = O(1)

with 0 < γ < 1 for algorithm (1.2), and

sup
n

[ln ln((n+ 1) +A0)]EV (Xn+1) = O(1)

for algorithm (1.3).
Proof. The proof is very similar to the previous result, and we point out only the

differences. Again, we examine algorithm (1.2) only. It is easily seen that

sup
n

ln((n+ 1)1−γ +A0)

ln(n1−γ +A0)
≤ K.

Now (3.9) is replaced by

[ln((n+ 1)1−γ +A0)]EV̂ (n+ 1)

≤ ln((n+ 1)1−γ +A0)

ln(n1−γ +A0)
ln(n1−γ +A0)

×
Kn +K

n∑
j=1

(
1

jγ ln(j1−γ +A0)
+

1

j2γ

)
BnjEV̂ (j)


≤ K ln(n1−γ +A0)

Kn +K
n∑
j=1

(
1

jγ ln(j1−γ +A0)
+

1

j2γ

)
BnjEV̂ (j)

 .

(3.11)
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It thus suffices to show that the third line of (3.11) is bounded. To proceed, we
state a lemma. Its proof is in the appendix.

Lemma 3.3. The following estimates hold:

m∑
j=k

1

jγ
Bnj <∞ for 1 ≤ k ≤ m ≤ n,

ln(n1−γ +A0)
n∑
j=1

1

jγ ln(j1−γ +A0)
Bnj <∞,

ln(n1−γ +A0)

n∑
j=1

1

j2γ
Bnj <∞.

In view of the definition of Kn and the lemma above,

ln(n1−γ +A0)Kn = ln(n1−γ +A0)Bn,0EV̂ (1)

+ ln(n1−γ +A0)K
n∑
j=1

1

jγ

(
1

jγ
+

1

ln(j1−γ +A0)

)
Bnj ≤ K <∞.(3.12)

Define

Ṽ (n) = ln(n1−γ +A0)V̂ (n).

Then

ln(n1−γ +A0)
n∑
j=1

(
1

jγ ln(j1−γ +A0)
+

1

j2γ

)
BnjEV̂ (j)

= ln(n1−γ +A0)
n∑
j=1

(
1

jγ [ln(j1−γ +A0)]2
+

1

j2γ ln(j1−γ +A0)

)
BnjEṼ (j).

(3.13)

Using (3.11)–(3.13), Lemma 3.3, and the familiar Gronwall’s inequality, we arrive
at

EṼ (n+ 1)

≤ K exp

ln(n1−γ +A0)
n∑
j=1

(
1

jγ [ln(j1−γ +A0)]2
+

1

j2γ ln(j1−γ +A0)

)
Bnj

 <∞.

This, together with the bound on V1(·), then yields the desired estimate.
Corollary 3.4. If the Liapunov function V (·) is locally quadratic, i.e., V (x) =

x′Qx+ o(|x|2), where Q is a symmetric positive definite matrix, then {vn} defined for
algorithm (1.2) (respectively, algorithm (1.3)) is tight.

Proof. The proof is very similar to the verification of the last part of Theorem 1
in [15], which mainly uses the local quadratic structure of the Liapunov function. We
thus omit the details.

4. Diffusion limits. This section deals with a local limit theorem for the inter-
polated sequence of vn. The main idea is to linearize the difference equation around
the global minimum 0 and to carry out the limit process for the scaled sequences. As
before, detailed derivation is given for the sequence defined by (1.2) only.
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Note that

∇f(x) = Hx+
1

2
x′
(∫ 1

0

fxxx(sx)ds

)
x,

where H = fxx(0) is the Hessian of f(·) at 0. Linearizing (1.2) yields that

Xn+1 = Xn− A

nγ
(HXn+ ξn)− A

2nγ
X ′n

∫ 1

0

fxxx(sXn)dsXn+
B

n
γ
2

√
ln(n1−γ +A0)

Wn.

For future use, note that(
ln((n+ 1)1−γ +A0)

ln(n1−γ +A0)

)1/2

= 1 +O

(
1

n2−2γ ln(n1−γ +A0)

)
.(4.1)

By virtue of the definition of vn (see (3.10)) and using (4.1), we obtain

vn+1 = vn − AH

nγ
vn − A

nγ
ξ̃n +

B

nγ/2
Wn + gn + g̃n + ĝn, where

gn = O

(
1

n2−γ ln(n1−γ +A0)

)
vn +O


∣∣∣∣∫ 1

0

fxxx(sXn)ds

∣∣∣∣
nγ
√

ln(n1−γ +A0)
|vn|2

 ,

g̃n = O

(
1

n2γ ln(n1−γ +A0)

)
ξ̃n with

ξ̃n =
√

ln(n1−γ +A0)ξn and

ĝn = O

(
1

n2− γ2 [ln(n1−γ +A0)]
3
2

)
Wn.

(4.2)

Define

tn =
n∑
i=1

A

iγ

and m(t) = max{n; tn ≤ t}.
To proceed, we define the piecewise constant interpolation of vn by

v0(t) = vn for t ∈ [tn, tn+1),

vn(t) = v0(t+ tn).

Theorem 4.1. Suppose the conditions of Corollary 3.4 are satisfied. Then
{vn(·)} is tight in Dr[0,∞). Any weakly convergent subsequence of {vn(·)} has a
limit satisfying the following stochastic differential equation:

dv = −Hvdt+ Cdw,(4.3)

where C = B/
√
A and w(·) is an r-dimensional standard Brownian motion.

Remark. In view of A3, part c, we can derive an appropriate moment bound for
the scaled sequence of measurement noise. Very often, we also have the situation in
which

m(tn+t)∑
i=n

A

iγ/2
ξi converges weakly to w̃(t),
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a Brownian motion process. Moreover, we note that since (4.3) is linear, it has a
unique solution for each initial condition.

Proof. The proof uses the methods of direct averaging [13]. First note that vn(0)
is tight owing to Corollary 3.4. To proceed, we divide the proof into several steps.

Step 1. Use an N -truncation device: since it is not known a priori that {vn} is
bounded, we first use a truncation device (see [13, p. 43]). The idea is to apply the
truncations to Xn and vn, but not to the noise processes. For each 0 < N < ∞,
consider the discrete system

vNn+1 = vNn −
AH

nγ
vNn −

A

nγ
ξ̃n +

B

nγ/2
+ gNn + g̃n + ĝn,(4.4)

where

gNn = O

(
1

n2−γ ln(n1−γ +A0)

)
vNn +O

(
1

nγ
√

ln(n1−γ +A0)
|vNn |2

)
qN (vNn ),

qN (v) =

{
1, v ∈ SN ,
0, v ∈ Rr − SN+1,
smooth, otherwise,

and SN denotes the sphere with radius N , i.e., SN = {v; |v| ≤ N}. In the above,

we have noticed that {XN
n } is bounded; so is

∫ 1

0
fxxx(sXN

n )ds. Define vn,N (·) to
be the corresponding piecewise constant interpolation of vNn . Then vn,N (·) is the
N -truncation of vn(·), i.e., vn,N (t) = vn(t), up until the first exit from SN , and

lim
κ→∞ lim sup

n→∞
P

{
sup
t≤T
|vn,N (t)| ≥ κ

}
= 0 for each T <∞, N <∞.

The function qN (·) is smooth and is termed a truncation function (see [13, p. 43]).
As a result,

vn,N (t+ s)− vn,N (t)

= −AH
m(tn+t+s)−1∑
i=m(tn+t)

vNi
iγ

+

m(tn+t+s)−1∑
i=m(tn+t)

A1/2C

iγ/2
Wi

−
m(tn+t+s)−1∑
i=m(tn+t)

A

iγ
ξ̃i +

m(tn+t+s)−1∑
i=m(tn+t)

gNi +

m(tn+t+s)−1∑
i=m(tn+t)

g̃i +

m(tn+t+s)−1∑
i=m(tn+t)

ĝi.

(4.5)

Step 2. Derive the tightness of the process {vn,N (·)}. We apply Kurtz’s tightness
criterion (see [13, p. 47]) in what follows. For each T <∞, and each t ≤ T , N <∞,
δ > 0, use EFt and Ek to denote the conditioning on the σ-algebra generated by
σ{vn,N (τ), τ ≤ t} and σ{XN

1 , ξj ,Wj , j < k}, respectively. Using the piecewise
constant interpolation, we have for some K > 0,

EFt
∣∣vn,N (t+ δ)− vn,N (t)

∣∣2 ≤ K 6∑
i=1

Γni ,(4.6)

where
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Γn1 = EFt

∣∣∣∣∣∣
m(tn+t+δ)−1∑
i=m(tn+t)

AH

iγ
vNi

∣∣∣∣∣∣
2

,

Γn2 = EFt

∣∣∣∣∣∣A
m(tn+t+δ)−1∑
i=m(tn+t)

ξ̃i
iγ

∣∣∣∣∣∣
2

,

Γn3 = EFt

∣∣∣∣∣∣B
m(tn+t+δ)−1∑
i=m(tn+t)

Wi

iγ/2

∣∣∣∣∣∣
2

,

Γn4 = EFt

∣∣∣∣∣∣
m(tn+t+δ)−1∑
i=m(tn+t)

gNi

∣∣∣∣∣∣
2

,

Γn5 = EFt

∣∣∣∣∣∣
m(tn+t+δ)−1∑
i=m(tn+t)

g̃i

∣∣∣∣∣∣
2

,

Γn6 = EFt

∣∣∣∣∣∣
m(tn+t+δ)−1∑
i=m(tn+t)

ĝi

∣∣∣∣∣∣
2

.

By virtue of the N -truncation and hence the boundedness of vNi ,

Γn1 ≤ K
∣∣∣∣∣∣
m(tn+t+δ)−1∑
i=m(tn+t)

1

iγ

∣∣∣∣∣∣
2

≤ Γ̃n1 (δ),

where we wish to prove that Γ̃n1 (δ) is some upper bound that converges to 0 in expec-
tation. Owing to the definition of m(·),

m(tn+t+δ)∑
i=1

A

iγ
≤ tn + t+ δ

≤
m(tn+t)−1∑

i=1

A

iγ
+

A

(m(tn + t))γ
+

A

(m(tn + t) + 1)γ
+ δ.

As n→∞, (m(tn + t))γ →∞. Hence

m(tn+t+δ)∑
i=m(tn+t)

A

iγ
≤ δ +

A

(m(tn + t))γ
+

A

(m(tn + t) + 1)γ
and

lim sup
n→∞

m(tn+t+δ)−1∑
i=m(tn+t)

A

iγ
≤ lim sup

n→∞

m(tn+t+δ)∑
i=m(tn+t)

A

iγ
≤ δ.

(4.7)

In view of (4.7),

lim
δ→0

lim sup
n→∞

EΓ̃n1 (δ) = 0.

Likewise,

Γn4 ≤ Γ̃n4 (δ) such that lim
δ→0

lim sup
n→∞

EΓ̃n4 (δ) = 0.
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Owing to the fact that {Wn} is a sequence of i.i.d. random variables with zero
mean and EWnW

′
n = I,

Γn3 =

m(tn+t+δ)−1∑
i=m(tn+t)

B

iγ
EFt |Wi|2

=

m(tn+t+δ)−1∑
i=m(tn+t)

B

iγ
tr(EWiW

′
i )

= Br

m(tn+t+δ)−1∑
i=m(tn+t)

1

iγ
≤ Γ̃n3 (δ),

so (in view of (4.7)), we also have

lim
δ→0

lim sup
n→∞

EΓ̃n3 (δ) = 0.

Similarly,

Γn6 ≤ Γ̃n6 (δ) and lim
δ→0

lim sup
n→∞

EΓ̃n6 (δ) = 0.

Proceeding to the term Γn2 ,

EFt

∣∣∣∣∣∣
m(tn+t+δ)−1∑
i=m(tn+t)

A

iγ
ξ̃i

∣∣∣∣∣∣
2

=

m(tn+t+δ)−1∑
i=m(tn+t)

m(tn+t+δ)−1∑
j=m(tn+t)

A

iγ
A

jγ

√
ln(i1−γ +A0)

√
ln(j1−γ +A0)EFtξ′iξj

≤ K
m(tn+t+δ)−1∑
i=m(tn+t)

A

iγ

∑
j≥i

√
ln(i1−γ +A0)

j
γ
2

√
ln(j1−γ +A0)

j
γ
2

∣∣EFtξ′iξj∣∣ .
Notice that for j ≥ i,√

ln(i1−γ +A0)

j
γ
2

≤ 1 and

√
ln(j1−γ +A0)

j
γ
2

≤ 1.

Furthermore, for j ≥ i,∣∣EFtξ′iξj∣∣ ∣∣EFtξ′i(Eiξj − Eξj)∣∣ ≤ (EFt |ξi|2)1/2 (EFt |Eiξj − Eξj |2)1/2

.

In view of A3, part c, and owing to the estimates above,

EFt

∣∣∣∣∣∣
m(tn+t+δ)−1∑
i=m(tn+t)

A

iγ
ξ̃i

∣∣∣∣∣∣
2

≤ K
m(tn+t+δ)−1∑
i=m(tn+t)

A

iγ
(
EFt |ξi|2

)1/2∑
j≥i

(
EFt |Eiξj − ξj |2

)1/2
≤ EFt Γ̃n2 (δ).

Taking expectation and using the Cauchy–Schwarz inequality,

lim
δ→0

lim sup
n→∞

EΓ̃n2 (δ) ≤ K lim
δ→0

lim sup
n→∞

m(tn+t+s)−1∑
i=m(tn+t)

A

iγ

∑
j≥i

ρ(j − i) = 0.
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Likewise,

Γn5 ≤ EFt Γ̃n5 (δ) such that lim
δ→0

lim sup
n→∞

EΓ̃n5 (δ) = 0.

Putting things together and using Γ̃n(δ) = K
∑6
i=1 Γ̃ni (δ), we arrive at

EFt
∣∣vn,N (t+ δ)− vn,N (t)

∣∣2 ≤ EFt Γ̃n(δ)

such that

lim
δ→0

lim sup
n→∞

EΓ̃n(δ) = 0.

It follows from Theorem 3.3 of [13] that {vn,N (·)} is tight in Dr[0,∞).
Step 3. Characterize the limit process. We utilize the direct averaging techniques

here (see [13, Chapter 5]). Since {vn,N (·)} is tight, by Prohorov’s theorem, we may
extract a convergent subsequence. We do so and still denote the subsequence by
{vn,N (·)} for notational simplicity. Furthermore, denote the limit by vN (·). Using
the Skorokhod representation (see [4] and [13]), without changing notation, suppose
that vn,N (·) converges to vN (·) w.p.1; the convergence is uniform on any bounded
time interval.

We prove that vN (·) is a solution of the truncated equation

dvN (t) = −HvN (t)dt+ Cdw(t).(4.8)

To this end, define

MN (t) = vN (t)− vN (0) +

∫ t

0

HvN (u)du− C
∫ t

0

dw(u).

We claim that MN (·) is a martingale.
To verify the martingale property, we need only prove that for any bounded and

continuous function h(·), arbitrary t and s, any integer ν, and sj < t < t + s, for
j ≤ ν,

Eh(vN (sj), j ≤ ν)(MN (t+ s)−MN (t))

= Eh(vN (sj), j ≤ ν)

(
vN (t+ s)− vN (t) +

∫ t+s

t

HvN (u)du−
∫ t+s

t

Cdw(u)

)
= 0.

To verify this equation, we start with the prelimit process vn,N (·). Notice that

lim
n→∞Eh(vn,N (sj), j ≤ ν)

(
vn,N (t+ s)− vn,N (t)

)
= lim
n→∞Eh(vn,N (sj), j ≤ ν)

−m(tn+t+s)−1∑
i=m(tn+t)

A

iγ
HvNi +

m(tn+t+s)−1∑
i=m(tn+t)

A1/2C

iγ/2
Wi

−
m(tn+t+s)−1∑
i=m(tn+t)

A

iγ
ξ̃i +

m(tn+t+s)−1∑
i=m(tn+t)

gNi +

m(tn+t+s)−1∑
i=m(tn+t)

g̃i +

m(tn+t+s)−1∑
i=m(tn+t)

ĝi

 .

(4.9)

We detail the estimates below for each of the terms in (4.9). The basic idea is
that the observation noise {ξn} is averaged out and a scaled sequence of the added
noise {Wn} results in a Brownian motion limit.
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We have that

E

m(tn+t+s)−1∑
i=m(tn+t)

1

iγ
√

ln(i1−γ +A0)
|vNi |2qN (vNi )

≤
m(tn+t+s)−1∑
i=m(tn+t)

1

iγ [ln(i1−γ +A0)]
1
2

n−→0 uniformly in t,

and

E

m(tn+t+s)−1∑
i=m(tn+t)

1

i2−γ ln(i1−γ +A0)
|vNi | n−→0 uniformly in t.

Thus,

lim
n→∞E

∣∣∣∣∣∣
m(tn+t+s)−1∑
i=m(tn+t)

gNi

∣∣∣∣∣∣ = 0 uniformly in t.(4.10)

By virtue of a summation by parts,

m(tn+t+s)−1∑
i=m(tn+t)

A

iγ
ξ̃i = J1

n + J2
n,

where

J1
n = ε1

n

m(tn+t+s)−1∑
i=m(tn+t)

A

iγ/2
ξi,

J2
n =

m(tn+t+s)−2∑
i=m(tn+t)

ε2
i

i∑
j=m(tn+t)

A

jγ/2
ξj ,

ε1
n =

√
ln([m(tn + t+ s)− 1]1−γ +A0)

(m(tn + t+ s)− 1)γ/2
,

ε2
n =

√
ln(n1−γ +A0)

nγ/2
−
√

ln((n+ 1)1−γ +A0)

(n+ 1)γ/2
.

As in the development of Step 2,∑
j≥i
|Eξiξj | ≤

∑
j≥i

E
1
2 |ξi|2E 1

2 |Eiξj − Eξj |2,

so

E|J1
n| ≤ ε1

nE
1/2

∣∣∣∣∣∣
m(tn+t+s)−1∑
i=m(tn+t)

A

iγ/2
ξi

∣∣∣∣∣∣
2

≤ Kε1
n

m(tn+t+s)−1∑
i=m(tn+t)

A

iγ/2

∑
j≥i

A

jγ/2
|Eξ′iξj |

1/2

≤ Kε1
n

m(tn+t+s)−1∑
i=m(tn+t)

A

iγ

∑
j≥i

ρ(j − i)
1/2

→ 0 as n→∞ uniformly in t.
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Likewise, since

sup
i≤m(tn+t+s)−1

E

∣∣∣∣∣∣
i∑

j=m(tn+t)

A

jγ/2
ξj

∣∣∣∣∣∣ ≤ sup
i≤m(tn+t+s)−1

E
1
2

∣∣∣∣∣∣
i∑

j=m(tn+t)

A

jγ/2
ξj

∣∣∣∣∣∣
2

≤ K,

we have

E|J2
n| ≤

m(tn+t+s)−2∑
i=m(tn+t)

ε2
i sup
i≤m(tn+t+s)−1

E

∣∣∣∣∣∣
i∑

j=m(tn+t)

A

jγ/2
ξj

∣∣∣∣∣∣
n−→0 uniformly in t.

Thus

lim
n→∞E

∣∣∣∣∣∣
m(tn+t+s)−1∑
i=m(tn+t)

A

iγ
ξ̃i

∣∣∣∣∣∣ = 0, and lim
n→∞E

∣∣∣∣∣∣
m(tn+t+s)−1∑
i=m(tn+t)

g̃i

∣∣∣∣∣∣ = 0, uniformly in t.

To proceed, we state a variant of Donsker’s invariance theorem. A brief sketch of
the proof is in the appendix.

Lemma 4.2. Define

wn(t) =

m(tn+t)−1∑
i=n

A1/2

iγ/2
Wi.

Then wn(·) converges weakly to w(·), a standard Brownian motion process.
By virtue of Lemma 4.2 above,

lim
n→∞E

∣∣∣∣∣∣
m(tn+t+s)−1∑
i=m(tn+t)

ĝi

∣∣∣∣∣∣ = 0 uniformly in t.

Now, (4.5) can be rewritten as

vn,N (t+ s)− vn,N (t) = −
m(tn+t+s)−1∑
i=m(tn+t)

AH

iγ
vNi + C

m(tn+t+s)−1∑
i=m(tn+t)

A1/2

iγ/2
Wi + o(1),

where o(1)
n−→0, in probability, uniformly in t.

Let ∆n be chosen so that ∆n > 0, ∆n → 0 as n→∞, and

lim sup
n→∞

{j−γ ; j ≥ n}
∆n

= 0.

For each l,

lim
n→∞

1

∆n

m(tn+l∆n+∆n)−1∑
i=m(tn+l∆n)

A

iγ
= 1.

This implies that

1

∆n
(tm(tn+l∆n+∆n) − tm(tn+l∆n))

n−→1.
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Partitioning [0, t+ s] into subintervals, we have

lim
n→∞Eh(vn,N (sj), j ≤ ν)

−m(tn+t+s)−1∑
i=m(tn+t)

A

iγ
HvNi


= lim
n→∞Eh(vn,N (sj), j ≤ ν)

−∑
l∈In

∆n
1

∆n

m(tn+l∆n+∆n)−1∑
i=m(tn+l∆n)

A

iγ
HvNi


= lim
n→∞Eh(vn,N (sj), j ≤ ν)

−∑
l∈In

∆n
1

∆n

m(tn+l∆n+∆n)−1∑
i=m(tn+l∆n)

A

iγ
HvNm(tn+l∆n)

 ,

(4.11)

where In = {l ∈ Z+; t ≤ l∆n < t + s}. Letting tm(tn+l∆n) → u, the choice of ∆n

leads to

lim
n→∞Eh(vn,N (sj), j ≤ ν)

−m(tn+t+s)−1∑
i=m(tn+t)

A

iγ
HvNi


= Eh(vN (sj), j ≤ ν)

(
−
∫ t+s

t

HvN (u)du

)(4.12)

by the weak convergence of vn,N (·) and the Skorokhod representation. In addition,
by Lemma 4.2,

m(tn+t+s)−1∑
i=m(tn+t)

A1/2

iγ/2
Wi =

∑
l∈In

m(tn+l∆n+∆n)−1∑
i=m(tn+l∆n)

A1/2

iγ/2
Wi ⇒

∫ t+s

t

dw(u).(4.13)

Combining the estimates obtained so far, (vn,N (·), wn(·)) converges weakly to
(vN (·), w(·)) such that

vN (t) = vN (0)−H
∫ t

0

vN (s)ds+ C

∫ t

0

dw(s).

Step 4. Let the truncation level grow. The argument here is similar to that of
[13, Corollary to Theorem 3.2]. Let Pv(0)(·) and PN (·) be the measures induced by
v(·) and vN (·), respectively. The measure Pv(0)(·) is unique by virtue of A4. For each
T <∞, Pv(0)(·) agrees with PN (·) on all Borel subsets of the set of paths in Dr[0,∞)
whose values are in SN for t ≤ T . Notice that

Pv(0)

(
sup
t≤T
|v(t)| ≤ N

)
N−→1.

This, together with the weak convergence of vn,N (·) to vN (·), yields vn(·)⇒ v(·). The
proof of the theorem is completed.

Remark. The proof above concentrates on algorithm (1.2). For algorithm (1.3)
the argument is very similar; the main difference is the scaling. In this case, define

tn =
n∑
i=1

A

i
and m(t) = max{n; tn ≤ t}.

The motivation for using such interpolation intervals comes from ODE (ordinary
differential equation) methods for stochastic approximation algorithms.
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5. Further discussions. This section consists of three parts. The first subsec-
tion discusses a number of issues related to the asymptotic results obtained thus far.
Section 5.2 concentrates on the case in which ∇f(x)+noise cannot be obtained and
one can only use gradient estimates instead. Finally, we conclude with a few more
remarks.

5.1. A few observations. In view of the limit results obtained, the following
points are worth noticing.

A. Since H = fxx(0), −H is a stable matrix. The stationary covariance Σ of the
diffusion in (4.3) can be obtained by solving the Liapunov equation ΣH + H ′Σ =
−C2I.

B. A direct consequence of Theorem 4.1 and the observation above is that for both
algorithms (1.2) and (1.3),

√
ln(n1−γ +A0)Xn and

√
ln ln(n+A0)Xn are asymptot-

ically normal with zero mean and covariance Σ.
C. The rates of convergence of the global stochastic approximation algorithms

depend mainly on the step size of the added random perturbations. Since the step
size an is much smaller than bn, the observation noise is averaged out in the limit.

D. A consequence of statement C above is that the step size in (1.2) is preferable.
From a computation point of view, one always wants to choose a larger step size
whenever possible to force the iterates to approach the desired target value faster.
This is another reason that an = O(1/nγ) for 0 < γ < 1 is preferred over an = O(1/n).
For more discussions on the step size sequences, see [17, Chapters 10 and 11], and
also [18] for related issues.

E. In the limit stochastic differential equation (4.3) for both algorithms (1.2)
and (1.3), the drift is exactly the same. This reveals another feature of the global
stochastic optimization algorithms. For classical stochastic approximation algorithms,
e.g., (1.2) and (1.3) without the added random perturbations, the scalings are nγ/2

and
√
n, respectively. The corresponding drifts of the limit stochastic differential

equations are H̃ = H for 0 < γ < 1 and H̃ = H − I/2 for γ = 1, respectively.

5.2. Kiefer–Wolfowitz-type algorithms. Whenever possible, one tries to ob-
serve the gradient ∇f(x) directly without recourse to the finite difference method.
However, the situation in which one can obtain only noisy observations of the func-
tion values f(·) (not that of ∇f(·)) is of practical concern. This subsection is devoted
to Kiefer–Wolfowitz (KW)-type algorithms. We show that the framework developed
in this paper can be adopted to treat KW algorithms with added random pertur-
bations. It is conceivable that such an approach can also be used for variants of
stochastic optimization algorithms such as random directions methods and stochastic
optimization algorithms in conjunction with the so-called infinitesimal perturbation
analysis methods.

For some A > 0, A0 > 0, and B > 0, define the step size sequences and the finite
difference intervals as

an =


A

nγ
, when 0 < γ < 1,

A

n
, when γ = 1,

bn =


B

n
γ
2

√
ln(n1−γ +A0)

, when 0 < γ < 1,

B√
n ln ln(n+A0)

, when γ = 1,

and

cn =
c0
nα

for some c0 > 0.
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Consider KW-type algorithms (with centered finite difference) of the form

Xn+1 = Xn − an
(
Y +
n − Y −n

2cn

)
+ bnWn,(5.1)

where {Wn} is a sequence of added random perturbations as in (1.2) and (1.3),

Y ±n = (Y ±n,1, . . . , Y
±
n,r)
′ ∈ Rr,

and Y ±n,i, for i = 1, . . . , r, are the observations at time n and parameter values Xn ±
eicn, with ei being the ith standard unit vector of Rr.

To proceed, define the bias and noise by

βn(x) = (βn,1(x), . . . , βn,r(x))′ ∈ Rr, where

βn,i(x) =
∂f(x)

∂xi
− f(x+ cnei)− f(x− cnei)

2cn
, i = 1, . . . , r,

and

ηn = (ηn,1, . . . , ηn,r)
′ ∈ Rr, where

ηn,i = [f(Xn + cnei)− Y +
n ]− [f(Xn − cnei)− Y −n ], i = 1, . . . , r.

Then algorithm (5.1) above can be rewritten as

Xn+1 = Xn − an∇f(Xn) + an
ηn
2cn

+ anβn(Xn) + bnWn.(5.2)

The main differences between (1.2) and (5.2) (respectively, (1.3) and (5.2)) are
the addition of the bias term and the appearance of the step size cn. With the term
bnWn dropped from (5.2) above, it reduces to a standard form of the KW algorithm.
It is well known that with the selection of an and cn above, the convergence rate of
the KW algorithm is of the order O(n−ρ̃), where the best value of ρ̃ is given by ρ̃ = 2α
and ρ̃+α = γ/2 (see [12] and [17, Chapter 10]). Thus, for 0 < γ ≤ 1, choose α = γ/6.
With the addition of the added perturbation, the convergence takes place at a much
slower rate. In fact, expanding the bias term and noticing that the second-order term
does not show up because of the central finite difference, we have (see [17, p. 292])

βn(Xn) = −fxxx(Xn)c2n
3!

+ o(c2n).

A detailed calculation reveals that we still have (3.1) with the addition of terms in-
volving anβn(Xn) in the first and the second lines and with ξn replaced by −ηn/(2cn).
Now redefine

V1(x, n) = −
∞∑
j=n

A

2c0

1

j5γ/6
EnV

′
x(x)ηj .

As in the previous derivation,

E|V1(x, n)| ≤ K

n5γ/6
(1 + EV (x)).
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Defining

V̂ (n) = V (x) + V1(x, n)

and proceeding as before, we derive an expression like (3.8), with O(1/n2γ) replaced
by O(1/n5γ/3). Using the same ideas as in the developments of sections 3 and 4 with
slight changes, we can derive the following result.

Theorem 5.1. Suppose cn = c0/n
γ/6 for some c0 > 0, and for each x,

|fxxx(x)| ≤ K(1 + V 1/2(x)).

Then, Theorems 3.2 and 4.1 hold with ξn replaced by −ηn/2cn.

5.3. Concluding remarks. In this paper, we developed rates of convergence
results for two stochastic global optimization algorithms. Asymptotic properties of
the algorithms were obtained via weak convergence methods. Our results indicate
that algorithm (1.2) has a faster rate of convergence than (1.3). The limit diffusion
for the estimation error depends mainly on the random perturbation term.

Related work on globally convergent stochastic approximation can be found in
Yakowitz [21]. The study of the global optimization algorithms is often closely re-
lated to the properties of the diffusion processes. It will be interesting to see the
connection between such algorithms and singularly perturbed diffusions (see, for in-
stance, Khasminskii and Yin [10] and Yin and Zhang [22, Chapters 8–10] for related
control problems of singularly perturbed Markovian systems). To relax the conditions
on the growth rate of the function or to incorporate with various constraints, one may
wish to consider projection algorithms. Suppose that the global minimum is interior
to the projection region; then one can use essentially the same kind of analysis as in
this work to analyze the rates of convergence of the corresponding algorithms. It is
an interesting problem to treat functions with multiple global minima. One of the
possible approaches is Kaniovskii [8]. Moreover, various perturbation and random di-
rections methods for estimating the gradient may be incorporated in the algorithms;
see, for example, Ho and Cao [7], Kushner and Yin [17], and Spall [20], among others.

When simulations are used to obtain the gradient estimates of f(·), one may
wish to consider the corresponding budget-dependent convergence rates (see L’Ecuyer
and Yin [18]). If large-dimensional problems are encountered, one may wish to use
parallel processing methods with multiprocessors to implement the computation task
(see Kushner and Yin [16] for discussion of related matters). Effort may also be
directed to finding fine tuning procedures for the step size sequences {an} and {bn}
(see related discussions for stochastic approximation algorithms in [17, Chapter 11]).

6. Appendix.

6.1. Proof of Lemma 3.3. We verify only the first two inequalities, since the
third one is an easy consequence of the second one. Note that for m ≥ k ≥ 1,

m∑
j=k

1

jγ
Bnj =

1

Aλ

m∑
j=k

(Bnj −Bn,j−1)

=
1

Aλ
(Bnm −Bn,k−1),

(6.1)

and hence the first inequality holds.
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To prove the second inequality, use a partial summation together with (6.1),

ln(n1−γ +A0)
n∑
j=1

1

jγ ln(j1−γ +A0)
Bnj

=
n∑
j=1

1

jγ
Bnj + ln(n1−γ +A0)

n−1∑
j=1

[
1

ln(j1−γ +A0)
− 1

ln((j + 1)1−γ +A0)

] j∑
k=1

1

kγ
Bnk

≤ K + ln(n1−γ +A0)
n−1∑
j=1

ln((j + 1)1−γ +A0)− ln(j1−γ +A0)

[ln(j1−γ +A0)]2
Bnj .

(6.2)

Note that

ln[(j + 1)1−γ +A0]− ln(j1−γ +A0)

= (1− γ) ln

(
1 +

1

j

)
+ ln

(
1 +

A0

(j + 1)1−γ

)
− ln

(
1 +

A0

j1−γ

)
≤ ln

(
1 +

1

j

)
<

1

j
.

It then readily follows that

ln(n1−γ +A0)
n−1∑
j=1

ln((j + 1)1−γ +A0)− ln(j1−γ +A0)

[ln(j1−γ +A0)]2
Bnj

≤ ln(n1−γ +A0)
n∑
j=1

1

j[ln(j1−γ +A0)]2
Bnj .

Thus, for some 0 < κ̃0 < 1, (6.2) becomes

ln(n1−γ +A0)
n∑
j=1

1

jγ ln(j1−γ +A0)
Bnj

≤ K + κ̃0 ln(n1−γ +A0)

n∑
j=1

1

jγ ln(j1−γ +A0)
Bnj .

This yields that

(1− κ̃0) ln(n1−γ +A0)
n∑
j=1

1

jγ ln(j1−γ +A0)
Bnj ≤ K <∞.

The desired inequality thus follows.

6.2. A sketch of the proof of Lemma 4.2. Only a rough sketch is given here;
the lemma can be proved as in [14, Part two of Theorem 2]; see also related results in
[4, 17]. Since {Wn} is a sequence of i.i.d. random variables, it is readily verified that

E|wn(t+ s)− wn(t)|2 =

m(tn+t+s)∑
i=m(tn+t)

m(tn+t+s)∑
j=m(tn+t)

E
A1/2

iγ/2
A1/2

jγ/2
W ′iWj

=

m(tn+t+s)∑
i=m(tn+t)

A

iγ
EW ′iWi ≤ Ks,
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and similarly,

E|wn(t+ s)− wn(t)|4 ≤ K
m(tn+t+s)∑
i=m(tn+t)

m(tn+t+s)∑
j=m(tn+t)

A

iγ
A

jγ
≤ Ks2.

Thus {wn(·)} is tight and all limits have continuous paths w.p.1.
Define

Σn(t) =

m(tn+t)∑
j=n

A

jγ
EjWjW

′
j .

Then Σn(t)→ tI as n→∞. Moreover, for each T > 0,

lim
s→0

E sup
t≤T
|wn(t+ s)− wn(t)|2 = 0,

lim
s→0

E sup
t≤T
|Σn(t+ s)− Σn(t)| = 0.

Furthermore, wn(t)wn,′(t)−Σn(t) is a martingale. It then follows that wn(·)⇒ w(·),
a standard Brownian motion process (see, for example, Ethier and Kurtz [4, Chapter
7]).
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Abstract. Several decomposition methods are considered for solving block-angular programs
(BAPs) in parallel. We present a computational comparison of synchronous multicoordination meth-
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the coordination phase.
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1. Introduction. We are concerned with parallel solution methods for mathe-
matical programs of the following block-angular form:

BAP minimize
x

c(x)

subject to A[1]x[1] = b[1],
A[2]x[2] = b[2],

. . .
...

A[K]x[K] = b[K],

D(x) ≤ d,

0 ≤ x ≤ u.

We assume that the functions c and D are convex and at least once continuously
differentiable. The x[k]’s are blocks of variables and the A[k]’s are constraint matrices,
which in the case of multicommodity network flow problems will be node-arc incidence
matrices. We assume the upper bounds u[k] are finite. In the constraints, the blocks
x[k] are only coupled together through the J coupling constraints D(x) ≤ d.

In general, P processors will be available to solve BAPs with K blocks (we as-
sume here that P ≥ K; see [15] for an alternative approach when P < K). Decom-
position methods (e.g., Dantzig–Wolfe [3], Benders [16], and Schultz–Meyer [12, 4]
methods) work by first removing the coupling constraints and replacing c(x) with a
block-separable approximation (if c(x) is not block separable). This process makes the
altered BAP block separable. Decomposition methods then continue by iteratively

• solving a subproblem for each block k of BAP (this can be done in parallel),
• incorporating the solution of these subproblems in a coordinator problem to

determine the next iterate.
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The solution of each subproblem is referred to below by a “search direction” for the
corresponding block. The main aim of this paper is to examine the achievement of
further parallelism by simultaneously solving K coordinator problems instead of just
one, an approach we term multicoordination.

Previously, in [4], we presented synchronous multicoordination schemes for the
solution of BAP using barrier decomposition. Here we remind the reader of those
methods and discuss implementation issues. We will present new computational results
on two classes of linear multicommodity network flow problems.

2. Review of synchronous multicoordination methods. In [11, 12], Schultz
and Meyer developed specialized barrier methods for the solution of BAP. Let the
barrier problem (denoted BP) be defined as

BP minimize
x

c(x) + τρ(d−D(x))

subject to A[k]x[k] = b[k], k = 1, . . . ,K,

0 ≤ x ≤ u,

where τ is a penalty parameter (τ > 0) and ρ is a differentiable convex barrier function
(see [5, 11]). The barrier function methods solve a sequence of BPs with τ i ↓ 0, in
order to generate a good approximation of the optimal objective of BAP. We may
not, however, commence solving a sequence of BPs unless an interior point (relative
to coupling constraints) is available. To obtain an initial interior feasible point for BP
we (approximately) solve a sequence of shifted barrier problems of the form

SBP minimize
x

c(x) + τ iρ(θi −D(x))

subject to A[k]x[k] = b[k], k = 1, . . . ,K,

0 ≤ x ≤ u,

where θi are the shifted barriers. In order to outline the construction of θi, let x0 be
the solution of BAP without the coupling constraints (we refer to this as the “relaxed”
problem). The value of θ0 is determined by

θ0
j =

{
dj if Dj(x

0) < dj ,
Dj(x

0) + Θ if Dj(x
0) ≥ dj ,(1)

where Θ > 0 is a constant. In later iterations we vary θ according to

θij =

{
dj if Dj(x

i) < dj ,

λθDj(x
i) + (1− λθ)θi−1

j if Dj(x
i) ≥ dj ,(2)

where 0 < λθ < 1 is a constant.
We (approximately) solve each problem of types BP and SBP using an iterative

fork-join scheme. Here we refer to each iteration as an inner iteration and use xt to
denote the iterate (using xi for the outer iterates). Here and in [4] we define f(τ, θ, x) =
c(x) + τρ(θ −D(x)). We start the iterative process at outer iteration i with x0 = xi;
at inner iteration t, assuming a base point xt, we first construct R(xt), a type of trust
region around xt, and then find search directions by solving the linear problem

SLP minimize
y

∇f(xt)(y − xt)
subject to Ay = b,

0 ≤ y ≤ R(xt).
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By the convergence theory developed in [4] and [14], only one inner iteration is required
per outer iteration; however, additional iterations (which are also theoretically valid)
have proved efficient in the implementation. Let B := {x | Ax = b and 0 ≤ x ≤ u }.
We require R(xt) to be a continuous function of xt satisfying 0 ≤ x ≤ R(xt) ≤ u for
any x ∈ B. Define a decoupled resource allocation for B by

R(xt) :=
{
z ∈ Rn | 0 ≤ z ≤ R(xt)

}
.

R(xt) is constructed so that the following hold:
• For any bounded sequence {xt} ⊆ B, the set

⋃∞
t=0 R(xt) is bounded. This

condition is referred to as the boundedness of resource allocation.
• For any z ∈ B and any bounded sequence {xt} ⊆ B with

αt := max
{
α | 0 ≤ α ≤ 1 and xt + α(z − xt) ∈ R(xt)

}
,

we have lim inft→∞ αt > 0. This condition ensures that we can always take a
step in any feasible search direction.

For more details on the decoupled resource allocation, see [11].
Problem SLP may be decomposed into K independent subproblems of the form

LPk minimize
y[k]

∇f(xt)[k]

(
y[k] − xt[k]

)
subject to A[k]y[k] = b[k],

0 ≤ y[k] ≤ R(xt)[k],

one for each block k. We solve LPk on processor k and denote the solutions by yt[k].

Once the search directions yt[k] are determined we need to assign stepsizes to be

taken in each direction. This was originally done by Schultz and Meyer [11, 12] using
a complex coordinator (a single coordination problem involving all blocks). Instead,
we perform this step using multiple simpler coordinators, hence taking advantage of
parallelism. The single-variable and group multicoordination methods are discussed
in [4]. We briefly review them now.

2.1. Single-variable multicoordination. Here, once processor k has obtained
the search direction from LPk, it solves the single-variable coordinator problem,

SVMCk minimize
wk∈<

f
(
xt[1], . . . , x

t
[k−1], x

t
[k] + (yt[k] − xt[k])wk, x

t
[k+1], . . . , x

t
[K]

)
subject to 0 ≤ xt[k] + (yt[k] − xt[k])wk ≤ u[k],

to obtain w∗k. For each k, define

x
t+ 1

2

[k] = xt[k] + (yt[k] − xt[k])w
∗
k.

We then find the coordinator with the least objective at time t (we will refer to the
index of that coordinator as c(t)). This amounts to a simple pass through the objective
values of the coordinators. Now the new iterate is determined by

xt+1
[k] =

{
x
t+ 1

2

[k] if k = c(t),

xt[k] otherwise.

The above coordination scheme is simple and fast and highly parallelizeable. However,
at each iteration only one block of variables is updated.
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2.2. Group multicoordination. In group multicoordination, each processor is
responsible for several blocks of variables rather than just one. Suppose {p} ⊂ Γp ⊂
{1, . . . ,K} is the set of blocks involved in coordinator p. The group coordinator
problem for processor p is then given by

GMCp minimize
w∈<K

f
(
xt[1] + (yt[1] − xt[1])w1, . . . , x

t
[K] + (yt[K] − xt[K])wK

)
subject to 0 ≤ xt[k] + (yt[k] − xt[k])wk ≤ u[k], k ∈ Γp,

wj = 0, j 6∈ Γp.

Again we look for the coordinator with the least objective (coordinator c(t)). The
new iterate is obtained by updates in the blocks that are members of Γc(t). The com-
putational experience below indicates that group multicoordination is more efficient
than both single-variable multicoordination and full coordination (using all search di-
rections, as in Schultz–Meyer). Note that only one processor will be busy during full
coordination. The convergence proofs for the multicoordination methods given above
(as well as a third method called block-plus-group multicoordination) can be found
in [4].

3. Computational results. In this section we present computational results
from the implementation of single-variable and group multicoordination schemes.
We implemented these methods on two sets of linear multicommodity network flow
problems. The first test set consists of the well-known patient distribution system
(PDS) problems that arise from a logistic application. The second test set consists of
MNETGEN problems, which are randomly generated via the multicommodity ver-
sion of the network flow problem generator NETGEN. We start by discussing the
implementation issues. We then present our computational results for each of the
above-mentioned schemes and compare them to those of De Leone et al. [4], Pinar
and Zenios [10], McBride and Mamer [8], Schultz and Meyer [12], and Grigoriadis and
Khachiyan [6].

3.1. Parallel implementation. Our algorithm follows the basic three-phase
method of Schultz and Meyer. Figure 1 presents a sketch of that method. Although we
use the same three-phase structure, we generate approximate solutions of the shifted
barrier problem using single-variable or group multicoordination schemes. The algo-
rithm for approximately solving SBP using single-variable multicoordination is pre-
sented in Figure 2, and the group multicoordination scheme is presented in Figure 3.

We implemented our code on Thinking Machines Corporation’s Connection Ma-
chine CM-5. This machine contains 64 processors (Sun SPARCstation 10s) in 2 par-
titions of size 32 each. The machine runs the CMOST 7.3 operating system, and we
used the CMMD message-passing library for interprocessor communication.

As evident from the algorithms, K processors are used in both steps 1 and 3
of both schemes. This means that we used K processors, one for each subproblem
(step 1). We also used K processors, one to solve each coordinator problem, be it a
single-variable coordinator or a group coordinator. In the single-variable coordination
scheme, very little interprocessor communication is necessary because each processor
uses only the search direction it produced to generate the SMVC problem. In fact, the
only interprocessor communication in this algorithm takes place when we determine
the candidate with the least coordinator objective (see step 4 of Figure 2). This is
done using the CMMD library function reduce, which very efficiently searches all
processors for a minimum such value.
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Assume that the parameters

Θ > 0, λθ ∈ (0, 1), τ0 > 0, τinf > 0, λτ ∈ (0, 1)

are given. Also define

B = { x | Ax = b, 0 ≤ x ≤ u } , C = { x | D(x) ≤ d } , and

C◦ = { x | D(x) < d } .

Relaxed Phase
i = 0.
Compute x0 as the solution of the “relaxed” problem.
If we determine that B = ∅ then quit.
Set θ0 as in (1).
If x0 ∈ C◦

then terminate and declare x0 optimal,
else go to the feasibility phase.

Feasibility Phase (τ i = τ0)
Generate xi+1 as an approximate solution of the ith SBP.
If xi+1 ∈ B ∩ C◦

then go to the refine phase with i = i+ 1,
else repeat the feasibility phase with i = i+ 1.

Refine Phase (θi = d)
τ i = max(τinf , λττ

i−1).
Generate xi+1 as an approximate solution of BP with penalty parameter τ i.
If xi+1 meets suitable termination criteria then quit, else repeat the refine phase
with i = i+ 1.

Fig. 1. The Schultz–Meyer three-phase method.

To solve SBP approximately using single-variable multicoordination, at iteration t:
1. Solve the K linear subproblems LPk to obtain optimal solutions yt[k].
2. Define

(ytk)[i] =

{
yt[k] if i = k,

xt[k] otherwise.

3. Solve the K single-variable coordinator problems SVMCk,

minimize
wk∈<

f(xt + (ytk − xt)wk)

subject to 0 ≤ xt + (ytk − xt)wk ≤ u,

to obtain optimal solutions w∗k. Set xt,k = xt + (ytk − xt)w∗k.
4. Choose xt+1 = xt,c(t), where c(t) is the index of the block that produces the

least objective for the barrier problem.

Fig. 2. Inner iteration for single-variable multicoordination.
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To solve SBP approximately using group multicoordination, at iteration t:
1. Solve the K linear subproblems LPk to obtain optimal solutions yt[k].

2. Let Γp be the group of blocks assigned to processor p. Define Y tp to be the
matrix of search directions for blocks in Γp. Specifically, Y tp is a diagonal
matrix with K blocks and the kth block of Y tp is given by yt[k]−xt[k] provided
k ∈ Γp and 0 otherwise.

3. Solve the K group coordinator problems GMCp,

minimize
w∈<K

f(xt + Y tpw)

subject to 0 ≤ xt + Y tpw ≤ u,

to obtain optimal solutions w∗p. Set xt,p = xt + Y tpw
∗
p.

4. Choose xt+1 = xt,c(t), where c(t) is the index of the group that produces
the least objective for the barrier problem.

Fig. 3. Inner iteration for group multicoordination.

In the group multicoordination scheme, we experimented with various sizes for
Γp (reported in section 3.4.2 below). We chose the group sizes to be odd here for
simplicity. Given a group size s, we defined the set Γp for each processor p to be

Γp :=

{
k = p± i | 0 ≤ i ≤ s− 1

2
, i ∈ Z, 1 ≤ k ≤ P

}
.

The group multicoordination scheme calls for more communication. Each proces-
sor needs the search directions for the blocks in its group. We could have used the
send-and-receive CMMD library function in such a way that each processor would
get only the information regarding the group assigned to it. However, we found the
concat CMMD library function more flexible and efficient. concat is a global com-
munication function that operates by informing all processors of the involved data
(in this case, the search directions). Although the total length of the messages com-
municated under concat is longer than the length of messages communicated by
send-and-receive, we found concat much faster. We attribute this property to the
fact that concat uses specialized broadcast hardware, whereas send-and-receive

does only point-to-point communication. (For further details, see [1].)

3.2. Parameter values. The algorithm terminates if the maximum subprob-
lem objective absolute value is less than the parameter spobjtol or if the number of
iterations reaches 100 for the PDS problems or 300 for the MNETGEN problems. The
code achieved at least six digits of accuracy in the optimal objective (compared with
the previous results obtained by Schultz and Meyer). We scaled the cost coefficients
so that ‖c‖∞ = 1. The remaining parameter values were as follows:

• λθ = 0.95 is the parameter used in (2) to produce a sequence of shifted
barriers that converge to the original barrier.
• τ0 = 100 is the initial value of the penalty parameter.
• τinf = 10−6 is the minimum possible value for the penalty parameter.
• λτ ∈ (0.25, 0.4) is the factor by which we reduced the penalty parameter.

(For the larger problems we used a greater value of λτ , which corresponds to
a more gradual decrease of the penalty parameter.)
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Table 1
Sizes of the PDS problems tested.

Problem Max node Max arc Coupling Total constr Total var

pds.1 126 339 87 1,473 3,729
pds.2 252 685 181 2,953 7,535
pds.3 390 1117 303 4,593 12,287
pds.5 686 2,149 553 8,099 23,639
pds.10 1,399 4,433 1,169 16,558 48,763
pds.20 2,857 10,116 2,447 33,874 105,728
pds.30 4,223 15,126 3,491 49,944 154,998
pds.40 5,652 20,698 4,672 66,844 212,859

• spobjtol = 10−6 is the bound on the subproblems’ optimality gap.

3.3. The PDS problems. We chose the PDS problems because these are real-
world problems and quite a few recently developed methods (including Schultz–Meyer)
have used them as benchmarks. The PDS model is a logistics model designed to help
make decisions about patient evacuation. “pds.n” denotes the problem that models a
scenario lasting n days. Table 1 lists the sizes of the problems we considered. Note
that the size of pds.n is essentially a linear function of n. PDS problems are linear
multicommodity network flow problems with 11 commodities. The columns labeled
“Max node” and “Max arc” present the maximum number of nodes and arcs for any
commodity. The last two columns in the table present the size of the problem when
considered as an LP. The column labeled “Total constr” contains the total number of
node constraints plus the number of coupling constraints. The column labeled “Total
var” contains the total number of variables. The column labeled “Coupling” contains
the number of coupling constraints in each problem.

The block constraint matrices for these BAPs are node-arc incidence matrices.
We take advantage of this fact in our code and use a very efficient network flow solver,
NSM [13], to solve the subproblems. NSM uses the network simplex method. Since
the upper bounds on the subproblems are changed from each iteration to the next
(we adjust the decoupled resource allocation) we cannot use “hot starting.” That is,
we need to start with an all-artificial basis at every iteration.

We used the optimization package MINOS [9] in the form of a subroutine
(MINOS 5.4) in order to solve the coordinator problems for both single-variable and
group coordination. For such problems, MINOS uses a reduced-gradient algorithm in
conjunction with a quasi-Newton algorithm. MINOS requires any domain constraint
for the objective function to be specified explicitly. Therefore, we had to put in linear
constraints that imposed lower bounds on the arguments of each log term involved in
the barrier function. This procedure amounted to imposing upper and lower bounds
on w when using single-variable multicoordination. In the group multicoordination
case, however, we required J linear constraints for each coordinator problem (recall
that J is the number of coupling constraints), which is quite significant for large
problems. We used the default parameters except for the feasibility and optimality
tolerances, which were set to 10−11 in the single-variable case and 10−6 in the group
case.

3.4. Analysis of the results.

3.4.1. Single-variable multicoordination. In Table 2 we present the solution
results for the PDS problems we tested using single-variable multicoordination. The
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Table 2
Solution using single-variable multicoordination.

Problem Feas Opt Inner Rlx time Sub time Coor time Total Comm

pds.1 5 15 2 0.02 0.63 0.77 2.4 *
pds.2 5 15 2 0.04 1.49 0.90 3.7 *
pds.3 5 18 2 0.07 3.15 1.68 7.1 *
pds.5 5 23 2 0.23 9.14 3.19 16.9 *
pds.10 5 23 2 0.65 28.61 6.13 45.1 20
pds.20 5 23 2 4.60 191.91 12.56 252.8 17
pds.30 5 20 4 13.09 754.36 33.65 901.7 11
pds.40 5 20 4 36.57 1404.14 45.75 1806.4 17

first column, labeled “Feas,” contains the number of outer iterations for the feasibility
phase (there were two inner iterations per outer iteration). During the feasibility
phase, from one outer iteration to the next, the variable θ was changed as in (2).
The “Opt” column contains the number of additional outer iterations to optimality.
The “Inner” column contains the number of inner iterations per outer iteration in the
optimality phase. “Rlx time” is the time it took to solve the most time-consuming
subproblem in the relaxed phase, and “Sub time” contains the sum of solution times
for the subproblems that took longest to be solved in each iteration. In column
“Coor time” we summed the times for the coordinators that took longest to solve.
The column labeled “Total” contains the total time taken to solve the corresponding
PDS problem, and “Comm” is the percentage of time spent on communication. The
communication overhead is calculated by subtracting the time it took to solve the
relaxed problem and the subproblem and coordination time from the total time and
then dividing this by the total time. Asterisks indicate that the times were too small
to extract a meaningful communications percentage.

3.4.2. Group multicoordination. Table 3 contains information about the so-
lution of large PDS problems using the group multicoordination scheme. We also tried
the group method on small PDS problems, but the results were not competitive with
those found in the single-variable implementation. In Table 3 we include a new col-
umn labeled “Group size.” This column contains the group size we chose for each
problem for the optimality phase.

In the group multicoordination, the feasibility phase was implemented using
single-variable coordinators. As shown in Table 2, a feasible point was obtained quite
efficiently using single-variable coordinators.

As the size of the coordinators increases, the time required to solve each co-
ordinator problem increases significantly (recall that the coordinator problems are
nonlinear). Larger coordinator problems incorporate more search directions in a co-
ordination step and hence require a smaller number of iterations to converge. This is
shown in the first column of Table 3. The question is whether a gain can be made
from this trade-off.

Table 3 shows that for problems smaller than pds.30, group multicoordination is
less efficient than single-variable coordination. However, for the larger PDS problems
(e.g., pds.30 and pds.40) we can save time (26% to 27% speed-up) if the appropriate
group size is chosen. The best size in these cases is 5, smaller than the full size
coordinator of 11 used in Schultz–Meyer. Figure 4 plots the solution times for the
large PDS problems using both single-variable and group multicoordination.
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Table 3
Comparison of single-variable and group multicoordination.

Problem Opt Sub time Coor time Total Group size Comm

pds.10 23 29 6 45 1 20
pds.10 15 20 43 102 3 37
pds.20 23 192 13 253 1 17
pds.20 15 141 135 355 3 21
pds.30 20 754 34 902 1 11
pds.30 10 447 182 800 3 20
pds.30 8 308 191 654 5 22
pds.30 6 484 647 1273 7 11
pds.30 5 569 647 1359 11 12
pds.40 20 1404 46 1806 1 17
pds.40 10 1124 189 1704 3 21
pds.40 8 897 199 1434 5 21
pds.40 6 1009 666 1980 7 14
pds.40 5 1254 926 2370 11 7
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Fig. 4. Single-variable multicoordination vs. group multicoordination.

3.4.3. Comparison. In Table 4 we compare the best of our results (column
“MC”) with other reported results on the same set of problems. The first column
gives the timing results obtained by Schultz and Meyer. They implemented their
method on the Sequent Symmetry machine, for which each processor is 5–10 times
slower than the nodes of the CM-5. Results obtained by Zenios and Pinar (column
“ZP”) were implemented on a Cray Y-MP with eight processors using the vector units;
hence, the processors are 2–4 times faster than the nodes of the CM-5. Grigoriadis
and Khachiyan [6] implemented their algorithm on an IBM RS/6000-550 workstation,
which is 3 times faster than a CM-5 node. McBride and Mamer [8] implemented their
algorithm on an HP 730 workstation, which is also 3 times as fast as a node of the
CM-5.
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Table 4
Time comparison with other solution methods.

Problem SM ZP GK MM MC

pds.10 1711 408 123 40 45
pds.20 7920 1947 372 427 253
pds.30 19380 7504 756 838 654
pds.40 37620 – 1448 4517 1434

3.4.4. The MNETGEN problems. Another set of problems we considered
were those produced by MNETGEN [2], a multicommodity network flow generator
derived from NETGEN [7]. We discovered that the problems produced by this gener-
ator contain some coupling constraints that hold as equations for any feasible point.
Therefore, there is no interior for the coupling constraints. Hence we perturbed the
right-hand side of the coupling constraints by 1 (this perturbation is 0.06% to 0.25%
of the original right-hand side). We anticipated difficulties with these problems be-
cause of their random nature and lack of interior. We calculated the optimal values
to four digits of accuracy. The largest problem we solved in this test set was the 200.8
problem with 8 blocks, 200 nodes per block, and 449 arcs per block as well as 277
coupling constraints. The most efficient method used group multicoordination with
an intermediate group size of 7, which required about 140 seconds. The overall size of
this problem is comparable to the smaller PDS problems, so the performance of the
method is not as good on this randomly generated set as it is on the real-world PDS
problems.

4. Conclusion. We have developed and tested several multicoordination schemes
for the solution of convex BAPs. These multicoordination schemes are highly paral-
lelizeable. We presented numerical results that show the efficiency of the synchronous
single-variable and group multicoordination schemes. The results demonstrate signif-
icant improvement over the Schultz–Meyer predecessor and are at least comparable
with the best of other solution methods.

Acknowledgments. The authors would like thank Michael Saunders and the
referee for their helpful comments.
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Abstract. To efficiently implement the truncated-Newton (TN) optimization method for large-
scale, highly nonlinear functions in chemistry, an unconventional modified Cholesky (UMC) factor-
ization is proposed to avoid large modifications to a problem-derived preconditioner, used in the inner
loop in approximating the TN search vector at each step. The main motivation is to reduce the com-
putational time of the overall method: large changes in standard modified Cholesky factorizations
are found to increase the number of total iterations, as well as computational time, significantly.
Since the UMC may generate an indefinite, rather than a positive definite, effective preconditioner,
we prove that directions of descent still result. Hence, convergence to a local minimum can be shown,
as in classic TN methods, for our UMC-based algorithm. Our incorporation of the UMC also re-
quires changes in the TN inner loop regarding the negative-curvature test (which we replace by a
descent direction test) and the choice of exit directions. Numerical experiments demonstrate that
the unconventional use of an indefinite preconditioner works much better than the minimizer with-
out preconditioning or other minimizers available in the molecular mechanics package CHARMM.
Good performance of the resulting TN method for large potential energy problems is also shown
with respect to the limited-memory BFGS method, tested both with and without preconditioning.

Key words. truncated-Newton method, indefinite preconditioner, molecular potential mini-
mization, descent direction, modified Cholesky factorization, unconventional modified Cholesky fac-
torization
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1. Introduction. Optimization of highly nonlinear objective functions is an im-
portant task in biomolecular simulations. In these chemical applications, the energy
of a large molecular system—such as a protein or a nucleic acid, often surrounded by
water molecules—must be minimized to find a favorable configuration of the atoms
in space. Finding this geometry is a prerequisite to further studies with molecular
dynamics simulations or global optimization procedures, for example. An important
feature of the potential energy function is its ill conditioning; function evaluations are
also expensive, and the Hessian is typically dense. Moreover, a minimum-energy con-
figuration corresponds to a fairly accurate local optimum. Since thousands of atoms
are involved as independent variables and, often, the starting coordinates may be
far away from a local minimum, this optimization task is formidable and is attract-
ing an increasing number of numerical analysts in this quest, especially for global
optimization (see [17, 18], for example).

The practical requirements that chemists and biophysicists face are somewhat dif-
ferent from those of the typical numerical analyst who develops a new algorithm. The
computational chemists seek reliable algorithms that produce answers quickly, with as
little tinkering of parameters and options as possible. Thus, theoretical performance
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is not as important as practical behavior, and CPU time is of the utmost importance.
A prominent example is the current preference in the biomolecular community for
Ewald summation techniques (for periodic systems) over fast-multipole approaches
for evaluating the long-range forces in molecular simulations; the latter have smaller
complexity in theory (O(n), where n is the system size, rather than the O(n log n)
associated with Ewald), but the Ewald procedure is easy to program and is very fast
in practice for a range of molecular sizes.

This paper focuses on implementation details of a truncated-Newton (TN) method
that are important in practice for performance efficiency in large-scale potential-
energy minimization problems. The algorithmic variations we discuss are motivated
by optimization theory but depart from standard notions (e.g., of a positive-definite
preconditioner) for the sake of efficiency. Algorithmic stability and convergence prop-
erties are still retained in theory, as in the traditional approach, but performance in
practice is enhanced by the proposed modifications.

Our interest in such chemistry applications first led to the development of a
TN method adapted to potential-energy functions [25]. Our TN package, TNPACK
[23, 24], was then adapted [5] for the widely used molecular mechanics and dynamics
program CHARMM [1].

In TN methods, the classic Newton equation at step k,

H(Xk)P = −g(Xk),(1)

where g and H are the gradient and Hessian, respectively, of the objective function
E at Xk, is solved iteratively and approximately for the search vector P [4]. The
linear conjugate gradient (CG) method is a suitable choice for this solution process
for large-scale problems, and preconditioning is necessary to accelerate convergence.
A main ingredient of TNPACK is the use of an application-tailored preconditioner
Mk. This matrix is a sparse approximation to Hk ≡ H(Xk), formulated at each outer
minimization step k. The preconditioner in chemical applications is constructed nat-
urally from the local chemical interactions: bond length, bond angle, and torsional
potentials [25]. These terms often contain the elements of largest magnitude and lead
to a sparse matrix structure which remains constant (in topology) throughout the
minimization process [5]. Since Mk may not be positive definite, our initial imple-
mentation applied the modified Cholesky (MC) factorization of Gill and Murray [7]
to solve the linear system Mkz = r at each step of PCG (preconditioned CG). Thus,

an effective positive-definite preconditioner, M̃k, results.
Why is a TN scheme a competitive approach? First, analytic second-derivative

information is available in most molecular modeling packages and should be used to
improve minimization performance. That is, curvature information can guide the
search better toward low-energy regions. Second, the basic idea of not solving the
Newton equations exactly for the search vector when far away from a minimum re-
gion saves unnecessary work and accelerates the path toward a solution. Third, the
iterative TN scheme can be tailored to the application in many ways: handling of
the truncated inner loop, application of a preconditioner, incorporating desired accu-
racy, and so on. These implementation details are crucial to realized performance in
practice.

In our previous studies, we have discussed alternative minimization approaches
to TN [5, 23, 24, 25]. We showed that modified Newton methods are computationally
too expensive to be feasible for large systems [23, 24, 25] since the large Hessian
of potential energy function is dense and highly indefinite. Nonlinear CG methods
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can take excessively long times to reach a solution [5]; this is not only because of
the known properties of these methods but also due to the expense of evaluating
the objective function at each step, a cost that dominates the CPU time [15]. A
competitive approach to TN, however, is the limited-memory BFGS algorithm (LM-
BFGS) [11], which also uses curvature information to guide the search. A study by
Nash and Nocedal [15] comparing the performance of a discrete TN method1 to LM-
BFGS found both schemes to be effective for large-scale nonlinear problems. They
suggested that the former performs better for nearly quadratic functions and also
may perform poorly on problems associated with ill-conditioned Hessians. However,
as Nash and Nocedal point out, since TN almost always requires fewer iterations than
LM-BFGS, TN would be more competitive if the work performed in the inner loop
were reduced as much as possible. This is the subject of this article.

Our experiences to date in chemical applications for medium-size problems suggest
that the CPU time of the TN approach can be smaller than LM-BFGS since the total
number of function evaluations is reduced. Examples shown in the present work, for
larger problems as well, reinforce this. Surely, both methods can be efficient tools
for large-scale optimization, and superiority of one scheme over another cannot be
claimed.

In this paper, we focus on an important aspect of the TN method that affects its
performance profoundly: the formulation and handling of the preconditioner in the
inner PCG loop that is used to approximate the search vector at each step of the
method. The use of a standard modified Cholesky factorization applied to physically
constructed preconditioners leads to excessively large modifications, which in turn
means many function evaluations and thus a large total CPU time for the minimization
method. Pivoting strategies [6, 8] can reduce the size of the modifications but not
necessarily the problem condition number, and thus are not a clear solution. The
problem we address here is thus a general one, associated with other modified Cholesky
factorization methods [3, 6, 7, 8, 26]: how to handle large modifications to matrices
that are far from positive definite. However, we address this problem only for the TN
minimization context, where the solution of such a linear system is not as important
as progress in the overall minimization method.

In chemistry problems, a large negative eigenvalue often corresponds to a transi-
tion or saddle point. We argue that in our special context (large-scale computational
chemical problems and TN), a standard MC factorization is inappropriate. Rather,
it is sufficient to require only that the preconditioner be nonsingular and often pos-
itive definite near a minimum point. This leads to the development of our simple
unconventional modified Cholesky (UMC) factorization.

We present details of the resulting TN algorithm along with many practical ex-
amples that illustrate how the use of an indefinite preconditioner outperforms other
variants (e.g., no preconditioning, positive-definite preconditioning) in the TN frame-
work. We detail analysis that shows that the directions produced are still descent
directions, and thus the global convergence of the method (to a local minimum) can
be proven in the same way as for the “classic” TN scheme [4]. We also offer compar-
isons with LM-BFGS that suggest the better performance of TN for large potential
energy problems.

The remainder of the paper is organized as follows. In the next section, we sum-
marize the structure of a general descent method and describe the new PCG inner
loop we develop for the TN method. In section 3, we present the UMC designed for

1The discrete TN method computes Hessian and vector products by finite differences of gradients.
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our applications. In section 4, we present numerical experiments that demonstrate the
overall performance of the modified TNPACK minimizer, along with a comparison to
LM-BFGS and other minimizers available in CHARMM (a nonlinear CG and a New-
ton method). Conclusions are summarized in section 5. For completeness, analyses
for the PCG inner loop of TN are presented in Appendix A, and the full algorithm of
the TN method is described in Appendix B. The modified package also is described
in [28].

2. Descent methods and the truncated Newton approach. We assume
that a real-valued function E(X) is twice continuously differentiable in an open set D
of the n-dimensional vector space Rn. Descent methods for finding a local minimum
of E from a given starting point generate a sequence {Xk} in the form

Xk+1 = Xk + λkP
k,(2)

where the search direction P k satisfies

g(Xk)TP k < 0.(3)

(The superscript T denotes a vector or matrix transpose.) Equation (3) defines the
descent direction P k which yields function reduction. The steplength λk in (2) is
chosen to guarantee sufficient decrease, e.g., such that [12]

E(Xk + λkP
k) ≤ E(Xk) + αλkg(Xk)TP k(4)

and

|g(Xk + λkP
k)TP k| ≤ β|g(Xk)TP k|,(5)

where α and β are given constants satisfying 0 < α < β < 1.
Condition (5) is referred to as the strong Wolfe condition. A steplength λk satis-

fying (5) must satisfy the usual Wolfe condition:

g(Xk + λkP
k)TP k ≥ βg(Xk)TP k.

According to the line search algorithm of Moré and Thuente [12] (used in TNPACK),
such a steplength λk is guaranteed to be found in a finite number of iterations. Hence,
according to the basic theory of descent methods [10], a descent method defined in
the form (2) guarantees that

lim
k→∞

g(Xk) = 0.

The challenge in developing an efficient descent method is balancing the cost of con-
structing a descent direction P k with performance realized in practice.

To reduce the work cost of the classic modified Newton method and develop a
globally convergent descent algorithm, Dembo and Steihaug proposed a clever vari-
ation known as the truncated Newton method [4]. Since then, several variants have
been developed and applied in various contexts; see, e.g., [13, 14, 15, 23, 25, 29]. The
linear PCG framework is the most convenient generator of descent directions in the
inner TN loop due to its efficiency and economic storage requirements for solving
large positive-definite linear systems. Since the PCG method may fail at some step
when the matrix Hk is indefinite, a termination strategy is required to guarantee that
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the resulting search directions are still descent directions. In addition, the PCG inner
loop of the TN method can be made more effective by employing a truncation test.

We present our PCG inner loop of the TN scheme in Algorithm 1. The changes
with respect to a “standard” PCG inner loop include allowing an indefinite precon-
ditioner, the UMC factorization (discussed in the next section), and a new descent
direction test.

Algorithm 1 (PCG inner loop k of TN for solving Hkp = −gk with a given
preconditioner Mk).

Let pj represent the jth PCG iterate, dj the direction vector, and rj the residual
vector satisfying rj = −gk − Hkpj . Let ITPCG denote the maximum number of
allowable PCG iterations at each inner loop.

Set p1 = 0, r1 = −gk, and d1 = z1, where z1 solves a system related to Mkz1 =
−gk by UMC.

For j = 1, 2, 3, . . .,

1. [Singularity test]
If either |rTj zj | ≤ δ or |dTj Hkdj | ≤ δ (e.g., δ = 10−10),

exit PCG loop with search direction P k = pj (for j = 1, set P k = −gk).
2. Compute αj = rTj zj/d

T
j Hkdj and pj+1 = pj + αjdj .

3. [Descent direction test] (replaces negative curvature test)
If gTk pj+1 ≥ gTk pj + δ,
exit PCG loop with P k = pj (for j = 1, set P k = −gk).

4. Compute rj+1 = rj − αjHkdj .
5. [Truncation test]

If ‖rj+1‖ ≤ min{cr/k , ‖gk‖} · ‖gk‖, or j + 1 > ITPCG,
exit PCG loop with P k = pj+1.
(By default, cr = 0.5 and ITPCG = 40).

6. Compute βj = rTj+1zj+1 / r
T
j zj , and dj+1 = zj+1 + βjdj ,

where zj+1 solves a system related to Mkzj+1 = rj+1 by UMC.

Since the effective preconditioner M̃k generated by our UMC (see the next section)
and the Hessian matrix Hk may be indefinite, it may happen that rTj zj or dTj Hkdj is
exactly zero for some j.(So far, we have not encountered this in practice). Hence, to
ensure that the PCG recursive formulas are well defined, the singularity test has been
added in step 1 above.

Our descent direction test (step 3) is equivalent in theory to the following negative
curvature test [4]: if dTj Hkdj < δdTj dj , halt the PCG loop with exit search direction

P k = −gk if j = 1 or pj if j > 1. We prove this equivalence in Theorem 3 of Appendix
A.

In practice, however, due to computer rounding errors, the negative curvature test
may not guarantee that the inner product gTk pj decreases monotonically, as theory
predicts (see Theorem 2 in Appendix A). See also Box 1 for numerical examples.
The descent direction test in step 3 halts the PCG iterative process as soon as the
situation gTk pj+1 > gTk pj (or |gTk pj+1| < |gTk pj |) is encountered. We have observed
better performance in practice for large-scale problems with this modification.

In the standard implementation of the negative curvature test in TN [4], P k can be
set to pj or dj for j > 1, both directions of descent. We have now removed the option in
step 3 of using the auxiliary directions dj as exit search vectors. We show in Theorem 1
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Box 1. Examples for the negative curvature test
in finite precision arithmetic.

We consider the negative curvature test implemented in TN as originally described
[4] for minimizing the alanine dipeptide potential function (22 atoms, 66 Cartesian
variables). For simplicity, we do not use a preconditioner (i.e., Mk is the identity
matrix); results thus reflect the case of using a positive-definite preconditioner.
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The left figure shows that some dj are ascent directions even if dTj Hkdj > 0.

This is possible because the basic relation {gTk rj} = 0 (see (13) in Appendix A) may
deteriorate due to computer rounding errors. Namely, the inner product gTk rj may
become positive, and thus dj may be an ascent direction because gTk dj = gTk rj +
βj−1g

T
k dj−1.

The right figure shows that the inner product gTk pj does not necessarily decrease
monotonically due to computer rounding errors. This can be understood since, if
dj is an ascent direction for some j but not a direction of negative curvature (i.e.,
dTj Hkdj > 0), then we have αj > 0 and gTk dj > 0, so that gTk pj+1 = gTk pj +αjg

T
k dj ≥

gTk pj or gTk pj+1 > 0. Hence, the negative curvature test may not guarantee a descent
direction or even a “good” descent direction in some sense, as theory predicts for TN
in finite precision arithmetic (see Theorem 2 in Appendix A).

of Appendix A that dj may be an ascent direction when the effective preconditioner
is indefinite. Even in the standard implementation (i.e., positive-definite effective
preconditioner), we argue that pj is a better choice than dj according to Theorem 4
of Appendix A.

Although not used here, we leave the option of using the negative curvature test
(with the dj choice removed) in the general TNPACK package; see the full algorithm
in Appendix B.

3. The UMC method. We discuss our motivation for developing the UMC in
section 3.1 and describe the factorization in section 3.2.

3.1. Motivation. Recall that our major goal is to reduce the computational ef-
fort in the inner loop of the TN method. Therefore, we choose a preconditioner that is
sparse (sparsity less than 5% for medium-size molecules) and rapid to compute. The
factorization of the linear system involving M is handled efficiently within the frame-
work of the Yale Sparse Matrix Package (YSMP) [19, 20]. YSMP routines use special
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Table 1
The CPU time distribution (%) among TNPACK components.

E, g, & H M Solve Hd Other
Protein evals. evals. Mz = r evals. tasks

BPTI 21 0.14 6.8 69 3.06
Lysozyme 22 0.08 2.5 74 1.42

pointer arrays to record data positions and manipulate only the nonzero elements. Ef-
ficiency is further enhanced by reordering M at the onset of the minimization method
to minimize fill-in. This works because the structure of the preconditioner, or the
connectivity structure of our molecular system, remains constant. This reordering is
optional.

The main advantage of this sparsity-based factorization is efficiency. As we show
in Table 1, the CPU percentage involved in solving Mz = r within YSMP is less than
7% and 3% of the total TN cost of minimization for the proteins BPTI (568 atoms,
1704 Cartesian variables) and lysozyme (2030 atoms, 6090 variables), respectively.
Since the Hessian H is dense and we evaluated the Hessian and vector products Hd
in PCG directly (i.e., not by finite differences of gradients [23]), this part consumes
the majority of the CPU time: about 70%. The finite-differencing approximation of
Hd may be more competitive for large systems. In addition, function and derivative
evaluations consume about 20% of the total CPU time.

A disadvantage of our approach is the absence of pivoting strategies based on
numerical values of the matrix elements. Pivoting would increase the computational
time but possibly lead to a lower condition number for the modification M̃ of M , and
a smaller error bound ‖E‖∞ in the MC process. Here E = M̃ −M is a nonnegative
diagonal matrix. Our experiences suggest that pivoting strategies in the context of
a standard MC are far less effective than our UMC in the TN context. Namely,
our numerical experiments demonstrate that the Gill–Murray–Wright MC (GMW
MC) with pivoting [8] can reduce the error bound ‖E‖∞ but far less significantly the

condition number of M̃ (see Box 2). This is a consequence of our highly indefinite
preconditioner near regions far away from a local minimum.

Our experiments studied three other MC algorithms: the partial Cholesky (PC)
factorization described by Forsgren, Gill, and Murray [6]; the Schnabel and Eskow
(SE) MC [26]; and the Cheng and Higham (CH) MC [3] (see Box 2). As the authors
state, all methods can produce unacceptably large perturbations in special cases. In
our application, these large perturbations typically lead to poor performance when
the objective matrix M is highly indefinite; a very large condition number or a very
large error bound ‖E‖∞ (much larger than the magnitude of the negative minimum
eigenvalue λmin(M) of M) can result.

To see this analytically, recall that the GMW MC process modifies a symmetric
n × n matrix M into a positive-definite matrix M̃ and factors it as M̃ = M + E =
LDLT , where L,D, and E are, respectively, unit lower-triangular, diagonal, and
diagonal n× n matrices. The elements ej = dj − dj of E are defined by

dj = mjj −
j−1∑
k=1

ljkcjk and dj = max

{
|dj |, δ, θ

2

β2

}
,(6)

where cij = lijdj , θ = maxj+1≤i≤n |cij |, and positive numbers δ and β are introduced
to ensure the numerical stability (e.g., δ = 10−9 and β = ξ/

√
n2 − 1, where ξ is the
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Box 2. Examples of large modifications in MC methods.
We experimented with four MC methods in Matlab for the symmetric 42×42 matrix
M constructed from the second partial derivatives of the butane potential-energy
terms coming from bond length, bond angle, and torsional potentials [16]. M is
indefinite with three negative eigenvalues: −5.718,−74.703, and −218.475, and the
condition number is 1.553× 103.

These four MC methods are due to Gill, Murray, and Wright (GMW) [8]; Schn-
abel and Eskow (SE) [26]; Forsgren, Gill, and Murray [6], a partial Cholesky (PC)
factorization; and Cheng and Higham (CH) [3]. The Matlab M-files for GMW, SE,
and CH were provided by Wright, Eskow, and Cheng, respectively. We used their
default tolerance δ. In addition, we wrote corresponding files for GMW without piv-
oting and for PC according to [7] and [6]. Note that the error matrix E in PC and
CH may not be diagonal.

Modified Cholesky M̃ M̃ Error
factorization condition number minimum eigenvalue ‖E‖∞

GMW 8.42× 106 1.70× 10−3 1.38× 104

GMW, no pivoting 1.78× 107 2.80× 10−2 5.13× 105

PC 6.79× 106 1.30× 10−3 4.59× 102

SE 3.09× 101 3.62× 102 2.33× 103

CH 7.28× 109 1.22× 10−6 7.86× 102

For reference, our UMC gives as a function of the control parameter τ the following
results.

τ of UMC M̃ condition number M̃ minimum eigenvalue ‖E‖∞
40 546.157 −874.032 40.0
120 198.716 −98.475 120.0
200 491.541 −18.475 200.0
240 423.753 21.524 240.0
280 148.903 61.524 280.0

largest magnitude of an element of M . From (6) we see that an element ej of E has
the following expression:

ej = dj − dj =


δ − dj when δ ≥ max{|dj |, θ2

β2 },
θ2

β2 − dj when θ2

β2 ≥ max{|dj |, δ},
|dj | − d̄j when |dj | ≥ max{ θ2

β2 , δ}.
(7)

For a negative dj , ej may thus be 2|dj | or θ2

β2 + |dj |. If dj is a large negative number or
θ2

β2 a large positive number, ‖E‖∞ may be much larger than the value of |λmin(M)|.
The second author has studied performance of the GMW [8] versus the SE MC

[26] for difficult computational chemistry problems in the context of TN [22]. That
study showed that no factorization is clearly superior to any other. We have retained
the former in TNPACK since it is simple to implement in the context of YSMP. The
CH MC [3] is another possibility worth examining in our context since it is easily
implemented in existing software. Still, Box 2 suggests that all MC algorithms may
exhibit poor performance for a highly indefinite matrix M .

In our TN applications, while we find that pivoting strategies can improve the
performance of MC and even reduce the total number of outer (Newton) iterations,
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Table 2
Performance of TNPACK based on the GMW MC with pivoting (GMWP) and without pivoting

(GMW) and our UMC with τ = 10.

Butane (42 variables)

MC Final E Final ‖g‖ Outer (inner) Iter. E & g evals. CPU time

GMWP 4.7531 3.57× 10−10 35 (1329) 44 6.3 sec.

GMW 3.9039 2.07× 10−8 52 (78) 93 0.28

UMC 3.9039 1.12× 10−8 21 (62) 26 0.17
Alanine dipeptide (66 variables)

GMWP −15.245 1.45× 10−8 31 (5641) 39 78

GMW −15.245 1.85× 10−11 6387 (7108) 15801 44

UMC −15.245 3.65× 10−9 27 (186) 39 1.3

the total number of inner (PCG) iterations may increase significantly. This may result
from the large modification made to M . Consequently, the CPU time of TN is large
even when pivoting is used in standard MC schemes. See Table 2 for examples on two
small molecular systems. Note that pivoting strategies (for example, Bunch–Kaufman
[2] and that used in [3]) require at least O(n) comparisons as well as substantial data
movement.

The objective of allowing an indefinite preconditioner in the context of TN is to
produce an efficient preconditioner for the inner loop, that is, one that leads to the
smallest number of PCG iterations. The original indefinite Mk is a good approxi-
mation to Hk, so we do not want to make excessively large (and perhaps artificial)
perturbations, as often required by standard MC methods we have experimented with.
Since the PCG with an indefinite preconditioner can still generate directions of de-
scent (Theorem 2 of Appendix A), using the UMC to solve the linear system involving
Mk in the context of YSMP is one feasible efficient strategy.

In formulating the UMC, we were also guided by the observation that the Hessian
matrix itself in our applications is often positive definite near a solution (minimum
energy). This led us to construct preconditioners that also exhibit this trend. This
can be accomplished by adding a constant matrix τI to Mk, where τ is a problem-size
independent small positive number found by experimentation (e.g., τ = 10).

Intuitively, the UMC can be interpreted as follows. When τ > |λmin(Mk)|, Mk +
τI is positive definite and has the standard (stable) LDLT factorization. To ensure a
numerically stable factorization when Mk + τI is indefinite, we modify it further by
adding a diagonal matrix as in GMW, so as to impose an upper bound on the factors
L and D. The difference in our treatment from the standard GMW MC is that our
diagonal candidates can be negative (the third situation in (9) below), and thus the
resulting UMC matrix may still be indefinite. Certainly, other procedures for solving
linear systems involving indefinite matrices exist, but the simple UMC strategy above
is most easily incorporated into our current software and is found to work well.

3.2. The UMC factorization. Our UMC effectively applies a standard LDLT

factorization for matrix M + τI for a given nonnegative number τ . The simple ap-
proach of adding a multiple of the identity matrix to the indefinite matrix has been
discussed in Dennis and Schnabel [10]; however, the scalar τ is chosen to make M̃
safely positive definite on the basis of a diagonal dominance estimate and thus can be
much larger than necessary. Our approach effectively sets τ to be a small nonnegative
number like 10 (through numerical experiments) that ensures that Mk+τI is positive
definite at the final steps of the TN minimization process. At other steps, Mk + τI
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may be indefinite, but the modification to the original M is relatively small, and this
produces faster convergence overall.

Since M + τI may not be positive definite, a similar strategy to the standard
GMW strategy [7] (i.e., the use of two bound parameters δ and β in (8) and the
dependence of the entries dj of the factor D on the elements of M as shown in
(9)) is employed in UMC to guarantee numerical stability. The following scheme
describes our numerically stable process for factoring a symmetric matrix M with
small perturbations, with the resultant matrix not necessarily positive definite.

In the jth step of the UMC factorization, suppose that the first j − 1 columns
have been computed, and satisfy

|dk| > δ, and |lik|
√
|dk| ≤ β, i > k,(8)

for k = 1, 2, . . . , j−1. Here δ is a small positive number used to avoid numerical diffi-
culties when |dk| is too small and β is a positive number satisfying β2 = ξ/

√
n(n− 1),

where ξ is the largest magnitude of an element of M .
We define

dj = mjj −
j−1∑
k=1

ljkcjk and θ = max
j+1≤i≤n

|cij |,

where cij = lijdj is computed by using

cij = mij −
j−1∑
k=1

ljkcik, i = j + 1, . . . , n.

We then set d̃j = dj + τ and define

dj =


max{d̃j , θ2

β2 } when d̃j > δ,

δ when |d̃j | ≤ δ,
min{d̃j ,− θ2

β2 } when d̃j < −δ,
(9)

where δ and β are given in (8). Note that the above dj is negative when the third
possibility in (9) occurs, resulting in an indefinite matrix.

This definition of dj implies by induction that the relation (8) holds for all k =
1, 2, . . . , n, and hence the factorization is numerically stable.

The effective M̃ produced by our UMC satisfies

M̃ = LDLT = M + E,

where E is a diagonal matrix. In particular, M̃ becomes positive definite with E = τI
if τ > |λmin(M)|; otherwise, the jth element ej of E can be expressed in the form

ej = dj − dj =


τ when |dj + τ | > max{δ, θ2

β2 },
δ − dj when δ ≥ max{|dj + τ |, θ2

β2 },
θ2

β2 − dj when θ2

β2 ≥ dj + τ > δ,

− θ2

β2 − dj when − δ > dj + τ > − θ2

β2 ,

(10)

for j = 1, 2, . . . , n. By arguments similar to those used in [7], it can be shown that

|ej | ≤ θ2

β2
+ |dj |+ δ + τ,
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along with |dj | < γ + (n− 1)β2 and θ ≤ ξ + (n− 1)β2, where

γ = max
1≤i≤n

|mii| and ξ = max
1≤j≤n

max
j+1≤i≤n

|mij |.

Therefore, a worst-case bound of ‖E‖∞ is obtained:

‖E‖∞ ≤
[
ξ

β
+ (n− 1)β

]2

+ γ + (n− 1)β2 + τ + δ(11)

for a τ satisfying τ ≤ |λmin(M)|.
If we denote the above upper bound of ‖E‖∞ as a function φ(β), it can be shown

that φ(β) has a minimum at β2 = ξ/
√
n(n− 1), an a priori choice of β in our UMC

method.
The upper bound of ‖E‖∞ in (11) is similar to that for GMW [7]. Hence, like the

GMW factorization, our UMC can lead to large perturbations when τ ≤ |λmin(M)|.
In our numerical experiments, we rarely observe this; instead, we often have ‖E‖∞ = τ
even when τ ≤ |λmin(M)| (see Figure 4, for example). Note that a large τ satisfying
τ > |λmin(M)| reduces UMC to the standard Cholesky factorization.

To avoid perturbing a positive-definite matrix, our algorithm can be divided into
two phases (in the spirit of the SE MC [26]). We first apply the standard LDLT

factorization to matrix M , stopping at the first occasion that a diagonal element dj
of D becomes negative or very small. We then switch to the second phase, where the
modified matrix M + τI is applied.

The performance of our UMC on the 42 × 42 indefinite matrix M is shown in
Box 2, following results of other factorizations. Clearly, as τ increases, M̃ approaches
positive definiteness. This is accompanied by a monotonic reduction of the condition
number of M̃ . The error bound ‖E‖∞ is equal to τ .

4. Numerical results. We consider four molecular systems for our tests: bu-
tane, alanine dipeptide, BPTI, and lysozyme. Butane is a small, 14-atom hydrocar-
bon molecule with the chemical formula C4H10. Alanine dipeptide, a blocked alanine
residue, consists of 22 atoms. The 58-residue protein BPTI has 568 atoms and thus
1704 Cartesian variables. It is considered “small” by computational chemists. The
larger protein lysozyme has 130 residues, 2030 atoms, and 6090 variables.

All computations were performed in double precision in serial mode on an SGI
Power Challenge L computer with R10000 processors of speed 195 MHz at New York
University. Parameter files were used from CHARMM version 19, but the TNPACK
code was implemented into CHARMM version 23 with default TNPACK parameters
of [23], unless otherwise stated. These parameters are also listed in the TN algorithm
of the appendix. No cutoffs were used for the nonbonded interactions of the potential
energy function, and a distance-dependent dielectric function was used. The vector
norm ‖ · ‖ in all tables and figures is the standard Euclidean norm divided by

√
n,

where n is the number of independent variables of a potential energy function. The
inner loop of TN is followed as outlined in Algorithm 1, with τ = 10 and ITPCG = 40
unless otherwise stated.

4.1. No preconditioning vs. indefinite preconditioning. Figure 1 shows
that our TN based on UMC uses far fewer outer iterations than the minimizer without
preconditioning for BPTI. We experimented with both τ = 0 and also τ = 10 for the
UMC. Since all {Mk} were indefinite throughout the TN process, the preconditioner

M̃k used by TN was indefinite.
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Fig. 1. TN based on PCG with an indefinite
preconditioner performs much better than without
preconditioning (even when τ = 0 in UMC) for
the minimization of the BPTI potential function.

Fig. 2. The gradient norms generated by TN
based on GMW MC vs. UMC for butane mini-
mization. Here circular markers indicate values
at the last few steps.
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Fig. 3. The minimum eigenvalue of {Mk}
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mization of a butane molecular system. Circular
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Fig. 4. The error norms {‖Ek‖∞} (Ek =

M̃k −Mk) generated by GMW MC vs. UMC for
butane minimization. With τ = 10 for our UMC,
‖Ek‖∞ = 10 for all k except the three points in-
dicated by circles.

Even better, the total CPU time is much smaller for the indefinite preconditioner
version. Namely, the indefinite preconditioner variant required only 8 minutes (for 92
TN iterations and a total of 2390 inner PCG iterations) to find a local minimizer. In
contrast, without preconditioning, 80 minutes were required for 687 TN iterations and
27347 CG iterations. This behavior is typical for the molecular systems examined.

4.2. Standard MC vs. our UMC. We next compare the performance of
TNPACK based on GMW without pivoting [7] and our UMC for butane minimiza-
tion. Pivoting in GMW was discussed in section 3.1; see Table 2. Efficiency argues for
sparsity-based factorization in our context. We further compare our UMC vs. GMW
in Figures 2, 3, and 4 for the minimization of the butane potential function.
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Table 3
Performance of TNPACK on BPTI based on PCG with an indefinite preconditioner at different

values of ITPCG, the maximum number of allowable PCG iterations at each inner loop. For ITPCG =
300, the truncation test was used throughout the TN process.

ITPCG Final Final TN outer Total PCG CPU time (min.)
energy ‖g‖ loops iterations Total PCG

2 −2780.47 5.9× 10−4 1402 2801 27.24 9.81

5 −2769.33 6.8× 10−5 233 1139 6.54 3.49

10 −2755.07 5.7× 10−5 92 778 3.65 2.31

20 −2756.40 3.2× 10−5 73 1114 4.32 3.24

40 −2769.25 2.1× 10−5 71 1456 5.13 4.07

120 −2769.25 1.4× 10−6 72 2221 7.32 6.25

200 −2775.14 1.0× 10−6 143 4640 15.26 13.13

250 −2775.14 1.3× 10−6 151 5937 18.86 16.62

300 −2775.14 3.8× 10−6 150 6049 18.96 16.74

Figure 2 shows that TN based on the UMC strategy performs favorably in terms
of Newton iterations. It also requires less CPU time (0.17 vs. 0.28 sec.; see Table 2).
Further, it has a quadratic convergence rate at the last few iterations, as shown by
the circles in the figure.

Figures 3 and 4 plot the minimum eigenvalues of {Mk} and the values of {‖Ek‖∞},
respectively, where Ek = M̃k −Mk. The UMC leads to much smaller modifications
of {Mk} than the standard MC. Since the minimum eigenvalue of Mk is less than 10

for k ≥ 12 (circles in Figure 3), our effective preconditioner M̃k is positive definite for
k ≥ 12 with ‖Ek‖∞ = 10.

4.3. The importance of the maximum limit on PCG iterations. Table 3
illustrates how TN performs with different values of ITPCG (see Algorithm 1) for
BPTI minimization. With ITPCG = 300 (last row), the truncation test (step 5 of
Algorithm 1) was satisfied throughout the TN process. These results can also be
visualized in Figures 5 and 6, which show the CPU time and the total number of
TN iterations as functions of ITPCG, respectively. The evolution of the gradient
norm from TN minimization, corresponding to ITPCG = 40 (leading to the fewest
outer iterations) and 300, as a function of the number of TN iterations, is shown in
Figure 7. Note the quadratic convergence in the last few steps.

There are several interesting observations from the data of Table 3. As Figure 5
shows, an optimal value for ITPCG can be associated with the smallest CPU time.
Here, about 4 minutes resulted from ITPCG = 10, much less than about 19 minutes
required when ITPCG = 300.

Figure 6, however, shows that a somewhat larger value of ITPCG (namely 40)
leads to a minimal value of the total number of TN iterations, 71. In contrast, the
ITPCG value for optimal CPU time (namely 10) is associated with 92 TN iterations.
For reference, a small value, ITPCG = 2, gives 1402 TN iterations, and a very large
ITPCG gives 150.

In terms of the final energy value obtained for the different variants, we clearly
see that several local minima are reached by varying the minimization procedure (six
different energy values noted for the nine runs). This multiple-minima problem is
beyond the scope of this work. However, we suggest that a larger ITPCG value might
be preferred over a lower one (within a small optimal range) in an attempt to reach
lower energy values.
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Figures 5 and 6 also show that the range of ITPCG for which TN performs better
than the minimizer based on the truncation test alone is fairly large, here between
10 to 120. Based on this observation and the point above regarding larger ITPCG

for smaller final energy values, we set ITPCG = 40 for the numerical experiments
presented below.

4.4. Comparison to other minimization schemes. We now compare, in
Table 4, the minimization performance of TNPACK with two other CHARMM mini-
mizers, ABNR (an adopted basis Newton–Raphson method) and CONJ (a nonlinear
conjugate gradient method), as well as with LM-BFGS, with u = 5 stored updates
[11]. For LM-BFGS we test no-preconditioning as well as preconditioning options. The
preconditioning strategy used for LM-BFGS was described by Schlick [21]. Briefly,
the initial search vector in each sequence of LM-BFGS updates is set as the solution
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Table 4
Comparison of TNPACK with two other CHARMM minimizers and LM-BFGS.

Butane (42 variables)

Minimizer Iterations Final E Final ‖g‖ E & g evals. CPU time

TN 21 (62)∗ 3.904 1.1× 10−8 26 0.17 sec.

LM-BFGS 93 3.904 7.7× 10−7 101 0.14

LM-BFGS (P) 133 4.753 9.4× 10−7 148 0.33

ABNR 368 3.904 9.8× 10−8 368 0.32

CONJ 127 3.904 9.1× 10−7 307 0.17

Alanine dipeptide (66 variables)

TN 29 (210) −15.25 7.67× 10−11 44 1.12 sec.

LM-BFGS 711 −15.25 1.4× 10−6 740 1.39

LM-BFGS (P) 367 −15.25 1.3× 10−6 378 1.97

ABNR 16466 −15.25 9.9× 10−8 16467 7.47

CONJ 882 −15.25 9.83× 10−7 2507 2.34

BPTI (1704 variables)

TN 65 (1335) −2773.70 4.2× 10−6 240 5.21 min.

LM-BFGS 4486 −2792.96 6.3× 10−5 4622 12.61

LM-BFGS (P) 3929 −2792.92 5.9× 10−5 3946 64.2

ABNR 8329 −2792.96 8.9× 10−6 8330 25.17

CONJ 12469 −2792.93 9.9× 10−6 32661 97.8

Lysozyme (6090 variables)

TN 79 (1841) −4631.38 3.7× 10−6 244 1.54 hrs.

LM-BFGS 5546 −4617.21 1.4× 10−4 5711 4.26

LM-BFGS (P) 3331 −4620.27 1.6× 10−4 3374 12.92

ABNR 7637 −4605.94 9.9× 10−6 7638 6.11

CONJ 9231 −4628.36 9.9× 10−5 24064 19.63

* The number in parentheses is the total number of PCG iterations.

pk to the system

Mkpk = −gk,(12)

where Mk is defined as before, so that Mk replaces the initial approximation to the
Hessian. To solve (12) in LM-BFGS we use the standard GMW MC. We expect pre-
conditioning in LM-BFGS to reduce the number of function evaluations significantly,
but this must be balanced with the added cost involved in evaluating and factoring
the preconditioner.

In all computations, we used the default parameters in CHARMM for the mini-
mizers. No cutoffs for the nonbonded terms were used to avoid formation of artificial
minima that result when the nonbonded terms are turned off at some distance, even
when this is done smoothly. We also used the same convergence test (i.e., inequal-
ity (B1d) in the Appendix B with εg = 10−6) for TNPACK, ABNR, CONJ, and
LM-BFGS. Both TNPACK and ABNR can reach much lower gradient norms than
CONJ.

For butane and alanine dipeptide, all minimizers (except for one case: LM-BFGS
with preconditioning for butane2) find the same minimum value, while for BPTI and

2For butane, the global minimum corresponds to an open chain configuration (“trans-staggered”),
with the central dihedral angle ϕ, defining the relative orientation of the four carbons, adopting the
value −180◦; the higher energy minimum corresponds to a more compact configuration, with ϕ about
−65◦.
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Fig. 9. The decrease of the potential energy
function for BPTI (solid) and lysozyme (dashed)
by TNPACK.
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BFGS for alanine dipeptide minimization.

Fig. 11. A comparison of gradient norms
generated by TNPACK, ABNR, CONJ, and LM-
BFGS for BPTI minimization.

lysozyme different minima are obtained. This is a consequence of different paths taken
toward a local minimum in each case. The results in Table 4 show that TNPACK
requires less CPU time than the other methods and reaches very low gradient norms.
The results for LM-BFGS show how preconditioning tends to reduce the total num-
ber of iterations but to increase the CPU time. For the proteins, the CPU time of
TNPACK is less than that of the best LM-BFGS variant by a factor of 2 to 3.

In Figure 8 we illustrate the evolution of the gradient norm for BPTI and lysozyme
molecular systems for TNPACK, along with their energy decreases in Figure 9.

In Figures 10 and 11, we compare the gradient norm evolution for TNPACK,
ABNR, CONJ, and LM-BFGS (no preconditioning) for the dipeptide and BPTI.
For TNPACK, the “iteration” value in the abscissa corresponds to the accumulated
number of PCG iterations.

The relative importance of updating and preconditioning in LM-BFGS was dis-
cussed in [21] by testing preconditioning with various numbers of stored updates (i.e.,
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u = 0, 1, 2, 3, 4, 5). It was found that the relative importance of these factors in
generating performance improvement depends on the initial guess for the minimum—
preconditioning is more important when the initial guess is better. Our experiments
here with different numbers of updates for the LM-BFGS version without precondi-
tioning revealed that u = 4 or 5 is optimal in terms of CPU time (data not shown);
when preconditioning is used, the optimal u tends to be lower (e.g., u = 2 or 3).

5. Conclusions. We have suggested the use of an indefinite rather than a positive-
definite preconditioner in the TN optimization method applied to large-scale, highly
nonlinear functions with problem-formulated preconditioners. With the UMC applied
to solve a linear system involving the preconditioner, we guarantee that the resulting
search vectors are directions of descent. Thus, convergence to a local minimum can
be derived as in classic TN methods.

An indefinite preconditioner makes sense in our applications for efficiency consid-
erations. Namely, the sparse preconditioner generated from the local chemical inter-
actions [25] can have large negative eigenvalues, and other MC schemes [3, 7, 8, 26]
(when used with PCG for solving such preconditioned linear systems) tend to exhibit
poor numerical behavior when very large modifications are permitted. This leads to
many PCG iterations and large CPU times for the overall minimization method. We
overcome this difficulty by proposing the UMC to prescribe matrix modifications τI
in a numerically stable manner. The parameter τ is chosen heuristically, so as to lead
to positive-definite preconditions near a minimum. This bound appears insensitive to
the problem size, and in our application we use τ = 10. Undoubtedly, there are other
ways to factor a symmetric matrix M in this way.

The numerical experiments reported here highlight that the unconventional use
of an indefinite preconditioner works better than the minimizer without precondi-
tioning, as well as other minimizers available in CHARMM (ABNR and CONJ). A
competitive method tested is also LM-BFGS, examined both with and without pre-
conditioning. Although preconditioning reduces the total number of iterations in
LM-BFGS, it increases the CPU time because of the added cost of the linear system.
Results show that TNPACK requires less CPU time than the other methods tested
for large potential energy problems. Very recently, we have updated the program rou-
tines of TNPACK/CHARMM to significantly reduce memory requirements by using
a specified sparsity pattern for the preconditioner and finite differences for Hessian
and vector multiplication. These developments, including applications to problems
with up to 35000 variables, will be reported separately.

These algorithmic suggestions may open new opportunities for other large-scale
optimization problems in which partial second-derivative information might be ex-
ploited in the TN framework. Particularly interesting is the possibility of using
TNPACK as a local minimizer in the context of a stochastic global optimization
method. The different local minima reached for the proteins in this work suggest
that even a simple global aspect added to the local minimizer can be of practical
importance.

Appendix A. Analyses for the PCG inner loop of TN. We consider the
PCG algorithm of Algorithm 1 for solving Newton equation Hkp = −gk with a pre-
conditioner Mk, where both Hk and Mk are nonsingular but not necessarily positive
definite. We assume that there exists a positive integer l such that dTj Hkdj 6= 0 and

rTj M
−1
k rj 6= 0 for j = 1, 2, . . . , l, and thus the PCG iterates {pj}lj=1 are well defined.

As for the standard case (i.e., Mk is positive definite) [9], it follows that the PCG
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residual vectors {rj}lj=1 (rj ≡ −gk −Hkpj) satisfy in exact arithmetic

rTi M
−1
k rj = 0 for 1 ≤ i < j ≤ l.(13)

Theorem 1 (motivation for not using dj as exit search direction). Let Mk be
nonsingular and the initial guess p1 = 0. Then, if gTkM

−1
k rj = 0 for 1 < j ≤ l, all

vectors dj for 1 ≤ j ≤ l satisfy

gTk dj = −rTj M−1
k rj .(14)

Proof. Since r1 = −gk, from (13) it follows that

gTkM
−1
k rj+1 = −rT1 M−1

k rj+1 = 0 for 1 ≤ j ≤ l − 1.

Thus, for all j = 1, 2, . . . , l − 1,

gTk dj+1 = gTk (M−1
k rj+1 + βjdj)

= gTkM
−1
k rj+1 + βjg

T
k dj

= βjg
T
k dj .

Noting that βj = rTj+1M
−1
k rj+1/r

T
j M

−1
k rj , r1 = −gk, and d1 = −M−1

k gk, we obtain

gTk dj+1 = βjβj−1 · · ·β1g
T
k d1

= −r
T
j+1M

−1
k rj+1

rT1 M
−1
k r1

gTkM
−1
k gk

= −rTj+1M
−1
k rj+1.

From Theorem 1 it follows that dj may be an ascent direction for the case of an
indefinite Mk.

Theorem 2 (motivation for using an indefinite preconditioner in TN). Let Mk

be nonsingular and the initial guess p1 = 0. Then, if dTj Hkdj > 0 and rTj M
−1
k rj 6= 0

for j = 1, 2, . . . , l, all pj with 2 ≤ j ≤ l + 1 are descent directions and satisfy

gTk pl+1 < · · · < gTk pj < gTk pj−1 < · · · < gTk p2 < 0.(15)

Proof. Using αj = rTj M
−1
k rj/d

T
j Hkdj and (14), we have

gTk pj+1 = gTk pj + αjg
T
k dj = gTk pj −

(rTj M
−1
k rj)

2

dTj Hkdj
.(16)

Relation (16) together with dTj Hkdj > 0 and (rTj M
−1
k rj)

2 > 0 give gTk pj+1 < gTk pj for

j = 1, 2, . . . , l. In particular, gTk p2 < gTk p1 = 0 as p1 = 0. Therefore, it follows that
all pj with 2 ≤ j ≤ l + 1 satisfy (15).

From Theorem 2 it follows that the PCG directions of Algorithm 1 with an in-
definite preconditioner Mk are directions of descent.

Theorem 3 (equivalence of the descent direction and negative curvature tests).
Let Mk be nonsingular and rTj M

−1
k rj 6= 0. Then gTk pj+1 > gTk pj if and only if

dTj Hkdj < 0.

Proof. From (14) and αj = rTj M
−1
k rj/d

T
j Hkdj , we have

αjg
T
k dj = −(rTj M

−1
k rj)

2/dTj Hkdj .
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Thus, if the denominator dTj Hkdj < 0, then the left-hand side αjg
T
k dj > 0, implying

that

gTk pj+1 = gTk pj + αjg
T
k dj > gTk pj .

On the other hand, if gTk pj+1 > gTk pj , then

−(rTj M
−1
k rj)

2/dTj Hkdj = αjg
T
k dj = gTk pj+1 − gTk pj > 0,

which implies that dTj Hkdj < 0.

From Theorem 3 it follows that the descent direction test of Algorithm 1 is equiv-
alent to the negative curvature test.

Theorem 4 (another motivation for using pj rather than dj as exit search di-
rection). Let both Hk and Mk be positive definite. Then there exists an index j0 > 0
such that for all i ≥ 2

gTk pi < gTk dj < 0 whenever j > j0.(17)

Proof. When both Hk and Mk are positive definite, from PCG theory we know
that rTj M

−1
k rj approaches zero as j increases. Subsequently, there exists j0 > 0 such

that rTj M
−1
k rj < |gTk p2| whenever j > j0. Together with (14) and (15), we have

gTk p2 < 0 and

gTk dj = −rTj M−1
k rj > gTk p2 > gTk pi for all i > 2.

The steplength λ can have a larger range of feasibility to satisfy

E(Xk + λP k) < E(Xk)

with a larger value of |gTk P k|, where gTk P
k is negative. Thus, the objective function

value may be reduced more on a larger range of λ. In this sense, Theorem 4 suggests
that pj is a “better” search direction than dj because choosing the search direction
P k = pj for j ≥ 2 can lead to further reduction than using P k = dj for a sufficiently
large j. Similarly, Theorem 2 suggests that a PCG iterate pj is better than pi when
j > i.

Appendix B. The TN algorithm. The TN algorithm based on the PCG
method consists of an outer and an inner loop. We present these two loops in turn,
listing the parameter values used in the numerical examples reported in this paper
(unless specified otherwise in text). The new algorithmic components introduced in
this paper are marked by asterisks. We denote the objective function to be minimized
by E; the gradient vector and Hessian matrix of E by g and H, respectively; and the
preconditioner for PCG by M . We omit the subscript k from g, H, and M for clarity.
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Outer Loop of the TN Method
1. Initialization

• Set k = 0 and evaluate E(X0) and g(X0) for a given initial guess X0.
• If ||g(X0)|| < 10−8 max(1, ||X0||), exit algorithm, where || · || is the

standard Euclidean norm divided by
√
n.

2. Preparation for UMC
• Evaluate the preconditioner M at X0 by assembling only the local po-

tential energy terms (bond length, bond angle, and dihedral angle com-
ponents).
• Determine the sparsity pattern of M. The upper triangle of M is stored

in a compressed row format, and the pattern is specified by two integer
arrays that serve as row and column pointers [23].
• Compute the symbolic factorization LDLT of M, that is, the sparsity

structure of the factor L.
• Evaluate the Hessian matrix H at X0.

3. Inner loop

Compute a search vector P k by solving the Newton equation
HP = −g approximately using PCG with preconditioner M
based on the UMC method (see below).

4∗. Line search
• Compute a steplength λ by safeguarded cubic and quadratic interpola-

tion [12] (see also [27] for a minor modification that avoids a too small
acceptable steplength λ) so that the update Xk+1 = Xk + λP k satisfies

E(Xk+1) ≤ E(Xk)+αλg(Xk)TP k and |g(Xk+1)TP k| ≤ β|g(Xk)TP k|,

where α = 10−4 and β = 0.9.
5. Convergence tests

• Check the following inequalities:

(B1a) E(Xk+1)− E(Xk) < εf (1 + |E(Xk+1)|) ,

(B1b) ||Xk+1 −Xk|| < √εf (1 + ||Xk+1||)/100 ,

(B1c) ||g(Xk+1)|| < ε
1/3
f (1 + |E(Xk+1)|) ,

(B1d) ||g(Xk+1)|| < εg(1 + |E(Xk+1)|) ,

where εf = 10−10 and εg = 10−8.
If conditions (B1a), (B1b), (B1c), or (B1d) are satisfied, exit algorithm.

6. Preparation for the next Newton step
• Compute the preconditioner M at Xk+1 by using the pattern determined

originally.
• Evaluate the Hessian matrix H at Xk+1.
• Set k → k + 1, and go to step 3.
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Inner Loop of the Truncated Newton Method (step 3 of Outer Loop)

The sequence {pj} below represents the PCG vectors used to construct P k in
step 3 of the Outer Loop, above.

1. Initialization
• Set j = 1, p1 = 0, and r1 = −g.
• Set the parameters ηk = min{cr/k , ‖g‖} and ITPCG for the truncation

test in step 5. We use cr = 0.5 and ITPCG = 40.
2∗. The UMC factorization

• Perform the UMC of M so that the resulting effective preconditioner is
M̃ = LDLT with a chosen parameter τ (we use τ = 10). The factor L
is stored in the same sparse row format used for M .
• Solve for zj in M̃zj = rj by using the triangular systems

Lx = rj and LT zj = D−1x.

• Set dj = zj .
3∗. Singularity test

Compute the matrix–vector product qj = H dj .
If either |rTj zj | ≤ δ or |dTj qj | ≤ δ (e.g., δ = 10−10),

exit PCG loop with P k = pj (for j = 1, set P k = −gk).
4∗. Implement one of the following two tests:

4a. [The descent direction test]
Update the quantities

(B2) αj = rTj zj / d
T
j qj and pj+1 = pj + αjdj .

If gT pj+1 ≥ gT pj + δ,
exit inner loop with P k = pj (for j = 1, set P k = −g).

4b. [The standard negative curvature test]
if dTj qj ≤ δ(dTj dj),
exit inner loop with P k = pj (for j = 1, set P k = −g);
else update αj and pj+1 as in (B2).

5∗. Truncation test
• Compute rj+1 = rj − αjqj .
• If ‖rj+1‖ ≤ ηk‖g‖ or j + 1 > ITPCG,

exit inner loop with search direction P k = pj+1.
6∗. Continuation of PCG

• Solve for zj+1 as in step 2 in M̃zj+1 = rj+1.
• Update the quantities

(B3) βj = rTj+1zj+1 / r
T
j zj and dj+1 = zj+1 + βjdj .

• Set j ← j + 1, and go to step 3
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Abstract. A convex optimization problem in conic linear form is an optimization problem of
the form

CP (d) : maximize cT x
s.t. b−Ax ∈ CY ,

x ∈ CX ,

where CX and CY are closed convex cones in n- and m-dimensional spaces X and Y, respectively,
and the data for the system is d = (A, b, c). We show that there is a version of the ellipsoid algorithm

that can be applied to find an ε-optimal solution of CP (d) in at most O(n2 ln(
C(d)‖c‖∗
c1ε

)) iterations

of the ellipsoid algorithm, where each iteration must either perform a separation cut on one of the
cones CX or CY or perform a related optimality cut. The quantity C(d) is the “condition number”
of the program CP (d) originally developed by Renegar and is essentially a scale-invariant reciprocal
of the smallest data perturbation ∆d = (∆A,∆b,∆c) for which the system CP (d + ∆d) becomes
either infeasible or unbounded. The scalar quantity c1 is a constant that depends only on the simple
notion of the “width” of the cones and is independent of the problem data d = (A, b, c) but may
depend on the dimensions m and/or n.

Key words. complexity of convex optimization, ellipsoid method, conditioning, error analysis
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PII. S105262349732829X

1. Introduction. Consider a convex program in conic linear form:

CP (d) : maximize cTx
s.t. b−Ax ∈ CY ,

x ∈ CX ,
(1)

where CX ⊂ X and CY ⊂ Y are each a closed convex cone in the (finite) n-dimensional
linear vector space X (with norm ‖x‖ for x ∈ X) and in the (finite) m-dimensional
linear vector space Y (with norm ‖y‖ for y ∈ Y ), respectively. Here b ∈ Y, and
A ∈ L(X,Y ), where L(X,Y ) denotes the set of all linear operators A : X → Y .
Also, c ∈ X∗, where X∗ is the space of all linear functionals defined on X; i.e., X∗ is
the dual space of X. In order to maintain consistency with standard linear algebra
notation in mathematical programming, we consider c to be a column vector in the
space X∗ and we denote the linear function c(x) by cTx. Similarly, for A ∈ L(X,Y )
and f ∈ Y ∗, we denote A(x) by Ax and f(y) by fT y. We denote the adjoint of A by
AT .
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The “data” d for problem CP (d) is the array d = (A, b, c) ∈ {L(X,Y ), Y,X∗}. We
call the above program CP (d) rather than simply CP to emphasize the dependence
of the optimization problem on the data d = (A, b, c), and we note that the cones CX
and CY are not part of the data; that is, they are considered to be given and fixed.
At the moment, we make no assumptions on CX and on CY except to note that each
is a closed convex cone.

The format of CP (d) is quite general (any convex optimization problem can be
cast in the format of CP (d)) and has received much attention recently in the context
of interior-point algorithms; see Nesterov and Nemirovskii [13] and Renegar [19], [20],
as well as Nesterov and Todd [15], [14] and Nesterov, Todd, and Ye [16], among others.

In contrast to interior-point methods, this paper focuses on the complexity of
solving CP (d) via the ellipsoid algorithm. The ellipsoid algorithm of Yudin and Ne-
mirovskii [26] and Shor [21] (see also [4], [8], and [9]) and the interior-point algorithm
of Nesterov and Nemirovskii [13] are two fundamental theoretically efficient algorithms
for solving general convex optimization. The ellipsoid algorithm enjoys a number of
important advantages over interior-point algorithms: the ellipsoid algorithm is based
on elegantly simple geometric notions, it always has excellent theoretical efficiency in
the dimension of the variables n, it requires only the use of a separation oracle for
its implementation, and it is important in both continuous and discrete optimization
[8]. (Of course, when applied to solving linear programs, interior-point algorithms
typically exhibit vastly superior practical performance over the ellipsoid algorithm,
but that is not the focus of this study.)

The ellipsoid algorithm belongs to a larger class of efficient volume-reducing
cutting-plane algorithms that includes the method of centers of gravity [11], the
method of inscribed ellipsoids [10], and the method of volumetric centers [22], among
others. We focus herein on the ellipsoid algorithm because of its prominence and
history in the complexity analysis of convex optimization, but our analysis is appli-
cable to these other volume-reducing cutting-plane methods as well; see the remarks
in section 6.

In analyzing the complexity of the ellipsoid algorithm, we adopt the relatively new
concept of the condition number C(d) of the program CP (d), developed by Renegar
in the series of papers [17], [18], and [19]. We show (in section 5) that there is a
version of the ellipsoid algorithm that can be applied to find an ε-optimal solution of

CP (d) in at most O(n2 ln(C(d)‖c‖∗
c1ε

)) iterations of the ellipsoid algorithm, where each
iteration must perform either a separation cut on one of the cones CX or CY or a
related optimality cut. The quantity C(d) is the condition number of the program
CP (d), and ‖c‖∗ is the norm of c. The scalar quantity c1 is a constant that depends
only on the simple notion of the “width” of the cones, and is independent of the
problem data d = (A, b, c), but may depend on the dimensions m and/or n.

Two special cases of CP (d) deserve special mention: linear programming and
semidefinite programming. Let < and <+ denote the set of real numbers and the set of
nonnegative real numbers, respectively, and let <k and <k+ denote real k-dimensional
space and the nonnegative orthant in <k, respectively. Then by setting (i) CX = <n+
and CY = <m+ , (ii) CX = <n+ and CY = {0}, or (iii) CX = <n and CY = <m+ , then
CP (d) is a linear program of the format (i) max{cTx | Ax ≤ b, x ≥ 0, x ∈ <n}, (ii)
max{cTx | Ax = b, x ≥ 0, x ∈ <n}, or (iii) max{cTx | Ax ≤ b, x ∈ <n}, respectively.

The other special case of CP (d) that we mention is semidefinite programming.
Semidefinite programming has been shown to be of enormous importance in mathe-
matical programming (see Alizadeh [1] and Nesterov and Nemirovskii [13] as well as
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Vandenberghe and Boyd [23]). Let X denote the set of real k × k symmetric ma-
trices, whereby n = k(k + 1)/2, and define the Löwner partial ordering “�” on X
as x � w if and only if the matrix x − w is positive semidefinite. The semidefinite
program in standard (primal) form is the problem max{cTx | Ax = b, x � 0}. De-
fine CX = {x ∈ X | x � 0}. Then CX is a closed convex cone. Let Y = <m and
CY = {0} ⊂ <m. Then the standard form semidefinite program is easily seen to be
an instance of CP (d).

Most studies of the ellipsoid algorithm (for example, [9], [4], [8]) pertain to the
case when CP (d) is a linear or convex quadratic program and focus on the complexity
of the algorithm in terms of the bit length L of a binary representation of the data
d = (A, b, c). However, when the cones CX and/or CY are not polyhedral or when the
data d = (A, b, c) are not rational, it makes little or no sense to study the complexity
of the ellipsoid algorithm in terms of L. Indeed, a much more natural and intuitive
measure that is relevant for complexity analysis and that captures the inherent data-
dependent behavior of CP (d) is the “condition number” C(d) of the problem CP (d),
which was developed by Renegar in a series of papers [17], [18], [19]. The quan-
tity C(d) is essentially a scale invariant reciprocal of the smallest data perturbation
∆d = (∆A,∆b,∆c) for which the system CP (d + ∆d) becomes either infeasible or
unbounded. (These concepts will be reviewed in detail shortly.)

The paper is organized as follows. The remainder of this introductory section
discusses the condition number C(d) of the optimization problem CP (d). Section 2
contains further notation and a discussion of the width of a cone. In section 3 we
demonstrate a ball construction for the set of ε-optimal solutions of CP (d), and we
review several previous results regarding the geometry of CP (d). Section 4 briefly
reviews relevant complexity aspects of the ellipsoid algorithm and reviews a trans-
formation of CP (d) into a homogenized form called HP (d) that is more convenient
for the application of the ellipsoid algorithm. Lemma 4.1 contains a key volume-
ratio upper bound that is the main tool used in proving the complexity results for
the ellipsoid algorithm for solving CP (d), which are presented in section 5. Section 6
discusses related issues: complexity results for other volume-reducing cutting-plane al-
gorithms, testing for ε-optimality, the complexity of testing for infeasibility of CP (d),
and bounding the skewness of the ellipsoids computed in the ellipsoid algorithm.

The concept of the “distance to ill-posedness” and a closely related condition
number for problems such as CP (d) was introduced by Renegar in [17] in a more
specific setting but then generalized more fully in [18] and [19]. We now describe
these two concepts in detail.

Using the constructs of Lagrangian duality, one obtains the following dual problem
of CP (d):

CD(d) : minimize bT y
s.t. AT y − c ∈ C∗X ,

y ∈ C∗Y ,
(2)

where C∗X and C∗Y are the dual convex cones associated with the cones CX and CY ,
respectively, and where the dual cone of a convex cone K in a linear vector space X
is defined by

K∗ = {z ∈ X∗|zTx ≥ 0 for any x ∈ K}.

The data for the program CD(d) is also the array d = (A, b, c).
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We denote the space of all data d = (A, b, c) for CP (d) by D. Then D = {d =
(A, b, c) | A ∈ L(X,Y ), b ∈ Y, c ∈ X∗}. Because X and Y are normed linear vector
spaces, we can define the following product norm on the data space D:

‖d‖ = ‖(A, b, c)‖ = max{‖A‖, ‖b‖, ‖c‖∗} for any d ∈ D,
where ‖A‖ is the operator norm, namely,

‖A‖ = max{‖Ax‖ | ‖x‖ ≤ 1},
and where ‖c‖∗ is the dual norm of c induced on c ∈ X∗, defined as

‖c‖∗ = max{cTx | ‖x‖ ≤ 1, x ∈ X},
with a similar definition holding for ‖v‖∗ for v ∈ Y ∗.

Consider the following subsets of the data set D:

FP = {(A, b, c) ∈ D | there exists x such that b−Ax ∈ CY , x ∈ CX},

FD = {(A, b, c) ∈ D | there exists y such that AT y − c ∈ C∗X , y ∈ C∗Y },
and

F = FP ∩ FD.
The elements in FP correspond to those data instances d = (A, b, c) in D for which
CP (d) is feasible and the elements in FD correspond to those data instances d =
(A, b, c) in D for which CD(d) is feasible. Observe that F is the set of data instances
d = (A, b, c) that are both primal and dual feasible. The complement of FP , denoted
by FCP , is the set of data instances d = (A, b, c) for which CP (d) is infeasible, and the
complement of FD, denoted by FCD , is the set of data instances d = (A, b, c) for which
CD(d) is infeasible.

The boundary of FP and FCP is the set

BP = ∂FP = ∂FCP = cl(FP ) ∩ cl(FCP ),

and the boundary of FD and FCD is the set

BD = ∂FD = ∂FCD = cl(FD) ∩ cl(FCD ),

where ∂S denotes the boundary of a set S and cl(S) is the closure of a set S. Note
that BP 6= ∅ since (0, 0, 0) ∈ BP . The data instances d = (A, b, c) in BP are called the
ill-posed data instances for the primal, in that arbitrarily small changes in the data
d = (A, b, c) can yield data instances in FP as well as data instances in FCP . Similarly,
the data instances d = (A, b, c) in BD are called the ill-posed data instances for the
dual.

For d = (A, b, c) ∈ D, we define the ball centered at d with radius δ as

B(d, δ) = {d̄ ∈ D : ‖d̄− d‖ ≤ δ}.
For a data instance d ∈ D, the “primal distance to ill-posedness” is defined as follows:

ρP (d) = inf{‖∆d‖ : d+ ∆d ∈ BP }
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(see [17], [18], [19]), and so ρP (d) is the distance of the data instance d = (A, b, c) to
the set BP of ill-posed instances for the primal problem CP (d). It is straightforward
to show that

ρP (d) =

{
sup{δ : B(d, δ) ⊂ FP } if d ∈ FP ,
sup{δ : B(d, δ) ⊂ FCP } if d ∈ FCP ,(3)

so that we could also define ρP (d) by employing (3). In the typical case when CP (d)
is feasible, i.e., d ∈ FP , ρP (d) is the minimum change ∆d in the data d needed to
create a primal-infeasible instance d+ ∆d, and so ρP (d) measures how close the data
instance d = (A, b, c) is to the set of infeasible instances of CP (d). Put another way,
ρP (d) measures how close CP (d) is to being infeasible. Note that ρP (d) measures the
distance of the data d to primal infeasible instances, and so the objective function
vector c plays no role in this measure.

The “primal condition number” CP (d) of the data instance d is defined as

CP (d) =
‖d‖
ρP (d)

when ρP (d) > 0 and CP (d) = ∞ when ρP (d) = 0. The primal condition number
CP (d) can be viewed as a scale-invariant reciprocal of ρP (d), as it is elementary to
demonstrate that CP (d) = CP (αd) for any positive scalar α. Observe that since
d̄ = (Ā, b̄, c̄) = (0, 0, 0) ∈ BP and BP is a closed set, then for any d /∈ BP we have
‖d‖ ≥ ρP (d) > 0, so that CP (d) ≥ 1. The value of CP (d) is a measure of the relative
conditioning of the primal feasibility problem for the data instance d. For a discussion
of the relevance of using CP (d) as a condition number for the problem CP (d), see
Renegar [17], [18] and Vera [24].

These measures are not nearly as intangible as they might seem at first glance.
In [7], it is shown that ρP (d) can be computed by solving rather simple convex op-
timization problems involving the data d = (A, b, c), the cones CX and CY , and the
norms ‖ · ‖ given for the problem. As in traditional condition numbers for systems of
linear equations, the computation of ρP (d) and hence of CP (d) is roughly as difficult
as solving CP (d); see [7].

For a data instance d ∈ D, the “dual distance to ill-posedness” is defined in a
manner exactly analogous to the “primal distance to ill-posedness”:

ρD(d) = inf{‖∆d‖ : d+ ∆d ∈ BD}

or equivalently

ρD(d) =

{
sup{δ : B(d, δ) ⊂ FD} if d ∈ FD,
sup{δ : B(d, δ) ⊂ FCD} if d ∈ FCD .(4)

The “dual condition number” CD(d) of the data instance d is defined as

CD(d) =
‖d‖
ρD(d)

when ρD(d) > 0 and CD(d) =∞ when ρD(d) = 0.
The two measures of distances to ill-posed instances and condition numbers are

combined as follows. Recalling the definition of F , the elements in F correspond to
those data instances d = (A, b, c) in D for which both CP (d) and CD(d) are feasible.
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The complement of F , denoted by FC , is the set of data instances d = (A, b, c) for
which CP (d) is infeasible or CD(d) is infeasible. The boundary of F and FC is the
set

B = ∂F = ∂FC = cl(F) ∩ cl(FC).

The data instances d = (A, b, c) in B are called the ill-posed data instances in that
arbitrarily small changes in the data d = (A, b, c) can yield data instances in F as well
as data instances in FC . For a data instance d ∈ D, the “distance to ill-posedness”
is defined as follows:

ρ(d) = inf{‖∆d‖ : d+ ∆d ∈ B}
or equivalently

ρ(d) =

{
sup{δ : B(d, δ) ⊂ F} if d ∈ F ,
sup{δ : B(d, δ) ⊂ FC} if d ∈ FC .(5)

In the typical case when CP (d) and CD(d) are both feasible, i.e., d ∈ F , ρ(d) is the
minimum change ∆d in the data d needed to create a data instance d + ∆d that is
either primal infeasible or dual infeasible. The “condition number” C(d) of the data
instance d is defined as

C(d) =
‖d‖
ρ(d)

when ρ(d) > 0 and as C(d) = ∞ when ρ(d) = 0. The condition number C(d) can be
viewed as a scale-invariant reciprocal of ρ(d). The value of C(d) is a measure of the
relative conditioning of the problem CP (d) and its dual CD(d) for the data instance
d.

It is straightforward to demonstrate that

ρ(d) = min{ρP (d), ρD(d)} if d ∈ F ,
and so

C(d) = max{CP (d), CD(d)} if d ∈ F .(6)

We offer the following interpretation of ρ(d) and C(d) in terms of the primal
problem when both the primal problem and the dual problem are feasible. Because
ρP (d) measures how close the data instance d = (A, b, c) is to being an infeasible
instance of the primal, and the ρD(d) measures how close the data instance d =
(A, b, c) is to being an unbounded instance of the primal (in the primal objective
function value), then ρ(d) measures how close the data instance d = (A, b, c) is to
being either a primal infeasible or a primal unbounded data instance. The larger
the value of condition number C(d) is, the closer the primal problem is to either an
infeasible or an unbounded instance of the primal.

2. Further notation, coefficient of linearity, and width of a cone. We
will say that a cone C is regular if C is a closed convex cone, has a nonempty interior,
and is pointed (i.e., contains no line).

Remark 2.1. If C is a closed convex cone, then C is regular if and only if C∗ is
regular.
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Let C be a regular cone in the normed linear vector space X. Let B(x, r) denote
the ball centered at x with radius r. We will use the following definition of the width
of C.

Definition 2.1. If C is a regular cone in the normed linear vector space X, the
width of C is given by

τ = max

{
r

‖x‖ | B(x, r) ⊂ C
}
.

We remark that τ measures the maximum ratio of the radius to the norm of the
center of an inscribed ball in C, and so larger values of τ correspond to an intuitive
notion of greater width of C. Note that τ ∈ (0, 1], since C has a nonempty interior
and C is pointed, and τ is attained for some (x̄, r̄) as well as along the ray (αx̄, αr̄)
for all α > 0.

In previous work [7], we employed the “coefficient of linearity” for a cone C.
Definition 2.2. If C is a regular cone in the normed linear vector space X, the

coefficient of linearity for the cone C is given by

β = sup inf uTx
u ∈ X∗, x ∈ C,
‖u‖∗ = 1, ‖x‖ = 1.

(7)

The coefficient of linearity β for the regular cone C is essentially the same as the
scalar α defined in Renegar [19, p. 328]. In [7], the coefficient of linearity was used
as part of an analysis of geometric properties of the feasible region of CP (d) that are
implied by the condition number CP (d). The following proposition shows that the
width of C is equal to the coefficient of linearity of C∗.

Proposition 2.1. Suppose that C is a regular cone in the normed linear vector
space X, τ denote the width of C, and β∗ denote the coefficient of linearity for C∗.
Then τ = β∗.

Proof. From the definition of the coefficient of linearity for C∗, we have

β∗ = sup inf xTw
x ∈ X, w ∈ C∗,
‖x‖ = 1, ‖w‖∗ = 1.

(8)

From the outer optimization problem above, there exists x̄ ∈ X for which ‖x̄‖ = 1
and wT x̄ ≥ β∗ for any w ∈ C∗ satisfying ‖w‖∗ = 1. Let x ∈ B(x̄, β∗), i.e., x = x̄+β∗v,
where ‖v‖ ≤ 1. For any w ∈ C∗ satisfying ‖w‖∗ = 1, we have wTx = wT x̄+β∗wT v ≥
wT x̄− β∗‖w‖∗‖v‖ ≥ β∗ − β∗ = 0, and so B(x̄, β∗) ⊂ C. Therefore, τ ≥ β∗

‖x̄‖ = β∗.
From the definition of the width of C, there exists x̃ satisfying ‖x̃‖ = 1 and

B(x̃, τ) ⊂ C. Let w ∈ C∗ satisfying ‖w‖∗ = 1 be given. Then, from the duality
properties of norms, there exists v̄ ∈ X satisfying ‖v̄‖ ≤ 1 for which ‖w‖∗ = wT v̄.
Since B(x̃, τ) ⊂ C, x̃ − τ v̄ ∈ C, and so wT (x̃ − τ v̄) ≥ 0, whereby wT x̃ ≥ τwT v̄ =
τ‖w‖∗ = τ . As this is true for any given w ∈ C∗ satisfying ‖w‖∗ = 1, it follows that
β∗ ≥ τ , completing the proof.

We illustrate the width construction on two families of cones, the nonnegative
orthant <k+ and the positive semidefinite cone Sk×k+ . First consider the nonnegative

orthant. Let X = <k with Euclidean norm ‖x‖ = ‖x‖2 =
√
xTx, and C = <k+ ={

x ∈ <k | x ≥ 0
}

. Then it is straightforward to show, by setting x = e = (1, . . . , 1)T ,
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that the width of <k+ is τ = 1/
√
k. Next consider the positive semidefinite cone.

Let X = Sk×k denote the set of real k × k symmetric matrices with Frobenius norm
‖x‖ :=

√
trace(xTx), and let C = Sk×k+ =

{
x ∈ Sk×k | x � 0

}
. Then Sk×k+ is a closed

convex cone, and it is easy to show by setting x = I that the width of Sk×k+ is τ = 1√
k

.

For the remainder of this paper, we amend our notation as follows.
Definition 2.3. Whenever the cone CX is regular, the width of CX is denoted

by τ , and the width of C∗X is denoted by τ∗. Whenever the cone CY is regular, the
width CY is denoted by τ̄ , and the width of C∗Y is denoted by τ̄∗.

3. A ball construction for the ε-optimal set for CP (d). In this section we
demonstrate some valuable geometric properties of the set of ε-optimal solutions of
CP (d) that will be used later to obtain complexity bounds for the ellipsoid algorithm.
Let Xd denote the feasible region of CP (d) and let z∗(d) denote the optimal objective
function value of CP (d). For any ε > 0, denote the set of ε-optimal solutions of CP (d)
by Xε

d, i.e., Xε
d = {x ∈ X | x ∈ Xd and cTx ≥ z∗(d)− ε}.

Let ε > 0 be given. The following lemma asserts the existence of a ball in the
set of ε-optimal solutions of CP (d) that has certain geometric properties, under the
condition that the feasible region contains a ball B(x̂, r).

Lemma 3.1. Suppose that the feasible region Xd contains the ball B(x̂, r), where
r > 0. Let x∗ be an optimal solution of CP (d), and let ε > 0 be given. Then there
exists a ball B(x̄, r̄) with the following properties:

(i) B(x̄, r̄) ⊂ Xε
d ,

(ii) r̄ ≥ εr

max{ε, z∗(d)− cT x̂+ r‖c‖∗} ,

and (iii) ‖x̄‖ ≤ max {‖x̂‖, ‖x∗‖} .

Proof. We have B(x̂, r) ⊂ Xd and x∗ ∈ Xd. Therefore, from the convexity of Xd,
we have

B(αx̂+ (1− α)x∗, αr) ⊂ Xd for any α ∈ [0, 1].(9)

We have two cases.
Case 1. ε ≤ z∗(d)− cT x̂+ r‖c‖∗. Define

α =
ε

z∗(d)− cT x̂+ r‖c‖∗ , x̄ = αx̂+ (1− α)x∗ , and r̄ = αr.

Then α ∈ [0, 1] and so B(x̄, r̄) ⊂ Xd from (9). Furthermore, for any x ∈ B(x̄, r̄), we
have

cTx ≥ αcT x̂+ (1− α)cTx∗ − αr‖c‖∗ = z∗(d)− α (z∗(d)− cT x̂+ r‖c‖∗
)

= z∗(d)− ε,

whereby (i) is satisfied. For (ii), note that

r̄ = αr =
εr

z∗(d)− cT x̂+ r‖c‖∗ =
εr

max{ε, z∗(d)− cT x̂+ r‖c‖∗} .

Part (iii) follows since ‖x̄‖ = ‖αx̂+ (1− α)x∗‖ ≤ max {‖x̂‖, ‖x∗‖}.
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Case 2. ε > z∗(d)− cT x̂+ r‖c‖∗. Define

x̄ = x̂ and r̄ = r.

To prove (i), note that for any x ∈ B(x̂, r), we have

cTx ≥ cT x̂− r‖c‖∗ = z∗(d)− (z∗(d)− cT x̂+ r‖c‖∗
)
> z∗(d)− ε,

whereby (i) is satisfied. Parts (ii) and (iii) follow trivially.
We would like to apply Lemma 3.1 to obtain a lower bound on the volume of the

set of ε-optimal solutions of CP (d). However, in order to obtain such a lower bound
via Lemma 3.1, we need the following ingredients:

(i) an upper bound on the optimal objective function value z∗(d) of CP (d),
(ii) an upper bound on the norm of an optimal solution x∗ of CP (d), and
(iii) the existence of a ball B(x̂, r) in the feasible region for which there is an

upper bound on ‖x̂‖ and a lower bound on r.
The following previously derived results pertain to the first two conditions above.
Theorem 1 of [17]. Suppose that d ∈ F and C(d) < +∞. Then

|z∗(d)| ≤ ‖c‖∗C(d).(10)

Furthermore, CP (d) attains its optimum and every optimal solution x∗ satisfies

‖x∗‖ ≤ C(d)2 .(11)

The third condition above is treated with the following previously known results.
Theorem 5.1 of [7] Suppose that CX is a regular cone and CY is a regular cone

and that d ∈ F and that C(d) < +∞. Then there exists x̂ ∈ Xd and a scalar r > 0
such that B(x̂, r) ⊂ Xd, and

r ≥ min{τ, τ̄}
6C(d)

, ‖x̂‖ ≤ 4C(d)

min{τ, τ̄} , and
‖x̂‖
r
≤ 6C(d)

min{τ, τ̄} .(12)

Theorem 5.3 of [7] Suppose that CX is a regular cone and CY = {0} and that
d ∈ F and that C(d) < +∞. Then there exists x̂ ∈ Xd and a scalar r > 0 such that
{x ∈ X | ‖x− x̂‖ ≤ r,Ax = b} ⊂ Xd, and

r ≥ τ

3C(d)
, ‖x̂‖ ≤ 4C(d)

τ
, and

‖x̂‖
r
≤ 3C(d)

τ
.(13)

Theorem 5.5 of [7] Suppose that CX = X and CY is a regular cone, that
d ∈ F , and that C(d) < +∞. Then there exists x̂ ∈ Xd and a scalar r > 0 such that
B(x̂, r) ⊂ Xd, and

r ≥ τ̄

3C(d)
, ‖x̂‖ ≤ 3C(d)

τ̄
, and

‖x̂‖
r
≤ 2C(d)

τ̄
.(14)

(These three results are slightly altered from their presentation in [7], which uses
the notation of coefficients of linearity. In the notation of [7], we have from Proposition
2.1 that τ = β∗, τ∗ = β, τ̄ = β̄∗, and τ̄∗ = β̄. The above statements follow by noticing

from [7] that C(d) ≥ 1, τ ≤ 1, τ̄ ≤ 1, and ‖x̂‖r ≤ R
r − 1.)
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4. The ellipsoid algorithm and a homogenizing transformation. We re-
view a few basic results regarding the ellipsoid algorithm for solving an optimization
problem; see [26], [21], [9], [4], [8], [3]. We will consider the following optimization
problem:

P : maximize f(x)
x

s.t. x ∈ S,
(15)

where S is a convex set (closed or not) in <k, f(x) is a quasi-concave function, and

‖x‖2 :=
√
xTx is the Euclidean norm. Actually, the ellipsoid algorithm is more usually

associated with the assumption that S is a closed convex set and also that f(x) is a
concave function, but these assumptions can be relaxed slightly. It is only necessary
that S be a convex set, that the upper level sets of f(x) be convex sets on S (which
is equivalent to the statement that f(x) is a quasi-concave function on S; see [2], for
example), and that a separation oracle be available for S as well as for each of the
upper level sets of f(x). (Note that if f(x) is a differentiable quasi-concave function,
then ∇f(x) furnishes a separation oracle for the upper level sets of f(x), provided
that ∇f(x) does not vanish at any nonmaximizing points.)

In order to implement the ellipsoid algorithm to approximately solve P , it is
necessary that one has available a separation oracle for the set S, i.e., that for any
x̄ /∈ S, one can perform a feasibility cut for the set S, which consists of computing
a vector v 6= 0 for which S ⊂ {x | vTx ≥ vT x̄}. Suppose that T1 is an upper
bound on the number of operations needed to perform a feasibility cut for the set
S. It is also necessary that one has available a support oracle for the upper level
sets Uα = {x ∈ S | f(x) ≥ α} of the quasi-concave function f(x). That is, for
any x̄ ∈ S, it is necessary to be able to perform an optimality cut for the objective
function f(x) at any point x̄ ∈ S, which consists of computing a vector v 6= 0 for
which Uf(x̄) ⊂ {x ∈ <k | vTx ≥ vT x̄}. Suppose that T2 is an upper bound on the
number of operations needed to compute an optimality cut for the function f(x) on
the set S.

Let z∗ denote the optimal value of P , and denote the set of ε-optimal solutions
of P by Sε, i.e., Sε = {x ∈ <k | x ∈ S and f(x) ≥ z∗ − ε}. In a typical application
of the ellipsoid algorithm, we wish to find an ε-optimal solution of P . Suppose that
we know a priori a positive scalar R with the property that

B(0, R) ∩ Sε

has positive volume, where B(x̄, r) := {x ∈ <k | ‖x − x̄‖2 ≤ r} is the Euclidean
ball centered at x̄ with radius r. Then the ellipsoid algorithm for solving P can be
initiated with the Euclidean ball B(0, R). The following is a generic result about
the performance of the ellipsoid algorithm, where in the statement of the theorem,
“vol(Q)” denotes the volume of a set Q.

Ellipsoid Algorithm Theorem with Known R (from [26], [21]). Suppose
that a positive scalar R is known with the property that the set

F := B(0, R) ∩ Sε

has positive volume. Then, if the ellipsoid algorithm is initiated with the Euclidean
ball B(0, R), the algorithm will compute an ε-optimal solution of P in at most⌈

2(k + 1) ln

(
vol(B(0, R))

vol(B(0, R) ∩ Sε)
)⌉

(16)
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iterations, where each iteration must perform at most
(
k2 + max{T1, T2}

)
operations,

and where T1 and T2 are the numbers of operations needed to perform a feasibility cut
on S and an optimality cut on f(x), respectively.

We note that the bound on the number of operations per iteration arises from
performing either a feasibility or an optimality cut (which takes max{T1, T2} opera-
tions), and then performing a rank-one update of the positive definite matrix defining
the ellipsoid (see [3], for example), which takes k2 operations.

Because an a priori bound on R is typically not known except in very special
cases of P , we employ a standard homogenizing transformation to convert P to the
homogenized fractional program:

HP : maximize g(w, θ) := f(w/θ)
w, θ
s.t. w ∈ θS,

θ > 0

(17)

(see, for example, [5] and [6]). It is trivial to show that z∗ is the common optimal
objective function value of P and HP . Let H and Hε denote the set of feasible and
ε-optimal solutions of HP , respectively, i.e.,

H = {(w, θ) ∈ <k+1 | w ∈ θS, θ > 0}(18)

and

Hε = {(w, θ) ∈ <k+1 | w ∈ θS, θ > 0, g(w, θ) ≥ z∗ − ε}.(19)

Then H and Hε are both convex sets. Furthermore, the objective function g(w, θ) :=
f(w/θ) of HP is easily seen to be a quasi-concave function over the feasible region H
whenever f(x) is a quasi-concave function over the feasible region S. The following
(obvious) transformations h(·) and h−1(·) map the feasible regions and ε-optimal re-
gions of P and HP onto one another:

h(T ) = {(w, θ) ∈ <k+1 | w/θ ∈ T and θ > 0} for any T ⊂ S(20)

and

h−1(W ) = {x ∈ <k | x = w/θ for some (w, θ) ∈W} for any W ⊂ H .(21)

Because any feasible solution of HP can be scaled by an arbitrary positive scalar
without changing its objective function value or affecting its feasibility, the feasible
region and all upper level sets of the objective function g(w, θ) of HP contain points
in the (k + 1)-dimensional unit Euclidean ball. This allows us to conveniently start
the ellipsoid algorithm for solving HP with the (k + 1)-dimensional unit Euclidean
ball.

The following result concerns volumes of subsets of S under the projective trans-
formation h(·) and provides the final ingredient we will need for our analysis of the
ellipsoid algorithm. Let Bk+1 denote the (k + 1)-dimensional unit Euclidean ball,
namely,

Bk+1 :=
{

(w, θ) ∈ <k+1 |
√
wTw + θ2 ≤ 1

}
.
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Lemma 4.1. Suppose that S is a convex set in <k, that T ⊂ S is given, that there
exists r̄ > 0 and x̄ for which B(x̄, r̄) ⊂ T , and that r̄ ≤ 1. Let W = h(T ), where h(·)
is defined as in (20). Then

ln

(
vol
(
Bk+1

)
vol (Bk+1 ∩W )

)
≤ (k + 1) ln

(
2 +

3(‖x̄‖+ 1)

r̄

)
+ [ln (‖x̄‖)]+ .

Proof. We first define two constants,

δ = max{‖x̄‖, 1}
and

γ = 1 +
r̄

3
+

r̄

3δ
+ ‖x̄‖,

and we define the following ellipsoid centered at (x̄, 1) ∈ <k+1:

E =

{
(w, θ) ∈ <k+1 |

√
(w − x̄)T (w − x̄) + δ2(θ − 1)2 ≤ r̄

3

}
.

We prove below that

E ⊂W,(22)

E ⊂ γBk+1.(23)

It then follows that

γ−1E ⊂ Bk+1 and γ−1E ⊂W,(24)

and so

γ−1E ⊂ Bk+1 ∩W,(25)

since in particular W is closed under positive scalings. Then

ln

(
vol
(
Bk+1

)
vol (Bk+1 ∩W )

)
≤ ln

(
vol
(
Bk+1

)
vol (γ−1E)

)

= (k + 1) ln(γ) + ln

(
vol
(
Bk+1

)
vol (E)

)

= (k + 1) ln(γ) + ln

 1( r̄
3

)k+1
(

1

δ

)


= (k + 1) ln

(
3γ

r̄

)
+ ln (δ)

= (k + 1) ln

(
3

r̄
+ 1 +

1

δ
+

3‖x̄‖
r̄

)
+ ln (δ)

≤ (k + 1) ln

(
2 +

3(‖x̄‖+ 1)

r̄

)
+ [ln (‖x̄‖)]+ ,
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since δ ≥ 1. We therefore need to demonstrate (22) and (23) to complete the proof.
For any (w, θ) ∈ E, (w, θ) = (x̄+ q, 1 + v), where ‖q‖ ≤ r̄

3 and |v| ≤ r̄
3δ ≤ 1

3 , since
r̄ ≤ 1 and δ ≥ 1, and so θ ≥ 2

3 > 0. We also have

w

θ
=
x̄+ q

1 + v
= x̄+

q − vx̄
1 + v

,

and so ∥∥∥w
θ
− x̄
∥∥∥ =

‖q − vx̄‖
1 + v

≤ 3

2
(‖q‖+ |v|‖x̄‖) ≤ 3

2

( r̄
3

+
r̄

3δ
‖x̄‖
)
≤ r̄ .

Therefore, wθ ∈ B(x̄, r̄), whereby w
θ ∈ T , and so w ∈ θT or, equivalently, (w, θ) ∈ h(T ).

Therefore, E ⊂ h(T ) = W , proving (22).
To prove (23), let (w, θ) ∈ E. Then ‖w − x̄‖2 ≤ r̄

3 and |θ − 1| ≤ r̄
3δ . Therefore,

‖(w, θ)‖2 ≤ ‖(w − x̄, θ − 1)‖2 + ‖(x̄, 1)‖2

≤ ‖w − x̄‖2 + |θ − 1|+ ‖x̄‖2 + 1

≤ r̄

3
+

r̄

3δ
+ ‖x̄‖2 + 1

= γ ,

and so (w, θ) ∈ γBk+1, which proves (23) and thus the proof of the lemma is
complete.

It is trivial to show that a separation oracle for S can be readily converted to
a separation oracle for H. If T1 is the number of operations needed to compute a
feasibility cut for S, then one needs O(T1 + k) operations to compute a feasibility cut
for H. Furthermore, any support oracle for the upper level sets of f(x) over S can
be readily converted to a support oracle for the upper level sets of g(w, θ) over H.
To see why this is true, suppose that (w̄, θ̄) is a feasible solution of HP , and define
x̄ = w̄/θ̄. Then x̄ is feasible for P and let v be the vector produced by the support
oracle for f(x) at x = x̄. Then

{x ∈ S | f(x) ≥ f(x̄)} ⊂ {x ∈ <k | vTx ≥ vT x̄} ,
which implies that{

(w, θ) ∈ H | g(w, θ) ≥ g(w̄, θ̄)
} ⊂ {(w, θ) ∈ <k+1 | vTw − ((vT w̄)/θ̄)θ ≥ 0

}
,

and so the concatenated vector (v,−(vT w̄/θ̄)) is a support vector for the upper level
set of the function g(w, θ) at the feasible point (w̄, θ̄). If T2 is the number of operations
needed to compute an optimality cut on f(x) over S, then one needs O(T2 + k)
operations to compute an optimality cut on g(w, θ) over H.

Finally, returning to the problem CP (d), note that the homogenized problem
corresponding to CP (d) is

HP (d) : maximizew,θ g(w, θ) :=
cTw

θ
s.t. bθ −Aw ∈ CY ,

w ∈ CX ,
θ > 0 ,

(26)

which we refer to as HP (d).
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5. Complexity results. In this section, we assume that X = <n is endowed
with the Euclidean norm ‖x‖ = ‖x‖2 =

√
xTx. For the purpose of developing com-

plexity results, we focus on three different classes of instances of CP (d), namely,

Class (i): CX and CY are both regular;

Class (ii): CX is regular and CY = {0};

Class (iii): CX = X and CY is regular.

For these three classes of instances, CP (d) can be written as (i) max{cTx | b−Ax ∈
CY , x ∈ CX}, (ii) max{cTx | Ax = b, x ∈ CX}, and (iii) max{cTx | b−Ax ∈ CY , x ∈
X}, respectively.

The following three theorems contain iteration complexity bounds on the ellipsoid
algorithm for these three classes of instances of CP (d), respectively. The proofs of
the theorems are deferred to the end of the section.

Theorem 5.1. Suppose that CX is a regular cone with width τ , that CY is a
regular cone with width τ̄ , and that d ∈ F and C(d) < +∞. Let ε satisfying 0 < ε <
‖c‖∗ be given. Suppose that the ellipsoid algorithm is applied to solve HP (d) and is
initiated with the Euclidean unit ball centered at (w0, θ0) = (0, 0). Then the ellipsoid
algorithm will compute an ε-optimal solution of HP (d) (and hence, by transformation,
to CP (d)) in at most ⌈

8(n+ 2)2 ln

(
4C(d)

min{τ, τ̄}
‖c‖∗
ε

)⌉
iterations, where each iteration must perform at most

(
(n+1)2 +max{2n, S1,m+mn

+S2}
)

operations, and where S1 and S2 are the number of operations needed to per-
form a feasibility cut on CX and CY , respectively.

Theorem 5.2. Suppose that CX is a regular cone with width τ , that CY = {0},
and that d ∈ F and C(d) < +∞. Let ε satisfying 0 < ε < ‖c‖∗ be given. Suppose that
the ellipsoid algorithm is applied to solve HP (d) and is initiated with the Euclidean
unit disk centered at (w0, θ0) = (0, 0) in the subspace {(w, θ) ∈ <n+1 | Aw − bθ = 0}.
Then the ellipsoid algorithm will compute an ε-optimal solution of HP (d) (and hence,
by transformation, to CP (d)) in at most⌈

8(n−m+ 2)2 ln

(
3C(d)

τ

‖c‖∗
ε

)⌉
iterations, where each iteration must perform at most

(
(n−m+ 1)2 + max{2n, S1}

)
operations, and where S1 is the number of operations needed to perform a feasibility
cut on CX .

Theorem 5.3. Suppose that CX = X and CY is a regular cone with width τ̄ ,
and that d ∈ F and C(d) < +∞. Let ε satisfying 0 < ε < ‖c‖∗ be given. Suppose that
the ellipsoid algorithm is applied to solve HP (d), and is initiated with the Euclidean
unit ball centered at (w0, θ0) = (0, 0). Then the ellipsoid algorithm will compute an
ε-optimal solution of HP (d) (and hence, by transformation, to CP (d)) in at most⌈

8(n+ 2)2 ln

(
3C(d)

τ̄

‖c‖∗
ε

)⌉
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iterations, where each iteration must perform at most
(
(n+ 1)2 + max{2n,m+mn+

S2}
)

operations and where S2 is the number of operations needed to perform a feasi-
bility cut on CY .

Proof of Theorem 5.1. Let

a1 =
6

min{τ, τ̄} , a2 =
4

min{τ, τ̄} , and a3 =
6

min{τ, τ̄} .(27)

Then, from (12), we have that there exists x̂ and r > 0 such that B(x̂, r) ⊂ Xd, and

1

r
≤ a1C(d), ‖x̂‖ ≤ a2C(d) , and

‖x̂‖
r
≤ a3C(d) .(28)

Applying Lemma 3.1, Xε
d contains a ball B(x̄, r̄) with the following properties:

1

r̄
≤ max{ε, z∗(d)− cT x̂+ r‖c‖∗}

εr
and ‖x̄‖ ≤ max {‖x̂‖, ‖x∗‖} ,(29)

where x∗ is any optimal solution of CP (d). Furthermore, from (10) and (11), we have
|z∗(d)| ≤ ‖c‖∗C(d) and ‖x∗‖ ≤ C(d)2.

Examining the first inequality of (29), notice that

max{ε, z∗(d)− cT x̂+ r‖c‖∗}
εr

≥ ‖c‖∗
ε
≥ 1 .

If r̄ > 1, we can reset r̄ = 1 and (29) will still hold. Therefore, there is no loss of
generality in assuming that r̄ ≤ 1.

The dimension in which the ellipsoid algorithm is implemented is n+ 1. Let Hε
d

denote the set of ε-optimal solutions of HP (d), and so Hε
d is the image of Xε

d under
the transformation h(·) of (20). Then, from the ellipsoid algorithm theorem (16), the
algorithm will compute an ε-optimal solution of HP (d) in at most⌈

2(n+ 2) ln

(
vol(Bn+1)

vol(Bn+1 ∩Hε
d)

)⌉
(30)

iterations, where Bn+1 is the (n+ 1)-dimensional Euclidean unit ball.
Now let T = Xε

d. Then Hε
d = h(T ) and B(x̄, r̄) ⊂ Xε

d. Furthermore, r̄ ≤ 1 from
the comments above. We therefore can apply Lemma 4.1 to bound the logarithm
term of (30):

ln

(
vol
(
Bn+1

)
vol (Bn+1 ∩Hε

d)

)
≤ (n+ 1) ln

(
2 +

3(‖x̄‖+ 1)

r̄

)
+ [ln (‖x̄‖)]+ .(31)

We now bound the relevant quantities in (31) in order to obtain the desired bound
on (30).

From (29) we have

‖x̄‖
r̄

≤ 1

ε
max {‖x̂‖, ‖x∗‖}max

{
ε

r
,
z∗(d)− cT x̂

r
+ ‖c‖∗

}

≤ 1

ε
max {‖x̂‖, ‖x∗‖}

(
max

{
ε

r
,
z∗(d)− cT x̂

r

}
+ ‖c‖∗

)

≤ 1

ε
max

{‖x̂‖
r

,
‖x∗‖
r

}
max

{
ε, z∗(d)− cT x̂}+

1

ε
max {‖x̂‖, ‖x∗‖} ‖c‖∗ .
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Substituting in the bounds from (28), (10), and (11) and recalling that ε ≤ ‖c‖∗, we
obtain from the above inequality

‖x̄‖
r̄

≤ 1

ε
max

{
a3C(d), a1C(d)3

}
max {‖c‖∗, ‖c‖∗C(d) + ‖c‖∗a2C(d)}

+
1

ε
max

{
a2C(d), C(d)2

} ‖c‖∗ ,
whereby we obtain

‖x̄‖
r̄
≤ ‖c‖∗

ε
C(d)4 [(1 + a2) (max {a1, a3}) + a2] .(32)

From (29) we have

1

r̄
≤ max{ε, z∗(d)− cT x̂+ r‖c‖∗}

εr

=
1

ε
max

{
ε

r
,
z∗(d)− cT x̂

r
+ ‖c‖∗

}

≤ 1

ε

(
max

{‖c‖∗
r

,
z∗(d)− cT x̂

r

}
+ ‖c‖∗

)

≤ 1

ε

[
max

{‖c‖∗
r

,
‖c‖∗C(d)

r
+
‖c‖∗‖x̂‖

r

}
+ ‖c‖∗

]
(from (10))

≤ ‖c‖∗
ε

[
max

{
a1C(d), a1C(d)2 + a3C(d)

}
+ 1
]

(from (28)),

and so

1

r̄
≤ ‖c‖∗

ε
C(d)2 (a1 + a3 + 1) .(33)

We also have from (29) that

‖x̄‖ ≤ max {‖x̂‖, ‖x∗‖} ≤ max
{
a2C(d), C(d)2

} ≤ a2C(d)2 .(34)

Substituting (32), (33), and (34) into (31) and then substituting (31) into (30)
yields the following iteration bound on the ellipsoid algorithm:

(35)⌈
2(n+ 2)

[
(n+ 1) ln

(
2 +

3‖c‖∗
ε
C(d)4 (1 + a1 + a2 + a3 + (1 + a2) max {a1, a3})

)
+ ln(a2C(d)2)

]⌉
.

Substituting (27) into (35), we obtain the following chain of upper bounds on the
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iteration bound:⌈
2(n+ 2)

{
(n+ 1) ln

(
2 +

141‖c‖∗
ε(min {τ, τ̄})2

C(d)4

)
+ ln

(
4

min {τ, τ̄}C(d)2

)}⌉

≤
⌈

2(n+ 2)2 ln

(
143‖c‖∗

ε

( C(d)

min {τ, τ̄}
)4
)⌉

≤
⌈

8(n+ 2)2 ln

(
4C(d)

min {τ, τ̄}
‖c‖∗
ε

)⌉
.

The number of operations needed to perform an optimality cut in HP (d) is at
most 2n, since an upper level set support vector for g(w, θ) at a feasible point (w̄, θ̄)
of HP (d) is computed as (c,−(cT w̄/θ̄)), and the number of operations needed to
compute and test for feasibility of bθ −Aw ∈ CY is (m+mn+ S2).

The proofs of Theorems 5.2 and 5.3 are accomplished by slightly modifying the
analysis in the proof of Theorem 5.1 as per the following remark.

Remark 5.1. Note in the proof of Theorem 5.1 that the ellipsoid algorithm
iteration bound in (35) was derived based only on the following facts: the feasible
region of CP (d) contains a ball B(x̂, r) satisfying 1

r ≤ a1C(d), ‖x̂‖ ≤ a2C(d), and
‖x̂‖
r ≤ a3C(d); |z∗(d)| ≤ ‖c‖∗C(d); and there exists an optimal solution x∗ of CP (d)

satisfying ‖x∗‖ ≤ C(d)2.
This remark will be used in the proofs of Theorems 5.2 and 5.3, which we now

do in reverse order.
Proof of Theorem 5.3. Let

a1 =
3

τ̄
, a2 =

3

τ̄
, and a3 =

2

τ̄
.(36)

Then from (14) we know that the feasible region of CP (d) contains a ball B(x̂, r)

satisfying 1
r ≤ a1C(d), ‖x̂‖ ≤ a2C(d), and ‖x̂‖

r ≤ a3C(d). Also, from (10), we have
|z∗(d)| ≤ ‖c‖∗C(d). Furthermore, from (11), there exists an optimal solution x∗ of
CP (d) satisfying ‖x∗‖ ≤ C(d)2. Then, from Remark 5.1, the iteration bound of (35)
is valid with values of a1, a2, and a3 from (36). Substituting (36) into (35) yields the
following iteration bound:⌈

2(n+ 2)

{
(n+ 1) ln

(
2 +

63‖c‖∗
ετ̄2

C(d)4

)
+ ln

(
3

τ̄
C(d)2

)}⌉

≤
⌈

2(n+ 2)2 ln

(
65‖c‖∗
ε

(C(d)

τ̄

)4
)⌉

≤
⌈

8(n+ 2)2 ln

(
3C(d)

τ̄

‖c‖∗
ε

)⌉
.

Proof of Theorem 5.2. The feasible region of CP (d) lies in the affine set {x ∈
<n | Ax = b}. In order to apply the ellipsoid algorithm conveniently, we construct
a Euclidean-norm-preserving linear transformation to <(n−m). For concreteness, we
assume with no loss of generality that A is an m × n real matrix. Let F be an
(n −m) × n matrix whose rows form an orthonormal basis for the null space of A,
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and let g = AT (AAT )−1b, where C(d) < +∞ implies that rank(A) = m and so F and
g are well defined. Then the following problems are equivalent under the invertible
linear transformations s = Fx, x = FT s+ g between {x ∈ <n | Ax = b} and <(n−m):

CP (d) : maximize cTx Q : maximize cTFT s+ cT g
s.t. Ax = b, s.t. FT s+ g ∈ CX .

x ∈ CX ,

Let

a1 =
3

τ
, a2 =

4

τ
, and a3 =

3

τ
.(37)

Then, from (13), we know that there exists x̂ and r for which Ax̂ = b and B(x̂, r) ⊂
CX , and that satisfies 1

r ≤ a1C(d), ‖x̂‖ ≤ a2C(d), and ‖x̂‖r ≤ a3C(d). If we let ŝ := Fx̂,
then it is straightforward to show that B(ŝ, r) is contained in the feasible region of Q

and that ‖ŝ‖ ≤ ‖x̂‖ ≤ a2C(d), and ‖ŝ‖r ≤ a3C(d), where ‖s‖ = ‖s‖2 for s ∈ <n−m and
B(s, r) is the Euclidean ball centered at s ∈ <n−m with radius r. Let zQ denote the
optimal objective function value of Q, and let x∗ denote an optimal solution of CP (d).
Then one can also easily show that zQ = z∗(d), and so |zQ| = |z∗(d)| ≤ ‖c‖∗C(d) from
(10). Furthermore, let s∗ := Fx∗. Then it is easy to show that s∗ is an optimal
solution of Q and ‖s∗‖ ≤ ‖x∗‖ ≤ C(d)2 from (11). Then, from Remark 5.1, the
iteration bound of (35) is valid for the program Q with values of a1, a2, and a3 from
(37) and with the dimension n replaced by n−m. Substituting (37) into (35) yields
the following iteration bound:⌈

2(n−m+ 2)

{
(n−m+ 1) ln

(
2 +

78‖c‖∗
ετ2

C(d)4

)
+ ln

(
4

τ
C(d)2

)}⌉

≤
⌈

2(n−m+ 2)2 ln

(
80‖c‖∗
ε

(C(d)

τ

)4
)⌉

≤
⌈

8(n−m+ 2)2 ln

(
3C(d)

τ

‖c‖∗
ε

)⌉
.

6. Further issues: Applications to other volume-reducing cutting-plane
algorithms; testing for ε-optimality; testing for infeasibility; skewness of
the ellipsoids.

Applications to other volume-reducing cutting-plane algorithms. The
ellipsoid algorithm belongs to a larger class of efficient volume-reducing cutting-plane
algorithms that includes the method of centers of gravity [11], the method of inscribed
ellipsoids [10], and the method of volumetric centers [22], among others. Here we
discuss how our analysis of the ellipsoid algorithm can be easily extended to these
other methods. To keep the discussion simple, we focus on the class of instances of
CP (d), where CX and CY are both regular cones.

Consider the strategy of applying either the method of centers of gravity or the
method of inscribed ellipsoids to solve CP (d) by solving HP (d), starting with the
unit ball Bn+1 in <n+1 (centered at the origin) and with the goal of computing an
ε-optimal solution to HP (d) and hence to CP (d) as well. Because both of these
methods achieve an (absolute) constant reduction in volume at each iteration, the
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iteration complexity of each of these methods will be O( ln(
vol(Bn+1)

vol(Bn+1∩Hε
d)

)) in order

to find an ε-optimal solution of CP (d). Now notice that a slight rearrangement of the
proof of Theorem 5.1 yields the following inequality:

ln

(
vol
(
Bn+1

)
vol (Bn+1 ∩Hε

d)

)
≤ 4(n+ 2) ln

(
4C(d)

min{τ, τ̄}
‖c‖∗
ε

)
.(38)

Therefore, the iteration complexity of these two methods is O(n ln( C(d)
min{τ,τ̄}

‖c‖∗
ε )).

The analysis of the method of volumetric centers is roughly the same as above;
this method also achieves a constant reduction in volume at each iteration. However,
the volumetric centers method must be initiated with a polytope as opposed to a
Euclidean ball. Suppose we endow X = <n with the L∞ norm rather than the
Euclidean norm and that we apply the method of volumetric centers to solve HP (d)
initiated at the unit cube Cn+1 in <n+1. Then an identical version of (38) can
be proved with Bn+1 replaced by Cn+1, and so one can prove that the method of

volumetric centers also has iteration complexity O(n ln( C(d)
min{τ,τ̄}

‖c‖∗
ε )). We also point

out that the method of volumetric centers requires fewer total arithmetic operations
than the ellipsoid algorithm.

Similar results can be derived for the two other classes of instances of CP (d).
For a more thorough discussion of the complexity of volume-reducing cutting-plane
methods, see [12].

Testing for ε-optimality by solving the dual problem. One uncomfortable
fact about Theorems 5.1, 5.2, and 5.3 is that while the ellipsoid algorithm is guar-
anteed to find an ε-approximate solution of CP (d) in the stated complexity bounds
of these theorems, the quantities in the bounds may be unknown (one may know
the relevant widths of the cones, but in all likelihood the condition number C(d) is
unknown), and so one does not know when an ε-approximate solution of CP (d) has
been found. An obvious strategy for overcoming this difficulty is to solve the primal
and the dual problems in parallel, and then test at each iteration (of each algorithm)
if the best primal and dual solutions obtained so far satisfy a duality gap of at most ε.
Because of the natural symmetry in format of the dual pair of problems CP (d) and
CD(d), one can obtain complexity results for solving the dual problem CD(d) that
exactly parallel those of Theorems 5.1, 5.2, and 5.3, where the quantities ‖c‖∗, n, τ ,
and τ̄ are replaced by ‖b‖,m, τ̄∗, and τ∗, respectively, and where the cones CX and
CY are replaced by C∗Y and C∗X in the statements of the complexity results. One also
must assume that Y ∗ = <m and that the norm ‖y‖∗ on <m is the Euclidean norm.

Testing for infeasibility. If one is not sure whether CP (d) has a feasible solu-
tion, the ellipsoid algorithm can be run to test for infeasibility of the primal problem
(in parallel with attempting to solve CP (d)). This can be accomplished as follows.
First, assume that the dual space Y ∗ = <m is endowed with the Euclidean norm ‖y‖2.
Second, note that CP (d) has no feasible solution if the “alternative” system,

AP (d) : AT y ∈ C∗X ,
y ∈ C∗Y ,
yT b < 0,

has a solution. Define the following “alternative” set:

Yd = {y ∈ Y ∗ | AT y ∈ C∗X , y ∈ C∗Y , yT b ≤ 0}.(39)
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Suppose CP (d) has no feasible solution. Then, as special cases of Theorems 5.2, 5.4,
and 5.6 of [7], Yd must contain an inscribed Euclidean ball B2(ŷ, r) (or a disk in the
vector subspace {y ∈ <m | AT y = 0} if CX = X) such that ‖ŷ‖2 + r ≤ 1 (and so
B2(ŷ, r) is contained in the unit Euclidean ball) and such that

(i) r ≥ min{τ∗, τ̄∗}
4CP (d)

when CX and CY are both regular,

(ii) r ≥ τ∗

2CP (d)
when CX is regular and CY = {0},

(iii) r ≥ min{τ̄∗, τ̄}
4CP (d)

when CX = X and CY is regular.

These results can then be used to demonstrate that an upper bound on the
number of iterations needed to find a solution of AP (d) using the ellipsoid algorithm
starting with the Euclidean unit ball in <m (or the unit disk in the vector subspace
{y ∈ <m | AT y = 0} if CX = X) is

(i): O

(
m2 ln

( CP (d)

min{τ∗, τ̄∗}
))

when CX and CY are both regular,

(ii): O

(
m2 ln

(CP (d)

τ∗

))
when CX is regular and CY = {0},

(iii): O

(
(m− n)2 ln

( CP (d)

min{τ̄∗, τ̄}
))

when CX = X and CY is regular.

Bounding the skewness of the ellipsoids in the ellipsoid algorithm. Let
Ex̄,Q = {x ∈ X | (x − x̄)TQ−1(x − x̄) ≤ 1} be an ellipsoid centered at the point
x̄, where Q is a positive definite matrix. The skewness of Ex̄,Q is defined to be the
ratio of the largest to the smallest eigenvalue of the matrix Q defining Ex̄,Q, and so
the skewness also corresponds to the traditional condition number of the matrix Q.
The skewness of the ellipsoids generated in an application of the ellipsoid algorithm
determines the numerical stability of the ellipsoid algorithm, since each iteration of
the ellipsoid algorithm uses the current value of Q−1 to update the center x̄ of the
ellipsoid and to perform a rank-one update of Q−1; see [3], for example. Furthermore,
one can show that the logarithm of the skewness of the ellipsoid computed at a given
iteration is sufficient to specify the numerical precision requirements of the ellipsoid
algorithm at that iteration. Herein, we provide an upper bound on the skewness of
all of the ellipsoids computed in the ellipsoid algorithm as a function of the condition
number C(d) of CP (d).

The skewness of the unit ball (which is used to initiate the ellipsoid algorithm
herein) is 1. From the formula for updating the ellipsoids encountered in the ellipsoid
algorithm at each iteration, the skewness increases by at most (1 + 2

k−1 ) at each
iteration, where k is the dimension of the space in which the ellipsoid algorithm is
implemented. Therefore, the skewness of the ellipsoid at iteration j is bounded above
by (1 + 2

k−1 )j . Let us consider the class of instances defined for Theorem 5.1, for
example, and let J be the (unrounded) iteration bound for the ellipsoid algorithm
from Theorem 5.1, namely,

J = 8(n+ 2)2 ln

(
4C(d)

min{τ, τ̄}
‖c‖∗
ε

)
,(40)
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and assume for simplicity of exposition that J is an integer. Let (Skew)j denote the
skewness of the ellipsoid computed in the ellipsoid algorithm at iteration j. Then, for
this class of instances, we have k = n+ 1, whereby

(Skew)J ≤
(

1 +
2

n

)J
=
(
e(ln(1+ 2

n ))
)J

= eJ(ln(1+ 2
n )) =

(
eJ
)(ln(1+ 2

n ))
.(41)

Substituting for (40) in (41), we obtain

(Skew)J ≤
(

4C(d)

min{τ, τ̄}
‖c‖∗
ε

)8(n+2)2 ln(1+ 2
n )
.

However, the exponent in the above expression is bounded above by 45n for n ≥ 2
(actually, it is bounded above by 17n for large n ≥ 49), and we have

(Skew)J ≤
(

4C(d)

min{τ, τ̄}
‖c‖∗
ε

)45n

.

Taking logarithms, we can rewrite this bound as

ln (Skew)J ≤ 45n ln

(
4C(d)

min{τ, τ̄}
‖c‖∗
ε

)
.(42)

Therefore, the logarithm of the skewness of the ellipsoids encountered in the ellipsoid
algorithm grows at most linearly in the logarithm of the condition number C(d). Also,
the bound in (42) specifies the sufficient numerical precision requirements for the
ellipsoid algorithm (in terms of ln(C(d)) and other quantities) because the logarithm
of the skewness is sufficient to specify such requirements. This is similar to the
results on numerical precision presented in [25] for an interior-point method for linear
programming.

Finally, the above reasoning can be used to obtain similar bounds on the skewness
for the other two classes of instances of CP (d).
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Abstract. Conjugate gradient methods are widely used for unconstrained optimization,
especially large scale problems. The strong Wolfe conditions are usually used in the analyses and
implementations of conjugate gradient methods. This paper presents a new version of the conjugate
gradient method, which converges globally, provided the line search satisfies the standard Wolfe con-
ditions. The conditions on the objective function are also weak, being similar to those required by
the Zoutendijk condition.

Key words. unconstrained optimization, new conjugate gradient method, Wolfe conditions,
global convergence
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1. Introduction. Our problem is to minimize a function of n variables

f(x),(1.1)

where f is smooth and its gradient g(x) is available. Conjugate gradient methods for
solving (1.1) are iterative methods of the form

xk+1 = xk + αkdk,(1.2)

where αk > 0 is a steplength and dk is a search direction. Normally the search
direction at the first iteration is the steepest descent direction, namely, d1 = −g1.
The other search directions can be defined recursively:

dk+1 = −gk+1 + βkdk.(1.3)

βk ∈ < is so chosen that (1.2)–(1.3) reduces to the linear conjugate gradient method
if f(x) is a strictly convex quadratic function and if αk is the exact one-dimensional
minimizer. Well-known formulas for βk are the Fletcher–Reeves (FR), Polak–Ribière–
Polyak (PRP), and Hestenes–Stiefel (HS) formulas (see [6]; [10], [11]; and [7], respec-
tively) and are given by

βFRk = ‖gk+1‖2/‖gk‖2,(1.4)

βPRPk = gTk+1yk/‖gk‖2,(1.5)

βHSk = gTk+1yk/d
T
k yk,(1.6)

where yk = gk+1 − gk and ‖ · ‖ denotes the Euclidean norm.
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The global convergence properties of the FR, PRP, and HS methods without
regular restarts have been studied by many authors, including Zoutendijk [15], Al-
Baali [1], Liu, Han, and Yin [9], Dai and Yuan [2], Powell [12], Gilbert and Nocedal
[8], and Dai and Yuan [4]. To establish the convergence results of these methods, it is
normally required that the steplength αk satisfy the following strong Wolfe conditions:

f(xk)− f(xk + αkdk) ≥ −δαkgTk dk,(1.7)

|g(xk + αkdk)T dk| ≤ −σgTk dk,(1.8)

where 0 < δ < σ < 1. Some convergence analyses even require the αk be computed
by the exact line search, namely,

f(xk + αkdk) = min
α>0

f(xk + αdk).(1.9)

On the other hand, many other numerical methods for unconstrained optimization
are proved to be convergent under the standard Wolfe conditions (1.7) and

g(xk + αkdk)T dk > σgTk dk.(1.10)

For example, see Fletcher [5]. Hence it is interesting to investigate whether there exists
a conjugate gradient method that converges under the standard Wolfe conditions.

In this paper, we give a new formula for βk. It is shown that this new conjugate
gradient method is globally convergent as long as the standard Wolfe conditions (1.7)
and (1.10) are satisfied. Moreover, the conditions on the objective function are also
weaker than the usual ones.

2. New formula for βk. One motivation for our new formula for βk is the
descent property of the conjugate descent method (see Fletcher [5]), which uses

βCDk = ‖gk+1‖2/(−dTk gk).(2.1)

It can be shown that the conjugate descent method always produces a descent direc-
tion if the strong Wolfe conditions are satisfied. We try to find a conjugate gradient
method which generates descent directions provided the standard Wolfe conditions
are satisfied. Suppose the current search direction dk is a descent direction, namely,
dTk gk < 0. Now we need to find a βk that defines a descent direction dk+1. This
requires that

−‖gk+1‖2 + βkg
T
k+1dk < 0.(2.2)

We assume that βk > 0. Denote τk = ‖gk+1‖2/βk. The above inequality is equivalent
to

τk > gTk+1dk.(2.3)

Therefore, we can let τk = dTk yk, giving our new formula

βk = ‖gk+1‖2/dTk yk.(2.4)

This formula is well defined because line search condition (1.10) implies dTk yk > 0.
If line searches are exact, the above formula is the same as the FR formula (1.4).
Therefore we see that (2.4) corresponds to a nonlinear conjugate gradient method.
It is interesting to note that (2.4) has the same numerator as the FR formula (1.4)
and has the same denominator as the HS formula (1.6). Now we can define the new
method, as follows.
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Algorithm 2.1 (A new CG method).
Step 1. Given x1 ∈ <n, d1 = −g1, k := 1, if g1 = 0, then stop.
Step 2. Compute an αk > 0 satisfying (1.7) and (1.10).
Step 3. Let xk+1 = xk + αkdk. If gk+1 = 0, then stop.
Step 4. Compute βk by (2.4) and generate dk+1 by (1.3),

k := k + 1, go to Step 2.
It follows from (1.3) and (2.4) that

gTk+1dk+1 =
‖gk+1‖2
dTk yk

gTk dk = βkg
T
k dk.(2.5)

The above relation can be rewritten as

βk =
gTk+1dk+1

gTk dk
.(2.6)

This formula is very important in our convergence analysis.

3. Convergence of the new method. In this section, we establish a conver-
gence theorem for Algorithm 2.1. We assume that the objective function satisfies the
following conditions.

Assumption 3.1. (1) f is bounded below on <n and is continuously differentiable
in a neighborhood N of the level set L = {x ∈ <n : f(x) ≤ f(x1)}; (2) the gradient
∇f(x) is Lipschitz continuous in N , i.e., there exists a constant L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for any x, y ∈ N .(3.1)

Under Assumption 3.1, we give a useful lemma which was essentially proved by
Zoutendijk [15] and Wolfe [13, 14].

Lemma 3.2. Suppose that x1 is a starting point for which Assumption 3.1 is
satisfied. Consider any method of the form (1.2), where dk is a descent direction and
αk satisfies the standard Wolfe conditions (1.7) and (1.10). Then we have that

∑
k≥1

(gTk dk)2

‖dk‖2 <∞.(3.2)

Proof. It follows from (1.10) that

dTk yk = dTk (gk+1 − gk) ≥ (σ − 1)gTk dk.(3.3)

On the other hand, the Lipschitz condition (3.1) implies

(gk+1 − gk)T dk ≤ αkL‖dk‖2.(3.4)

The above two inequalities give

αk ≥ σ − 1

L
· g

T
k dk
‖dk‖2 ,(3.5)

which with (1.7) implies that

fk − fk+1 ≥ c (gTk dk)2

‖dk‖2 ,(3.6)
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where c = δ(1 − σ)/L. Summing (3.6) and noting that f is bounded below, we see
that (3.2) holds, which concludes the proof.

Theorem 3.3. Suppose that x1 is a starting point for which Assumption 3.1
holds. Let {xk, k = 1, 2 . . .} be generated by Algorithm 2.1. Then the algorithm either
terminates at a stationary point or converges in the sense that

lim inf
k→∞

‖gk‖ = 0.(3.7)

Proof. If the algorithm does not terminate after finite many iterations, we have
that

‖gk‖ > 0 for all k.(3.8)

First we show all search directions are descent, namely,

gTk dk < 0(3.9)

for all k. The above inequality is obvious for k = 1. Now we prove it for all k ≥ 1 by
induction. Assume (3.9) holds for k. It follows from the line search conditions that

dTk yk ≥ (σ − 1)dTk gk > 0.(3.10)

The above inequality and (2.5) imply that (3.9) holds for k+ 1. This shows that (3.9)
is true for all k ≥ 1.

We now rewrite (1.3) as

dk+1 + gk+1 = βkdk.(3.11)

Squaring both sides of the above equation, we get

‖dk+1‖2 = β2
k‖dk‖2 − 2gTk+1dk+1 − ‖gk+1‖2.(3.12)

Dividing both sides by (gTk+1dk+1)2 and applying (2.6), we obtain that

‖dk+1‖2
(gTk+1dk+1)2

=
‖dk‖2

(gTk dk)2
− 2

gTk+1dk+1
− ‖gk+1‖2

(gTk+1dk+1)2

=
‖dk‖2

(gTk dk)2
−
(

1

‖gk+1‖ +
‖gk+1‖
gTk+1dk+1

)2

+
1

‖gk+1‖2

≤ ‖dk‖2
(gTk dk)2

+
1

‖gk+1‖2 .(3.13)

Because ‖d1‖2/(gT1 d1)2 = 1/‖g1‖2, (3.13) shows that

‖dk‖2
(gTk dk)2

≤
k∑
i=1

1

‖gi‖2(3.14)

for all k. If the theorem is not true, there exists a constant c > 0 such that

‖gk‖ ≥ c for all k.(3.15)
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Therefore it follows from (3.14) and (3.15) that

‖dk‖2
(gTk dk)2

≤ k

c2
,(3.16)

which implies that ∑
k≥1

(gTk dk)2

‖dk‖2 =∞.(3.17)

Relation (3.17) contradicts the Zoutendijk condition (3.2). This contradiction shows
that the theorem is true.

4. Discussion. It is shown in the previous section that the new conjugate gra-
dient method converges under the standard Wolfe line search conditions. It should
be noted that our assumption that the objective function is bounded below is weaker
than the usual assumption that the level set

{x ∈ <n : f(x) ≤ f(x1)}(4.1)

is bounded.
From the proof of Theorem 3.3, we can see that the equivalent form (2.6) of the

formula (2.4) plays an important role in the convergence analysis. Relation (2.6)
enables us to establish the recurrence relation (3.13), which is about the sequence
of the reciprocal {(gTk dk)2/‖dk‖2}. The term (gTk dk)2/‖dk‖2 is exactly the one that
appears in the Zoutendijk condition (3.2). This makes our convergence analysis very
simple. It is known that to obtain the convergence of the FR, PRP, and HS methods,
one normally has to consider two sequences. For example, Al-Baali [1] considered the
sequences {‖dk‖2} and {gTk dk/‖gk‖2} for the FR method, and Gilbert and Nocedal
[8] considered {‖dk‖2} and {gTk dk} for the PRP and HS methods.

It is also worth noting that Al-Baali [1] and Gilbert and Nocedal [8] proved or
required the sufficient descent condition, namely,

gTk dk ≤ −c‖gk‖2 for some c > 0 and for all k ≥ 1.(4.2)

However, our method does not guarantee this inequality. But if the strong Wolfe line
search conditions are satisfied at every iteration, we have that

lk =
gTk+1dk

gTk dk
∈ [−σ, σ].(4.3)

Formula (2.5) can be rewritten as

gTk+1dk+1 =
1

lk − 1
‖gk+1‖2.(4.4)

The above two relations show that (4.2) holds with c = 1/(1 + σ). This indicates
that our method also has the sufficient descent property (4.2) if the strong Wolfe line
search conditions are used.

Dai and Yuan [3] considered a class of methods that use

βk ∈ [(σ − 1)/(1 + σ), 1]β̄k,(4.5)

where β̄k is given by (2.4). It is shown in [3] that Algorithm 2.1 is still convergent if,
in Step 4, βk computed by (2.4) is replaced by any βk, satisfying (4.5).
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Abstract. The predictor-corrector approach for following the central path of monotone linear
complementarity and linear programming problems is simple, elegant, and efficient. Although it
has excellent theoretical properties when working in narrow neighborhoods of the central path, its
proved complexity assumes a frustratingly high value of O(n1.5L) iterations when based on an l∞
neighborhood and several Newton corrector steps per iteration. This paper shows that by carefully
specifying the line searches in each step, the complexity assumes the value O(nL), as should be
expected for a method based on this neighborhood.

Key words. linear complementarity problem, primal-dual interior point algorithm, predictor-
corrector algorithms

AMS subject classifications. 49M15, 65K05, 90C33
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1. Introduction. Predictor-corrector schemes are very common in homotopy
methods. Soon after the publication of Karmarkar’s algorithm [7], Barnes proposed
for the first time an algorithm which alternated cost reduction steps (primal affine
scaling steps) and centering steps. But the study of such methods in a primal setting
was not easy, because there was no simple way to choose a length for the predictor
step. Barnes’s result was published long after the first description of the idea, in a
joint paper with Chopra and Jensen [2].

This difficulty was eliminated by the development of primal-dual algorithms,
which started with Megiddo’s description of the central path [11] and the path fol-
lowing algorithms by Kojima, Mizuno, and Yoshise [10, 9] and Monteiro and Adler
[15, 16]. The primal-dual predictor-corrector method was first described by Mizuno,
Todd, and Ye [14] for linear programming, using what we shall call a “small neigh-
borhood” of the central path. Their algorithm alternates tangent and centering steps
in such a way that all points belong to a 2-norm neighborhood of the central path.
The algorithm has a complexity of O(

√
nL) Newton iterations, the duality gap con-

verges to zero Q-quadratically in the number of predictor-corrector steps [18], and the
iterates converge to the analytic center of the optimal face [3].

Primal-dual algorithms originally designed for linear programs were extended to
monotone linear complementarity problems keeping the same complexity and asymp-
totic convergence properties (under a strict complementarity hypothesis). See, for
instance, Ye and Anstreicher [17]. A detailed treatment of the resulting algorithms is
found in Kojima, Megiddo, Noma, and Yoshise [8]. This reference describes several
different neighborhoods of the central path and shows that the complexity of most
algorithms becomes O(nL) when large neighborhoods are used.

The predictor-corrector method based on l∞-norm proximity measures1 can sim-

∗Received by the editors May 23, 1996; accepted for publication (in revised form) February 16,
1999; published electronically November 29, 1999.
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1The concepts discussed here will be formally defined later in the paper.
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ply take a predictor step, which generates a point on the boundary of the neigh-
borhood, and then take one Newton centering step with a line search to reduce the
proximity measure. The centering iteration may be very poor, and the steps may be
very short, at least theoretically. This method can be modified to use a first-order
correction, based on the same Hessian matrix as the predictor step: this modifica-
tion with some clever heuristics added was proposed by Mehrotra [12], with excellent
practical results. Mehrotra’s algorithm was enhanced by Zhang and Zhang [19], who
proved a complexity of O(n3/4L) iterations. A further increase in the order of the
corrections can lower the complexity to a value arbitrarily near O(

√
nL). See [5].

Although these methods based on a single correction are very efficient, they di-
verge very much from the original idea of a predictor-corrector method, since they do
not really approach the central path. A practical study by Gondzio [4] uses multiple
centering (simplified) Newton iterations, with promising results.

The motivation for this paper is mostly theoretical. The predictor-corrector al-
gorithm based on a sequence of tangent steps followed by the application of Newton’s
method for centering is very simple and elegant. But the existing results are frus-
trating: in the worst case, each predictor step reduces the duality gap by a factor
of 1 − ν/√n, where ν ∈ (0, 1). The reduction of the l∞ proximity measure to, say,
1
2 needs O(n) centering steps. The resulting complexity is then O(n1.5L) iterations.
These facts are discussed by Anstreicher and Bosch [1]. This reference tries to relieve
this bad behavior by taking large steps without a tangent predictor. See also Jansen,
Roos, Terlaky, and Vial [6].

In this paper we take the following approach: the centering iterations work always
in the l∞-norm neighborhood of the central path. Each centering iteration computes
a Newton direction and does a line search along it. The essential feature is that the
merit function for the search is the Euclidean norm proximity measure, and not the
l∞ proximity.

The properties of predictor and corrector when seen isolated are the same as we
discussed above. Seen together, the following is true: the increase in Euclidean prox-
imity at the predictor step depends on the gap reduction; the work of the corrector
depends on the Euclidean proximity: short or large predictor steps require, respec-
tively, a small or large number of centering steps. This results in the desired overall
bound of O(nL) Newton steps for the predictor-corrector algorithm.

Conventions. Given a vector d, the corresponding upper case symbol denotes
as usual the diagonal matrix D defined by the vector. The symbol e will represent
the vector of all ones, with dimension given by the context.

We shall denote componentwise operations on vectors by the usual notations for
real numbers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc.,
will denote the vectors with components uivi, ui/vi, etc. This notation is consistent
as long as componentwise operations always have precedence in relation to matrix
operations. Note that uv ≡ Uv, and if A is a matrix, then Auv ≡ AUv, but in general
Auv 6= (Au)v.

2. The problem. The monotone linear complementarity problem will be stated
in the following format: Find (x, s) ∈ R2n such that

(P)

xs = 0,

Qx+Rs = b,

x, s ≥ 0,
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where b ∈ Rn, and Q,R ∈ Rn×n are such that for any u, v ∈ Rn,

if Qu+Rv = 0, then uT v ≥ 0.

The feasible set for (P) and the set of interior solutions are, respectively,

F := {(x, s) ∈ R2n | Qx+Rs = b , x, s ≥ 0},
F 0 := {(x, s) ∈ F | x > 0, s > 0}.

We assume that F 0 6= ∅. This ensures that the optimal set is nonempty and
bounded.

Central points. A feasible solution (x, s) is the central point associated with
the parameter µ > 0 if and only if xs = µe.

It is well known (see, for instance, Kojima et al. [8]) that the set of central points
defines a differentiable curve µ > 0 7→ (x(µ), s(µ)), which ends at the analytic center
of the optimal face.

Given (x, s) ∈ F and µ > 0, the proximity of (x, s) to (x(µ), s(µ)) is estimated
by the following measures:

δ(x, s, µ) :=

∥∥∥∥xsµ − e
∥∥∥∥ ,

δ∞(x, s, µ) :=

∥∥∥∥xsµ − e∞
∥∥∥∥ .

These proximity measures define neighborhoods of the central path. Given α ∈
(0, 1), the small neighborhood is defined as

N = {(x, s, µ) | µ > 0, (x, s) ∈ F, δ(x, s, µ) ≤ α}.
The other proximity measure defines similarly the large neighborhood N∞.

We shall treat feasible interior point algorithms based on the large neighborhood.
We assume that an initial interior point (x0, s0) is given, as well as a parameter value
µ0 > 0, such that (x0, s0, µ0) lies in the neighborhood.

The Newton step. Let (x, s) be a given interior primal-dual pair. Given θ > 0,
the Newton step for solving the equation x∗s∗ = θe from (x, s) is given by the unique
solution of

su+ xv = −xs+ θe,
Qu+Rv = 0.

(2.1)

Scaling. In the analysis of a Newton step it is common practice to scale the
equations above by the change of variables

x̄ = d−1x, ū = d−1u, s̄ = ds, v̄ = dv,

where d =
√
xs−1. A nice feature of this scaling is that

x̄ = s̄ =
√
xs > 0.

The Newton equations after scaling and dividing by x̄ become

ū+ v̄ = −x̄+ θx̄−1,

QDū+RD−1v̄ = 0.

This simplifies the analysis very much. To keep the notation simple, we shall assume
in our proofs that x = s, without loss of generality: this situation can always be
reached by the scaling above.
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3. The algorithm. The algorithm will work in the large neighborhood N∞,
defined with a fixed radius α ∈ (0, 1). Each iteration is composed of a predictor step
and a corrector algorithm, which we now describe separately. The input and output
data for our procedures will be triplets (x, s, µ), where (x, s) is a feasible primal-dual
pair and µ > 0.

The predictor step. The predictor step starts from a given (x−, s−, µ−) ∈ N∞
and takes a step along the Newton direction (2.1) associated with θ = 0. This is
known as the affine-scaling or tangent direction. The steplength is such that the
result is on the boundary of N∞. For completeness, we shall allow “null steps” and
comment on them after presenting the complete algorithm.

Algorithm 3.1. Data: (x−, s−, µ−) such that δ∞(x−, s−, µ−) ≤ α.

If δ∞(x−, s−, µ−) = α then
Null step: Set (x, s, µ) = (x−, s−, µ−) and exit.

Compute the affine-scaling direction (u−, v−) by solving the Newton equa-
tions

s−u− + x−v− = −x−s−
Qu− +Rv− = 0.

(3.1)

Steplength: Compute

λ = min{θ ∈ (0, 1] | δ∞(x− + θu−, s− + θv−, (1− θ)µ−) ≥ α}.

Result: x = x− + λu− , s = s− + λv− , µ = (1− λ)µ−.

The corrector algorithm. The corrector starts from a point on the boundary
of N∞ and takes a sequence of Newton centering iterations, i.e., a sequence of Newton
steps that each consists of the solution of (2.1) with a fixed value θ = µ, followed by
a line search.

Two aspects of this algorithm must be discussed: the line search and the stopping
rule.

There are several possibilities for the stopping rule: one can stop whenever
δ∞(x, s, µ) ≤ β < α, when δ(x, s, µ) ≤ β < α, or simply after a fixed number of
centering steps. Any of these possibilities is allowed in our treatment (provided that
one does not impose an exceedingly large fixed number of iterations). We shall state
the algorithm with the following very general rule: given a fixed integer J and a fixed
real β < α, stop at (x, s, µ) whenever the iteration count equals J or δ∞(x, s, µ) ≤ β.

The line search is an essential feature of this paper. The l∞ proximity measure
does not provide a good merit function for a search procedure because of its severe
nonsmoothness. We shall use as merit function the Euclidean proximity measure. The
large neighborhood can then be interpreted as a trust region for the Newton steps.

Algorithm 3.2. Data: (x, s, µ) such that δ∞(x, s, µ) = α.

Choose an integer J ≥ 1 (J = +∞ is fine.)
j := 0
repeat

j := j + 1.
Newton: Compute the centering direction (u, v) by solving

su+ xv = −xs+ µe,

Qu+Rv = 0.
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Maximum steplength: Compute

λmax = max{θ ∈ [0, 1] | δ∞(x+ θ̄u, s+ θ̄v, µ) ≤ α, 0 ≤ θ̄ ≤ θ}.
Line search: Compute

λ = argmin{δ(x+ θu, s+ θv, µ) | θ ∈ [0, λmax]}.
(x, s) = (x+ λu, s+ λv).

until j = J or δ∞(x, s, µ) ≤ β.
Result: (x+, s+, µ+) = (x, s, µ).

The complete predictor-corrector algorithm is obtained by alternating these two
procedures as follows.

Algorithm 3.3. Data: (x0, s0, µ0) such that δ∞(x0, s0, µ0) < α, ε > 0.
k := 0.
repeat

(x−, s−, µ−) := (xk, sk, µk).
Predictor: Use Algorithm 3.1 to compute (x, s, µ) such that
δ∞(x, s, µ) = α.
Corrector: Use Algorithm 3.2 to compute (x+, s+, µ+).
(xk+1, sk+1, µk+1) := (x+, s+, µ+).
k := k + 1.

until µk ≤ ε.
We are assuming that an initial nearly central solution is available, and the stop-

ping rule is based on the value of the parameter µ. These initialization and termination
steps are usual in interior point methods and extensively discussed, for instance, in
[8].

In the rest of this paper we show the following fact: for any choice of the stopping
rule in the corrector, Algorithm 3.3 stops after computing no more thanO(n log(µ0/ε))
Newton steps.

Remark. When a bound J < +∞ is used, the corrector algorithm may end with
a point on the boundary of N∞. Then the next predictor step will be null, and the
corrector algorithm will continue centering. The presence of null steps introduces
no extra computations and can be totally avoided with a slightly different stopping
rule in the corrector algorithm. The possibility of having a fixed number of centering
steps per iteration is interesting: this is done by Gondzio [4], who uses simplified
centering steps and chooses J based on an estimate of the time consumed by each
step. This reference also proves that one centering step per iteration is enough to
ensure a complexity of O(nL) Newton steps.

4. The predictor step. The predictor step, Algorithm 3.1, starts from
(x−, s−, µ−) such that δ∞(x−, s−, µ−) ≤ α and finds a point (x, s) and µ = (1−λ)µ−,
λ ∈ [0, 1), such that δ∞(x, s, µ) = α.

Note that log µ = logµ− + log(1− λ), and since log(1− λ) ≤ −λ,

logµ ≤ logµ− − λ.
This entitles us to call λ the improvement of µ in the iteration. In this section we
show that the variation in the Euclidean proximity due to the predictor step is closely
related to the improvement of µ.

The next section will study the corrector step and show that the number of
Newton centering steps will be related to the variation of Euclidean proximity in the
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corrector step. Summing up these two facts, we have roughly the following: if the
improvement in the predictor step is large, then a large number of steps will be needed
to recenter; if the predictor step results in a small improvement of the parameter µ,
then the corrector steps will recenter quickly. The complexity result will be obtained
in the last section by summing the series of Euclidean proximity variations during the
complete algorithm.

Lemma 4.1. Consider an application of Algorithm 3.1 from (x−, s−, µ−) such
that δ∞(x−, s−, µ−) = δ−∞ ≤ α. Then

δ(x, s, µ) ≤ δ(x−, s−, µ−) +O(
√
nλ).(4.1)

Proof. If λ = 0 (null step), then the result is trivial. Assume that λ > 0.
Assume without loss of generality that x− = s− = φ > 0 (see the end of section 3).

Then the Newton equations can be written as

u+ v = −φ,
Qu+Rv = 0.

(4.2)

The proximity after the predictor step is computed as follows, using (3.1):

xs = (φ+ λu)(φ+ λv) = φ2 + λφ(u+ v) + λ2uv

= (1− λ)φ2 + λ2uv,

so that with µ = (1− λ)µ−,

xs

µ
− e =

x−s−
µ−

− e+
λ2

1− λ
uv

µ−
.(4.3)

Taking Euclidean norms,

δ(x, s, µ) ≤ δ(x−, s−, µ−) +
λ2

1− λ
∥∥∥∥ uvµ−

∥∥∥∥ .
Our task is proving that

λ2

1− λ
∥∥∥∥ uvµ−

∥∥∥∥ = O(
√
nλ).(4.4)

We shall study the vector

w =
uv

µ−
.

Let us first dismiss two simple situations:
—If λ is large, say, λ > 0.1, then (4.1) is trivially true because for any (x, s, µ)

such that δ∞(x, s, µ) < α we have δ(x, s, µ) < α
√
n. Assume then that λ ≤ 0.1.

—If w is small, say, ‖w‖∞ ≤ 1, then (4.4) is true because for λ ≤ 0.1,

λ2

1− λ‖w‖ ≤
0.1

0.9
λ
√
n.

Assume then that ‖w‖∞ > 1.
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Let us analyze the vector w. Multiplying (4.2) by u, for i = 1, . . . , n,

uivi = −u2
i − uiφi.

The right-hand side of this expression is a concave function of ui with a maximum at
ui = −φi/2 with value φ2

i /4. Hence

uivi ≤ φ2
i /4.(4.5)

Since δ∞(φ, φ, µ−) < α, we have for i = 1, . . . , n that |φ2
i /µ− − 1| < α, or

φ2
i < (1 + α)µ−.(4.6)

Combining (4.5) and (4.6), we conclude that

uivi <
µ−
2
, wi <

1

2
.(4.7)

From (4.7) and our assumptions we conclude that w has large negative components.
Remark. This is the key point in the proof: since

∑
wi ≥ 0 by monotonicity, only

a few components of w can have large negative values; i.e., for each wi << 0, a large
number of components wi ∈ [0, 1] will be needed. This restrains the relation between
‖w‖ and ‖w‖∞, and consequently between the variations of δ and δ∞.

We have ‖w‖2 = wTw ≤ ‖w‖∞‖w‖1, and

‖w‖1 =
∑
i|wi≥0

wi −
∑
i|wi<0

wi ≤ 2
∑
i|wi≥0

wi ≤ n,

where the first inequality uses monotonicity and the second uses (4.7). It follows that

‖w‖2 ≤ n ‖w‖∞ .(4.8)

Taking norms in (4.3),

λ2

1− λ ‖w‖∞ ≤ δ∞(x, s, µ) + δ∞(x−, s−, µ−) ≤ 2α,

because both points are in the large neighborhood. We can finally prove (4.4) using
the two last expressions. From (4.8),

λ4

(1− λ)2
‖w‖2 ≤ n λ2

1− λ
λ2

1− λ ‖w‖∞

≤ 2nα
λ2

1− λ
≤ 3nαλ2

for λ ≤ 0.1. It follows that

λ2

1− λ‖w‖ ≤
√

3αλ
√
n,

completing the proof.
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5. The corrector steps. The corrector algorithm is composed of j center-
ing steps with a fixed value of µ. We shall study the effect of each centering step
on the Euclidean proximity. A centering step starts from (x, s, µ) such that 0 <
β < δ∞(x, s, µ) ≤ α and finds a point (x+, s+) such that δ∞(x+, s+, µ) ≤ α and
δ(x+, s+, µ) < δ(x, s, µ).

Lemma 5.1. Consider an iteration of Algorithm 3.2 (a centering step). Then

δ(x+ λu, s+ λv, µ) ≤ δ(x, s, µ)− K2√
n
,(5.1)

where

K2 = min

{
1− α

2
,

√
nβ

2

}
.

Remark. Usually
√
nβ >> 1 − α, and this could be used as a hypothesis. But

it is interesting to notice that the complexity does not change if the centralization
algorithm is made very precise, with β = α/

√
n, for example, or if the stopping rule

uses the 2-norm proximity.
Proof. Let (x, s, µ) be given with δ∞(x, s, µ) = δ∞ ∈ [β, α], and consider an

iteration of Algorithm 3.2. Without loss of generality, assume that x = s = φ > 0
(see the end of section 3). The Newton equations become

u+ v =
1

φ
(−φ2 + µe), Qu+Rv = 0.(5.2)

Since
∥∥φ2/µ − e∥∥∞ = δ∞ ∈ [β, α], we have for i = 1, . . . , n,

1− δ∞ ≤ φ2
i

µ
≤ 1 + δ∞,

and hence

1

1− δ∞ ≥ µ

φ2
i

≥ 1

1 + δ∞
.(5.3)

From the monotonicity hypothesis, uT v ≥ 0. From a well-known lemma by Mizuno
[13], ‖uv‖ ≤ ‖u+ v‖2/√8. Using (5.2), we obtain

‖uv‖ ≤ 1√
8

∥∥∥∥ 1

φ2

∥∥∥∥
∞
‖φ2 − µe‖2,

and using (5.3), ∥∥∥∥uvµ
∥∥∥∥ ≤ 1√

8

1

1− δ∞ δ
2(x, s, µ).(5.4)

Let us study the variation of the Euclidean proximity along the direction (u, v),
using the Newton equations. Denote δ = δ(x, s, µ), and for θ ≥ 0, δ(θ) = δ(x+θu, s+
θv, µ), δ∞(θ) = δ∞(x+ θu, s+ θv, µ). We have

(x+ θu)(s+ θv) = xs+ θ(xv + su) + θ2 uv

= xs+ θ(−xs+ µe) + θ2 uv,
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and it follows that

(x+ θu)(s+ θv)

µ
− e = (1− θ)

(
xs

µ
− e
)

+ θ2uv

µ
.

Taking norms, for θ ∈ [0, 1],

δ(θ) ≤ (1− θ)δ + θ2

∥∥∥∥uvµ
∥∥∥∥ .(5.5)

Using (5.4),

δ(θ) ≤ (1− θ)δ + θ2 δ2

√
8(1− δ∞)

.

Denote the right-hand side of this expression by g(θ). Then g(·) is a convex quadratic
function with derivative

g′(θ) =
2δ2

√
8(1− δ∞)

θ − δ.

The following facts are easily seen: g(·) assumes a minimum at θ∗ =
√

2(1−δ∞)/δ
with value

g(θ∗) = δ − (1− δ∞)/
√

2,(5.6)

and for θ ∈ [0, θ∗],

g(θ) ≤ g(0) +
g′(0)

2
θ = δ − δ

2
θ.(5.7)

Now there are three possibilities concerning θ∗ and λmax: λmax ≥ θ∗, λmax < θ∗,
and λmax = 1, or λmax < θ∗ and δ∞(λmax) = α. Let us develop each of them:

(i) If λmax ≥ θ∗, then δ(λ) ≤ g(θ∗), and from (5.6), δ(λ) ≤ δ − (1 − α)/2 ≤
δ −K2 ≤ δ −K2/

√
n.

(ii) If 1 = λmax < θ∗, then from (5.7), g(1) ≤ δ − δ/2. By construction, δ ≥
δ∞ ≥ β and hence

δ

2
≥
√
nβ

2
√
n

=
K2√
n
.

It follows that δ(λ) ≤ g(1) ≤ δ −K2/
√
n.

(iii) Assume that λmax < θ∗ and δ∞(λmax) = α. From (5.5) with θ = λmax ∈
[0, 1] and using the l∞-norm,

δ∞ ≤ α = δ∞(λmax) ≤ (1− λmax)δ∞ + λ2
max

∥∥∥∥uvµ
∥∥∥∥
∞
.

Simplifying this expression, we obtain

λmax ≥ δ∞
∥∥∥∥uvµ

∥∥∥∥−1

∞
.
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Combining this with (5.4), we obtain

λmax ≥
√

8 δ∞(1− δ∞)

δ2
.

Using (5.7), we see that

g(λmax) ≤ δ − (
√

2 (1− δ∞))
δ∞
δ
.

But δ ≤ √nδ∞ by the relationship between Euclidean and l∞-norms. Using this and
the fact that δ∞ ≤ α, we conclude that

δ(λ) ≤ g(λmax) ≤ δ −
√

2 (1− α)√
n

≤ δ − 1− α√
2n
≤ δ − K2√

n
,

completing the proof.

6. The predictor-corrector algorithm. Now we study the predictor-corrector
Algorithm 3.3.

Theorem 6.1. Algorithm 3.3 stops after computing no more than O(n log(µ0/ε))
Newton steps.

Proof. Consider an application of the algorithm. Each iteration starts with data
(xk, sk, µk) with δ(xk, sk, µk) ≤ α. The predictor step computes a steplength λk

(with λk = 0 for a null step) and constructs (x, s, µk+1) with µk+1 = (1−λk)µk. This
implies that

logµk+1 ≤ logµk − λk.(6.1)

Using Lemma 4.1,

δ(x, s, µk+1) ≤ δ(xk, sk, µk) +K1

√
nλk,

where K1 is a constant dependent on α. The corrector starts from (x, s, µk+1) and
performs jk centering steps, obtaining (xk+1, sk+1, µk+1). By Lemma 5.1,

δ(xk+1, sk+1, µk+1) ≤ δ(x, s, µk+1)− jkK2
1√
n
,

where K2 = (1− α)/
√

2.
Combining the last two inequalities,

δ(xk+1, sk+1, µk+1) ≤ δ(xk, sk, µk) +K1

√
nλk − jkK2

1√
n
.

It follows that

δ(xk, sk, µk) ≤ δ(x0, s0, µ0) +K1

√
n
k−1∑
i=0

λi − K2√
n

k−1∑
i=0

ji.

Hence

k−1∑
i=0

λi ≥ 1

K1
√
n

(
K2√
n

k−1∑
i=0

ji + δ(xk, sk, µk)− δ(x0, s0, µ0)

)
.
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But δ(xi, si, µi) ≤ α√n for all i = 0, 1, . . . , k and hence

k−1∑
i=0

λi ≥ K2

K1 n

k−1∑
i=0

ji − α

K1
.

From (6.1),

log
µk

µ0
≤ −

k−1∑
i=0

λi ≤ − K2

K1 n

k−1∑
i=0

ji +
α

K1
.

The algorithm stops when µk ≤ ε. Hence at all iterations, log(µk/µ0) ≥ log(ε/µ0),
and consequently

− K2

K1 n

k−1∑
i=0

ji +
α

K1
≥ log

ε

µ0
.

It follows that at all iterations

k−1∑
i=0

ji ≤ K1

K2
n

(
log

µ0

ε

)
+

α

K1
= O

(
n log

µ0

ε

)
.

Thus the total number of centering steps is bounded by O(n log µ0

ε ). The number of
predictor steps has the same bound, since each predictor step is followed by at least
one corrector step, and this completes the proof.
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Abstract. We study the local convergence of a predictor-corrector algorithm for semidefinite
programming problems based on the Monteiro–Zhang unified direction whose polynomial convergence
was recently established by Monteiro. Under strict complementarity and nondegeneracy assumptions
superlinear convergence with Q-order 1.5 is proved if the scaling matrices in the corrector step
have bounded condition number. A version of the predictor-corrector algorithm enjoys quadratic
convergence if the scaling matrices in both predictor and corrector steps have bounded condition
numbers. The latter results apply in particular to algorithms using the Alizadeh–Haeberly–Overton
(AHO) direction since there the scaling matrix is the identity matrix.
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1. Introduction. The study of superlinear convergence of interior point meth-
ods for linear programming (LP) was initiated in the early 1990s in an effort to explain
the fact that interior point methods tend to perform significantly better in practice
than indicated by the polynomial complexity bounds. This discrepancy is due to the
limitation of the worst-case analysis used in deriving polynomial complexity bounds
and reflects the inherent conflict between the requirements of global convergence and
fast local convergence. Superlinear convergence is especially important for semidefinite
programming (SDP) since no finite termination schemes exist for such problems. As
predicted by theory and confirmed by numerical experiments the condition number
of the linear systems defining the search directions increases as 1/µ, where µ is the
normalized duality gap, so that the respective systems become very ill conditioned as
we approach the solution. Therefore, an interior point method that is not superlin-
early convergent is unlikely to obtain high accuracy in practice despite its theoretical
“polynomial complexity.” On the other hand a superlinearly convergent interior point
method will achieve good accuracy (e.g., 10−10 or better) in substantially fewer iter-
ations than indicated by its worse-case global linear convergence rate that is related
to polynomial complexity.

The local convergence analysis for interior point algorithms for SDP is much more
challenging than those for LP. The first two papers investigating superlinear conver-
gence of interior point algorithms were written independently by Kojima, Shida, and
Shindoh [4] and by Potra and Sheng [13]. The algorithm investigated in these papers
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is an extension of the Mizuno–Todd–Ye predictor-corrector algorithm for LP and uses
the Kojima–Shindoh–Hara/Helmberg–Rendl–Vanderbei–Wolkowicz/Monteiro (KSH
/HRVW/M) search direction. (See the next section for a definition of this search
direction.) Kojima, Shida, and Shindoh [4] established the superlinear convergence
under the following three assumptions:

(A) SDP has a strictly complementary solution.
(B) SDP is nondegenerate in the sense that the Jacobian matrix of its KKT

system is nonsingular.
(C) The iterates converge tangentially to the central path in the sense that the

size of the neighborhood containing the iterates must approach zero, namely,

lim
k→∞

‖(Xk)1/2Sk(Xk)1/2 − (Xk • Sk/n)I‖F /(Xk • Sk/n) = 0.

Here ‖.‖F denotes the Frobenius norm of a matrix and • denotes the corresponding
scalar product. (See the end of this section for precise definitions.) In [13] assumptions
(B) and (C) were not used. Instead a sufficient condition for superlinear convergence,
which is implied by the above assumptions, was proposed. In [14] Potra and Sheng
improved this result and obtained superlinear convergence under assumption (A) and
the condition

(D) lim
k→∞

XkSk/
√
Xk • Sk = 0,

which is clearly weaker than (C). Of course both (C) and (D) can be enforced by the
algorithm, but the practical efficiency of such an approach is questionable. However,
from a theoretical point of view it is proved in [14] that the modified algorithm in [4]
that uses several corrector steps in order to enforce (C) has polynomial complexity
and is superlinearly convergent under assumption (A) only. It is well known that
assumption (A) is necessary for superlinear convergence of standard interior point
methods even in the QP case (see [10]).

Kojima, Shida, and Shindoh [4] also gave an example suggesting that interior
point algorithms for SDP based on the KSH/HRVW/M search direction are un-
likely to be superlinearly convergent without imposing a condition like (C). In [5]
the same authors showed that a predictor-corrector algorithm using the AHO direc-
tion is quadratically convergent under assumptions (A) and (B). (See the next section
for a definition of the AHO search direction.) They also proved that the algorithm is
globally convergent, but no polynomial complexity bounds have been found for this
algorithm. It is shown that condition (C) is automatically satisfied by the iteration
sequence generated by the algorithm. It appears that the use of the AHO direction
in the corrector step has a strong effect on centering. Potra and Sheng exploited this
property in [15], showing that a direct extension of the Mizuno–Todd–Ye algorithm,
based on the KSH/HRVW/M direction in the predictor step and the AHO direction
in the corrector step, has polynomial complexity and is superlinearly convergent with
Q-order 1.5 under assumptions (A) and (B).

An interesting superlinearly convergent predictor-corrector algorithm based on
the Nesterov–Todd (NT) search direction was proposed by Luo, Sturm, and Zhang
[7]. The algorithm depends on a parameter ε > 0. It produces points (Xk, yk, Sk) ∈
NF (γk), where the neighborhood NF (γ) is defined in (2.7), γk = 1/4 if µk :=
Xk • Sk/n ≥ ε/4, and γk = µk/ε if µk < ε/4. The algorithm starts from a feasi-
ble point (X0, y0, S0) ∈ NF (1/4) and for any given ε̃ ≥ ε/4 finds a feasible point
(Xk, yk, Sk) with µk ≤ ε̃ in at most O(

√
n ln(µ0/ε̃)) iterations. However, this bound
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on the number of iterations is not proved to hold for 0 < ε̃ < ε/4, hence the algorithm
is not polynomial in the usual sense. The algorithm is superlinearly convergent under
assumption (A). It turns out that (C) is enforced by the algorithm since it is proved
in [7] that for sufficiently large k

‖(Xk)1/2Sk(Xk)1/2 − (Xk • Sk/n)I‖F /(Xk • Sk/n) ≤ (Xk • Sk)/(4n).

It is also proved that if one uses one predictor and r correctors per iteration, then µk
converges to zero with Q-order 2/(1 + 2−2r).

In this paper we investigate the local behavior of the predictor-corrector algorithm
considered by Monteiro [9] for SDP using the Monteiro–Zhang (MZ) family of search
directions. We show that under the assumptions (A) and (B), superlinear convergence
with Q-order 1.5 is obtained if the scaling matrices in the corrector step have bounded
condition number. Finally, we propose a new version of the predictor-corrector al-
gorithm which enjoys quadratic convergence if the scaling matrices in both predictor
and corrector steps have bounded condition numbers and (A) and (B) are satisfied.

The following notation and terminology are used throughout the paper:
Rp: the p-dimensional Euclidean space;
Rp+: the nonnegative orthant of Rp;
Rp++: the positive orthant of Rp;
Rp×q: the set of all p× q matrices with real entries;
Sp: the set of all p× p symmetric matrices;
Sp+: the set of all p× p symmetric positive semidefinite matrices;
Sp++: the set of all p× p symmetric positive matrices;
[M ]ij : the (i, j)th entry of a matrix M ;
Tr(M): the trace of a p× p matrix, equals

∑p
i=1[M ]ii;

M � 0: M is positive semidefinite;
M � 0: M is positive definite;
λi(M), i = 1, . . . , n: the eigenvalues of M ∈ Sn;
λmax(M), λmin(M): the largest, smallest, eigenvalue of M ∈ Sn;
G •H ≡ Tr(GTH);
‖ · ‖: Euclidean norm of a vector and the corresponding norm of a matrix, i.e.,
‖y‖ ≡√∑p

i=1 y
2
i , ‖M‖ ≡ max{‖My‖ : ‖y‖ = 1};

‖M‖F ≡
√
M •M, M ∈ Rp×q: Frobenius norm of a matrix;

‖(G,H)‖F ≡
√
G •G+H •H, G,H ∈ Rp×q;

Mk = o(1): ‖Mk‖ → 0 as k →∞;
Mk = O(1): ‖Mk‖ is bounded;
Mk = o(νk): Mk/νk = o(1);
Mk = O(νk): Mk/νk = O(1).

2. The predictor-corrector algorithm for SDP. We consider the SDP prob-
lem,

min{C •X : Ai •X = bi, i = 1, . . . ,m, X � 0},(2.1)

and its associated dual problem,

max

{
bT y :

m∑
i=1

yiAi + S = C, S � 0

}
,(2.2)

where C ∈ Sn×n, Ai ∈ Sn×n, i = 1, . . . ,m, b = (b1, . . . , bm)T ∈ Rm are given data,
and X ∈ Sn+, (y, S) ∈ Rm × Sn+ are the primal and dual variables, respectively. Also,
for simplicity we assume that Ai, i = 1, . . . ,m, are linearly independent.
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Throughout this paper we assume that both (2.1) and (2.2) have finite solutions
and their optimal values are equal. Under this assumption, X∗ and (y∗, S∗) are so-
lutions of (2.1) and (2.2) if and only if they are solutions of the following nonlinear
system:

Ai •X = bi, i = 1, . . . ,m,(2.3a)
m∑
i=1

yiAi + S = C,(2.3b)

XS = 0, X � 0, S � 0.(2.3c)

We denote the feasible set of the problem (2.3) by

F = {(X, y, S) ∈ Sn+ × Rm × Sn+ : (X, y, S) satisfies (2.3a) and (2.3b)}

and its solution set by F∗, i.e.,

F∗ = {(X, y, S) ∈ F : X • S = 0}.

We consider the symmetrization operator [17]

HP (M) =
1

2

[
PMP−1 + (PMP−1)T

] ∀M ∈ Rn×n.

Since, as observed by Zhang [17],

HP (M) = τI iff M = τI,

for any nonsingular matrix P, any matrix M with real spectrum, and any τ ∈ R, it
follows that for any given nonsingular matrix P, (2.3) is equivalent to

Ai •X = bi, i = 1, . . . ,m,(2.4a)
m∑
i=1

yiAi + S = C,(2.4b)

HP (XS) = 0, X � 0, S � 0.(2.4c)

A perturbed Newton method applied to the system (2.4) leads to the following linear
system:

HP (XV + US) = ξµI −HP (XS),(2.5a)

Ai • U = 0, i = 1, . . . ,m,(2.5b)
m∑
i=1

wiAi + V = 0,(2.5c)

where (U,w, V ) ∈ Sn × Rm × Sn is the unknown search direction, ξ ∈ [0, 1] is the
centering parameter, and µ = (X • S)/n is the normalized duality gap corresponding
to (X, y, S).

The search direction obtained through (2.5) is called the MZ unified direction
[17, 11]. The matrix P used in (2.5) is called the scaling matrix for the search direction.
It is well known that taking P = I results in the AHO search direction [1], P = S1/2

corresponds to the KSH/HRVW/M search direction [6, 3, 8], and the case of PTP =
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X−1/2[X1/2SX1/2]1/2X−1/2 coincides with the NT search direction [12]. Monteiro
and Zhang [11] established the polynomiality of a long-step path-following method
based on search directions defined by scaling matrices belonging to the class

{W 1/2 : W ∈ Sn++ such that WXS = SXW}.
Following [11], Sheng, Potra, and Ji [16] proved the polynomiality of a Mizuno–Todd–
Ye type predictor-corrector algorithm for SDP by imposing the scaling matrices to be
chosen from the class

{P : P ∈ Rn×n is nonsingular and PXSP−1 ∈ Sn}.
Moreover, its superlinear convergence was proved under an additional simple condi-
tion. The primal-dual algorithms considered by Monteiro [9] are based on the central-
ity measure

d(X,S) ≡ ‖X1/2SX1/2 − µI‖F =

(
n∑
i=1

(λi(XS)− µ)2

)1/2

,(2.6)

where (X,S) ∈ Sn+ × Sn+, µ = (X • S)/n = (
∑n
i=1 λi(XS))/n. Given γ ∈ (0, 1), we

denote by N (γ) the following neighborhood of the central path:

N (γ) = {(X, y, S) ∈ F : d(X,S) ≤ γµ, X � 0, S � 0, µ = (X • S)/n}.(2.7)

Monteiro’s generalized predictor-corrector algorithm for semidefinite programming
based on the MZ family of directions consists of a predictor step and a corrector
step at each iteration. Starting from a strictly feasible pair (X0, y0, S0) in N (α), it
generates a sequence of iterates {(Xk, yk, Sk)} in N (α). An iteration of Monteiro’s
generalized predictor-corrector algorithm can be described as follows.

Predictor-Corrector Algorithm.
Given (Xk, yk, Sk) ∈ N (α), choose nonsingular n× n matrices P k and P

k
.

• Predictor Step. Solve the system (2.5) with (X, y, S) = (Xk, yk, Sk), ξ = 0,
and P = P k. Denote the solution (U,w, V ) ∈ Sn × Rm × Sn and set

Xk(θ) = Xk + θU, yk(θ) = yk + θw, Sk(θ) = Sk + θV.(2.8)

Compute the step length

θk = max
{
θ̃ ∈ [0, 1] : (Xk(θ), Sk(θ)) ∈ N (β) ∀ θ ∈ [0, θ̃]

}
.(2.9)

•Corrector Step. Solve the system (2.5) with (X, y, S) = (Xk(θk), yk(θk), Sk(θk)),

ξ = 1, and P = P
k
. Let (U,w, V ) be the solution and set

Xk+1 = Xk(θk) + U, yk+1 = yk(θk) + w, Sk+1 = Sk(θk) + V .(2.10)

End of iteration.
Using an elegant analysis, Monteiro [9] proved that the predictor-corrector al-

gorithm defined above with properly chosen parameters α and β (0 < α < β < 1)
is well defined and that it needs at most O(

√
n ln(ε0/ε)) iterations for producing a

pair (Xk, yk, Sk) such that Xk • Sk ≤ ε, where ε0 = X0 • S0 is the initial gap. More
precisely, Monteiro showed that

(Xk, yk, Sk) ∈ N (α) and (Xk(θk), yk(θk), Sk(θk)) ∈ N (β),(2.11)

Xk+1 • Sk+1 = (1− 1/O(
√
n))Xk • Sk(2.12)

∀ k ≥ 0.
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3. Technical results. This section states some technical results that play an
important role in analyzing the local behavior of the predictor-corrector algorithm of
Monteiro presented in the last section.

We begin with some useful facts about matrices. It has been proved by Monteiro
([8, Lemma 3.3] and [9, Lemmas 2.1 and 3.5]) that

λmin(E) ≥ λmin(HM (E)) ∀E ∈ Sp and nonsingular M ∈ Rp×p,(3.1)

d(G, J) ≤ ‖HM (GJ − G•J
p I)‖

F
∀G, J ∈ Sp++ and nonsingular M ∈ Rp×p,(3.2)

‖E‖F ≤
√

2

2
‖E − ET ‖F if HM (E) = 0 for a nonsingular M ∈ Rp×p.(3.3)

Using the above results, we can now prove the following lemmas.
Lemma 3.1. Let (X, y, S) ∈ N (γ) for some γ ∈ [0,

√
2 − 1). Suppose that

(Dx,∆y,Ds) ∈ Sn×n × Rm × Sn×n is a solution of the linear system,

HP (XDs +DxS) = HP (K),(3.4a)

Ai •Dx = 0, i = 1, . . . ,m,(3.4b)
m∑
i=1

∆yiAi +Ds = 0,(3.4c)

for some K ∈ Rn×n. Then we have

(i) ‖X1/2DsX
1/2‖2F + ‖µX−1/2DxX

−1/2‖2F ≤ γ2
1‖X−1/2KX1/2‖2F ,

(ii) ‖X−1/2(XDs +DxS −K)X1/2‖F ≤ γ2‖X−1/2KX1/2‖F ,
where

γ1 =

√
2 + 1

(1− (
√

2 + 1)γ)
, γ2 =

√
2 +
√

2 γ1γ.

Proof. By denoting

X ′ = PXPT , S′ = (P−1)TSP−1,

D′x = PDxP
T , D′s = (P−1)TDsP

−1, K ′ = PKP−1,

δx = ‖µX−1/2DxX
−1/2‖F , δs = ‖X1/2DsX

1/2‖F ,
we can write

X ′D′s +D′sX
′ +D′xS

′ + S′D′x = K ′ +K ′T(3.5)

and

D′x •D′s = 0.

It is easily seen that Q̂ = (X ′)1/2(P−1)TX−1/2 is orthogonal. Then

(X ′)1/2 = Q̂X1/2PT = PX1/2Q̂T

and

(X ′)−1/2 = (P−1)TX−1/2Q̂T = Q̂X−1/2P−1.



FAST CONVERGENCE IN SEMIDEFINITE PROGRAMMING 201

Using the notation

B = X ′D′s +D′xS
′ −K ′,

it follows from (3.5) that

HM ((X ′)−1/2B(X ′)1/2) = 0 for M = (X ′)1/2,(3.6)

(X ′)−1/2B(X ′)1/2 = (X ′)1/2D′s(X
′)1/2 + (X ′)−1/2D′xS

′(X ′)1/2 − (X ′)−1/2K ′(X ′)1/2

= Q̂[X1/2DsX
1/2 +X−1/2DxSX

1/2 −X−1/2KX1/2]Q̂T .(3.7)

Using (3.6), (3.7), and (3.3) with E = (X ′)−1/2B(X ′)1/2, we have

‖(X ′)−1/2B(X ′)1/2‖F
≤
√

2

2
‖(X ′)−1/2B(X ′)1/2 − [(X ′)−1/2B(X ′)1/2]T ‖F

≤
√

2

2
‖X−1/2DxSX

1/2 − [X−1/2DxSX
1/2]T ‖F

+

√
2

2
‖X−1/2KX1/2 − [X−1/2KX1/2]T ‖F

≤
√

2

2
‖X−1/2DxX

−1/2(X1/2SX1/2 − µI)− [X−1/2DxX
−1/2(X1/2SX1/2 − µI)]T ‖F

+
√

2‖X−1/2KX1/2‖F
≤
√

2γδx +
√

2‖X−1/2KX1/2‖F .
(3.8)

On the other hand, using (3.7) again, we obtain

‖X−1/2KX1/2‖F
= ‖Q̂X−1/2KX1/2Q̂T ‖F
≥ ‖X1/2DsX

1/2 +X−1/2DxSX
1/2‖F − ‖(X ′)−1/2B(X ′)1/2‖F

= ‖X1/2DsX
1/2 + µX−1/2DxX

−1/2 +X−1/2DxX
−1/2(X1/2SX1/2 − µI)‖F

−‖(X ′)−1/2B(X ′)1/2‖F
≥ ‖X1/2DsX

1/2 + µX−1/2DxX
−1/2‖F

−‖X−1/2DxX
−1/2(X1/2SX1/2 − µI)‖F − ‖(X ′)−1/2B(X ′)1/2‖F

≥ (δ2
x + δ2

s

)1/2 − γδx − ‖(X ′)−1/2B(X ′)1/2‖F
≥ (δ2

x + δ2
s

)1/2 − (
√

2 + 1)γδx −
√

2‖X−1/2KX1/2‖F
≥ (δ2

x + δ2
s

)1/2
(1− (

√
2 + 1)γ)−

√
2‖X−1/2KX1/2‖F ,

which implies (i). Then (ii) follows from (i), (3.8), and the fact that

‖X−1/2(XDs +DxS −K)X1/2‖F = ‖(X ′)−1/2B(X ′)1/2‖F .
It is interesting to note that the inequalities in the above lemma are independent

of the scaling matrix P due to the centrality of the iterates. In the next lemma we
establish a lower bound for the stepsize θk, which together with Lemma 3.1 enables
us to analyze the asymptotic behavior of the predictor-corrector algorithm.
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Lemma 3.2. Let (Xk, Sk), (U, V ), and θk be generated by the predictor-corrector
algorithm. Then

θk ≥ θ̂k,

where

ωk =
1

µk
‖(Xk)−1/2(XkV + USk +XkSk)(Xk)1/2‖F ,

δk =
1

µk
‖(Xk)−1/2UV (Xk)1/2‖F ,

θ̂k =
2√(

ωk+β−α
β−α

)2

+ 4δk
β−α + ωk+β−α

β−α

.

Proof. For simplicity, let us omit the index k. By (2.8), we have

X(θ)S(θ) = XS + θ(XV + US) + θ2UV,

which together with the linearity of HP (·), the fact that Tr[HP (M)] = TrM for
M ∈ Rn×n, and (2.5a) with ξ = 0 implies that

X(θ) • S(θ) = Tr[X(θ)S(θ)]

= Tr[HP (X(θ)S(θ))]

= Tr[(1− θ)HP (XS) + θ2HP (UV )]

= (1− θ)X • S + θU • V.

Using the fact that U • V = 0 we have

µ(θ) = (X(θ) • S(θ))/n = (1− θ)(X • S)/n = (1− θ)µ.

Therefore,

X(θ)S(θ)− µ(θ)I = (1− θ)(XS − µI) + θ(XV + US +XS) + θ2UV

and

‖HX−1/2(X(θ)S(θ)− µ(θ)I)‖F
= (1− θ)‖X1/2SX1/2 − µI‖F + θ‖X−1/2(XV + US +XS)X1/2‖F

+ θ2‖X−1/2UV X1/2‖F
≤ (1− θ)αµ+ ωµθ + δµθ2

≤ (1− θ)µβ for 0 ≤ θ ≤ θ̂
= βµ(θ).

Hence, we have X(θ) � 0 and S(θ) � 0 ∀ θ ∈ [0, θ̂]. Otherwise, there exists a θ′ ∈ [0, θ̂]
such that X(θ′)S(θ′) is singular, which means

λmin(X(θ′)S(θ′)− µ(θ′)I) ≤ −µ(θ′).(3.9)
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On the other hand, (3.1) with M = X−1/2 and E = X(θ′)S(θ′)− µ(θ′)I implies that

λmin(X(θ′)S(θ′)− µ(θ′)I) ≥ λmin(HX−1/2(X(θ′)S(θ′)− µ(θ′)I))

≥ −‖HX−1/2(X(θ′)S(θ′)− µ(θ′)I)‖F
≥ −βµ(θ′) > −µ(θ′),

which contradicts (3.9). Using (3.2) with G = X(θ), J = S(θ), and M = X−1/2, we
have

d(X(θ), S(θ)) ≤ ‖HX−1/2(X(θ)S(θ)− µ(θ)I)‖F ≤ βµ(θ) for θ ∈ [0, θ̂].

Therefore, (X(θ), S(θ)) ∈ N (β) for 0 ≤ θ ≤ θ̂. The result follows from the definition
of θ.

4. Superlinear convergence under strict complementarity and nonde-
generacy. In this section we will investigate the asymptotic behavior of the predictor-
corrector algorithm. Throughout the paper we assume that the SDP problem has a
strictly complementary solution (X∗, y∗, S∗) of (2.3), i.e., X∗ + S∗ � 0. We will
also assume the following nondegeneracy condition introduced by Kojima, Shida, and
Shindoh [4, 5]. First, let us define an affine space G0 by

G0 =

{
(U, V ) ∈ Sn × Sn : Ai • U = 0, i = 1, · · · ,m,

m∑
i=1

wiAi + V = 0, wi ∈ Rm
}
.

Nondegeneracy Assumption. If X∗V + US∗ = 0 and (U, V ) ∈ G0, then
(U, V ) = 0.

For simplicity, throughout the paper we will use {(Xk
, S

k
)} =

{
(Xk(θk), Sk(θk))

}
to denote the predicted pairs of the predictor-corrector algorithm. As remarked in
section 5 of Kojima, Shida, and Shindoh [5], under the strict complementarity as-
sumption, the above nondegeneracy condition is equivalent to the combination of
primal and dual nondegeneracy conditions given by Alizadeh, Haeberly, and Overton
[2]. Under these assumptions, the solution (X∗, S∗) is unique. Therefore the iteration
sequence

{
(Xk, Sk)

}
converges to (X∗, S∗) and so does the sequence of predicted

pairs {(Xk
, S

k
)}.

Lemma 4.1 (see Kojima, Shida, and Shindoh [5, Lemma 5.3]). Assume that

HI(US
∗ +X∗V ) = 0 and (U, V ) ∈ G0.

Then (U, V ) = (0, 0).
Let R be a nonsingular matrix and

Ãi = (R−1)TAiR
−1, i = 1, . . . ,m, C̃ = (R−1)TCR−1, b̃ = b.

It is easily seen that the R-scaled SDP

Ãi •X = b̃i, i = 1, . . . ,m,(4.1a)
m∑
i=1

yiÃi + S = C̃,(4.1b)

XS = 0, X � 0, S � 0,(4.1c)
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also satisfies the strict complementarity and nondegeneracy conditions. Its unique
solution is (RX∗RT , y∗, (R−1)TS∗R−1).

Using Lemma 4.1 and considering the new SDP (4.1), we can easily obtain the
following lemma.

Lemma 4.2. Assume that for some nonsingular matrix R,

HR(US∗ +X∗V ) = 0 and (U, V ) ∈ G0.

Then (U, V ) = (0, 0).
For a strict complementarity solution (X∗, S∗), there exists an orthogonal matrix

Q = (q1, . . . , qn) whose columns q1, . . . , qn are common eigenvectors of X∗ and S∗,
and define

B = {i : qTi X
∗qi > 0}, N = {i : qTi S

∗qi > 0}.
It is easily seen that B ∪ N = {1, 2, . . . , n}. For simplicity, let us assume that

QTX∗Q =

(
ΛB 0
0 0

)
, QTS∗Q =

(
0 0
0 ΛN

)
,

where ΛB and ΛN are diagonal matrices. Here and in what follows, if we write a
matrix M in the block form

M =

(
M11 M12

M21 M22

)
,

then we assume that the dimensions of M11 and M22 are |B| × |B| and |N| × |N|,
respectively.

Using the fact that

µk+1 = µk(θ) = (1− θ)µk,
as in Lemma 4.4 of Potra and Sheng [13], we can write

QT (X
k
)1/2Q =

(
O(1) O(

√
µk+1)

O(
√
µk+1) O(

√
µk+1)

)
, QT (X

k
)−1/2Q =

(
O(1) O(1)
O(1) O(1/

√
µk+1)

)
,

QT (S
k
)1/2Q =

(
O(
√
µk+1) O(

√
µk+1)

O(
√
µk+1) O(1)

)
, QT (S

k
)−1/2Q =

(
O(1/

√
µk+1) O(1)

O(1) O(1)

)
.

Thus, we have

‖Xk
S
k

+ S
k
X
k‖F = O(

√
µk+1).(4.2)

Under strict complementarity and nondegeneracy assumptions, superlinear con-
vergence with Q-order 1.5 is proved in [15, Theorem 4.3] if the KSH/HRVW/M search
direction and the AHO direction are used in the predictor and corrector steps, respec-
tively. Using a similar argument, we can extend the result to the case in which

‖P k‖F ‖(P
k
)
−1
‖F is bounded. We define condF (B) ≡ ‖B‖F ‖B−1‖F as the condition

number of a matrix B. First, we need the following technical result.

Lemma 4.3. If condF (P
k
) = O(1), then

‖(Uk, V k)‖F = O(
√
µk+1).(4.3)
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Proof. Let Rk = P
k
/‖P k‖F . Then ‖Rk‖F = 1 and ‖(Rk)−1‖F = condF (P

k
) =

O(1). At the corrector step of the algorithm, we have

HRk

(
U
k
S
k

+X
k
V
k
)

= HRk

(
µk+1I −Xk

S
k
)
.(4.4)

Suppose (4.3) is not true, i.e., the sequence {(Uk, V k)/
√
µk+1} is unbounded. Then

we can choose a subsequence such that

(U
k
, V

k
)√

µk+1
→∞,

Rk → R∗, (Rk)−1 → (R∗)−1,

and

(U
k
, V

k
)

‖(Uk, V k)‖F
→ (U ′, V ′) 6= 0.

Obviously, (U ′, V ′) ∈ G0. The fact that the matrices Ai, i = 1, . . . ,m, are linearly
independent, together with (U ′, V ′) ∈ G0, implies that (U ′, V ′) 6= 0. Dividing both

sides of (4.4) by ‖(Uk, V k)‖F and letting k →∞ along a subsequence, together with
(4.2), we obtain

HR∗(U
′S∗ +X∗V ′) = 0,

which contradicts Lemma 4.2.
Let us define a linear manifold

M≡
{

(X ′, y′, S′) ∈ Sn × Rm × Sn : Ai •X ′ = bi, i = 1, . . . ,m,

m∑
i=1

y′iAi + S′ = C,

qTi X
′qj = 0 if i or j ∈ N,

qTi S
′qj = 0 if i or j ∈ B

}
.

The following quantity plays an important role in our analysis:

ηk = ηk(Γ) =
1

µk
‖(Xk)−1/2(Xk − X̆k)(Sk − S̆k)(Xk)1/2‖F ,(4.5)

where (X̆k, y̆k, S̆k) is the solution of the following minimization problem:

min{‖(Xk)−1/2(Xk −X ′)(Sk − S′)(Xk)1/2‖F : (X ′, y′, S′) ∈M, ‖(X ′, S′)‖F ≤ Γ},
(4.6)

and Γ is a constant such that ‖(Xk, Sk)‖F ≤ Γ ∀k. Note that every accumulation
point of (Xk, yk, Sk) belongs to the feasible set of the above minimization problem
and the feasible set is bounded. Therefore (X̆k, S̆k) exists for each k.
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Theorem 4.4. Under the strict complementarity and nondegeneracy assump-

tions, if condF (P
k
) = O(1), then the algorithm is superlinearly convergent with Q-

order at least 1.5.
Proof. The proof is similar to those of [14, Theorem 4.3] and [13, Theorem 4.7].

For the sake of completeness, we include a sketch of its proof. At the predictor step,
we have

(Xk, Sk) = (X
k−1

, S
k−1

) + (U
k−1

, V
k−1

).

Thus,

H
P
k−1(XkSk) = µkI +H

P
k−1(U

k−1
V
k−1

).

Then, by Lemma 4.3, we obtain

‖H
P
k−1(XkSk)‖

F
= O(µk).

Note that

‖H
P
k−1(XkSk)‖2

F
=

1

2
‖P k−1

XkSk(P
k−1

)−1‖
2

F +
1

2
‖(Xk)1/2Sk(Xk)1/2‖2F

≥ 1

2
‖P k−1

XkSk(P
k−1

)−1‖
2

F .(4.7)

Therefore,

‖XkSk‖F = ‖(P k−1
)−1P

k−1
XkSk(P

k−1
)−1P

k−1‖F ≤ O(1)‖H
P
k−1(XkSk)‖

F
= O(µk).

(4.8)
Define

φk = max{‖XkSk‖F /
√
µk,
√
µk}.

In view of (4.8), we deduce that φk = O(
√
µk). From the proofs of [14, Theorems 4.9

and 6.1], we see that ηk = O(φk) = O(
√
µk). For simplicity, let us omit the index k.

It is easily seen that (U +X − X̆, w + y − y̆, V + S − S̆) satisfies (3.4) with

K = (X − X̆)(S − S̆).(4.9)

Here we have used the relation X̆S̆ = S̆X̆ = 0. The matrix

∆ = X−1/2(X − X̆)(S − S̆)X1/2(4.10)

clearly satisfies the equation

‖∆‖F = ‖X−1/2KX1/2‖F = ηµ.(4.11)

Denoting

∆x = X−1/2(U +X − X̆)X−1/2, ∆s = X1/2(V + S − S̆)X1/2,

and applying (i) of Lemma 3.1, we obtain

µ‖∆x‖F ≤ γ1‖∆‖F = γ1ηµ,
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which implies

‖∆x‖F ≤ γ1η.(4.12)

Similarly,

‖∆s‖F ≤ γ1‖∆‖F = γ1ηµ.(4.13)

Using (4.11)–(4.13) and following the proof of [13, Theorem 4.7], we have

‖X−1/2(X − X̆)X−1/2‖F = O(1) , ‖S−1/2(S − S̆)S−1/2‖F = O(1) ,

‖X−1/2UV X1/2‖F ≤ ‖∆x‖F ‖∆s‖F + ‖X−1/2(X − X̆)X−1/2‖F ‖∆s‖F
+‖X1/2S1/2‖2‖∆x‖F ‖S−1/2(S − S̆)S−1/2‖F + ‖∆‖F

= O(ηµ).

Hence, δk = O(
√
µk). Applying (ii) of Lemma 3.1, we obtain

‖X−1/2[X(V + S − S̆) + (U +X − X̆)S −K]X1/2‖F ≤ γ2‖∆‖F = γ2ηµ .

Noting that

X(V + S − S̆) + (U +X − X̆)S −K = XV + US +XS,

we deduce

ω =
1

µ
‖X−1/2(XV + US +XS)X1/2‖F ≤ γ2η.

Hence, ωk = O(
√
µk). From Lemma 3.2, it follows that

1− θ ≤ 1− 2√(
ω

β−α + 1
)2

+ 4δ
β−α + ω

β−α + 1

≤ 3ω

β − α +
ω2

(β − α)2
+

4δ

β − α = O(
√
µ)

Therefore, µk+1 = (1− θk)µk = O(µ1.5
k ).

The above result says that the superlinear convergence of the predictor-corrector
algorithm is independent of the choice of the scaling matrix P k in the predictor
step of the algorithm, while the scaling matrices used in the corrector step need
to be “well-conditioned” for superlinear convergence. Clearly, the family of scaling
matrices admissible in the corrector step for superlinear convergence includes the
identity matrix defining the AHO as a special case. By imposing the same assumption
on the scaling matrices used in the predictor step and a new strategy for the step size,
we can improve the order of convergence stated in Theorem 4.4.

In order to achieve quadratic convergence we need to slightly modify the choice
of the step size. Instead of θk given by (2.9), we will use

θk = max
{
θ̃ ∈ [0,max{.99, 1− µ2

k}] : (Xk(θ), Sk(θ)) ∈ N (β) ∀ θ ∈ [0, θ̃]
}
.(4.14)

The predictor-corrector algorithm with this new strategy will be called the modified
predictor-corrector algorithm. It is easily seen that the modified predictor-corrector
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algorithm still has polynomial complexity. In what follows we will show that it is also
quadratically convergent.

Theorem 4.5. Under the hypothesis of Theorem 4.4, if condF (P k) = O(1), then
the modified predictor-corrector algorithm is quadratically convergent.

Proof. From the proof of Theorem 4.4 (cf. (4.8)), we have

XkSk = O(µk).(4.15)

Using (4.15) and an argument similar to that employed in the proof of Lemma 4.3 we
get

Uk = O(µk), V k = O(µk).(4.16)

Then we can write

HPk(X
k
S
k
) = HPk([Xk + θkU

k][Sk + θkV
k])

= (1− θk)HPk(XkSk) + θ
2

kHPk(UkV k)

= (1− θk)O(µk) +O(µ2
k) = O(ωkµk),

where ωk = max{µk, 1− θk}. As in (4.7)–(4.8), we can prove that

‖Xk
S
k‖F = O(ωkµk),(4.17)

which further implies

‖Xk
S
k‖F /‖(U

k
, V

k
)‖F ≤ O(ωkµk/‖(Uk, V k)‖F ).(4.18)

Based on (4.18) and the fact that

µk+1/‖(Uk, V k)‖F = (1− θk)µk/‖(Uk, V k)‖F ≤ ωkµk/‖(U
k
, V

k
)‖F ,

a similar argument employed in the proof of Lemma 4.3 can be used to deduce

U
k

= O(ωkµk) and V
k

= O(ωkµk).(4.19)

Observing that

H
P
k(Xk+1Sk+1)− µk+1I = H

P
k(U

k
V
k
) = O(ω2

kµ
2
k),

we have

‖H
P
k(Xk+1Sk+1)− µk+1I‖F /µk+1 =

O(ω2
kµ

2
k)

µk+1
=
O(ω2

kµk)

1− θk
.

Since condF (P k) ≤ C1 and condF (P
k
) ≤ C1 for some constant C1, we can write

‖HPk(XkSk)− µkI‖F /µk ≤ C1‖XkSk − µkI‖F /µk
≤ C2

1‖P
k−1

XkSk(P
k−1

)−1 − µkI‖F /µk
≤ C2µk−1 max

{
µ2
k−1

1− θk−1

, 1− θk−1

}
,(4.20)
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where C2 is a positive constant. Without loss of generality, we may assume

µk−1 ≤ min{.1, α/C2} for k ≥ K,
which, together with (4.14) and (4.20), implies that

θk−1 ≤ 1− µ2
k−1 for k ≥ K

and

αk ≡ ‖HPk(XkSk)− µkI‖F /µk ≤ C2µk−1 ≤ α for k ≥ K.
Let

θ′k =
2√

1 + 4δk/(β − αk) + 1
, δk = ‖P kUkV k(P k)−1‖F /µk.

Evidently, δk = O(µk). Then ∀ θ ∈ [0, θ′k], it follows from (3.2) that

‖(Xk(θ))1/2Sk(θ)(Xk(θ))1/2 − µk(θ)I‖F ≤ ‖HPk(Xk(θ)Sk(θ))− µk(θ)I‖F
≤ [(1− θ)αk + θ2δk]µk ≤ β(1− θ)µk.

This means

θk ≥ θ′k for k ≥ K.
Therefore

1− θk ≤ 1− θ′k = O(δk) = O(µk)

and µk+1 = (1− θk)µk = O(µ2
k).

5. Remarks. In this paper we consider only the feasible version of the predictor-
corrector method to keep the presentation simple. However, the analysis used here
can be easily extended to the infeasible predictor-corrector algorithms based on the
unified direction proposed by Monteiro and Zhang. Under the strict complementarity
and nondegeneracy assumptions we have established the superlinear convergence with
Q-order 1.5 of the “pure” predictor-corrector algorithm if the scaling matrices for the

corrector step satisfy condF (P
k
) = O(1). Whether superlinear convergence can be

obtained under a weaker condition is an interesting topic for future research. Finally,
we mention that quadratic convergence is established for the predictor-corrector al-
gorithm with a slight modification of the step size selection. It would be interesting
to find out whether quadratic convergence can be proved for the “original” predictor-
corrector algorithm.
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Abstract. It is established that many optimization problems may be formulated in terms
of minimizing a function x → f0(x) + H∞(f1(x), f2(x), . . . , fm(x)) + L∞(Ax − b), where the fi
are closed functions defined on RN , and where H∞ and L∞ are the recession functions of closed,
proper, convex functions H and L. A is a linear transformation from RN to a finite dimensional
vector space Y with b ∈ Y . A generic algorithm, based on the properties of recession functions, is
proposed. This algorithm not only encompasses almost all penalty and barrier methods in nonlinear
programming and in semidefinite programming, but also generates new types of methods. Primal
and dual convergence theorems are given.

Key words. convex and nonlinear programming, semidefinite programming, penalty and barrier
methods

AMS subject classifications. 90C05, 90C25, 90C31, 65F15, 90C48

PII. S1052623497324825

1. Introduction. In [3], Ben Tal and Teboulle remarked that there are many
optimization problems that may be formulated as follows:

(PB,T ) minimize φ(x) := V∞(g1(x), . . . , gp(x)) over RN ,

where V∞ is the recession or asymptotic function of V (see the definition on p. 66 of
[15]). The functions gj and V defined on RN and RP are closed and proper and V is
assumed to be convex. For the definition of closed and proper, we refer to Rockafellar’s
book [15]. Furthermore, all notation and definitions in this paper are standard and
can be found in [15].

In [3], some additional assumptions are required on V and gj , in particular,

(1.1) 0 ∈ dom V := {y : V (y) < +∞}, rV
(y
r

)
≥ V∞(y) ∀y, ∀r > 0.

Indeed, in many cases the V in question is finite. The following examples [3], [4] are
of particular interest:

(i) `1-norm approximation problems,

V (y) =

p∑
i=1

√
1 + y2

i , V∞(y) =

p∑
i=1

|yi|,

(ii) discrete minmax problems,

V (y) = log
( p∑
i=1

eyi
)
, V∞(y) = max

i=1,2,...,p
yi,

∗Received by the editors July 23, 1997; accepted for publication (in revised form) December 7,
1998; published electronically November 29, 1999. This work was supported by CEE grant CI1∗ CT
92-0046.
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(iii) nonsmooth problems,

V (y) =
N∑
i=1

√√√√1 +
r∑
j=1

dij(y
j
i )

2, V∞(y) =
N∑
i=1

√√√√ r∑
j=1

dij(y
j
i )

2

with dij > 0.
The ingenious idea proposed by Ben Tal and Teboulle [3] is the following: since

V (0) is finite, Theorem 8.5 of [15] implies that

(1.2) V∞(y) = lim
r→0+

rV
(y
r

)
∀y.

Then, in order to approach (PB,T ), Ben Tal and Teboulle consider the problem

(PB,Tr ) αr = inf
x
φr(x) := rV

(g1(x)

r
, . . . ,

gp(x)

r

)
.

When V is C1, the new problem is smooth and the approach is very natural. In fact,
the assumption that 0 ∈ domV is somewhat restrictive. Recently it was shown by
Seeger [16] that (1.2) holds also for polyhedral convex functions. In addition, (1.2)
holds generally for each y ∈ domV (Corollary 8.5.2 of [15]). In fact, for our purpose,
it suffices for (1.2) to be valid on the relative interior of domV∞. Furthermore, the
other part of assumption (1.1) used only in [3] to obtain convergence results is also
restrictive, and the main contribution of this paper consists of the observation that
there is a very wide class of optimization problems that may be formulated as follows:

(P ) α = inf{φ(x) | x ∈ RN}

with
(1.3)

φ(x) = f0(x) +H∞(f1(x), f2(x), . . . , fm(x)) +L∞(Ax− b) if x ∈
n⋂
i=1

domfi, +∞ else

under an essential assumption concerning the structure of (P ) (denoted by (A0)). In
order to introduce this assumption, let

(1.4) Hr(y) = rH
(y
r

)
and Lr(z) = rL

(z
r

)
,

and denote by riC the relative interior of C. Then (A0) is stated as follows.
(A0) H : Rm → R ∪ {+∞} is a closed, proper, convex function that is isotonic;

i.e.,

(1.5) yi ≤ zi ∀i = 1, 2, . . . ,m =⇒ H(y) ≤ H(z),

L is a closed, proper, convex function defined on a finite dimensional space Y , and L
and H satisfy

(1.6) (i) lim
r→0+

Hr(y) = H∞(y), lim
r→0+

Lr(z) = L∞(z) ∀(y, z) ∈ ridomH∞× ridomL∞.

(1.7) (ii)ridomH∞ ⊂ ridomHr and ridomL∞ ⊂ ridomLr ∀r > 0.
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(iii) for each (x, y) ∈ domH∞× domL∞, each sequence {(xn, yn)} ⊂ ridomH∞×
ridomL∞ converging to (x, y) we have

(1.8) lim
n→∞ H∞(xn) = H∞(x), lim

n→∞ L∞(yn) = L∞(y).

(iv) The constancy space of H∞ (see the definition on p. 69 of [15]) is reduced to
zero.

Of course, as will be seen shortly, (A0) is satisfied in all of the examples given in
this paper.

The data of the problem, the fi, A, and b, are to satisfy the following conditions.
(A1) (i) A is a linear map from RN to Y and b is a vector in Y .
(ii) The functions fi : RN → R ∪ {+∞}, i = 0, 1, . . . ,m, are closed and proper

and satisfy

(1.9) (fi)∞(d) > −∞ ∀d.
(The definition of the recession function (fi)∞ in the nonconvex case is the same as
in the convex case [15, p. 66].)

(iii) There exists x0 ∈ domf0 such that F (x0) ∈ domH∞, Ax0 − b ∈ domL∞,
where

(1.10) F (x) := (f1(x), f2(x), . . . , fm(x)).

When (0, 0) /∈ domH × domL, we suppose in addition that

(1.11) F (x0) ∈ ridomH∞, Ax0 − b ∈ ridomL∞.

Note that (1.9) is always satisfied when fi is convex, so that (A1) appears as a “min-
imal” condition on fi.

Given (1.6), it is natural to approximate (P ) by the problem

(Pr) αr = inf{φr(x)|x ∈ RN},
where φr is defined by

(1.12) φr(x) := f0(x) +Hr(F (x)) + Lr(Ax− b) if x ∈
m⋂
i=1

domfi,+∞ otherwise.

The isotonicity assumption on H is essential. It implies that H∞ is isotonic.
Then it can be seen easily that given (A0) and (A1), the functions φ and φr are
closed and proper (this will be proved in Lemma 2.1). Furthermore, if the functions
fi, i = 1 . . .m, are convex, then isotonicity of H ensures that Hr(F (.)) and H∞(F (.))
are also convex. Thus, if f0 is also convex, then φ and φr are closed, proper, and
convex and (P ) and (Pr) are convex problems.

Obviously, (PB,T ) is a particular case of (P ), and the theoretical results given
by Ben Tal and Teboulle in [3] may be improved. There are many other areas that
are encompassed within this framework and not by the one proposed by Ben Tal
and Teboulle, in particular, penalty and barrier methods for standard nonlinear con-
strained problems and barrier methods for semidefinite programming. Indeed, sup-
pose first that we wish to solve the classical constrained optimization problem:

(Pm) α = inf{f0(x) | x ∈ C}
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with

C = {x : fi(x) ≤ 0 ∀i = 1, 2, . . . ,m}.
Write for each set D

δ(y | D) = 0 if y ∈ D, and +∞ otherwise.

Then (Pm) is equivalent to minimizing the function f0 + δ(F (·) | Rm− ) on RN .
A fundamental and original remark is now the following: the indicator function

δ(· | Rm− ) can be considered as the recession function of a wide class of functions.
Indeed, denote by G the class of functions θ : R → R ∪ {+∞} closed, proper,

convex, and nondecreasing with domθ =]−∞, η[ and

0 ≤ η ≤ +∞, θ∞(−1) = 0, θ∞(1) = +∞.
For θ ∈ G, define H as follows:

(1.13) H(y) =
m∑
i=1

θ(yi).

Then it can be seen easily that H satisfies the assumption (A0) and

(1.14) H∞(.) = δ(.|Rm− ).

But note that (1.1) is not satisfied, and so this problem cannot be treated with the
approach of Ben Tal and Teboulle.

The approximation (P ) by (Pr) with H given by (1.13) and θ ∈ G was introduced
in this case by Auslender, Cominetti, and Haddou [2]. These authors give a systematic
way to generate functions θ ∈ G. Then (Pr) is nothing but a penalty or barrier method.
Particular cases of interest are

θ1(u) = exp (u) (exponential penalty [18]),
θ2(u) = −log(1− u) for u < 1, and = +∞ otherwise (modified barrier [13]),

θ3(u) =

{
u+ 1

2u
2 if u ≥ −1

2 ,− 1
4 log(−2u)− 3

8 if u ≤ −1
2 (quadratic logarithmic method [5]),

θ4(u) = u
1−u for u < 1, and +∞ otherwise (hyperbolic modified barrier method

[9], [14]),
θ5(u) = −log(−u) for u < 0 and +∞ otherwise (logarithmic barrier [10]),
θ6(u) = − 1

u for u < 0, and +∞ otherwise (inverse barrier method [7])

θ7(u) =

{−log(−u) if δ ≤ u < 0 (truncated logarithmic barrier [6]),
−a− b

u2 − c
u if u ≤ δ and +∞ if u ≥ 0,

where δ < 0 and the parameters a, b, and c > 0 are chosen so that θ7 is twice
differentiable.

In [2], the authors analyzed the existence of primal and dual paths generated
by these penalty and barrier methods as well as their convergence to primal and
dual optimal sets. Our results will include the above and more, since the nonconvex
case will also be considered in this paper, and this is not the case considered in [2].
Furthermore, contrary to [2], we can treat nonseparable functions H, for example,

(1.15) H(y) = − log

(
−

m∑
i=1

yi

)
−

m∑
i=1

log(−yi) if y < 0, and +∞ otherwise.
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A surprising application is to semidefinite programming. This will be developed in
section 4, but it is easy to outline the approach for positive definite programming.
This problem consists of minimizing a linear function of a variable x ∈ RN subject to
a linear matrix inequality:

(PDP ) minimize ctx

(1.16) subject to B(x) ≤ 0,

where B(x) := (B0 +
∑N
i=1 xiBi).

The problem data are c and the N+1 symmetric p×p matrices Bi. The inequality
sign in (1.16) means that B(x) is negative semidefinite, i.e., that ztB(x)z ≤ 0 for all
z ∈ RP .

Here H := 0, f0(x) = ctx, and Y is the space of p × p symmetric matrices. For
A,B ∈ Y , we use the scalar product tr(AB) (tr denotes the trace). Let K be the set
of negative semidefinite matrices in Y . It is a closed, pointed, convex cone, and its
interior is the set of negative definite matrices. Then (PDP ) consists of minimizing
the function x→ ctx+ δ(B(x) | K) on RN .

It is easy to verify that δ(· | K) may be considered the recession function of L
defined by

(1.17) L(A) = −logdet (−A) if A ∈ int K, and +∞ otherwise,

and that L satisfies assumption (A0), but there are many other functions that have
the same property. This will be analyzed in section 4. The function L defined by
(1.17) is the barrier function introduced by Nesterov and Nemirovskii in [14] used
for solving problems of this type. With this function (Pr) becomes an interior C∞

method (see, for example, formulas (37) and (38) in [19], giving the gradient and the
Hessian of φr). Again we note that 0 6∈ dom L, and as a consequence the classical
barrier method cannot be handled by the treatment given by Ben Tal and Teboulle
[3].

The structure of the paper is now simple. In section 2 we prove under a coercivity
condition the existence of a path of optimal solutions {xr}r>0 of problem (Pr) and
its convergence when r goes to 0 toward the optimal set of the original problem (P ).
This section concerns the nonconvex case.

In section 3, we consider the convex case (the functions fi are supposed to be con-
vex), and we study the existence and the convergence of an associated dual minimizing
path. In section 4, the theory is applied to semidefinite programming.

Finally, in section 5, other types of approximation that are, again, related to
properties of recession functions, are proposed, and in section 6 a conclusion is given.

2. Primal results.

2.1. Preliminaries. In order to prove convergence, let us recall some important
properties of recession functions. Recall first that for a set Q ⊂ RN , its asymptotic
or recession cone is denoted by Q∞ or 0+Q and is defined by

Q∞ =

{
y | ∃tk → +∞, xk ∈ Q with y = lim

k→∞
xk/tk

}
.

Now, let f, g : RN → R ∪ {+∞} be closed, proper functions. By definition, the
recession function of f , usually denoted by f∞ or f0+, is defined by epif∞ = (epif)∞,
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where epif = {(x, r) : f(x) ≤ r}. As a straightforward consequence, for each vector
y we get

(2.1) f∞(y) = inf

{
lim inf
k→∞

f(tkxk)

tk
: tk → +∞, xk → y

}
,

where {tk} and {xk} are sequences in R and RN , respectively. For closed convex
functions we also have for λ > 0
(2.2)

f∞(y) = lim
λ→+∞

f(x+ λy)− f(x)

λ
∀x ∈ domf with

f(x+ λy)− f(x)

λ
≤ f∞(y).

f∞ is closed, positively homogeneous with f∞(0) = 0 or f∞(0) = −∞, and, in
addition, proper convex when f is convex. Furthermore,

(f + g)∞(y) ≥ f∞(y) + g∞(y) ∀y
with equality when f and g are in addition convex.

In addition, if we want to minimize f over RN , the optimal set is a nonempty
compact set if

(2.3) f∞(y) > 0 ∀y 6= 0,

and this condition becomes necessary when f is convex.
Finally, since H∞ is convex and isotonic and satisfies (A0), (iv), let us remark

that by Theorem 8.6 of [15] we have for each a ∈ Rm:

(2.4) lim
λ→+∞

H∞(a1, . . . , ai−1, ai + λ, ai+1, . . . , am) = +∞.

2.2. Convergence results. We now want to solve the problem (P ) defined in
the introduction, and we suppose for the remainder of this paper that the assumptions
(A0) and (A1) given in the introduction hold.

Lemma 2.1. Suppose that (A0) and (A1) hold. Then, for r > 0, the functions φ
and φr are closed and proper. Furthermore, if (0,0) ∈ domH × domL, then for each
x ∈ domφ, x belongs to domφr.

Proof. (i) Let us prove that φ is closed; with the same arguments we can prove
that φr is also closed. Let x be arbitrary and let {xn} be a sequence converging to
x. We have to prove that limn→∞inf φ(xn) ≥ φ(x). As a consequence we have only
to consider the case where xn ∈ dom φ. Let ε > 0; since the functions fi and L∞ are
closed, then for n sufficiently large we have

fi(xn) ≥ fi(x)− ε ∀i = 0, 1 . . .m and L∞(Axn − b) ≥ L∞(Ax− b)− ε.
Now, since H∞ is isotonic, it follows that for n sufficiently large,

φ(xn) ≥ f0(x) +H∞(f1(x)− ε, . . . , fm(x)− ε) + L∞(Ax− b)− 2ε.

Passing to the limit when n→∞ we obtain

lim
n→∞infφ(xn) ≥ f0(x) +H∞(f1(x)− ε, . . . , fm(x)− ε) +L∞(Ax− b)− 2ε.

Now let ε→ 0+; since H∞ is closed we get

φ(x) ≤ lim
n→∞inf φ(xn),
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and it follows that the φ is closed.
(ii) Since f0, L∞, H∞, L,H are proper, it follows that φ and φr never assume the

value −∞. From (A1) (iii), φ(x0) is finite. If (0,0) ∈ domH × domL it follows from
(2.2) that φr(x0) is also finite. In the other case, since ridomH∞ and ridomL∞ are

cones, it follows that F (x0)
r ∈ ridomH∞ and Ax0−b

r ∈ ridomL∞, and then from (1.7),
it follows that φr(x0) is finite so that φ and φr are proper.

(iii) Now suppose that (0,0) ∈ domH × domL and let x ∈ domφ. Then F (x) ∈
dom H∞, Ax − b ∈ domL∞, f0(x) is finite, and from (2.2) it follows that φr(x) is
finite.

Proposition 2.2. Write F∞(d) = ((f1)∞(d), . . . , (fm)∞(d)) and

φ̃∞(d) = (f0)∞(d) +H∞(F∞(d)) + L∞(Ad) if d ∈
m⋂
i=1

dom(fi)∞,+∞ otherwise.

Then, if (A0) and (A1) hold, we have

(2.5) φ∞(d) ≥ φ̃∞(d) ∀d

with equality if in addition the functions fi are convex.
Proof. Let ai < (fi)∞(d) for i = 0, 1, . . . ,m and dn → d, tn → +∞ with

φ∞(d) = lim inf
n→+∞

φ(tndn)

tn
.

Then, using formula (2.1), for n sufficiently large we have

(2.6) ∀i fi(tndn) ≥ aitn ⇔ F (tndn) ≥ atn with a = (a1, a2, . . . , am).

Furthermore, since recession functions are positively homogeneous, it follows that

φ(tndn)

tn
=
f0(tndn)

tn
+H∞

(
F (tndn)

tn

)
+ L∞

(
Adn − b

tn

)
.

Since H∞ is isotonic we get from (2.6) that

φ(tndn)

tn
≥ a0 +H∞(a) + L∞

(
Adn − b

tn

)
.

Now let ai → (fi)∞(d). Then, since H∞ and L∞ are closed, using formula (2.1) and
passing to the limit in the above formula, we obtain

φ∞(d) ≥ (f0)∞(d) +H∞(F∞(d)) + L∞(Ad) if d ∈
m⋂
i=1

dom(fi)∞,

and (2.5) holds for such a direction. Otherwise, the result remains valid by using
formula (2.4).

Now suppose that the functions fi, i = 0, 1, . . . ,m, are convex; since H∞ and L∞
are sublinear and since H∞ is isotonic it follows that

φ(x+ λd)− φ(x)

λ
≤ (f0)∞(d) +H∞(F∞(d)) + L∞(Ad) if d ∈

m⋂
i=1

dom(fi)∞.
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Passing to the limit when λ→ +∞ we get φ∞(d) ≤ φ̃∞(d).
We denote by S (resp., Sr) the optimal set of (P ) (resp., (Pr)) and suppose for

the remainder of this paper that

(2.7) φ̃∞(d) > 0 ∀d 6= 0.

Then from formula (2.5) it follows that S is nonempty and compact. Conversely,
when the functions fi are convex, (2.7) holds when S is nonempty and compact.

We now define two kinds of assumptions that complement condition (A1)(iii),
both ensuring convergence:

(H1) (0,0) ∈ domH × domL.
(H2) There exists x0 such that

(2.8) (i) x0 ∈ domf0, F (x0) ∈ ridomH∞, Ax0 − b ∈ ridomL∞,

(ii) for each x ∈ domφ, there exists a sequence {un} converging to x satisfying
(2.8) (i.e., un ∈ domf0, F (un) ∈ ridomH∞, Aun − b ∈ ridomL∞) and such that
f0(un)→ f0(x), F (un)→ F (x).

Remark 2.1. If we consider problem (Pm), when H is defined by (1.13) with θ ∈ G
and η > 0, then (H1) holds. This is the case for θ1, θ2, θ3, θ4.

Remark 2.2. Assumption (H2)(i) is a regularity condition, which coincides with
assumption (A1)(iii) when (0,0) /∈ domH × domL. For the constrained classical opti-
mization (Pm), it is exactly Slater’s condition. This condition was also used in [3] for
the problem P (B,T ) in order to obtain duality results. For problem (PDP) it coincides
with the strict feasibility condition.

Remark 2.3. Let us now give two important examples for which (H2)(ii) holds.
(i) Consider the problem (Pm); suppose that the functions fi, i = 0, 1 . . .m, are

not only closed but continuous and that the set {x : fi(x) < 0 ∀i = 1 . . .m} is the
interior of C := {x : fi(x) ≤ 0 ∀i = 1 . . .m}. (This last condition holds in particular
when the functions fi are C1 and the usual Mangasarian–Fromovitz condition holds
for each x ∈ C.) Then, obviously, (H2)(ii) holds.

(ii) Now suppose that the fi are convex (not necessarily continuous) and that
(H2)(i) is satisfied with x0 ∈

⋂m
i=0 ridom fi; then condition (H2)(ii) will be satisfied

if we suppose in addition that

(2.9) y ∈ ridomH∞, y′ ≤ y =⇒ y′ ∈ ridomH∞.

(This last condition holds for all the examples related to problem (Pm) given in the
introduction since ridomH∞ = Rm−−.)

Indeed, let x ∈ domφ; then Ax− b ∈ domL∞, F (x) ∈ domH∞.
Set un = 1

nx0 + (1− 1
n )x. Since the functions fi are convex, F (un) ≤ 1

nF (x0) +

(1− 1
n )F (x). By assumption (H2) (i) F (x0) ∈ ridomH∞. This implies that [ 1

nF (x0)+

(1− 1
n )F (x)] belongs to ridomH∞, and then using (2.9), it follows that F (un) ∈ ridom

H∞. Furthermore (Aun−b) ∈ ridom L∞, un ∈
⋂m
i=0 ridom fi. Finally, using theorem

7.5 of [15], it follows that f0(un)→ f0(x), F (un)→ F (x), and assumption (H2)(ii) is
satisfied.

Theorem 2.3. Suppose that (A0), (A1), and formula (2.7) hold and that (H1) or
(H2) is satisfied. Then, for each r > 0, the optimal set Sr is nonempty and compact
and every selection xr ∈ Sr stays bounded with all its limit points in S. Furthermore,
α = limr→0+ αr.
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Proof. 1. Let us prove first that Sr is nonempty and compact. Let ai < (fi)∞(d)
for i = 0, 1, . . . ,m and dn → d, d 6= 0, tn → +∞ with

(φr)∞(d) = lim
n→+∞

φr(tndn)

tn
.

Then, for n sufficiently large, we have (2.6) again, and since H is isotonic we deduce
that

φr(tndn)

tn
≥ a0 +

r

tn
H

(
atn
r

)
+

r

tn
L

(
tn
r

(
Adn − b

tn

))
.

Then by (2.1), if we take the limit when tn → +∞ we get

(φr)∞(d) ≥ a0 +H∞(a) + L∞(Ad).

Let ai → (fi)∞(d); since H∞ is closed we get

(φr)∞(d) ≥ (f0)∞(d) +H∞(F∞(d)) + L∞(Ad) > 0 if d ∈
m⋂
i=1

dom(fi)∞,+∞ else,

and then we can deduce that Sr is a nonempty compact set.
2. {xr}r>0 is bounded. Consider an optimal path xr ∈ Sr and let x0 ∈ domφ,

satisfying in addition (2.8) when (H2) holds. Then x0 ∈ dom φr for each r > 0 and
(2.10)

f0(xr)+rH

(
F (xr)

r

)
+rL

(
A(xr − b)

r

)
≤ f0(x0)+rH

(
F (x0)

r

)
+rL

(
A(x0 − b)

r

)
.

Suppose that {xr} is not bounded and choose rk → 0+ with

lim
k→+∞

‖xrk‖ = +∞, lim
k→+∞

xrk
‖xrk‖

= d 6= 0.

Let ai < (fi)∞(d) and take k0 such that fi(xrk) ≥ ai‖xrk‖ for all k ≥ k0 and
i = 0, 1, . . . ,m. Since H is isotonic we deduce from (2.10) that

a0 +
rk
‖xrk‖

H

(
ai
‖xrk‖
rk

)
+

rk
‖xrk‖

L

(
‖xrk‖
rk

(
Axrk
‖xrk‖

− b

‖xrk‖

))

≤ 1

‖xrk‖

[
f0(x0) + rk H

(
F (x0)

rk

)
+ rk L

(
Ax0 − b
rk

)]
.

Then, passing to the limit, it follows from (2.1) and (1.6) that

a0 +H∞(a) + L∞(Ad) ≤ 0.

Let ai → (fi)∞(d); then, by formula (2.4), d ∈ ⋂mi=1 dom(fi)∞, and since H∞ is
closed we get

(f0)∞(d) +H∞(F∞(d)) + L∞(Ad) ≤ 0, d 6= 0,

which contradicts (2.7).
3. Accumulation points. Let x = limk→+∞ xrk be an accumulation point of the

sequence {xr}r>0 and take ai < fi(x) for i = 0, 1, . . . ,m. Let x0 ∈ domφ if (H1)
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holds, and let x0 satisfy (2.8) otherwise. Since the functions fi are closed, we have
fi(xrk) > ai for k large, and since H is isotonic we deduce from (2.10) that

a0 + rk H

(
a

rk

)
+ rk L

(
Axrk − b

rk

)
≤ f0(x0) + rk H

(
F (x0)

rk

)
+ rk L

(
Ax0 − b
rk

)
.

Passing to the limit it follows that

a0 +H∞(a) + L∞(Ax− b) ≤ f0(x0) +H∞(F (x0)) + L∞(Ax0 − b),

and then, when ai → fi(x), we deduce that

(2.11) φ(x) ≤ φ(x0),

and the theorem is proved when (H1) holds. If (H2) holds, then for each x ∈ domφ,
there exists a sequence {un} converging to x that satisfies (2.8) and such that f0(un)→
f0(x), F (un)→ F (x). From (2.11) it follows that φ(x) ≤ φ(un), and then, since (1.8)
holds, passing to the limit we obtain that φ(x) ≤ φ(x) so that x ∈ S.

4. Optimal value limit. Taking the same arguments as above, we deduce that

φ(x) ≤ lim inf
r→∞ φr(xr) ≤ lim sup

r→∞
φr(xr) ≤ φ(x∗) ∀x∗ ∈ S.

As a result we have α = limr→0+ αr.

3. The convex case: Duality results. In this section we suppose that (A0),
(A1), and formula (2.7) hold and in addition that the functions fi, i = 0, 1, . . . ,m, are
convex. As a consequence, φ and φr are closed, proper, convex functions. We then
associate a dual problem to (P ) by considering the perturbation function

ψ(x, y, z) = f0(x) +H∞(F (x) + y) + L∞(Ax− b+ z) if x ∈ E, and +∞ otherwise,

with

E :=
m⋂
i=0

domfi.

Then it can be seen easily that ψ is convex, proper, and closed, and thanks to duality
theory [11, Chapter 7], the dual problem via this perturbation function is

(D) β = inf{ψ∗(0, λ, µ) | λ ∈ Rm, µ ∈ Y },

where ψ∗ denotes the Fenchel conjugate of ψ, which may be computed as

ψ∗(0, λ, µ) = sup
x∈E

{
− f0(x) + sup

y

[
(λ, F (x) + y)− (λ, F (x))−H∞(F (x) + y)

]
+ sup

z

[
(µ,Ax− b+ z)− (µ,Ax− b)− L∞(Ax− b+ z)

]}
.

Since H∞(·) = δ∗(· | domH∗) it follows that

ψ∗(0, λ, µ) = sup
x∈E
{−f0(x)− (λ, F (x))− (µ,Ax− b) + δ(λ | domH∗) + δ(µ | domL∗)},
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and then we have

(3.1) (D) β = inf{p(λ, µ) : (λ, µ) ∈ Rm × Y }

with

p(λ, µ) =

{− inf
x∈E
{f0(x) + (λ, F (x)) + (µ,Ax− b)} for (λ, µ) ∈ domH∗ × domL∗,

+∞ otherwise.

Let us remark that since S is nonempty and compact, duality theory ensures that
α+ β = 0.

Similarly, we associate a dual problem with (Pr) by considering the perturbation
function

ψr(x, y, z) = f0(x)+r

[
H

(
F (x) + y

r

)
+L

(
Ax+ y

r

)]
if x ∈ E, and+∞ otherwise.

Then it can be seen easily that ψr is convex, closed, and proper, and the dual problem
is

(3.2) (Dr) βr = inf{ψ∗r (0, λ, µ) | (λ, µ) ∈ Rm × Y },

where

ψ∗r
(
0, λ, µ

)
= sup
x∈E

{[
− f0(x)− (λ, F (x)

)− (µ,Ax− b)]
+ r sup

y

[(
λ,
F (x) + y

r

)
−H

(
F (x) + y

r

)]

+ r sup
z

[(
µ,
Ax− b+ z

r

)
− L

(
Ax− b+ z

r

)]}
= − inf

x∈E

[
f0(x) + (λ, F (x)) + (µ,Ax− b)

]
+ r
[
H∗(λ) + L∗(µ)

]
.

As a consequence, the infimum in (3.2) can be taken over domH∗×domL∗, and then
(Dr) can be written as

(Dr) βr = inf{tr(λ, µ) | (λ, µ) ∈ Rm × Y }

with

(3.3) tr(λ, µ) = p(λ, µ) + r(H + L)∗(λ, µ).

Again, if Sr is nonempty and compact, duality theory ensures that αr + βr = 0, and
if (H1) or (H2) holds, as a consequence of Theorem 2.3 we get

β = lim
r→0+

βr.

Let T (resp., Tr) be the optimal set of solutions of (D) (resp., Dr). Without additional
assumptions we cannot ensure that T and Tr are nonempty, and we suppose that

(H3) intdomH∞× intdomL∞ is nonempty,
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(H4) 0 ∈ domH× domL.
Remark 3.1. (H3) and (H4) are satisfied in all the examples given in this paper.
Proposition 3.1. Suppose that (A0), (A1), formula (2.7), (H2)(i), (H3), and

(H4) hold and that the functions fi are convex. Suppose also that (H1) or (H2)(ii) is
satisfied. Then for r > 0, T and Tr are nonempty compact sets and every selection
(λr, µr) ∈ Tr stays bounded when r → 0+ with all its limit points in T .

Proof. 1. Let x0 satisfy (2.8). Since ridomH∞× ridomL∞ = intdomH∞×
intdomL∞, it follows that the function (y, z) → ψ(x0, y, z) is continuous at (0, 0),
and then from Theorem 7.6.1 of [11], this implies that T is a nonempty compact set.
This is equivalent to saying that

(3.4) p∞(λ, µ) > 0 ∀(λ, µ) 6= 0.

Furthermore, since

(3.5) tr∞(λ, µ) = p∞(λ, µ) + r((H + L)∗)∞(λ, µ),

(3.6) ((H + L)∗)∞ = δ∗(· | domH × domL),

using (H4) we deduce that

(3.7) tr∞(λ, µ) ≥ p∞(λ, µ) > 0 ∀(λ, µ) 6= 0,

and it follows that Tr is a nonempty compact set.
2. Set u = (λ, µ), K = (H + L)∗. Let us prove that the sequence {ur}r>0 is

bounded when r → 0+. If {ur}r>0 were not bounded, we would find rk → 0+ such
that

‖urk‖ → +∞, urk
‖urk‖

→ u 6= 0.

Since βr → β, for ε > 0 we have for k sufficiently large

p(urk)

‖urk‖
+ rk

K(urk)

‖urk‖
≤ β + ε

‖urk‖
,

K(urk)

‖urk‖
≥ K∞(u)− ε,

and then taking the limit we obtain

p∞(u) ≤ 0, u 6= 0,

which contradicts (3.4).
3. Let ε > 0. Then, for r sufficiently small, we have

p(ur) + rK(ur) ≤ β + ε.

Then, if u is a limit point of {ur}, since K and p are lower semicontinuous, passing
to the limit we deduce that p(u) ≤ β + ε. Then, with ε → 0+, it follows that
u ∈ T .

If we consider formula (3.3), we see that the method (Dr) can be interpreted as
a result of a “viscosity” or “Tikhonov” regularization method. This method has been
considerably studied and we shall use Proposition 2.5 of [2] to prove the convergence
of the sequence {λr, µr} to a single point.
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Corollary 3.1. Suppose that the assumptions of Proposition 3.1 are satisfied.
Assume also that argmin (p) ∩ dom(H + L)∗ is nonempty and that (H + L)∗ is
strictly convex on its domain. Then (Dr) has a unique optimal solution (λr, µr) which
converges when r → 0+ to the unique point (λ, µ) ∈ argmin(p), which minimizes on
this set the function (H + L)∗.

Proof. In order to use Proposition 2.5 of [2], which gives the result, we have only
to prove that

(i) p has bounded level sets,
(ii) (H + L)∗∞ is nonnegative.
But (i) is a consequence of assumptions (H2)(i) and (H3), and (ii) follows from

assumption (H4).

4. Applications for semidefinite programming. Let Y be the space of (p, p)
real symmetric matrices endowed with the inner product (U, V ) = trUV (trU denotes
the trace of U), and let K be the subset of negative semidefinite matrices. Recall that
the inequality sign in X ≤ 0 for a matrix X means that X is semidefinite negative.
Consider now the following (PDP ) optimization problem:

(PDP ) α = inf ctx subject to B(x) ≤ 0

with B(x) = (B0 +
∑m
i=1 xiBi). The problem data are the vector c ∈ Rm and the

(m+ 1) symmetric matrices B0, B1, . . . , Bm.
In this section we consider the set F of functions f : RP → R ∪ {+∞} which are

closed, convex, proper, and symmetric, i.e., f(λ) = f(Pλ) for any permutation matrix
P . For each X ∈ Y we denote by λ(X) = (λ1(X), λ2(X), . . . , λp(X)) the vector of
eigenvalues of X in nondecreasing order. Then each function f ∈ F induces a matrix
function fY : Y → R ∪ {+∞} defined by

(4.1) fY (X) = f(λ(X)) ∀X ∈ Y.
It has been proved by Lewis [12] that fY is a closed, proper, convex function defined
on Y .

Furthermore, it has been proved recently by Seeger [17] that

(4.2) (fY )∞ = (f∞)Y .

Now we remark that problem (PDP ) can be written as follows:

(PDP ) α = inf ctx+ δ(Ax− b | K)

with B(x) = (Ax− b), where Ax :=
∑m
i=1 xiBi and b := −B0.

Then let `(y) =
∑m
i=1 θ(yi) and suppose that θ : R → R ∪ {+∞} is a function

which belongs the class G defined in the introduction. We have seen that

`∞(y) = δ(y | RP−).

Furthermore, δ(· | RP−) ∈ F and δ(X | K) = δ(λ(X) | RP−). Then, since l ∈ F , from
formula (4.2) it follows that

δ(· | K) = L∞ with L = `Y .

Moreover, intdomL∞ = intK ⊂ intdomL, and assumption (A0) is satisfied. Now we
suppose strict feasibility for (PDP ); i.e., there exists x0 such that

(4.3) Ax0 − b < 0 (⇔ Ax0 − b ∈ intK).
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Then assumptions (A1) and (H2) are satisfied. Now let us approximate (PDP ) by

(PDP )r αr = inf
x

ctx+ r L

(
Ax− b
r

)
.

If we suppose in addition that the optimal set of (PDP ) is nonempty and compact,
then Theorem 2.3 holds.

The following examples are of particular interest:
θ1 → L1(D) = tr(expD),
θ2 → L2(D) = − log(det (I −D)) for D < I, +∞ otherwise,
θ4 → L4(D) = tr((I −D)−1D) for D < I, +∞ otherwise,
θ5 → L5(D) = − log(det(−D)) for D < 0, +∞ otherwise,
θ6 → L6(D) = tr(−D−1) for D < 0, +∞ otherwise.
We note that for these examples L is C∞ on the interior of its domain and the

gradient and the Hessian can be easily obtained (see, for example, [19]).
Let us now consider the dual (D) of (PDP ). Since domL∗ = −K it follows from

formula (3.1) in a straightforward way that (D) can be written as
(D) β = inf − trB0Z

subject to −trBiZ = ci, i = 1, 2, . . . ,m,
Z ≥ 0.

In the same way it follows from formula (3.3) that the dual problem (Dr) associ-
ated with (PDP )r is

(Dr) βr = inf − trB0Z + rL∗(Z)

subject to −trBiZ = ci, i = 1, 2, . . . ,m.
Since (H3) and (H4) are satisfied, Proposition 3.1 holds, and for r > 0 the optimal

set T and Tr of (D) and (Dr) are nonempty compact sets and every selection Zr ∈ Tr
stays bounded when r → 0+ with all its limit points in T .

Let us end this section by giving two examples of such a situation. It has been
proved by Lewis [12] that for each f ∈ F its conjugate f∗ ∈ F and

(fY )∗ = (f∗)Y .

Then, using this formula, it follows that

L∗5(D) = −n− logdetD for D > 0,+∞ otherwise,

L∗6(D) = −2 tr(D
1
2 ) for D ≥ 0,+∞ otherwise.

5. Other related approximations. Let us first remark that, thanks to formula
(2.1), (1.6) is also satisfied for y /∈ domH∞ and z /∈ domL∞, so that φr(x) →
φ(x) when r → 0+ for each x such that F (x) /∈ br (domH∞) and Ax − b /∈ br
(domL∞). (Here br denotes the relative boundary.) This explains the success of
the approximation. Then we can also note that assumption (A0)(i) can be satisfied
by functions other than the basic functions H and L which generate H∞ and L∞.
More precisely, for the remainder of this section we suppose that H̃ and L̃ are convex
functions finite everywhere and that

(5.1) H̃∞ = H∞ on domH∞, L̃∞ = L∞ on domL∞.
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Then we have, for y ∈ domH∞, z ∈ domL∞,

(5.2) lim
r→0+

rH̃
(y
r

)
= H∞(y), lim

r→0+
rL̃
(z
r

)
= L∞(z).

Unfortunately, this will not hold in general for y /∈ domH∞ and z /∈ domL∞. We
shall suppose that

(5.3) 0 < H̃∞(y) < +∞ for y /∈ domH∞, 0 < L̃∞(z) < +∞ for z /∈ domL∞.

Then let α : R+ → R be a function such that

(5.4) α(r) > 0 ∀r > 0, lim
r→0+

α(r) = 0, lim inf
r→0+

α(r)

r
= +∞.

From (5.3) and (5.4) it follows that for each y /∈ domH∞ and z /∈ domL∞ we have

(5.5) lim
r→0+

α(r)H̃
(y
r

)
= H∞(y), lim

r→0+
α(r)L̃

(z
r

)
= L∞(z).

The same can happen on domH∞× domL∞ if H∞ and L∞ are equal to zero on
their domains, and then it is natural to replace φr in formula (1.12) by the following
definition:
(5.6)

φr(x) = f0(x)+α(r)

[
H̃

(
F (x)

r

)
+ L̃

(
Ax− b
r

)]
if x ∈

m⋂
i=1

dom fi and +∞ otherwise.

This idea has its origin in [2]. Indeed, if we consider problem (Pm), we have to set
L = L̃ = 0 and H∞(.) = δ(.|Rm− ). Denote by G∗ the class of functions θ : R → R+,
convex, strictly increasing such that

lim
u→−∞ θ(u) = 0, 0 < θ∞(1) < +∞,

and for θ ∈ G∗ define

(5.7) H̃(y) =
m∑
i=1

θ(yi).

From the properties of θ it follows that H̃ is finite and convex and satisfies relations
(5.1) and (5.3). Furthermore, H̃ is positive and isotonic; such properties will be
needed in what follows.

Then, when minimizing φr on RN , φr being defined by (5.6) with the conditions
(5.4), we recognize in this case the algorithm, proposed and analyzed by Auslender,
Cominetti, and Haddou [2]. In [8], Chen and Mangasarian provided a systematic way
to generate functions θ ∈ G∗. Particular cases of interest are

θ8(u) = log(1 + eu), θ9(u) =
u+
√
u2 + 4

2
.

But the interest of this framework is that it can be used for other purposes. Indeed,
let α > 0, β > 0, and U be a closed, convex, pointed cone in Y . For y, z in Y , such a
cone induces an order relation y ≤ z if y − z ∈ U , that is, a partial order.
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To simplify, we shall consider here the particular case where

(5.8) H∞ = αδ(· | Rm− ), L∞ = βδ( | U) with α = +1 or 0, β = +1 or 0, α+ β 6= 0.

If we set

C = {x : αF (x) ∈ Rm− , β(Ax− b) ≤ 0},
then obviously our optimization problem consists of minimizing f0 on C.

We shall suppose also that (A1) holds, that the functions fi, i = 0, 1 . . .m, are
convex, and that H̃ and L̃ are positive and isotonic (i.e., L̃ is isotonic if y ≤ z =⇒ L̃
(y) ≤ L̃(z)). From these assumptions it follows obviously that φ and φr are closed,
proper, convex functions. We suppose in addition that the optimal set of (P ) is
nonempty and compact. Under the above assumptions, since

(5.9) C∞ = {x : αF∞(x) ≤ 0, βAx ≤ 0},
this is equivalent to saying that

(5.10) x 6= 0, αF∞(x) ≤ 0, βAx ≤ 0⇒ (f0)∞(x) > 0.

This formulation can be applied to the (PDP ) problem (α = 0, β = 1) with U = K.

In this case, as a consequence of formula (4.2), we can associate to L̃ with θ8 and
θ9 the functions,

L̃8(D) = log(det(I + expD)), L̃9(D) = tr

(
D +

√
D2 + 4I

2

)
.

From the properties of the class G∗, it can be seen easily that L̃8, L̃9 are finite,
convex functions, positive and isotonic, satisfying relations (5.1) and (5.3). These
examples illustrate the importance of the notion of recession function for establishing
new algorithms in optimization theory.

Theorem 5.1. Let us consider problem (P ) with H∞ and L∞ defined by (5.8),
where in this formula U is a closed, convex, pointed cone in Y , and suppose that in
problem (Pr), φr is defined by (5.6), with α(.) satisfying (5.4). Suppose that (A1)
holds, that the functions fi, i = 0, 1 . . .m, are convex, and that H̃ and L̃ are convex,
finite functions, positive and isotonic, satisfying relations (5.1) and (5.3). Suppose
also that the optimal set S of (P ) is nonempty and compact. Then for r sufficiently
small, the optimal set Sr is nonempty and compact. Furthermore, each sequence
{xr}r→0+ with xr ∈ Sr is bounded, and all its limit points belong to the optimal set
of (P ).

Proof. For the sake of simplicity we suppose that α = β = 1.
1. Let us prove first that Sr is nonempty and compact for r sufficiently small.

Let ai < (fi)∞(d) for i = 0, 1, . . . ,m and dn → d, tn → +∞ with (φr)∞(d) =

limn→∞ φr(dntn)/tn. Then for n sufficiently large, we again have (2.6), and since H̃
is isotonic, we deduce that

φr(tndn)

tn
≥ a0 +

α(r)

r

[
r

tn
H̃

(
atn
r

)
+

r

tn
L̃

(
tn
r

(
Adn − b

tn

)]
.

Then by (2.1), if we take the limit when tn → +∞, we get

(φr)∞(d) ≥ a0 +
[
H̃∞(a) + L̃∞(Ad)

] α(r)

r
.
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Let ai → (fi)∞(d) by formula (2.4), and since H̃∞ is closed it follows that

(φr)∞(d) = +∞ if d /∈
m⋂
i=1

(domfi)∞

and that

(φr)∞(d) ≥ (f0)∞(d) +
[
H̃∞(F∞(d)) + L̃∞(Ad)

] α(r)

r
if d ∈

m⋂
i=1

(domfi)∞.

Suppose now that it is not true that for r sufficiently small Sr is a nonempty compact
set. Then, since φr is convex, there exists a sequence (rn, dn) with

rn → 0+, dn → d, ‖dn‖ = 1, (φrn)∞(dn) ≤ 0,

and it follows that

(5.11) (f0)∞(dn) +
[
H̃∞(F∞(dn) + L̃∞(Adn)

] α(rn)

rn
≤ 0.

Then it can be seen easily that the sequence {F∞(dn)} is bounded, and without loss
of generality we can suppose that it converges.

Since H̃∞, (fi)∞, L̃∞ are closed and since H̃∞ is isotonic we deduce that

(5.12) H̃∞(F∞(d)) + L̃∞(Ad) ≤ lim inf
n→∞

[
H̃∞(F∞(dn)) + L̃∞(Adn)

]
.

Then, since (f0)∞ is closed and proper, it follows by (5.3) and (5.4) that F∞(d) ≤
0, Ad ≤ 0. Without loss of generality we can suppose that α(rn)

rn
≥ 1 for n sufficiently

large, and then from (5.11) and (5.1) it follows that

φ∞(d) ≤ 0, d 6= 0,

which contradicts relation (2.7).
2. Let us prove now that each sequence xn ∈ Srn with rn → 0+ is bounded. In

the opposite case there would exist a sequence xn ∈ Srn such that

xn
‖xn‖ → x, ‖xn‖ → +∞ if n→ +∞.

(i) By definition, we have

(5.13)

f0(xn) + α(rn)

[
H̃

(
F (xn)

rn

)
+ L̃

(
Axn − b)

rn

)]
≤ f0(x) + α(rn)

[
H̃

(
F (x)

rn

)
+ L̃

(
Ax− b
rn

)]
∀x ∈ C.

Then, by (5.8), since H̃ and L̃ are isotonic, it follows that
(5.14)

f0(xn)+α(rn)

[
H̃

(
F (xn)

rn

)
+ L̃

(
Axn − b)

rn

)]
≤ f0(x)+α(rn)

[
H̃(0)+L̃(0)

] ∀x ∈ C.
Since H̃ and L̃ are positive, we deduce that

f0(xn)

‖xn‖ ≤
1

‖xn‖
[
f0(x) + α(rn) (H̃(0) ∩ L̃(0))

] ∀x ∈ domφ,
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and passing to the limit, we get

(5.15) (f0)∞(x) ≤ 0.

(ii) Let us prove now that x ∈ C∞. By (5.9) and (5.10) this will imply a contra-
diction with (5.15). Suppose the contrary. Then F∞(x) /∈ Rm− or A(x) /∈ U or both.
Suppose, for example, that F∞(x) /∈ Rm− . Then, thanks to formula (2.1), it follows
that there exists y /∈ Rm− such that for n sufficiently large

F (xn)

‖xn‖ ≥ y.

Since L̃ ≥ 0 and H̃ is isotonic, then by (5.14) we have

(5.16)
f0(xn)

‖xn‖ +
α(rn)

rn

H̃
(y‖xn‖
rn

)
‖xn‖
rn

≤ f0(x) + α(rn)
[
H̃(0) + L̃(0)

]
‖xn‖ ∀x ∈ C.

Furthermore, we have

0 < H̃∞(y) ≤ lim inf
n→∞

H̃
(y‖xn‖
rn

)
‖xn‖
rn

for y /∈ Rm− .

Then, since for some ε > 0 we have for n sufficiently large that

f0(xn)

‖xn‖ ≥ f∞(x)− ε,

we get a contradiction with (5.16) and (5.4).

Now suppose that A(x) /∈ U ; then, since H̃ is positive, by (5.14) we have

f0(xn)

‖xn‖ +
α(rn)

rn

L̃
(
A
[(

xn
‖xn‖

)
− b
‖xn‖

]‖xn‖
rn

)
‖xn‖
rn

≤ f0(x) + α(rn)
[
H̃(0) + L̃(0)

]
‖xn‖

∀x ∈ C.
Since

0 < L̃∞(Ax) ≤ lim inf
n→∞ L̃

(
A
[ xn
‖xn‖ −

b

‖xn‖
] ‖xn‖

rn

)
/
‖xn‖
rn

for A(x) /∈ U , as above, this gives a contradiction with (5.4).
3. Finally, let us prove that every limit point of a sequence {xn} with xn ∈ Srn

and rn → 0+ is an optimal solution. Let x be such a point; without loss of generality
we can suppose that x = limn→∞ xn. From (5.13), again (5.14) holds, and since H̃

and L̃ are positive it follows that

f0(x) ≤ f0(x∗) for x∗ ∈ S.
Then, to prove that x ∈ C, we proceed as above in part 2(ii).

Finally, using the same notation as in section 3, we can associate the dual problem

(Dr) βr = inf{tr(λ, µ) | (λ, µ) | (λ, µ) ∈ Rm × Y }
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with

tr(λ, µ) = p(λ, µ) + α(r) (H̃ + L̃)∗
(

(λ, µ)r

α(r)

)
,

and we can easily prove (taking the same kinds of arguments as in the proof of
Proposition 2.4 of [2]) that if Slater’s condition holds, i.e., if

′′∃x0 ∈ domf0 such that F (x0) < 0, A(x0) ∈ intU ′′,

then for each r > 0 sufficiently small, the optimal set Tr is a nonempty compact set.
Furthermore, as in section 3, if rn → 0+, λn ∈ Trn , then the sequence {λn} is bounded
and has its limit points in T .

6. Conclusion. This paper presents a unified approach for barrier and penalty
methods in optimization problems that generalizes the results obtained in Auslender,
Cominetti, and Haddou [2] and in Ben Tal and Teboulle [3].

Moreover, for standard problems (Pm) described by a finite number of inequali-
ties:

(i) primal convergence is obtained for the nonconvex case in contrast with [2],
where the data were supposed to be convex functions;

(ii) the barrier function H is not necessarily separable (compare with [2]), leading
to new schemes like those proposed in formula (1.15);

(iii) the results extend and cover those given by Ben Tal and Teboulle [3]. Indeed,
in [3], there are no results concerning the existence of approximate solutions of (Pr)
and no results concerning the boundedness of the primal and dual paths and the
convergence to optimal solutions. Furthermore, the assumptions given in [3] are not
satisfied for barrier functions.

In addition, this generalization has been applied to semidefinite programming
and it has generated in sections 4 and 5 new methods for solving (PDP), for which
no previous convergence proofs were available. This is the case in particular for the
functions L1 (D), L2 (D), L4 (D), L6 (D), L̃8 (D), L̃9 (D).

Finally, this generalization can certainly be applied to other similar types of prob-
lems, in particular, to conical programming with the Lorentz cone, an area that covers
many applications (see, e.g., [14]). Other questions are open, such as the important
question of convergence of the whole sequence {xr} to a single point. In [2], concern-
ing (Pm) problems, a systematic study was done for the case of linear programming
and sufficient conditions were established ensuring convergence to a single point for
most of the methods.

For the special problem of minimizing the function f = max{fi | i = 1, . . . ,m},
convergence to a single point with the particular exponential approximation was also
established in [1] for a wide class of functions called analytical functions, a class that
contains affine functionals.

In contrast, for (PDP ) problems, no systematic study is available concerning the
convergence to a single point for general classes of barrier and penalty methods.
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1. Introduction. Algorithms for tackling combinatorial optimization problems
[27] may be divided into two classes. Exact algorithms, such as exhaustive search,
branch-and-bound, or branch-and-cut, form the first class; they determine (exactly)
the optimum of the cost function that is to be minimized. However, for NP-hard prob-
lems, they require large computation resources, and in particular, large computation
times. The second class consists of “heuristic” algorithms; these are not guaranteed
to find the optimal (lowest cost) solution, nor even a solution very close to the opti-
mum, but in practice they find good approximate solutions very fast. For problems
in science, one’s main interest is in the optimal solution, so an exact algorithm is
required. However, for many engineering applications, the heuristic approach may be
preferable. There are several reasons for this: (i) The computational resources are
simply insufficient to solve the instances of interest by exact methods. (ii) The cost
function one wants to minimize is computationally very demanding, and limited re-
sources force one to use an approximate cost function instead. This is the rule rather
than the exception with very complex systems such as VLSI. If the true cost function
cannot be used, there is little point in finding the true optimum for the wrong prob-
lem. (iii) Heuristic algorithms typically generate numerous “good enough” solutions,
thus providing information about the statistical properties of low-cost solutions. This
information can in turn be used to generate better heuristics or to find new criteria
for guiding the branching in exact algorithms such as branch-and-bound.

For almost any combinatorial optimization problem, it is very easy to devise
heuristic algorithms that perform quite well; this is probably why so many such algo-
rithms have been proposed to date. Usually they fall into just a few families, the most
popular of which are local search, simulated annealing, tabu search, and evolutionary
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computation. Practitioners are frequently confronted with the problem of choosing
which method to use. Thus they would like to rank these algorithms and determine
which one is best for their “instance” (the set of parameters that completely spec-
ify the cost function). A difficulty then arises because most heuristic algorithms are
stochastic, so that they can give many different solutions for a single instance. In gen-
eral, the distributions of solution costs generated by the different heuristics overlap,
so that the winning algorithm varies from one trial to another. Furthermore, it is nec-
essary to balance the quality of the solutions found against the time necessary to find
them, since in practice heuristics run at very different speeds. The final goal of this
paper is to do just this kind of balancing: in section 8 we shall introduce a generally
applicable ranking method that is based on the possibility of performing multiple runs
from random starts for each algorithm until an allotted amount of computer time is
exhausted. Our ranking method then determines whether it is better to have a fast
heuristic that gives rather poor solutions or a slower heuristic that can give better
solutions.

Establishing a ranking on a single instance may be what is needed for a real-
world problem, but it is not a useful prediction tool. It is preferable to consider
the effectiveness of a heuristic when it is applied to a family of instances. Since a
detailed knowledge of the distribution of costs is necessary for our ranking procedure,
the major part of this paper is an in-depth study of the statistics of costs found
by several classes of heuristics. The NP-hard [9] combinatorial optimization problem
chosen for our study is the graph bisection problem, hereafter simply called the graph
partitioning (or graph “bisection”) problem (GPP). This choice is justified by the wide
range of practical applications of the GPP. These include host scheduling [3], memory
paging and program segmentation [17], load balancing [21], and numerous aspects of
VLSI design such as logic partitioning [12] and placement [6, 19]. Because of these
applications, the GPP has been used as a testing ground for many heuristics. For our
work, a selection had to be made; in view of the previous studies by Johnson et al.
[13], Lang and Rao [20], and Berry and Goldberg [4], we have restricted our study
to iterative improvement heuristics based on local search and to simulated annealing.
Having made a choice of optimization problem and algorithms, it remains to define
the class of instances for the testbeds. Ideally, this family of instances should reflect
the structure of the actual instances of interest to the practitioner. Since we do not
have a particular application in mind, we shall follow the studies of [13, 20, 4] and
consider an ensemble of sparse random graphs.From our numerical study, we have
found that all of the heuristics tested share the following properties when the random
graphs become large: (i) each algorithm can be characterized by a fixed percentage
excess above the optimum cost; (ii) the partitions generated have a distribution of
costs which becomes peaked, both within a given graph and across all graphs; (iii)
these distributions tend toward Gaussians. Because of these properties, our ranking
of heuristics on large graphs is largely determined by the mean and variance of the
costs found, and thus a constant speed-up factor has only a very small effect on the
ranking. We expect this property to hold for most problems and heuristics of practical
interest, leading to a very robust ranking.

The paper is organized as follows. In section 2 we define the GPP as well as
the ensemble of random graphs used for our testbed. Section 3 derives properties of
random partitions and shows that the distribution of cut sizes has a relative width
that goes to zero as the instance size grows. In section 4 we argue why this property
should hold also for the distribution of costs found by heuristic algorithms based
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on local iterative processes. In section 5 we discuss the heuristic algorithms we have
included in our tests. Section 6 gives the mean and standard deviation of the costs
found as a function of graph size; the distribution for the costs is indeed found to
be peaked. This leads to a first ranking which, however, does not take into account
computation times. To implement our speed-dependent ranking, we must determine
the distribution of cut sizes found by the different algorithms. This is the subject of
section 7, where evidence is given that the distribution on any typical graph tends
toward a Gaussian in the limit of large graphs. In section 8 we present our ranking
method, which takes into account both the quality of the solutions and the speed of
the heuristics. In section 9, finally, we discuss the results and conclude.

2. Minimum cuts. The GPP can be defined as follows. Consider a graph
G = (V,E) which consists of a set of N vertices V = {v1, v2, . . . , vN} and a set
of (nonoriented) edges connecting pairs of vertices. It is convenient to introduce the
matrix Eij , called the connectivity matrix, given by

Eij =

{
1 if vi is connected to vj ,
0 otherwise.

Since the edges are nonoriented, Eij = Eji. (Some of what will be discussed applies
to weighted graphs; then Eij will represent the weight of the ij edge.) A partition
of G is given by dividing the vertices of G into two disjoint subsets V1 and V2 such
that V = V1 ∪ V2. The number of edges connecting V1 to V2 is called the cut of the
partition and will be denoted by C. It is given by

C[V1, V2] =
∑

i∈V1,j∈V2

Eij .(2.1)

The GPP (or “min-cut” problem) consists of finding the partition (V1, V2) for which
the cost (2.1) is the minimum subject to given constraints on the sizes of V1 and
V2. The GPP is NP-hard [9]. In the standard formulation to which we shall restrict
ourselves in this work, V1 and V2 have equal sizes.

For our study, it is necessary to fix an ensemble of graphs for the testbed. We
have chosen G(N, p) the ensemble of random graphs of N vertices where each edge
is present with the probability p. The choice of G(N, p) is justified by its tractable
mathematical properties and by the fact that many workers [13, 20, 4] have used
graphs in this ensemble to test heuristics. The problem of finding the properties of
the minimum cut size when the graphs belong to such an ensemble is sometimes called
the stochastic GPP. Let us review some of the known results for this problem; this will
serve to motivate our conjectures for the behavior of cuts obtained from heuristics. For
each graph Gi, call C0 its minimum cut size. Taking Gi from the ensemble G(N, p),
C0 is a random variable. Following derivations now standard in a number of other
stochastic combinatorial optimization problems (COPs), it is possible to show, using
Azuma’s inequality [1], that the distribution of C0 becomes peaked as N → ∞. This
means that as N becomes large, (C0 − 〈C0〉)/〈C0〉, the relative fluctuations about the
mean tend to zero. This property, often referred to as “self-averaging,” is typical of
processes to which many terms contribute. For certain stochastic COPs, it is possible
to show further that the mean minimum cost satisfies a power scaling law in N, so
that C0/Nγ converges in probability to a limiting value as N → ∞. In the case of
the stochastic GPP, there is no proof that such a property holds. Nevertheless, it is
believed that such a scaling holds: within the G(N, p) ensemble at p fixed, calculations
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show that C0/N2 → p/4 with probability 1 as N → ∞ [8]. As will be shown in the
next section, this is also the limiting behavior of random cuts, and so the ensemble
at p fixed is not a challenging one for heuristics. The reason for this “uninteresting”
scaling is the high number of edges connecting to any vertex. Thus we consider in this
work the ensemble G(N, p), p = α/(N − 1), with α fixed; α is the mean connectivity
(number of neighbors of a vertex) of the graphs. These graphs are sparse, in contrast
to the dense graphs obtained by taking p to be independent of N . Consider the optimal
partition. At a typical vertex in V1, some finite fraction of its edges will connect to
vertices in V2. With each vertex contributing an O(1) amount to the cut size, C0 is
expected to grow linearly with N . Since C0/N is known to be peaked at large N, it is
natural to conjecture the stronger property that C0/N tends toward a constant with
probability 1 as N → ∞. A major motivation for this work is our expectation that
an identical scaling law should hold if we replace C0 by the cost found by a heuristic
algorithm, though the limiting constant depends on the heuristic. To motivate such a
property, the next section analyzes the cut sizes of random partitions; then, in section
4, we consider the “statistical physics” of the GPP so as to interpolate between the
case of minimum cuts and that of random cuts.

3. Cuts of random partitions. Here we show explicitly that a large N scaling
law holds for the cut sizes of random partitions, and that asymptotically these random
cuts have a Gaussian distribution with a relative variance proportional to 1/N .

Consider any graph in G(N, p). One can always write the cut size of a random
partition as C = X + Y, where X is the mean (random) cut size for the graph under
consideration, and dY e = 0. (d e is the average over the random partitions.) Averaging
explicitly over all balanced partitions of the fixed graph, we find X =

∑
EijN/[2(N−

1)]. The interpretation of this formula is very simple: any edge of weight Eij has a
probability N/[2(N − 1)] of being cut.

In the ensemble G(N, p) of random graphs, it is easy to calculate the first few
moments of X. In particular, we find 〈X〉 = pN2/4 and 〈(X − 〈X〉)2〉 = p(1 −
p)N3/[8(N − 1)]. (〈 〉 denotes the average over the ensemble G(N, p).) We also see
that X is the sum of M = N(N − 1)/2 independent random variables; this implies
that the kth cumulant (connected moment) of the distribution of X satisfies〈

Xk
〉
c

= (N − 1)2
[ N

2(N − 1)

]k+1〈
Ekij

〉
c
.(3.1)

At large N, we then have 〈Xk〉c ∼ N2 in the constant p ensemble, and 〈Xk〉c ∼ αN
in the p ∼ α/N ensemble.

The random variable Y is more subtle, as it is the sum of M correlated variables.
Nevertheless, for any graph, it is possible to compute the moments of Y, and we have
done this explicitly for the second and third moments. (The expressions are too long
to be given here.) If we average Y 2 both over random partitions and over G(N, p),
we obtain

〈dY 2e〉 =
p(1− p)

8
N2(N − 2)/(N − 1).(3.2)

The calculations get significantly more complicated for the higher moments. In order
to keep to simple expressions, we limit ourselves to the ensemble with p = α/(N − 1).
Then we find

〈dY 2e〉 =
α

8
N +O(1), 〈dY 3e〉 = −α

8
+O

(
1

N

)
.(3.3)
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Furthermore, the graph-to-graph fluctuations of dY 2e become negligible in relative
magnitude, so that the ratio of a typical variance to the mean variance goes to 1 at
large N . This, however, is not true for the higher moments; for instance, we find that
the typical value of dY 3e grows as N1/2, but taking in addition the mean over graphs
leads to N -independent behavior. Finally, one can show that dY kec/dY 2ek/2 → 0 with
probability 1. This shows that as N →∞, Y has a Gaussian distribution of zero mean,
and of variance growing linearly with N, whose coefficient is graph independent.

Coming back to C = X + Y, the cut size of a random partition, we find that the
normalized correlation coefficients between powers of X and Y tend to zero at large N,
and thus X and Y become independent random variables in that limit. This, along
with the results previously derived, shows that at large N, C itself has a Gaussian
distribution. From these results, we deduce the large N behavior,

〈d(C − 〈dCe〉)2e〉
〈dCe〉2 ∼ 4

αN
,(3.4)

so that relative deviations from the mean go to zero. Thus the distribution of C
becomes peaked, and C/N → α/4 with probability 1 as N →∞. The convergence of
the distribution of C/N to a “delta” function is referred to as the self-averaging of C.

The scaling of the variances can be summarized at large N by writing

c ≡ C
N
∼ 〈dce〉+

σ∗X√
N
x+

σ∗Y√
N
y,(3.5)

where x and y are independent Gaussian random variables of zero mean and unit
variance; σ∗X =

√
α/8 is the standard deviation (rescaled by 1/

√
N) of X, and σ∗Y =√

α/8, that of Y . Thus σ∗Y describes the fluctuations of the cut sizes within a graph,
and σ∗X describes the fluctuations of the mean cut size from graph to graph.

We have used these analytical results to test the validity of our computer pro-
grams. The first two moments of X allowed us to test our generation of random
graphs in G(N, p). Similarly, a check on our random number generator was obtained
by verifying on several graphs that the second moment of Y found by the numer-
ics was in agreement with our formulae. Finally, we also checked that random cut
sizes have a limiting Gaussian distribution, with a third moment that scales to zero
at large N . (For this check, we performed random partitions on 100, 000 graphs for
N = 100, 500, 1000, and 2000.)

4. Statistical physics of the GPP. We saw that cut sizes of random partitions
in G(N, p) have a self-averaging property; we conjectured that this property also holds
for the minimum cut. It is possible to interpolate between these two kinds of partitions
(random and min-cut) by following the formalism of statistical physics. For any given
graph, consider the “Boltzmann” probability distribution pB , defined for an arbitrary
partition P of cut size C(P ):

pB(P ) =
e−C(P )/T

Z
.(4.1)

Z is chosen so that pB is normalized (a probability distribution) and T is an arbitrary
positive parameter called the temperature. When T → ∞, we recover the ensemble
of random partitions where all partitions are equally probable, whereas when T → 0,
the ensemble reduces to the partitions of minimum cut size. For intermediate values of
the temperature, the partitions are weighted according to an exponential of their cut
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size. In this “Boltzmann” ensemble, one can define the moments of the cut sizes just
as was done in the case of random partitions. In most statistical physics problems, it
is possible to show that the quantity in the exponential of (4.1) (here, the cut size) is
self-averaging. For random graphs, however, the proofs are inapplicable; nevertheless,
other evidence indicates that the cut size is self-averaging at any temperature [26].
This self-averaging can be understood qualitatively at low temperature as follows. The
number N (C) of partitions of cut size C is a sharply increasing function of C, whereas
the Boltzmann factor is a sharply decreasing function of C. Note that the probability
distribution P (C) of C is given by the product of these two functions. Using naive but
standard statistical physics arguments for N (C), one finds that P (C) has a peak at
C∗(T ) that grows linearly with N and that the width of the distribution is O(

√
N),

which gives the self-averaging property for C. In addition, this kind of argument says
that P (C) becomes Gaussian at large N, a result that is usually correct in statistical
physics systems.

A number of statistical physics results have been obtained for the GPP in the
ensemble of dense random graphs, that is, for G(N, p) at p fixed. In particular, highly
technical calculations [26, 8] indicate that the cut sizes are self-averaging at all tem-
peratures, that is, as N → ∞, relative fluctuations within a fixed graph become
negligible, as do those from graph to graph. The mean cut size is given by

〈dCe〉 =
pN2

4
− U(T )

√
p(1− p)N3/2 +O(N)(4.2)

as N →∞. (If the mean over graphs is not performed, the formula remains valid for
“almost all” sequences of graphs with N →∞.) In this equation, U(T ) is a function
of temperature only; there is no dependence on p as long as p is independent of N .
The limit T → 0 gives the expected (and typical) value of the minimum cut, with
U(T = 0) = 0.3816. Although there is no proof yet that these calculations are exact,
there is general agreement in the statistical physics community that the results are
correct.

The case of sparse random graphs (p ∼ 1/N) has also been studied within the
statistical physics approach [2, 5]. So far, however, the problem has proven to be
intractable, and there is no plausible solution in sight. Nevertheless, it is expected
that the cut sizes are self-averaging at any temperature and that the mean of the
distribution scales linearly with N at large N .

The property of self-averaging seems quite generic. The reason it should hold
in these systems is that the cut size of a partition is the sum of a large number of
random variables that are not too correlated. It is very plausible that the cut size
is self-averaging whenever partitions are generated by an iterative process involving
just a few vertices at a time. All local search methods and modifications thereof, such
as simulated annealing, fall into this category. Thus our claim is that any heuristic
algorithm that generates partitions iteratively according to local (in vertex space)
criteria will lead to cut sizes that are self-averaging. Thus the distribution of cut sizes
found by any such heuristic should become peaked as N → ∞. Furthermore, in this
limit, the distribution should converge toward a Gaussian in the way given by the
central limit theorem. We will see in the sections to follow that this is indeed borne
out empirically for all of the heuristics that we have investigated.

The arguments we have presented are not specific to the GPP, so we expect
them to apply to most stochastic COPs having many variables in their cost function.
Surprisingly, there has been very little research on this topic. In the context of the
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“NK” model with binary variables, a study by Kauffman and Levin [16] found that
the costs of local minima became peaked toward the value of a random cost as N
grew. (This peculiar property is due to the structure of the energy landscape in that
model.) However, concerning the behavior of heuristic solutions, research has almost
exclusively focused on the case of the Euclidean traveling salesman problem, where
points are laid out on the plane. Most practitioners in that field know that local
search heuristics give rise to costs whose relative variance decreases as the number of
points increases. Furthermore, it was observed by Johnson and McGeoch [14], among
others, that the costs tend toward a fixed percentage excess above the optimum. Our
purpose here is to show how this convergence occurs, albeit in a different combinatorial
optimization problem, and to provide a theoretical framework for understanding where
this behavior comes from. Also, we pay special attention to the distinction between
fluctuations within an instance and from one instance to another. We believe our
findings are quite general and in particular that the ensemble of instances considered
need not be based on points in a physical space.

5. Algorithms used in the testbed. In view of the previous arguments, we
have restricted ourselves to local heuristics. Without trying to be either complete or
representative, we have studied the statistics of cut sizes for three types of local search
and four versions of simulated annealing algorithms. In this section we sketch the
workings of these heuristics. In sections 6 and 7, we show that the same self-averaging
properties hold for all these algorithms in spite of their significant differences. There is
thus no reason to believe that our claims are affected by the details of such algorithms;
rather, the properties are most likely generic to dynamics that are local.

5.1. Kernighan–Lin algorithm. In simple local search, one performs elemen-
tary transformations to a feasible solution of the COP as long as they decrease the
cost, a procedure sometimes called λ-opting [22]. A more sophisticated version consists
in using “variable depth” search: one builds a sequence of p elementary transforma-
tions, usually according to a greedy criterion. p is not set ahead of time and depends
on the sequence of costs found. The elementary transformations are not imposed to
decrease the cost, but the sequence of length p must do so if it is to be applied to the
current solution. Such a procedure was first proposed by Kernighan and Lin [18]—in
fact in the framework of the GPP. Hereafter we will refer to their algorithm as “KL.”
The elementary transformation they use is the exchange of a pair of vertices: one
vertex in V1 being exchanged for one in V2. A sequence of such exchanges is built
up in a greedy and tabu fashion by performing a “sweep” of all the vertices: at each
step of the sweep, one finds the best (largest cost gain) pair to exchange among those
vertices that have not yet been moved in the sweep (tabu condition). The sweep has
length N/2. When the sweep is finished, one finds the position p along the sequence
of exchanges generated where the cut size is minimum. If this minimum leads to an
improved partition, the transformation of p exchanges is performed on the partition
and another sweep is initiated; otherwise, the search is stopped and the partition is
“KL-opt”; that is, it is a local minimum under KL.

The KL algorithm is deterministic, although it is possible to introduce stochas-
ticity to break degeneracies in selecting the best pair to exchange. Its computational
complexity is not easy to estimate because the number of sweeps is not known in
advance. (This is a generic difficulty in estimating the speed of iterative improvement
heuristics.) However, in practice, one finds that KL finishes in a “small” number of
sweeps. Thus the computational complexity is estimated to be a few times that of
performing the last sweep, known as the check-out sweep. For our study, we have
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used our own implementation of KL [24], which uses heaps to find the best pair to ex-
change at each step. For sparse graphs, this leads to O(N lnN) operations per sweep.
A nearly identical KL is provided in the Chaco software package, which gives sensibly
identical results. A faster implementation of the algorithm has been given by Fiduccia
and Mattheyses [7] whenever the use of a radix sort is possible; then the time for each
sweep is O(N).

In terms of quality of solutions found, KL is quite good. What is surprising is
that, though Kernighan and Lin proposed their method over 20 years ago, KL remains
relatively unchallenged, at least as a general purpose method applicable to any kind
of graph, regardless of its structure. Of course, for special kinds of graphs, such as
meshes, other heuristics (e.g., spectral bisection) perform better [4, 11, 13, 15].

5.2. A multilevel KL algorithm: CHACO. The Chaco software package
includes a number of heuristics for partitioning graphs. (For information about this
package, see The Chaco User’s Guide [10].) For our purposes, we have used only
its “multilevel” generalization of KL, hereafter referred to simply as CHACO. The
CHACO algorithm is based on a coarse graining or “compactification” of the graph
to be partitioned. At each level, vertices are paired using a matching algorithm, and
paired vertices are then considered as the vertices of the next higher level of compact-
ification. Because of this process, it is necessary to have weighted edges; the weights
are also propagated to the higher level. The compactification is repeated until a suf-
ficiently small graph is obtained to which spectral bisection is applied to get a first
partition. Then this partition is used as the starting partition in KL for the graph at
the level below it. This process is recursive until one obtains a KL-opt partition of the
original graph. (Note that this construction is deterministic and does not require an
initial “random” partition.) Such a multilevel strategy has been very successful for
unstructured two- and three-dimensional meshes [11, 15], both in terms of solution
quality (much better than for KL alone) and in terms of speed (much faster than KL
because of the hierarchical nature). However, the usefulness of CHACO on random
graphs is not a priori obvious in terms of either speed or quality of solutions.

5.3. Simulated annealing algorithms. We have chosen as a third compara-
tive algorithm simulated annealing (SA). SA is based on a set of elementary moves,
just like local search, but now moves that increase the cost are accepted with (low)
probability. Because of this, it is sometimes appropriate to consider SA as a noisy
local search method. SA is really a family of algorithms. To include some of the
different bells and whistles proposed for this algorithm, we have considered four vari-
ations, which we will now describe. (i) The SA as first introduced by Kirkpatrick,
Gelatt, and Vecchi [19] (referred to as FSA) has the initial and final temperatures
fixed ahead of time by the user and a predetermined number of trial moves performed
at each temperature. (ii) Kirkpatrick, Gelatt, and Vecchi [19] also proposed to de-
termine the initial and final temperatures of the schedule dynamically. They set the
initial temperature at the beginning of the run using the criterion that about 80%
of the trial moves are accepted at that temperature. Similarly, they stop the cooling
if the energy does not decrease for five cooling steps. We will refer to this method
as KSA. (iii) Johnson et al. [13] improved the speed of this algorithm by allowing
an early exit to the next temperature of the schedule; the condition they proposed
for exiting is having accepted a minimum number of moves. Also, they modified the
termination criterion to having an acceptance rate less than a threshold value. We
will refer to this version as JSA. All three of these SA methods use an exponential
cooling schedule with a cooling factor of 0.95. (iv) The last SA variation consists of
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using an adaptive schedule whereby the next temperature value is determined on the
fly according to the energy fluctuations at the current temperature. We have chosen
for this variation the implementation of van Laarhoven and Aarts [28, 29], which we
call ASA. To obtain good results with this SA, one would have to spend a long time
in the “freezing” phase of the cooling. Since this would increase the computation
times significantly, we have chosen not to use a fine-tuned adaptive schedule but one
that provides a cooling factor of the same magnitude as in the other SA algorithms
presented. This allows us to have similar computation times for all the SA algorithms
investigated.

In SA, one can use the same elementary moves as in local search, that is, for
the GPP pair exchanges. However, once a low-cost partition is obtained, it will take
a long time (or a lot of luck) to find further good exchanges. Finding a good pair
is best done by finding the first vertex to transfer and then the second, that is, by
using a sequential process. This suggests relaxing the constraint of having balanced
partitions and replacing it by a penalty function that keeps the sizes of V1 and V2

nearly equal (small off-balance). We have followed a slightly different approach, where
each move destroying the balance must be followed by a move restoring the balance.
Then the Markov chain explores the partitions which are balanced and those with
off-balance of ±1. It is easy to see that this method is equivalent to having the cost
of all the other partitions equal infinity; at fixed temperature and for long chains,
one generates partitions with cut sizes given by the Boltzmann factor, within the
constraint for the off-balance. Indeed, the succession of accept/reject decisions makes
the global probability distribution Boltzmannian in this enlarged space, so that we
guarantee the same convergence properties as in the standard case.

Some remarks concerning our implementations are in order. First, at fixed tem-
perature, we perform a certain number of “sweeps.” In each sweep, every vertex is
sequentially considered as a candidate for changing sides of the partition; if the move
were to violate our limit on the off-balance, the move would be rejected (in fact, it
simply would not be considered). A sweep thus requires O(N) operations. Our sweeps
use random permutations rather than a fixed or random ordering of the vertices. The
use of random permutations should, according to certain authors [13, 28, 29], result in
an enhancement of the quality of the solutions found. Second, the maximum number
of sweeps at any temperature is set to αλ, with λ = 10 for all of our implementa-
tions. For FSA and KSA, this is in fact the (actual) number of sweeps, so that their
computational complexity is O(αλN) times the number of temperature steps used.
The cases of JSA and ASA are more difficult to evaluate. In practice we find that
JSA is faster than KSA, but not by more than a constant factor. ASA (adaptive SA),
on the other hand, spends more time at intermediate temperatures as N increases;
empirically, we have found an O(N3/2) complexity.

In terms of quality, we are aware of no systematic study on sparse random graphs.
In a previous SA work on the GPP, Van Laarhoven and Aarts used an adaptive
decrement rule [28, 29] and claimed a gain of about 13% over simpler nonadaptive
algorithms. They also compared their results to those from the algorithm used by
Johnson et al. [13] for the GPP; Johnson et al. claimed an enhancement of about
5% for JSA over the KL algorithm. The small gain found by Johnson et al. [13] is,
according to van Laarhoven and Aarts [28, 29], due to the use of a nonadaptive choice
of the temperature decrement rule. However, we have found for sparse random graphs
that the different variants of SA are nearly indistinguishable in terms of quality of
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solutions. This may be due to our not using a penalty term or to the different nature
of the graphs used in the present study.

5.4. Chained local optimization. The chained local optimization (CLO) strat-
egy is a synthesis of local search and of SA [25]. The essential idea is to have SA sample
not all solutions, but only locally optimal solutions. This strategy is guaranteed to
be at least as good as local search and has been successfully applied to the traveling
salesman problem [23] and to the partitioning of unstructured meshes [24].

In this work, we use KL as the local search engine. Given any initial KL-opt
partition Pi, the simplest implementation of CLO will: (i) apply a perturbation or
“kick” to modify significantly the partition (in practice, this means exchanging clusters
of vertices); (ii) run KL on the modified partition so as to reach a new KL-opt partition
Pf ; (iii) apply the accept/reject procedure for going from the initial partition (Pi)
to the final one (Pf ). This defines the analogue of one move of an SA algorithm,
except that many modifications to the partition have occurred in this single step. The
temperature may be modified according to a schedule if desired, but for simplicity,
we have set the temperature to zero in all of our runs.

As was discussed in the context of SA, it is inefficient to exchange vertices or
clusters simultaneously; it is better to do it sequentially. Our present CLO algorithm
thus proceeds as follows. Given Pi, an initial balanced KL-opt partition, choose a
(connected) cluster of p vertices in V1 (or V2), and move them into V2 (respectively,
V1). KL-optimize this partition to generate an intermediate (off-balance) partition.
Now choose a cluster of p vertices in V2 (V1) and move them into V1 (V2); KL-optimize
this modified partition to generate Pf , the final (and balanced) partition. This whole
procedure is our “simulated annealing” step, and we apply the accept/reject criterion
for going from Pi to Pf .

When running CLO on irregular meshes [24], it was possible to perform large
kicks, exchanging many vertices at once. Unfortunately, for sparse random graphs,
we find that the acceptance when doing so becomes low. We have thus used “small”
kicks, creating clusters of sizes varying randomly between 3 and 13. Given such small
kicks, KL usually terminates in just two sweeps, and the speed of CLO per kick is
about half that of KL.

Now consider the limit of large N . Using the analogy with SA, if a fixed (N -
independent) number of small kicks are used, it can be expected that CLO will perform
no better than KL itself. We have thus chosen to use a number of kicks which scales
linearly in N, namely, λN with λ = 0.1. This choice of course influences the quality
of the solutions generated, a larger value of λ giving a priori better results. The
computational complexity of this algorithm is then of order N2 log(N).

6. Self-averaging of the cut sizes. In the rest of this paper, we study the
statistical properties of the cut sizes generated by the algorithms described in section
5 when applied to random initial partitions. The ensemble of graphs used is that of
random graphs with mean connectivity α = p(N − 1) = 5 (see section 2). This value
was chosen because at much larger connectivities, the ratio between the best and worst
cut sizes approaches 1, and at lower connectivities, algorithms taking explicit advan-
tage of disconnected parts of the graph will outperform general purpose heuristics. In
order to minimize effects associated with our finite sample of graphs in the ensemble,
we have benchmarked all the algorithms on the same graphs. The number of graphs
used during the production runs was 10, 000, with values of N ranging between 50
and 200; however, because the CHACO algorithm was fast, we have also performed
runs on 100, 000 graphs for that heuristic.
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The purpose of this section is to give numerical evidence that the distribution
of cut sizes becomes peaked in the limit of large graphs, for each of the heuristics
considered. (Further properties of the distribution will be given in section 7.) We find
that each algorithm generates cut sizes for which both the mean and variance scale
linearly in N . From this behavior, it is clear that the distribution of cut sizes becomes
peaked at large N, that is, that the cut sizes are self-averaging. Also, assuming (cf.
section 2) that the minimum (i.e., optimum) cut size scales linearly with N at large
N, we then see that each heuristic algorithm leads to a fixed percentage excess above
the true optimum. (Note that the worst cut size also has a linear scaling in N .) This
percentage excess provides a first ranking of the algorithms, which, however, does not
take into account the speed of execution.

If C(i,m) is the cut obtained by a heuristic for the graphGi and an initial partition
m, define the mean cut per vertex 〈dce〉 by

〈dce〉 ≡
〈⌈C(i,m)

N

⌉〉
,(6.1)

where the averages are over initial partitions and over the ensemble of graphs studied
(cf. section 3 for the notation). We compute these ensemble averages numerically using
the standard estimator (hereafter, overlines refer to numerical averages):

c ≡
∑
i

∑
m C(i,m)

N
∑
i

∑
m 1

≈ 〈dce〉.(6.2)

The approximation is due to a statistical error e associated with fluctuations of C(i,m)
with both m and i. It is not difficult to see that for our problem, one does not need to
perform an average over m; using any finite number R of partitions for each graph Gi
provides an unbiased estimator of 〈dce〉. Furthermore, the statistical error e is not very
sensitive to R, making it numerically inefficient to take a large value for R. Because
of this, we have performed the numerical averages with R = 1, and this leads to a
simple expression for e, the statistical error on c:

e2 =
〈d(c− 〈dce〉)2e〉∑

i 1
≈ (c2 − c2)∑

i 1
.(6.3)

Figure 6.1 shows the dependence of c on 1/N . (The error bars are too small to be
visible. Also, in order to avoid cluttering the figure, we have included among the SA
algorithms only KSA; the other implementations of simulated annealing give nearly
identical results.)

For all algorithms, the figure suggests that there is a limiting large N value for c
and that the convergence to this limit is linear in 1/N . We have thus fitted the data
to a linear function:

C
N
≡ c ≈ A+

B

N
.

The values of the A and B coefficients obtained from the fits are given in Table 6.1,
and the χ2 values show that the fits are good.

An identical analysis can be performed on the variance of the cuts found by the
different algorithms. Figure 6.2 shows the dependence on N for the rescaled quantity
N(c2 − c2). The scaling in N is apparent, just as it was for c.
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In summary, our data lead us to conclude that the mean and variance of C scale
linearly with N at large N . Then the relative width of the distribution of C is propor-
tional to 1/

√
N, showing that the distribution for the cut sizes becomes peaked for all

the algorithms investigated. (One can also say that the distribution of C(i,m)/N tends
toward a delta function as N →∞, which is what we mean by self-averaging.) Since
the fluctuations of C(i,m) include both graph-to-graph fluctuations and fluctuations
within a graph, we can conclude that the relative fluctuations within a fixed typical
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Table 6.1
Estimates for the large N value and slope of the mean cut size per vertex and percentage excess

relative to the KSA heuristic.

Algorithm A B % excess
KSA 0.4485 4.95 0.00
FSA 0.4489 4.92 0.08
ASA 0.4499 4.96 0.32
JSA 0.4513 4.88 0.63
CLO 0.4568 4.85 1.8

CHACO 0.4802 5.81 7.1
KL 0.4916 4.21 9.6

SA T = 0 0.5302 4.79 18.2

graph necessarily also go to zero. (Note: Although for our runs we use R = 1, our
observable (c2 − c2) is an unbiased estimator for 〈d(c− d〈ce〉)2e〉 which includes both
types of fluctuations.) Thus, in the large N limit, each algorithm will give a fixed
percentage excess above the minimum for almost all graphs and almost all random
initial partitions.

A speed-independent ranking. Since each algorithm is characterized by a
percentage excess, we can introduce a ranking of the different heuristics according to
their excess in the large N limit. (Of course, this ranking does not take into account
the speed of the algorithms!) For our graphs and our implementation of the different
heuristics, the winners are in the class of SA. The best is KSA; using this as the
reference rather than the true min-cut size (which is unknown), JSA has an excess of
0.63%, ASA an excess of 0.32%, and FSA an excess of 0.08%. The next best heuristic is
the CLO algorithm, followed by CHACO, and finally KL. (The results for the excesses
are given in Table 6.1.) We have also included for general interest the excess obtained
by a zero temperature “simulated annealing”: 18.21%; note that it gives much worse
results than KL, while true SA gives much better results than KL.

As a comment, let us remark that the relative solution quality of the algorithms
is determined to higher precision than the absolute quality. Simply put, the cut sizes
we obtain for the different algorithms are correlated because they are performed on
the same graphs, so that the statistical error on 〈dcCLO − cKLe〉, for instance, is 3.2
times smaller than the statistical error on 〈dcCLOe〉 alone. This is why it is possible to
give reliable values for the excesses of the different SA algorithms even though their
solution quality is very similar. Nevertheless, the ranking for the SA algorithms is not
without ambiguity. The FSA algorithm is, for larger N, within the statistical error of
the KSA algorithm, and hence we have no strong evidence that one is better than the
other.

The other algorithms are easily ranked. KL and CHACO are 9.6% and 7.1% worse
than KSA, but CLO is only 1.8% worse. The comparison with KL is qualitatively
(though not quantitatively) similar to that given by Johnson et al. [13] and by van
Laarhoven and Aarts [29]. Both claimed a gain of the SA algorithm over the KL
algorithm of about 5% and 13%, respectively. The differences with our results have
several origins. First, we have performed an average over an ensemble of graphs.
Second, our graphs have slightly different characteristics than the ones they used.
Third, we have not introduced a penalty term in our implementation of SA; this
probably affects the quality of the solutions found.

7. Distribution of cut sizes. In this section we deepen our statistical study
of C. As shown in the previous section, the distribution of C/N tends toward a delta
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Fig. 7.1. Histogram of KL cut sizes for one N = 1000 graph with overlaid Gaussian.

function; it is natural to ask how this limit is reached and to understand the nature of
intra- and intergraph fluctuations. It is convenient to use the framework introduced
in section 3, but with random partitions replaced by the partitions found by applying
one of our heuristics to a random start. For each graph Gi, and each initial partition
m, we define

C(i,m) = X(i) + Y (i,m),

where dY (i,m)e = 0, so that X(i) is the average cut size found on graph Gi and
Y (i,m) gives the fluctuation of the cut size about its mean for that graph. For each
of our heuristics, our study indicates that for a large random graph Gi, Y has a
nearly Gaussian distribution, and that the width of this distribution is essentially
independent of i. We study this distribution at large N and show that its width is
self-averaging and its relative asymmetry goes to zero. Finally, we have evidence that
X and Y become independent variables at large N . These properties will lead to a
fast and robust ranking of the heuristics in section 8.

Figure 7.1 shows the distribution of cut sizes found by KL on one N = 1000 graph
chosen at random from G(N, p) with p = α/(N − 1). Superposed is a Gaussian with
the same mean and variance. The figure gives good evidence that the distribution of
Y for that graph is very close to a Gaussian. Then an obvious question is whether the
distribution of Y is similar across different graphs. For each of our heuristics, we find
that the answer is yes, as indicated by the following study of the moments of Y. (Note
that for the CHACO algorithm, the default parameter setting generates the initial
starting partition deterministically by application of the coarse graining strategy; then
a spectral method is applied. Since there is no “random” initial partition, there are
no fluctuations in the cut size as a function of m and so little in this section applies
to CHACO with these parameter settings.)

To quantify how σ2
Y (i) ≡ dY 2(i,m)e varies from graph to graph, we measured its
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mean and variance over i. First, we measured the ensemble averages 〈σ2
Y (i)〉/N . For

each heuristic, the data extrapolates to a limiting value as N becomes large. Compar-
ing with the results for the mean cut size, we find that the algorithms which lead to the
best cut sizes also have the smallest widths for the Y distribution. Second, we studied
the variance of σ2

Y (i), that is, σ2
(
σ2
Y (i)

)
. This study requires high statistics, and so

was performed to high accuracy only for KL, the fastest of our algorithms; however,
the other algorithms show qualitatively the same behavior. Figure 7.2 displays for KL
the 1/N dependence of the relative variance of σ2

Y (i), that is, the intergraph variance
of σ2

Y (i) divided by the square of its mean. As can be seen from the figure, the ratio
goes to zero at large N, showing that σ2

Y (i) is self-averaging. Simply put, this means
that the width (over m) of the Y distribution has relative fluctuations from graph to
graph that disappear as N → ∞. (Our lower statistics data for the other heuristics
are consistent with this conclusion.)

Following the statistical physics analogy given in section 4, there is reason to
believe that the distribution of Y tends toward a Gaussian as in the case of random
partitions. To test this conjecture, we have measured the asymmetry of the distribu-
tion of Y on numerous graphs for KL. First, we find that the typical asymmetry is
small and that the mean of the third moment of Y satisfies

〈dY 3(i,m)e〉/〈σ2
Y (i)〉3/2 → 0

as N → ∞. Second, we have checked that the average of the squared asymmetry is
also small, that is, that

〈dY 3(i,m)e2〉/〈σ2
Y (i)〉3 → 0.

These properties give strong evidence that the distribution of Y for any graph tends
toward a Gaussian of zero mean and of variance AN as N → ∞, where A depends
on the heuristic but not on the actual graph.
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The distribution of X(i) can be studied similarly. The previous section gave its
mean as a function of N and also showed that it is self-averaging. It is of interest to
quantify the decrease with N of its relative variance. We have found that the distri-
bution of X is roughly compatible with a Gaussian distribution of width proportional
to
√
N for each of the algorithms. (Unfortunately, a quantitative test of this requires

very high statistics.) However, the distribution of X(i) is not essential for our ranking
procedure as will be clear in the next section, so we have not studied it in greater
depth.

Finally, to completely specify the statistics of C(i,m), it is necessary to describe
the correlations between X(i) and Y (i,m). We have found numerically that these
variables are nearly uncorrelated, with, in particular, the correlation between X(i)
and σ2

Y (i) tending toward zero as N → ∞. Assuming that this holds and that X
has a Gaussian distribution, then the distribution of C(i,m) is also Gaussian. Our
measurement of the asymmetry (jointly over i and m) of C(i,m) is compatible with
this property at large N . (The total variance is then given by the sum of the variances
of X and Y .) This can be summarized mathematically by introducing two Gaussian
random variables x and y of zero mean and unit variance and modeling the rescaled
cut size as the following sum:

c(i,m) ∼ 〈dce〉+
σ∗X√
N

x(i) +
σ∗Y√
N

y(i,m).

This equation is then the exact analogue of what was derived for the cut sizes of
random partitions (see (3.5)).

8. A speed-dependent ranking of heuristics. In this section we come back
to the initial motivation for this work, namely, the necessity of comparing heuristics
of very different speeds. The possibility of doing so is very relevant, as for most COPs
local search is quite fast and SA notoriously slow. Any meaningful ranking must
determine whether it is better to have a fast heuristic that gives rather poor solutions
or a slower heuristic that gives better solutions. We now show how to introduce such
a ranking when considering first just one graph, and then how to generalize to an
ensemble of graphs. Finally, we illustrate what this ranking gives in the case of the
heuristics in our testbed when applied to sparse random graphs.

The case of one graph. Consider a single graph G on which one is to provide a
ranking of a number of heuristics that give various cut sizes and run at different speeds.
To take into account both the speed of the algorithms and the quality of the solutions
they generate, we fix the amount of computation time allotted per algorithm. Call this
time τ (measured, for instance, in CPU seconds on a given machine). Each heuristic
then generates (nonoptimal) solutions during that time using multiple random initial
starts. Suppose that the speed of the algorithm of interest is such that k independent
starts can be performed in the allotted time τ . (We shall assume that the execution
time is insensitive to the random initial start, as this is the case in practice with our
heuristics. Knowledge of the speed of the algorithm then gives the value of k that
can be used.) For each start, there is an output or “best-found” cost. The output
at the end of the k starts is the best of these k costs, hereafter called “best-of-k.”
The different algorithms are then ranked on the basis of the ensemble mean of their
best-of-k (the value of k depending on τ and on the algorithm). This ensemble average
is the average over the random numbers used both for the random initial starts and
for running the algorithms (if any). This establishes a ranking for a particular graph
and for a given amount of computation time τ .
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It is inefficient to perform the average just mentioned in a “direct” way, that is, by
extracting values of best-of-k over many multiple runs; it is far better to compute the
average starting with the distribution of the “best-found” cut sizes associated with
single random starts. Call P (C) the probability of finding a best-found cut size of
value C, and Q(C) the associated cumulative distribution, that is, the probability of
finding a cut size (strictly) smaller than C. Since the cut sizes are integer valued, we
then have P (C) = Q(C + 1) − Q(C). Introducing the analogous probabilities P̃k and
Q̃k for the best-of-k values, one has

1− Q̃k(C) = (1−Q(C))k.
The distribution for best-of-k can thus be generated from that of best-found, and
then C∗, the mean of best-of-k, is easily extracted. (This construction explains why
we studied the distribution of single cut sizes in section 7.) Note also that it is possible
to extract C∗ for a whole range of τ values with essentially no extra work since τ affects
only k and the determination of the mean of best-of-k represents a negligible amount
of work once the distribution of best-found is known.

The quantity C∗ is in effect a quantitative measure of the effectiveness of the
algorithm. Of course, C∗ depends on the amount of computation resources allotted,
that is, τ . As τ increases, k increases (in jumps of unity), and C∗ decreases. The
broader the distribution of best-found, the faster the decrease of C∗ and the more
useful it is to perform multiple runs.

To establish the ranking, simply order the algorithms according to their C∗. In
general, this ranking may depend on τ, and clearly it is sensitive to the lower tail
of the distribution of best-found. Let us illustrate this by considering, for instance,
two heuristics H1 and H2 having two overlapping distributions for best-found, with
averages satisfying dCH1e < dCH2e. In the mean, H1 seems better than H2, but if H2

is significantly faster, and if the tail of its distribution extends well into the domain
of CH1

, then one can have C∗H2
< C∗H1

. H2 may then be the more effective algorithm,
assuming, of course, that τ is large enough so that indeed H2 can be run multiple
times. Some general properties may be derived assuming, for instance, that CH1

and
CH2 are described by the same distribution but are shifted with respect to one another.
Then, if the tail of the distribution falls off as an exponential or faster, H2 will not
become more effective than H1 as τ →∞.

Ranking on an ensemble of graphs. The extension of this ranking to an
ensemble of graphs is straightforward. Assume that C∗ is known for each graph G and
for each heuristic. C∗ is a (real number) measure of the effectiveness of the heuristic
on that graph, given an amount of computation time τ . We can then generalize this
measure from one graph to an ensemble of graphs by considering 〈C∗〉, the mean of
C∗ over the relevant ensemble. The final ranking is then simply given by the ordering
of the algorithms according to their mean effectiveness.

Our expectation is that in a relatively homogeneous ensemble, the effectiveness
(and thus the ranking) will be nearly the same for essentially all sufficiently large
graphs and so the average behavior is also the typical behavior. We can expect this to
happen whenever the distribution of cut sizes associated with the different heuristics
does not overlap too much and has the same pattern regardless of the graph. This is
what occurs in the case of our ensemble of random graphs: indeed, we saw that each
algorithm leads to a fixed percentage excess cost at large N and that the distribution
of costs is peaked. Then two algorithms have nonoverlapping distributions as N →∞
(unless they give rise to the same percentage excess). It is then clear that at large N,
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the mean ranking is the same as the typical ranking. It is also clear that increasing
the amount of computer resources (τ and thus k) or speeding up an algorithm while
keeping the quality of its solutions the same does very little to improve its ranking.

Illustration. For each value of N and τ, we can follow the procedure just given
to obtain C∗ for the different heuristics of interest for any given graph G and repeat
this for many graphs in G(N, p). There are, however, a number of possible speed-ups
in our case because of the statistical properties derived in the previous sections. First,
although in principle the best-of-k construction has to be repeated for each graph,
the results of section 7 provide a short cut. Since the distribution for best-found is
(to high accuracy) Gaussian, it is possible to map the mean of best-found to that of
best-of-k once and for all: the mapping is just a shift by a k-dependent number of
standard deviations. Second, noting that at fixed N, the variance of this Gaussian as
well as the speed of the algorithm is essentially constant from graph to graph, we can
calculate 〈C∗〉 (the average over graphs) in terms of: (i) the CPU time necessary to
find one best-found; (ii) the mean cut size, 〈X(i)〉; (iii) the variance of the intragraph
cut sizes, dY 2(i,m)e, which is graph independent at large N . These quantities were
measured for a number of values of N, and then fits were performed to interpolate to
arbitrary values of N . From these fits, it is possible to compute analytically the values
of 〈C∗〉 for any values of N and τ, and in particular the “winning” algorithm (the first
in our ranking). From this, define regions in (N, τ) space where a given heuristic is
the winner, leading to a “diagram,” as in Figure 8.1.

In our construction of this diagram, we have included JSA in our ranking but
not FSA, KSA, or ASA. This is because, for our choice of parameters, all of the
SA algorithms tested give solutions very similar in quality, but JSA is slightly faster.
Although the effectiveness of all these SA algorithms are nearly identical, their ranking
depends on N and τ because of the discrete jumps in k. (Whenever one algorithm
increases its k before the others, it may change its ranking.) In the diagram of Figure
8.1, we have labeled the different regions according to the associated “winner,” and



CUT SIZE STATISTICS OF GRAPH BISECTION HEURISTICS 249

have indicated the boundaries separating them. (Again, because of the discrete nature
of k, we have smoothed these curves.) The labeling “SA” in fact corresponds to JSA.
The CPU time is expressed in multiples of CPU cycles. To give these units a machine-
independent and less technical meaning, it is enough to say that the lower boundary
of the CHACO region corresponds to the time CHACO needs to run once.

From this diagram, we see that at large N, given enough CPU time, the best
algorithm is SA, simply because its mean excess cost is lower than that of the other
algorithms. In this limit, the distributions for the cut sizes overlap very little, so the
ranking is relatively insensitive to the algorithm’s speed: using multiple random starts
does very little to improve the quality of the solutions found as fluctuations about
the mean become negligible. At smaller values of N, the fluctuations arising from
different random starts are not negligible, so faster algorithms can outperform SA by
using the best of k runs. If we compare KL, CHACO, and CLO, we see that CLO
is a bit slower but leads to substantially better solutions, and so is the winner if the
amount of CPU time is enough for it to run. The other algorithms are competitive
only if neither CLO nor SA can terminate a run. This explains why the KL region
is nearly invisible, squeezed under the CHACO region, itself below the CLO and SA
regions. (Note: (i) On our random graphs, CHACO is slower than KL; (ii) the initial
partition is set deterministically within the default settings of CHACO, so that its
best-found and best-of-k values are identical.)

9. Discussion and conclusions. We have studied the statistics of cut sizes
generated by graph partitioning heuristics, both within a given graph and over an
ensemble of graphs. Motivated by a statistical physics analogy and by what happens
for random partitions (section 3), we obtained strong numerical evidence that the
cut sizes generated on sparse random graphs are self-averaging, that is, that their
distribution becomes peaked as the number of vertices N becomes large. (Quantita-
tively, this simply means that the relative fluctuations about the mean tend to zero
as N → ∞.) For the mean cut size, we found a linear dependence on N, indicating
that each heuristic leads to a fixed percentage excess cut size above the true mini-
mum. We expect analogous properties to hold for all local heuristics applied to any
combinatorial optimization problem in which each variable is coupled to just a few
others.

We also investigated how the distribution of cut sizes approaches its limiting
large N behavior and gave evidence that on typical graphs the distribution of cut
sizes generated becomes Gaussian as N → ∞. In that limit, each heuristic is then
characterized by a mean cut size (over all graphs) and a variance describing the
fluctuations in the cut sizes on any typical graph. This variance seems to scale linearly
with N in the large N limit and to be self-averaging also.

The principal motivation for this work was to introduce a method to rank heuris-
tics while taking into account both the quality of the solutions found and the speed
of the algorithms. Knowledge of the distribution of cut sizes allows one to establish
a meaningful ranking of the heuristics by assuming that the algorithms may be ap-
plied to k different random starts, with the best of the k runs giving the final cost.
Although this ranking can be done by brute force, we have used the properties just
described to demonstrate it on the heuristics in our testbed. At “large” values of N
(N > 700), the winner is almost always SA. In fact, at large N, the distributions
associated with the algorithms we have tested do not overlap significantly, so that
the use of multiple runs to explore the tail of the distributions is not effective. For
smaller values of N, the faster algorithms are more competitive, and we find that the



250 G. R. SCHREIBER AND O. C. MARTIN

winner is CLO except when the allotted time is too short to run CLO even once. Since
the graph-to-graph fluctuations in the variance of the cut sizes found are small, this
ranking “in the mean” is also in almost all cases the ranking on individual graphs; it
is thus very robust.

A number of questions remain open. How can one characterize the distribution
of X(i), the mean cut size on graph i? To what extent do similar properties hold
for heuristics that are manifestly not local? Can the information found help generate
better heuristics? Concerning this last question, it is worth pointing out that although
SA is a general purpose method, it outperforms the other heuristics that were specifi-
cally developed for the GPP. This suggests that some improvements in these methods
might be obtainable by suitable modifications.
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CLOSED CONVEX SET AND A POLYHEDRON IN HILBERT
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Abstract. Let X be a (real) Hilbert space, C be a closed convex subset, and Hi = {x ∈
X | 〈x, hi〉 ≤ bi} (i = 1, 2, . . . ,m) be a finite collection of half-spaces. Under the assumption
that K := C ∩ (∩m1 Hi) is not empty, the problem of characterizing the best approximation from
K to any x ∈ X is considered. The “strong conical hull intersection property” (strong CHIP),
which was introduced by us in 1997, is shown to be both necessary and sufficient for the following
“perturbation property” to hold: for each x ∈ X, an element x0 ∈ K satisfies x0 = PK(x) if
and only if x0 = PC(x −

∑m

1
λihi) for some scalars λi ≥ 0 with λi[〈x0, hi〉 − bi] = 0 for each i.

Here PD(z) denotes the unique best approximation from D to z. In other words, determining the
best approximation from the set K to any point is equivalent to the (generally easier) problem of
determining the best approximation from the set C to a perturbation of that point. Moreover, even
when the strong CHIP does not hold, the perturbation property still holds, except now C must be
replaced by a certain convex extremal subset of C. We also show that the strong CHIP is weaker
than any of the weak Slater conditions that one can naturally impose on the sets in question. These
results generalize the main results of our 1997 paper [J. Approx. Theory, 90, pp. 385–444] and hence
those of several other papers as well.

Key words. best constrained approximation, shape-preserving interpolation, strong conical hull
intersection property, strong CHIP, cones, dual cones, normal cones, duality, weak Slater conditions,
Hilbert space
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1. Introduction. During the last several years, there has been much interest
centered on the following constrained approximation problem: in a Hilbert space X,
find the best approximation PK(x) to any x ∈ X from the set

K := C ∩A−1(b) = C ∩ {x ∈ X | Ax = b},

where C is a closed convex subset of X, A is a bounded linear operator from X into
a finite-dimensional Hilbert space Y , and b ∈ Y . One of the main reasons for this
interest is that this problem contains as a special case the “shape-preserving inter-
polation” problem that arises in curve and surface fitting (see [3]). The (sometimes
implicit) goal of several papers (see, e.g., [5, 6, 11, 12, 15, 16]) was to determine the
pairs of sets {C,A−1(b)} for which the following “perturbation property” holds: for
every x ∈ X, there exists y ∈ Y so that

PK(x) = PC(x+A∗y).
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In other words, when can determining the best approximation to x from K be replaced
by the problem of determining the best approximation to a perturbation x + A∗y
of x from the set C? In the applications, it is generally easier to compute best
approximations from C than from the whole intersection K. It was seen in [11] that
this holds if and only if the sets {C,A−1(b)} satisfy the “strong conical hull intersection
property” (strong CHIP). In particular, the above perturbation property was seen to
hold whenever b was in the relative interior of A(C) (see [6], [11]).

The main thrust of this paper is to treat the more general problem of giving an in-
trinsic characterization of those pairs of sets

{
C, {x | Ax ≤ b}} for which an analogous

perturbation property holds. Again, the strong CHIP turns out to be the character-
izing property. In fact, if A is defined on X by Ax := (〈x, h1, 〉, 〈x, h2〉, . . . , 〈x, hm〉)
for some given hi ∈ X \ {0}, b ∈ Rm, and K = C ∩ {x ∈ X | Ax ≤ b}, then the strong
CHIP is a necessary and sufficient condition to ensure the following “perturbation
property”: for each x ∈ X, an element x0 ∈ K satisfies x0 = PK(x) if and only if
x0 = PC(x−∑m

1 λihi) for some scalars λi ≥ 0 with λi[〈x0, hi〉 − bi] = 0 for all i (see
Corollary 3.3). The merits of such a characterization theorem are mainly that it is
generally easier to compute best approximants from C than from K. Also, in many
applications, computing PK(x) is intrinsically an infinite-dimensional problem. How-
ever, the computation of PC(x−∑m

1 λihi) involves only a finite number of parameters
λi.

The present results certainly generalize previous results since polyhedral sets of
the form A−1(b) can be expressed as the intersection of half-spaces. Despite the simi-
larity of the characterization theorem with past results, there are striking differences.
Most notable, perhaps, is that unlike the “flat” case, the present characterization
theorem holds in certain cases when b /∈ A(C)! Furthermore, a key technical result
(Theorem 2.7) gives sufficient conditions for D + conF to be closed, where D is a
closed convex cone and F is a finite subset of the Hilbert space. The corresponding
result with conF replaced by a finite-dimensional subspace (see [11, Theorem 3.11])
was much more transparent.

The strong CHIP is defined in section 2, and we also include some useful equivalent
reformulations. The main theoretical results are stated in sections 3 and 4. In section
3, the strong CHIP is seen to be equivalent to the aforementioned perturbation prop-
erty. We also show connections between strong CHIP and the Karush–Kuhn–Tucker
and Lagrange multiplier conditions. In section 4, we show that even when the strong
CHIP is not present, it still is possible to use the perturbation technique, except now
one must replace C by a certain convex extremal subset of C! In section 5, we show the
connection between “weak Slater” conditions and the strong CHIP. In section 6, we
show how to recover the results of [11] for the “equality case” (i.e., K = C ∩A−1(b))
from the inequality case described here. We also give some examples and applications
of the theory described.

The notion of the strong CHIP, introduced by us in [11], has taken on an increas-
ingly important role in optimization theory. For example, in [10] and more recently
in [18], it was shown that the strong CHIP is an essential property when establishing
duality relations between certain convex optimization problems. In [2], the close rela-
tionship between the strong CHIP, “bounded linear regularity,” “Jameson’s property
(G),” and error bounds in convex optimization was studied. Finally, [9] showed that
the strong CHIP is the fundamental property in general convex optimization theory
when the constraint set is an intersection of finitely many closed convex sets.

We conclude the introduction by describing some notation used and stating a
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useful theorem which characterizes best approximations that will be used many times
in this paper. Recall that a subset K of the Hilbert space X is convex (resp., a convex
cone) provided that

λK + (1− λ)K ⊂ K for all 0 ≤ λ ≤ 1

(resp., ρK ⊂ K and K + K ⊂ K for all ρ ≥ 0). For any nonempty subset S of X,
the convex hull (resp., conical hull , linear hull ) of S, denoted co (S) (resp., con(S),
span(S)), is the intersection of all convex sets (resp., convex cones, linear subspaces)
which contain S. If S is nonempty, the dual cone (resp., orthogonal complement) of
S is the set

S◦ := {x ∈ X | 〈x, y〉 ≤ 0 for all y ∈ S}

(resp., S⊥ := {x ∈ X | 〈x, y〉 = 0 for all y ∈ S}). Note that S◦ (resp., S⊥) is
a nonempty closed convex cone (resp., closed linear subspace). The closure (resp.,
interior, relative interior, boundary) of any set S is denoted by S (resp., intS, riS,
bdS).

It is well known that if K is a closed convex subset of the Hilbert space X, every
x ∈ X has a unique best approximation PK(x) in K to x. That is, PK(x) ∈ K and

‖x− PK(x)‖ = inf{‖x− y‖ | y ∈ K}.

The following result is also well known.
Theorem 1.1 (characterization of best approximations). Let K be a closed

convex subset of the Hilbert space X, x ∈ X, and x0 ∈ K. Then x0 = PK(x) if and
only if x− x0 ∈ (K − x0)◦.

If A is a bounded linear operator from X to Y , then A∗, R(A), and N (A) denote
its adjoint map, range, and null space, respectively. All other undefined terminology
and notation is standard.

2. A sufficient condition for strong CHIP. Throughout this section, C is
a closed convex subset of a Hilbert space X, hj ∈ X \ {0}, bj ∈ R, Hj := {x ∈ X |
〈hj , x〉 ≤ bj} is a (closed) half-space (j = 1, 2, . . . ,m), K := C ∩ (∩m1 Hj) 6= ∅, and
A is the linear mapping A : X → Rm defined by

Ax := (〈h1, x〉, . . . , 〈hm, x〉).

In this notation, we can write K in the form

K = C ∩ {x ∈ X | Ax ≤ b}.

That is, K is the solution set of the following constrained linear inequalities:

〈h1, x〉 ≤ b1, 〈h2, x〉 ≤ b2, . . . , 〈hm, x〉 ≤ bm, x ∈ C.(2.1)

For any index subset J of {1, 2, . . . ,m}, we use AJx (resp., bJ) to denote the vector
obtained by deleting the components of Ax (resp., b) whose indices are not in J . For
example, if J = {3, 7}, then AJx = (〈h3, x〉, 〈h7, x〉) (resp., bJ = (b3, b7)). We first
give some known results about the strong CHIP and then establish a new sufficient
condition for guaranteeing when {C,H1, H2, . . . , Hm} has the strong CHIP.
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Definition 2.1. Let {C0, . . . , Cm} be a collection of closed convex sets and let
S be a nonempty subset of ∩m0 Cj. Then {C0, . . . , Cm} has the strong CHIP relative
to S if, for every x ∈ S, (m⋂

0

Cj − x
)◦

=
m∑
0

(Cj − x)◦.(2.2)

In addition, we say {C0, C1, . . . , Cm} has the strong CHIP if it has the strong CHIP
relative to the whole intersection ∩m0 Ci, that is, if (2.2) holds for every x ∈ ∩m0 Ci.

Remarks. 1. The notion of the strong CHIP (relative to the whole intersection
∩m0 Ci) was first introduced in [11]. This, in turn, was a strengthening of CHIP
introduced in [5].

2. The motivation for the name “CHIP” is provided in the equivalence of state-
ments 1 and 4 in Lemma 2.2 below. Namely, the closed conical operation commutes
with intersections.

The indicator function of a set S in X, denoted IS , is defined by IS(x) = 0 if
x ∈ S and by IS(x) =∞ if x /∈ S. The subdifferential of a function f : X → R∪{∞},
denoted ∂f , is the set-valued mapping defined on the domain of f by

∂f(x) := {z ∈ X | f(x) + 〈z, y − x〉 ≤ f(y) for every y ∈ X}.
It is well known and easy to verify that ∂IS(x) = (S − x)◦ for every x ∈ S. This set
is also called the normal cone to S at x.

Lemma 2.2. For given S ⊂ ∩m0 Cj, the following statements are equivalent:
1. {C0, . . . , Cm} has the strong CHIP with respect to S.
2. For each x ∈ S, [m⋂

0

Cj − x
]◦
⊂

m∑
0

(Cj − x)◦.

3. For each x ∈ S,

∂

( m∑
0

ICj

)
(x) =

m∑
0

∂ICj (x).

4. For each x ∈ S,

con

(m⋂
0

Cj − x
)

=
m⋂
0

con (Cj − x)

and

m∑
0

(Cj − x)◦ is closed.(2.3)

5. For each x ∈ S,

con

(m⋂
0

Cj − x
)
⊃

m⋂
0

con (Cj − x)

and (2.3) holds.
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Proof. Since the above lemma is true if S is a singleton (cf. Lemma 2.4 in [11]),
it is also true for any subset S of C.

In general, if some type of weak Slater condition is satisfied, then the strong CHIP
holds as shown by the following proposition.

Proposition 2.3. Suppose that either

1. C ∩
[
int

(
m⋂
1
Cj

)]
6= ∅, or

2. (intC) ∩
(
m⋂
1
Cj

)
6= ∅ and C1, . . . , Cm are polyhedral sets.

Then {C,C1, . . . , Cm} has the strong CHIP. Moreover, if dimX <∞, then intC
may be replaced by riC in part 2.

Proof. If either part 1 or part 2 holds, then [1, Corollary 2.5, p. 113] implies that

∂

(
IC + Im⋂

1

Ci

)
= ∂IC + ∂Im⋂

1

Ci

.

When statement 1 (resp., 2) holds, then [1, Corollary 2.5, p. 113] (resp., [17, Corol-
lary 23.8.1, p. 223]) implies that ∂I∩m1 Ci =

∑m
1 ∂ICi . Thus, in either case, we have

∂

(
IC +

m∑
1

ICi

)
= ∂(IC + I∩m1 Ci) = ∂IC +

m∑
1

∂ICi .

By Lemma 2.2, {C,C1, . . . , Cm} has the strong CHIP. The last sentence in the propo-
sition follows by [17, Corollary 23.8.1, p. 223].

Remark. The above proposition implies that {C0, C1, . . . , Cm} has the strong
CHIP if

int(∩m0 Ci) 6= ∅,

and this was proved in [10].
The following theorem was implicitly proved in [11]. In fact, it follows from

Lemma 3.10, Theorem 3.11, and Lemmas 3.8 and 3.1 of [11] (cf. the proof of Theorem
3.12 in [11]).

Theorem 2.4. If b ∈ riA(C), then {C,bdH1,bdH2, . . . ,bdHm} has the strong
CHIP. Moreover, (C − x)

◦ ∩ span{h1, . . . , hm} is a subspace for every x ∈ C ∩
(
⋂m

1 bdHj).
In general, we cannot even expect b ∈ A(C) for (2.1). Therefore, we have to

modify the condition b ∈ riA(C) to obtain a sufficient condition for {C,H1, . . . , Hm}
to have the strong CHIP.

To introduce the new condition for {C,H1, . . . , Hm} to have the strong CHIP, we
need the following notations. For x ∈ K, let the set of active indices for x be defined
by

I(x) :=
{
j ∈ {1, 2, . . . ,m} | x ∈ bdHj

}
=
{
j ∈ {1, 2, . . . ,m} | 〈x, hj〉 = bj

}
,

and let Ī be the smallest active index set I(x) among x in K; that is,

Ī :=
⋂
x∈K

I(x).
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Note that I
(

1
2 (x+ y)

)
= I(x)∩ I(y) for x, y ∈ K. Therefore, there exists an element

x̄ ∈ K such that I(x̄) = Ī; that is,

AĪ x̄ = bĪ and (Ax̄)i < bi for i 6∈ Ī .(2.4)

(One can start with J1 = I(x1) for any x1 ∈ K. If J1 6= Ī, then there is an x ∈ K
such that J1 ∩ I(x) 6= J1. Let x2 = 0.5(x1 + x). Then J2 := I(x2) = J1 ∩ I(x) is a
proper subset of J1. This reduction procedure can be done only finitely many times
so one will get Ī after a finite number of reductions.)

Note that if Ī is empty, then Ax̄ < b and

x̄ ∈ C ∩
(

int
m⋂
1

Hj

)
.

By Proposition 2.3, {C,H1, . . . , Hm} has the strong CHIP. Therefore, for the remain-
der of this section, we will assume

Ī is not empty.(2.5)

It follows that bĪ ∈ AĪ(C). It is interesting that the condition bĪ ∈ riAĪ(C), whose
importance will be seen in Theorem 2.8, can be described without using the common
active index set Ī and is a weak Slater condition for (2.1)! See section 5 for details.

Next we will establish our main result in the section. Namely, if bĪ is in the
relative interior of AĪ(C), then {C,H1, . . . , Hm} has the strong CHIP. The proof of
this result is based on the following two identities:

(K − x)
◦

=

(C − x) ∩
⋂
i∈Ī

(Hi − x)

◦ +
∑
i/∈Ī

(Hi − x)
◦

for x ∈ K(2.6)

and (C − x) ∩
⋂
i∈Ī

(Hi − x)

◦ = (C − x)
◦

+
∑
i∈Ī

(Hi − x)
◦

for x ∈ K.(2.7)

The first identity follows from Proposition 2.3, and the proof of the second identity
needs the following three lemmas.

Lemma 2.5. Suppose that bĪ ∈ riAĪ(C). Then for every x ∈ K,

con (C − x) ∩
⋂
i∈Ī

con (Hi − x)

 = con

(C − x) ∩
⋂
i∈Ī

(Hi − x)

 .(2.8)

Proof. It is obvious that

con

(C − x) ∩
⋂
i∈Ī

(Hi − x)

 ⊂ con (C − x) ∩
⋂
i∈Ī

con (Hi − x)

 .

On the other hand, let u ∈ con (C−x)∩(⋂i∈Ī con (Hi − x)
)
. By the definition, there

exist elements xk ∈ C and scalars αk ≥ 0 such that αk(xk − x) converges to u. Since

u ∈
⋂
i∈Ī

con (Hi − x) =
⋂
i∈Ī

con(Hi − x) = con

⋂
i∈Ī

Hi − x
 ,



258 FRANK DEUTSCH, WU LI, AND JOSEPH D. WARD

there exist x̂ ∈ ⋂i∈Ī Hi and ρ ≥ 0 such that u = ρ(x̂ − x). Since Ī is the common
active index set for elements in K, AĪx = bĪ . Therefore,

AĪu = ρAĪ(x̂− x) = ρ[AĪ(x̂)− bĪ ] ≤ 0.(2.9)

Note that

AĪu = lim
k→∞

αkAĪ(xk − x) = lim
k→∞

αk(AĪxk − bĪ) ∈ span[AĪ(C)− bĪ ].

Since bĪ ∈ riAĪ(C), there exist a scalar ε > 0 and an element xε ∈ C such that
bĪ + εAĪu = AĪx

ε. By (2.9), we have

AĪx
ε ≤ bĪ .(2.10)

Choose x̄ in K such that (2.4) holds and choose δ > 0 (with δ ≤ 1) small enough so
that

(A[(1− δ)x̄+ δxε])i < bi for i /∈ Ī .(2.11)

Then it follows from (2.10) and (2.11) that

A[(1− δ)x̄+ δxε] ≤ b.
Since (1− δ)x̄+ δxε ∈ C, the above inequality implies

AĪ [(1− δ)x̄+ δxε] = bĪ

or

(1− δ)bĪ + δ(bĪ + εAĪu) = bĪ .

Thus, AĪu = 0 and u ∈ ⋂i∈Ī bd(Hi − x). As a consequence,

u ∈ con (C − x) ∩
⋂
i∈Ī

bd(Hi − x)

 = con

(C − x) ∩
⋂
i∈Ī

bd(Hi − x)


⊂ con

(C − x) ∩
⋂
i∈Ī

(Hi − x)

 ,
where the equality follows from Lemma 3.8 in [11]. This proves (2.8).

Remark. The Robinson–Ursescu theorem cited in [11] should have been in a
Banach space setting (instead of in normed linear spaces, as stated in Theorem 3.7
of [11]), and in the proof of Lemma 3.8 in [11], W should have been defined as the
closure of span(C − x) instead of span(C − x). (We are indebted to Heinz Bauschke
for pointing this out.)

Lemma 2.6. Let F be a finite subset of X consisting of N elements, and let
z ∈ con(F ) \ {0}. Then any f ∈ con(F ) can be written as

f = ρz + f ′,

where ρ ≥ 0, f ′ ∈ con(F ′), and F ′ is a subset of F consisting of at most N − 1
elements.
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Proof. Letting F = {f1, . . . , fN}, we see that z =
∑N
j=1 γjfj for some γj ≥ 0.

Since z 6= 0, we may assume some γj > 0. Let f ∈ con(F ). Then f =
∑N
j=1 λjfj for

some λj ≥ 0.
Case 1. If λj = 0 for some j, the conclusion of the lemma clearly holds with

ρ = 0.
Case 2. If λj > 0 for all j, set ρ := min

{λj
γj
| γj > 0

}
. Then

f − ρz =
N∑
j=1

(λj − ργj)fj .

It is easily checked that the coefficients of fj are all nonnegative with at least one

coefficient equal to 0. Setting f ′ =
∑N
j=1(λj − ργj)fj verifies the lemma.

Theorem 2.7. If D is a closed convex cone in X, Y is a finite-dimensional
subspace of X such that D ∩ Y is a subspace, and F is a finite subset of Y, then
D + con(F ) is closed.

Proof. Let xn ∈ D+con(F ) and xn → x. It suffices to show that x ∈ D+con(F ).
We can write xn = dn + fn, where dn ∈ D and fn ∈ con(F ). We use that well-known
fact that a finitely generated cone, hence con(F ), is closed (see [13, p. 130]). We
consider two cases.

Case 1. D ∩ con(F ) = {0}.
If {fn} has no bounded subsequence, then ‖fn‖ → ∞. By passing to a subse-

quence, we may assume that the bounded sequence {fn/‖fn‖} in the finite-dimensional
space con(F ) converges: fn/‖fn‖ → f ∈ con(F ), and thus ‖f‖ = 1. Then

dn
‖fn‖ =

xn
‖fn‖ −

fn
‖fn‖ → 0− f ∈ −con(F ) ⊂ Y.

But dn/‖fn‖ ∈ D for every n and thus −f ∈ D ∩ Y . Since D ∩ Y is a subspace,
f ∈ D ∩ Y and hence f ∈ D ∩ con(F ) = {0}, which contradicts ‖f‖ = 1.

Thus we may assume that {fn} has a bounded subsequence. By passing to a
further subsequence if necessary, we may assume that fn → f ∈ con(F ). Then
dn = xn−fn → x−f . Since D is closed, d := x−f ∈ D and x = d+f ∈ D+con(F ).

Case 2. D ∩ con(F ) 6= {0}.
Choose any d ∈ D∩con(F )\{0} and use Lemma 2.6 to obtain that fn = ρnd+ f̃n,

where ρn ≥ 0, f̃n ∈ con(Fn), and each Fn ⊂ F contains at most N − 1 elements of F ,
where N is the cardinality of F . Then we see that

xn = dn + fn = d̃n + f̃n, where d̃n := dn + ρnd ∈ D.
Further, by passing to a subsequence, we can assume that all the sets Fn are the
same, say, Fn = F1, where F1 contains at most N − 1 elements of F . After k ≤ N
repeated applications of this procedure, we either end up with a representation of
(a subsequence of) xn in the form xn = d′n + f ′n, where d′n ∈ D and f ′n ∈ con(F ′),
where F ′ is a subset of F and D ∩ con(F ′) = {0}, or we end up (after N steps) with
xn = d′n ∈ D for every n. In the former case, we deduce by case 1 that x ∈ D+con(F ).
In the latter case, we see that x ∈ D ⊂ D + con(F ).

Remarks. 1. In the particular case when X is finite-dimensional, Theorem 2.7 is
known (see, e.g., [17, Theorem 20.3, p. 183]).

2. Let Y = span{f1, f2, . . . , fN} and F = {f1, f2, . . . , fN ,−f1,−f2, . . . ,−fN}.
Then Theorem 2.7 implies that D+Y is closed if D∩Y is a subspace. This particular
result was proved in [11, Theorem 3.11].
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Theorem 2.8. If bĪ ∈ riAĪ(C), then {C,H1, . . . , Hm} has the strong CHIP.
Proof. Fix any x ∈ K. Since

[
C ∩ (⋂i∈Ī Hi

)] ∩ [⋂i/∈Ī intHi

] 6= ∅ (see (2.4)),
Proposition 2.3 implies that (2.6) holds. Applying Theorem 2.4 to {bĪ , AĪ}, we get
that (C − x)

◦ ∩ span{hi | i ∈ Ī} is a subspace. From Theorem 2.7 we obtain that

(C − x)
◦

+
∑
i∈Ī

(Hi − x)
◦

= (C − x)
◦

+ con{hi | i ∈ Ī}

is closed. This, along with Lemma 2.5, implies (2.7) (cf. the equivalence of statements
1 and 4 of Lemma 2.2). Therefore, by (2.6) and (2.7), we have

(K − x)
◦

=

(C − x) ∩
⋂
i∈Ī

(Hi − x)

◦ +
∑
i/∈Ī

(Hi − x)
◦

= (C − x)
◦

+
∑
i∈Ī

(Hi − x)
◦

+
∑
i/∈Ī

(Hi − x)
◦

for x ∈ K.

That is, {C,H1, . . . , Hm} has the strong CHIP.

3. Reformulations of the best approximation problem. The following
lemma isolates a local condition that is not dependent on strong CHIP but still allows
the computation of PK(x) via a perturbation technique.

Lemma 3.1. Suppose that the element x0 := PC(x−∑m
1 λihi) is in K for some

λi ≥ 0 with λi = 0 for each i /∈ I(x0). Then x0 = PK(x).
Proof. We have that λi = 0 for all i /∈ I(x0), so x0 = PC(x−∑i∈I(x0) λihi) and

Theorem 1.1 implies that x−∑i∈I(x0) λihi − x0 ∈ (C − x0)◦. Hence

x− x0 ∈ (C − x0)◦ +
∑

i∈I(x0)

λihi ⊂ (C − x0)◦ +
∑

i∈I(x0)

con(hi)

= (C − x0)◦ +
m∑
1

(Hi − x0)◦ ⊂ (K − x0)◦.

Since x0 ∈ K, Theorem 1.1 implies that x0 = PK(x).
In terms of perturbations of best approximations, we can give an alternate char-

acterization of the strong CHIP. For a vector z = (z1, z2, . . . , zm) ∈ Rm, we use z+ to
denote the vector whose ith component is max{zi, 0}.

Theorem 3.2. Let x0 ∈ K and α > 0. Then the following four statements are
equivalent:

1. {C,H1, . . . , Hm} has the strong CHIP at x0.
2. For every x ∈ X with PK(x) = x0,

PK(x) = PC

(
x−

m∑
1

λihi

)
(3.1)

for some scalars λi ≥ 0 with λi = 0 for all i /∈ I(x0).
3. For every x ∈ X with PK(x) = x0,〈

PC

(
x−

m∑
1

λihi

)
, hj

〉
= bj for all j ∈ I(x0),〈

PC

(
x−

m∑
1

λihi

)
, hj

〉
< bj for all j /∈ I(x0)

(3.2)
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for some scalars λi ≥ 0 with λi = 0 for all i /∈ I(x0).
4. For every x ∈ X with PK(x) = x0, (3.1) holds with λ = (λ1, . . . , λm) being a

solution of the following nonlinear equation:

λ =

(
λ+ α

[
APC

(
x−

m∑
1

λihi

)
− b
])

+

.(3.3)

Moreover, for any set of scalars λi ≥ 0 with λi = 0 for all i /∈ I(x0), (3.1) holds
if and only if (3.2) holds.

Proof. Let m scalars λi satisfy λi ≥ 0 for all i and λi = 0 for all i /∈ I(x0). If
(3.1) holds, then it is clear that

PC

(
x−

m∑
1

λihi

)
∈
( ⋂
j∈I(x0)

bdHj

)
∩
( ⋂
i/∈I(x0)

intHi

)
,(3.4)

and hence (3.2) holds. Conversely, if (3.2) holds, then (3.4) holds. Setting x0 :=
PC(x−∑m

1 λihi), we see from (3.4) that x0 ∈ K. Thus, by Lemma 3.1, x0 = PK(x),
and (3.1) holds. This proves the equivalence of statements 2 and 3 as well as the last
statement of the theorem.

To see that statement 1 implies statement 2, let {C,H1, . . . , Hm} have the strong
CHIP at x0 and let x ∈ X satisfy PK(x) = x0. Then Theorem 1.1 and Lemma 2.2
imply that

x− x0 ∈ (K − x0)◦ ⊂ (C − x0)◦ + con{hj | j ∈ I(x0)},

so there exist scalars λj ≥ 0 for all j ∈ I(x0) such that x − x0 ∈ (C − x0)◦ +∑
j∈I(x0) λjhj or x−∑j∈I(x0) λjhj − x0 ∈ (C − x0)◦. By Theorem 1.1, x0 = PC(x−∑
j∈I(x0) λjhj). This proves statement 2.

Now assume statement 2 holds and we wish to prove statement 1. Choose any
z ∈ (K−x0)◦ and set x := z+x0. Note that x−x0 = z ∈ (K−x0)◦. By Theorem 1.1,
PK(x) = x0. By statement 2, there exists scalars λi ≥ 0 with λi = 0 for all i /∈ I(x0)
such that x0 = PC(x−∑m

1 λihi). By Theorem 1.1,

z = x− x0 =

(
x−

m∑
1

λihi − x0

)
+

m∑
1

λihi ∈ (C − x0)◦ + con{hj | j ∈ I(x0)}.

Since z was an arbitrary point in (K − x0)◦, this shows that

(K − x0)◦ ⊂ (C − x0)◦ + con{hj | j ∈ I(x0)} = (C − x0)◦ +
m∑
1

(Hi − x0)◦.

It follows by Lemma 2.2 that statement 1 holds.
For z = (z1, z2, . . . , zm) and λ = (λ1, λ2, . . . , λm), it is easy to verify that λ =

(λ+ αz)+ if and only if

zi ≤ 0, λi ≥ 0, and λizi = 0 for 1 ≤ i ≤ m.

Therefore, letting z = APC(x −∑m
1 λjhj) − b, we get the equivalence of (3.2) and

(3.3). This proves the equivalence of statements 3 and 4.
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The next theorem shows that the strong CHIP is the precise condition that allows
one to replace the problem of determining best approximations to any x ∈ X from K
to that of determining the best approximation to a certain perturbation of x from C.

Corollary 3.3. The following statements are equivalent:
1. {C,H1, . . . , Hm} has the strong CHIP.
2. For each x ∈ X \ K and an element x0 ∈ K, x0 = PK(x) if and only if

x0 = PC(x−∑m
1 λihi) for some scalars λi ≥ 0 with λi[〈x0, hi〉 − bi] = 0 for all i.

3. For each x ∈ X \K, PK(x) = PC(x−∑m
1 λihi), with λ = (λ1, . . . , λm) being

a solution of (3.3).
Proof. 1 ⇒ 2. Suppose {C,H1, . . . , Hm} has the strong CHIP, x ∈ X \K, and

x0 ∈ K. If x0 = PK(x), then Theorem 3.2 implies that x0 = PC(x −∑m
1 λihi) for

some λi ≥ 0 with λi = 0 for all i /∈ I(x0). Hence λi[〈x0, hi〉 − bi] = 0 for every i.
Conversely, if x0 = PC(x−∑m

1 λihi) for some λi ≥ 0 with λi[〈x0, hi〉 − bi] = 0 for all
i, then λi = 0 for all i /∈ I(x0) and by Lemma 3.1, x0 = PK(x). This proves part 2.

2⇒ 1. Assume part 2 holds, which implies Theorem 3.2, part 2 for each x0 ∈ K.
By Theorem 3.2, {C,H1, . . . , Hm} has the strong CHIP at every point in K.

The equivalence of parts 1 and 3 also follows from Theorem 3.2.
Theorem 3.4. If bĪ ∈ riAĪC, then, for each x ∈ X \K,

PK(x) = PC

(
x−

m∑
1

λihi

)
,

where λ = (λ1, . . . , λm) is a solution of (3.3).
Proof. This follows immediately from Theorem 2.8 and Corollary 3.3.
It is worth noting that the nonnegative scalars λi which work in the above re-

sults are precisely the “Lagrange multipliers” obtained by a formal application of
the Karush–Kuhn–Tucker or Lagrange multiplier conditions applied to the convex
programming problem of minimizing the function

f(y) :=
1

2
‖y − x‖2, y ∈ X,

over the set of all y ∈ C with fi(y) := 〈y, hi〉 − bi ≤ 0 for i = 1, 2, . . . ,m (see
[20, Theorem 47.E, p. 394]). However, without some kind of Slater or weak Slater
condition holding in this situation (e.g., as in [20, p. 394]), such a formal application
cannot be rigorously justified. As we will see in section 5, the strong CHIP is implied
by all these “weak Slater”–type conditions.

4. Reformulations without strong CHIP. In Corollary 3.3, we saw that if
the sets {C,H1, . . . , Hm} had the strong CHIP, then it was possible to determine
PK(x) by determining PC(x− y) for an appropriate y in the conical hull of the hj ’s.
In this section, we shall show that the same conclusion holds without the assumption
of the strong CHIP provided we replace C by Cb, a certain prescribed extremal subset
of C! In fact, if {C,H1, . . . , Hm} does not satisfy the strong CHIP, then we replace
C by a subset Cb such that bĪ ∈ riAĪ(Cb), which implies

(K − x)
◦

= (Cb − x)
◦

+
m∑
1

(Hi − x)
◦

for x ∈ K.

Since {C,H1, . . . , Hm} has the strong CHIP if Ī is empty, we may assume in this
section that Ī is not empty.
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Definition 4.1. Let Cb be the smallest closed, convex, extremal subset of C such
that

Cb ⊃ C ∩
(⋂
j∈Ī

bdHj

)
.

More precisely,

Cb :=
⋂{

E | E closed convex extremal in C, and E ⊃ C ∩
(⋂
j∈Ī

bdHj

)}
.

Note that

Cb ∩
(⋂
j∈Ī

bdHj

)
= C ∩

(⋂
j∈Ī

bdHj

)
.

Next let Fb denote the smallest relatively closed convex extremal subset of AĪ(C)
which contains bĪ , and set

CFb := C ∩A−1
Ī

(Fb).

Then the following two lemmas about bĪ , Cb, Fb, and CFb were given in [11,
Proposition 4.3 and Lemma 4.4]. (We should note that the “relatively closed” part of
the definition of Fb was not included in [11]. However, it is essential for the proof of
Proposition 4.3(2) of [11]. We are indebted to Heinz Bauschke for pointing out this
omission.)

Lemma 4.2. The following statements hold:
1. CFb = Cb.
2. AĪ(Cb) = Fb.
3. bĪ ∈ riAĪ(Cb).
Lemma 4.3. bĪ ∈ riAĪ(C) if and only if C = Cb.
The next result shows that the perturbation method always works provided we

replace C by Cb.
Theorem 4.4. Fix any α > 0. For every x ∈ X \K,

PK(x) = PCb

(
x−

m∑
1

λihi

)
,

where λ = (λ1, . . . , λm) is a solution of the following nonlinear equation:

λ =

(
λ+ α

[
APCb

(
x−

m∑
1

λihi

)
− b
])

+

.

Proof. By Lemma 4.2, bĪ ∈ riAĪ(Cb). The theorem then follows from Theorem
3.4 (with C replaced by Cb).

5. Weak Slater conditions. From the previous two sections, it is clear that
bĪ ∈ riAĪ(C) is crucial to get various reformulations of the best approximation prob-
lem. In this section, we show that bĪ ∈ riAĪ(C) (when Ī 6= ∅) is the natural “weak
Slater” condition for the following constrained linear inequalities:

〈h1, x〉 ≤ b1, 〈h2, x〉 ≤ b2, . . . , 〈hm, x〉 ≤ bm, x ∈ C.(5.1)
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(For a discussion of related Slater-type constraint qualifications, see [13, Chapter VII,
section 2].) One Slater-type constraint qualification condition for (5.1) is that there
exists x̄ ∈ X such that

〈h1, x̄〉 < b1, 〈h2, x̄〉 < b2, . . . , 〈hm, x̄〉 < bm, x̄ ∈ C,(5.2)

which could be called a constrained strong Slater condition for (5.1). The topological
reformulation of (5.2) is

x̄ ∈ C ∩
⋂

j

intHj

 6= ∅.(5.3)

Another Slater-type constraint qualification for (5.1) is

intC ∩
⋂

j

Hj

 6= ∅.(5.4)

When C is defined by nonlinear inequalities, (5.4) is the so-called weak Slater condition
for (5.1). However, a topological weak Slater condition is actually weaker than (5.4)
and can be defined as follows:

riC ∩
⋂

j

Hj

 6= ∅.(5.5)

Note that either (5.3) or (5.4) implies the strong CHIP of {C,H1, . . . , Hm} and, when
X is finite-dimensional, (5.5) also implies the strong CHIP of {C,H1, . . . , Hm} (cf.
Proposition 2.3).

Obviously, (5.4) is stronger than (5.5). When X is a finite-dimensional space, one
can easily verify that (5.3) also implies (5.5). In fact, we can choose x̂ ∈ riC (6= ∅).
If (5.3) holds, then for θ > 0 small enough and xθ := θx̂+ (1− θ)x̄, we have

xθ ∈ riC ∩
⋂

j

intHj

 6= ∅.(5.6)

Therefore, (5.5) is the weakest among the Slater-type conditions mentioned above and
is sufficient for the strong CHIP of {C,H1, . . . , Hm} when X is finite-dimensional.
However, if X is infinite-dimensional, riC might be empty. (For example, let X =
L2[0, 1] denote the Hilbert space of all square-integrable functions on [0, 1] with inner

product 〈x, y〉 =
∫ 1

0
x(t)y(t) dt and C = {x ∈ X | x ≥ 0}. Then aff C = X, so that

riC = intC = ∅.) Thus (5.5) makes no sense in this case.
It is perhaps also worth mentioning here that Borwein and Lewis [4] have defined

and studied the “quasi-relative interior” of a convex set which is more general than
the relative interior, at least in infinite-dimensional spaces (see Example 3.11(i) in
[4]). In the example of the last paragraph, the quasi-relative interior of C (denoted by
qri(C)) is not empty. It would be interesting to know whether qri(C) ∩ (∩m1 Hj) 6= ∅
is also a sufficient condition for the strong CHIP of {C,H1, . . . , Hm}.

It turns out that bĪ ∈ riAĪ(C) (when Ī 6= ∅) is equivalent to (5.5) when riC 6= ∅.
Moreover, each of the Slater-type constraint qualifications (5.3)–(5.5) always implies
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bĪ ∈ riAĪ(C) (when Ī 6= ∅). Therefore, bĪ ∈ riAĪ(C) (when Ī 6= ∅) is weaker
than the Slater-type conditions mentioned above and is sufficient for the strong CHIP
of {C,H1, . . . , Hm} no matter whether X is infinite-dimensional or finite-dimensional.

Fact 5.1. If X and Y are Hilbert spaces, C is a closed and convex subset of X, and
B : X → Y is a bounded linear operator with finite-dimensional range, then x ∈ riC
implies Bx ∈ riB(C).

To verify this fact, first note that if X is finite-dimensional, then this is a conse-
quence of known results (see, e.g., [17, Theorem 6.6, p. 48]). In general, if x ∈ riC,
then in particular, for each y ∈ C there exists µ > 1 such that µx + (1 − µ)y ∈ C.
Hence µBx+ (1−µ)By ∈ B(C). Since B(C) is finite-dimensional, it follows (see [17,
Theorem 6.4, p. 47] applied to B(C) instead of C) that Bx ∈ riB(C), and Fact 5.1 is
proved. In contrast to the case when both X and Y are finite-dimensional, it is false
in general that B(riC) = riB(C). Indeed, as we saw four paragraphs earlier, riC may
even be empty!

Theorem 5.1. Let H :=
⋂
j Hj and M = N (A), the null space of A. Consider

the following statements:
1. riC ∩H 6= ∅.
2. riPM⊥(C) ∩H 6= ∅.
3. riA(C) ∩ (b− Rm+ ) 6= ∅.
4. There exists x̄ ∈ C ∩H such that Ax̄ ∈ riA(C).
5. bĪ ∈ riAĪ(C) when Ī 6= ∅.
6. C ∩ intH 6= ∅.
Then 1 ⇒ 2 ⇔ 3 ⇔ 4 ⇔ 5 ⇐ 6, and each of the above conditions implies that

{C,H} has the strong CHIP. Moreover, if riC 6= ∅, then the first five statements are
equivalent.

Proof. Since M = N (A) is the null space of A, then M⊥ = R(A∗) is the range of
A∗; hence M⊥ is finite-dimensional.

1⇒ 2. Let x̄ ∈ riC ∩H. Since PM⊥ is a linear mapping with finite-dimensional
range, Fact 5.1 implies that PM⊥(x̄) ∈ riPM⊥(C). Since x̄ ∈ H, the definition of M
implies that PM⊥(x̄) = x̄ − PM (x̄) ∈ H. This proves PM⊥(x̄) ∈ riPM⊥(C) ∩H and
statement 2 holds.

2 ⇔ 3. If x ∈ M⊥ and Ax = 0, then x ∈ M ∩M⊥ = {0}. Thus, the linear
mapping A from M⊥ to Rm is one-to-one. If a linear mapping L from a finite-
dimensional space Y to a finite-dimensional space Z is one-to-one and y ∈ Y , then
y ∈ S ⇔ L(y) ∈ L(S) and y ∈ riS ⇔ L(y) ∈ riL(S). Using this fact, we get

x̄ ∈ riPM⊥(C) ∩H ⇔ Ax̄ ∈ riA [PM⊥(C)] ∩A(H).(5.7)

However, for x ∈ C, we have x = PM (x)+PM⊥(x) and Ax = A[PM (x)]+A[PM⊥(x)] =
A[PM⊥(x)]. Thus, A(C) = A[PM⊥(C)]. It is easy to see that Ax̄ ∈ A(H) if and only
if Ax̄ ∈ b− Rm+ . Thus, (5.7) implies the equivalence of statements 2 and 3.

3⇔ 4. This is trivially true.
4⇒ 5. Let x̄ ∈ C ∩H be such that Ax̄ ∈ riA(C). If Ī = ∅, then there is nothing

to prove; otherwise, AĪ x̄ ∈ riAĪ(C). Since x̄ ∈ K = C∩H and Ī is the common active
index set for elements in K, we have AĪ x̄ = bĪ and, as a consequence, bĪ ∈ riAĪ(C).

5 ⇒ 4 and 5 ⇒ 1 (when riC 6= ∅). The following fact will be used repeatedly
in this proof. (See [17, Theorem 6.1, p. 45] for the proof when the space is finite-
dimensional. But the same proof works in the infinite-dimensional case.)

If S is a closed convex set in a normed linear space and x̄ ∈ riS,
then θx+ (1− θ)x̄ ∈ riS for any x ∈ S and 0 < θ < 1.
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Let x̄ ∈ K be such that

AĪ x̄ = bĪ and (Ax̄)i < bi for i 6∈ Ī .(5.8)

Such a point exists by (2.4). Choose

x̂ ∈ riC if riC 6= ∅,(5.9)

or choose

x̂ ∈ C with Ax̂ ∈ riA(C) if riC = ∅.(5.10)

By Fact 5.1, (5.9) implies (5.10). We consider two cases.
Case 1. Ī = ∅.
Then x̄ ∈ intH and (Ax̄)i < bi for all i. Let xθ := θx̂ + (1 − θ)x̄ for 0 < θ < 1.

Then for θ > 0 small enough, we have Axθ ≤ b. Thus, xθ ∈ C ∩H and Axθ ∈ riA(C).
This proves statement 4. If, in addition, riC 6= ∅, then xθ ∈ riC by (5.9). Thus,
xθ ∈ riC ∩H and statement 1 holds.

Case 2. Ī 6= ∅ and bĪ ∈ riAĪ(C).
Then for x̂ ∈ C, there exists ε such that 0 < ε < 1 and bĪ − ε(AĪ x̂− bĪ) ∈ AĪ(C).

So there is z ∈ C such that AĪz = bĪ − ε(AĪ x̂− bĪ), or equivalently (cf. (5.8)),

AĪ(z − x̄) = −εAĪ(x̂− x̄).(5.11)

Let 0 < θ < 1/2. Then

xθ := x̄+ θ[ε(x̂− x̄) + z − x̄] = (1− θ − εθ)x̄+ θεx̂+ θz ∈ C.(5.12)

It follows from (5.11) and (5.8) that

AĪxθ = AĪ x̄ = bĪ .(5.13)

By (5.8), if θ > 0 is small enough, we have

(Axθ)j < bj for j 6∈ Ī .(5.14)

Thus, if θ > 0 is small enough, we have xθ ∈ C ∩H. However, since Ax̂ ∈ riA(C), we
get

Axθ = (1− θ − εθ)Ax̄+ θεAx̂+ θAz ∈ riA(C).

This proves 5⇒ 4. If, in addition, riC 6= ∅, then it follows from (5.12) and (5.9) that
xθ ∈ riC. This proves 5⇒ 1.

6⇒ 5. This holds vacuously, since in this case Ī = ∅.
Finally, if any of statements 1–6 is satisfied, then statement 5 is true. By Theorem

2.8, {C,H1, . . . , Hm} has the strong CHIP. By remark 2 following Proposition 2.3,
{C,H} has the strong CHIP.

Remarks. It seems that the weak Slater conditions given in Theorem 5.1 depend
on the representation of H or {x ∈ X | Ax ≤ b}. However, Theorem 5.1, part 2
indicates that parts 2–5 in Theorem 5.1 are intrinsic conditions for {C,⋂j Hj}.
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6. Applications. We first show that the problem considered in [11] is a special
case of the one considered in this paper and how the main results of [11] can be
deduced from this fact.

In [11], the set-up was this: Let C be a closed convex subset of the Hilbert space
X, hi ∈ X\{0} (i = 1, 2, . . . ,m), and b = (b1, b2, . . . , bm) ∈ Rm. Define A : X → Rm
by

Ax := (〈x, h1〉, 〈x, h2〉, . . . , 〈x, hm〉), x ∈ X,
and set K = C ∩A−1(b). In other words,

K = C ∩ {x ∈ X | 〈x, hi〉 = bi (i = 1, 2, . . . ,m)}
and K is the intersection of C with m hyperplanes. In [11], the main interest was in
characterizing best approximations from K. Note that if we define hi+m = −hi and
bi+m = −bi for i = 1, 2, . . . ,m, and if we define 2m half-spaces by

Hi = {x ∈ X | 〈x, hi〉 ≤ bi} (i = 1, 2, . . . , 2m),

then ∩2m
1 Hi = A−1(b), and we may rewrite K in the form

K = C ∩
(

2m⋂
1

Hi

)
.

Moreover, owing to the fact that any finite collection of half-spaces has the strong
CHIP [11], we see that {C,H1, . . . , H2m} has the strong CHIP if and only if {C,∩2m

1 Hi}
has the strong CHIP if and only if {C,A−1(b)} has the strong CHIP. Using these facts,
it is easy to deduce the following consequence of Corollary 3.3.

Corollary 6.1 (see [11, Theorem 3.2]). The following statements are equivalent:
1. {C,A−1(b)} has the strong CHIP.
2. For each x ∈ X,

PK(x) = PC

(
x−

m∑
1

αihi

) (
= PC(x−A∗α)

)
(6.1)

for some scalars αi ∈ R.
Moreover, for any scalars αi such that PC(x−∑m

1 αihi) ∈ K, (6.1) must hold.
In this setting, for every x0 ∈ K, we have 〈x0, hi〉 = bi (i = 1, . . . , 2m). That

is, I(x0) = {1, 2, . . . , 2m} and hence Ī = {1, 2, . . . , 2m}. It follows that Definition 4.1
reduces to: let Cb be the smallest closed convex extremal subset of C such that

Cb ⊃ C ∩
(

2m⋂
1

bdHi

)
= K.

That is, Cb is defined exactly as in [11]. Also, we can deduce the following consequence
of Theorem 4.4 and Lemma 4.3.

Corollary 6.2 (see [11, Theorem 4.5 and Lemma 4.4]). For each x ∈ X,

PK(x) = PCb

(
x−

m∑
1

αihi

) (
= PCb(x−A∗α)

)
(6.2)

for some scalars αi ∈ R. Moreover, C = Cb if and only if b ∈ riA(C).
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Abstract. We propose a new simplex-based direct search method for unconstrained minimiza-
tion of a real-valued function f of n variables. As in other methods of this kind, the intent is
to iteratively improve an n-dimensional simplex through certain reflection/expansion/contraction
steps. The method has three novel features. First, a user-chosen integer m̄k specifies the number
of “good” vertices to be retained in constructing the initial trial simplices—reflected, then either
expanded or contracted—at iteration k. Second, a trial simplex is accepted only when it satisfies
the criteria of fortified descent, which are stronger than the criterion of strict descent used in most
direct search methods. Third, the number of additional function evaluations needed to check a trial
reflected/expanded simplex for fortified descent can be controlled. If one of the initial trial simplices
satisfies the fortified-descent criteria, it is accepted as the new simplex; otherwise, the simplex is
shrunk a fraction of the way toward a best vertex and the process is restarted, etc., until either a
trial simplex is accepted or the simplex effectively has shrunk to a single point.

We prove several theoretical properties of the new method. If f is continuously differentiable,
bounded below, and uniformly continuous on its lower level set and we choose m̄k with the same
value at all iterations k, then every cluster point of the generated sequence of iterates is a stationary
point. The same conclusion holds if the function is continuously differentiable, bounded below, and
we choose m̄k = 1 at all iterations k.

Key words. unconstrained minimization, direct search, Nelder–Mead method, multidirectional
search method

AMS subject classifications. 49M30, 49M37, 90C26, 90C30
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1. Introduction. Consider the unconstrained minimization problem

min
x∈<n

f(x),

where f is a continuous function from <n to <. An interesting class of methods for
solving this problem is that of direct search methods, which update the iterate based
on only a few function evaluations along linearly independent directions. In contrast to
gradient methods, these methods do not use the function values to explicitly construct
an approximation to the gradient nor do they necessarily move iterates along gradient
directions. As is noted in [25], the direct search methods can be classified into two
subclasses: those that modify the search directions at the end of each iteration, as
exemplified by the methods of Box [2], Nelder and Mead [15], Powell [17], Rosenbrock
[18], and Zangwill [31], and those that use a fixed set of search directions at all
iterations, as exemplified by the methods of Box and Wilson [1], Hooke and Jeeves
[10], Spendley, Hext, and Himsworth [23], and Dennis and Torczon [6, 25]. Further
studies of these and related methods are presented in [3, 4, 7, 8, 24, 26, 29, 30].

1.1. Motivation for the new method. Three previously proposed direct search
methods are based on the intriguing idea of simplicial search, in which an n-dimensional
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simplex (represented by its vertices) is iteratively “improved” through certain re-
flection/expansion/contraction steps, possibly interspersed with nonimproving shrink
(i.e., restart with a smaller simplex) steps. The notion of improvement varies in these
methods, although in all cases it involves a criterion of strict descent, i.e., whether
the function values at certain vertices have strictly decreased.

The first method, proposed by Spendley, Hext, and Himsworth in 1962 [23], tries
to improve the worst vertex (with highest f -value) by isometrically reflecting it with
respect to the centroid of the n best vertices or else reflecting the second-worst vertex
with respect to the centroid of the n other vertices. If neither yields an improvement,
it is suggested to shrink the simplex a fraction of the way toward the best vertex and
restart the process. In this method, the set of interior angles of the simplex remains
constant.

The second method, proposed by Nelder and Mead in 1965 [15] as an improvement
on the method of Spendley, Hext, and Himsworth, is likely the most popular direct
search method. This method tries to improve the worst vertex by reflecting it with
respect to the centroid of the n best vertices, and it allows for nonisometric reflections,
corresponding to expansion and “outside” contraction, as well as “inside” contraction
of the simplex. If none of these steps yields an improvement, it shrinks the simplex a
fraction of the way toward the best vertex and restarts the process. In this method,
the simplex can assume arbitrary shapes, and some of its interior angles can become
arbitrarily small.

The third method, proposed by Torczon [24, 25] (also see [6]) and called the
multidirectional search (MDS) method, tries to find a new simplex with an improved
best vertex by reflecting and then possibly expanding or contracting the n worst
vertices with respect to the best vertex. If none of these steps yields an improvement,
it shrinks the simplex a fraction of the way toward the best vertex and restarts the
process. As in the method of Spendley, Hext, and Himsworth, the set of interior
angles of the simplex remains constant.

Motivated by these methods, we propose a simplicial search method with three
novel features:

• Flexibility in the number of vertices to be retained when constructing trial
simplices. When a trial reflected/expanded/contracted simplex is constructed,
the number m of “good” vertices to be retained from the current simplex
can be chosen flexibly and dynamically. This number m can be any inte-
ger between 1 and n, except when the current simplex was produced by a
nonimproving step, in which case m would be required to be below a cer-
tain consistency index between 1 and n. This index depends on the current
simplex and the most recent simplex produced by an improving step.
• New criteria, called fortified descent, for accepting a trial simplex. Fortified-

descent criteria are analogous to standard “sufficient descent” conditions in
gradient-based methods for unconstrained optimization. In our experience,
using fortified descent rather than strict descent does not significantly alter
the practical behavior of the method. However, fortified descent is essential
for our convergence proofs and cannot be replaced by strict descent.
• Flexibility in the number of additional function evaluations required to check

for fortified descent. The number of additional function evaluations needed to
check a trial reflected/expanded simplex for fortified descent can be controlled
within the method. Detailed discussions of this feature and the associated
trade-offs are given in section 2.
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In section 3, we prove various convergence properties of the new method. For
convenience of analyis, we count a sequence of nonimproving steps followed by an
improving step as a single iteration. Let m̄k denote the number of “good” vertices
that are retained when constructing the initial trial simplices at iteration k. This
number can be chosen freely between 1 and n. Note that if m̄k > 1, the number of
vertices retained in a nonimproving step of iteration k may be less than m̄k. Also,
there may be an arbitrary number of nonimproving steps during a given iteration. We
prove the following: If f is continuously differentiable, bounded below, and uniformly
continuous on its lower level set, and if we choose m̄k to have the same value at
all iterations k, then every cluster point of the generated sequence of iterates is a
stationary point (see Corollary 3.3). If we choose m̄k = 1 at all iterations k, the
same conclusion holds under milder assumptions on f , namely, that f is continuously
differentiable and bounded below.

1.2. Related work. A recent overview of simplicial direct search methods was
given by Wright [28]. Here we mention only a selection of related research.

Yu [29] proved that, if f is continuously differentiable and has a bounded lower
level set, then at least one cluster point of the iterates generated by a modification
of the method of Spendley, Hext, and Himsworth [23] is a stationary point of f .
The modification includes replacing strict descent by a stronger criterion of sufficient
descent (in the order of the diameter squared of the simplex) for accepting a reflection.

Despite the popularity of the Nelder–Mead method, very few papers have stud-
ied its theoretical properties. In a 1985 Ph.D. thesis, Woods [27] proved that, if f
is strictly convex and coercive, a modified Nelder–Mead method generates simplices
having certain limiting properties. (The modifications include a “relative decrease”
criterion, stronger than strict descent and designed for when f is nonnegative-valued,
for accepting a reflection and a contraction acceptance criterion different from that
used by Nelder and Mead.) Woods also gave a pictorial example of a nonconvex dif-
ferentiable function of two variables (n = 2), for which every iteration of the modified
Nelder–Mead method entails a shrink of the simplex toward a nonminimizer of f .

There has been recent interest in theoretical properties of the original Nelder–
Mead method. McKinnon [14] presented a family of strictly convex, coercive functions
f of two variables (n = 2) with different degrees of smoothness, for which the simplices
generated by the Nelder–Mead method, with particular choices for the initial simplex,
contract to a nonstationary point. Thus, the Nelder–Mead method can fail to generate
a stationary point in dimension two or higher, even when f is “nice.” Lagarias
et al. [12] proved that, for any strictly convex, coercive function f (not necessarily
differentiable) of one variable (n = 1), the simplices generated by the Nelder–Mead
method converge to the unique global minimizer of f . In addition, [12] proves that,
for n = 2, the diameter of the simplices converges to zero so the function values at
the vertices converge to the same value.

For the MDS method, Torczon [24, 25] proved that if f is continuously differ-
entiable and has a bounded lower level set, then at least one cluster point of the
generated sequence of iterates is a stationary point of f (also see [26] for extensions
to pattern search methods).

Various papers about direct search methods have appeared in the Russian lit-
erature; see [11] for a recent survey. Dambrauskas [5] proposed an extension of the
method of Spendley, Hext, and Himsworth in which the simplex may also contract
toward its centroid. Rykov [19, 20, 21, 22] proposed modifications of the methods of
Spendley, Hext, and Himsworth and of Nelder and Mead that allow, as in the method
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proposed here, reflection, expansion, and contraction of the simplex with respect to
its m best vertices with m depending on the simplex. However, Rykov’s methods
differ from ours in several ways. In Rykov’s method, vertices are reflected in specific
manners: a subset of them (or centroid of the subset) is reflected through the cen-
troid of the m best vertices, and the remaining vertices are moved in parallel with
this subset (or centroid of the subset); m is chosen at each iteration by maximizing a
certain function of m (six such functions were proposed); each reflection is determined
by a criterion of sufficient descent similar to that of Yu (i.e., descent in the order of
the diameter squared of the simplex) and requires either 1 or n + 1 −m additional
function evaluations (see reflections 1–5 in [21, 22]). In our method, vertices are re-
flected only in the general sense that the rays emanating from the reflected vertices
toward the m best vertices should contain, in their convex hull, the rays emanating
from a weighted centroid of the m best vertices toward the to-be-reflected vertices
(see (2.5)); m is chosen freely between 1 and a certain index depending on the current
simplex and the most recent simplex produced by an improving step; each reflection is
determined by criteria of fortified descent and requires anywhere from 1 to n−m+ 1
additional function evaluations. Also, our convergence results require only that f be
continuously differentiable and bounded below (for some results, we further require f
to be uniformly continuous on a lower level set or to have a bounded lower level set),
whereas the convergence results of Rykov further require f to be convex and to have
a bounded lower level set and its gradient to be Lipschitz continuous.

1.3. Notation. Throughout, <n denotes the vector space of real n-tuples x =
(x1, . . . , xn), viewed as column vectors and referred to as “points” or “n-vectors.” We
denote by ‖x‖ the 2-norm of x. For any set S (of points/vectors) in <n, we denote
by |S|, conv(S), and diam(S) the cardinality, the convex hull, and the diameter,
respectively, of S. In particular,

diam(S) = max
s∈S,s′∈S

‖s− s′‖.

For any set S = {s1, . . . , sn+1} of n+ 1 points in <n, we denote

von(S) =
∣∣det [ s2 − s1 · · · sn+1 − s1 ]

∣∣/diam(S)n.

We note that von(S)/n! is the volume of the (normalized) unit-diameter simplex with
vertices (si − s1)/diam(S), i = 1, . . . , n+ 1 (see [9]). Thus, von(S) = 0 if and only if
the simplex with vertex set S has an interior angle equal to zero or, equivalently, the
edges emanating from each vertex of this simplex are linearly dependent. For any sets
S and S′ in <n and any number c > 0, we denote S − S′ = {s − s′ : s ∈ S, s′ ∈ S′},
S\S′ = {s ∈ S : s 6∈ S′}, and cS = {cs : s ∈ S}.

For any finite set S in <n of cardinality p, we denote by F (S) the p-vector
comprising the f -value of the elements of S permuted into increasing order, i.e.,

F (S) =

F1(S)
. . .

Fp(S)

 , where F1(S) ≤ · · · ≤ Fp(S),

and Fi(S) denotes the ith smallest element of f(s), s ∈ S. Denote

fmin(S) = F1(S), fmax(S) = Fp(S).

For any two p-vectors c and d, we define their consistency index by

l(c, d) = max i ∈ {0, 1, . . . , p} such that cj ≤ dj for 1 ≤ j ≤ i.
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Thus l(c, d) = p means c ≤ d while l(c, d) = q < p means cj ≤ dj for 1 ≤ j ≤ q and
cq+1 > dq+1.

Finally, let Φ denote the following class of functions:

φ ∈ Φ ⇐⇒ φ : [0,∞) 7→ [0,∞), φ is continuous, lim
t→0

φ(t)/t = 0.

2. Description of new method. In this section we formally describe our sim-
plicial search method and discuss its relation to other simplex-based direct search
methods. At each iteration k, the method generates a new simplex, with vertex
set Sk+1, from the current simplex, with vertex set Sk, by constructing trial re-
flected/expanded/contracted simplices, checking these for fortified descent, and, if
needed, shrinking the current simplex a fraction of the way toward a best vertex. The
interior angles of the trial simplices are further required to be bounded away from
zero.

Fortified-descent simplicial search (FDSS) method. Choose a set S0 of
n+ 1 points in <n satisfying von(S0) > 0. Choose constants θr ∈ (0, 1), τr ∈ [1, 1/θr),
ν ∈ (0, von(S0)], θbad ∈ (0, 1], γs ∈ (0, 1), and γe > 1. Choose two functions α ∈ Φ
and β ∈ Φ, with α also satisfying

inf
t≥c

α(t) > 0 ∀c > 0.(2.1)

For k = 0, 1, . . ., generate Sk+1 and (xk,∆k, m̄k,mk) from Sk by the following itera-
tion k:

Step 0. Let S = Sk and go to Step 1.
Step 1. Construct a reflection of S: Let ∆ = diam(S). Choose an integer m

satisfying

1 ≤ m ≤ min{n, l(F (S), F (Sk))}.

Partition S into two disjoint subsets Sgood and Sbad such that |Sgood| = m (so |Sbad| =
n+ 1−m) and

fmax(Sgood) ≤ fmin(Sbad).(2.2)

Choose a nonempty subset S0 of Sgood such that

fmax(S0) ≤ fmin(Sgood\S0),(2.3)

and scalars µs, s ∈ S0, with µs ≥ θr/|S0| and
∑
s∈S0

µs = 1. Define a weighted

centroid x̂ and its interpolated function value f̂ by

x̂ =
∑
s∈S0

µss, f̂ =
∑
s∈S0

µsf(s).(2.4)

Choose a set Sr of n+ 1−m points in <n satisfying

Sbad − x̂ ⊆ τr conv(Sgood − Sr)(2.5)

(i.e., Sgood ∪ Sr is a “reflection” of S with respect to Sgood) and

∆ ≤ diam(Sgood ∪ Sr) ≤ γe∆ and von(Sgood ∪ Sr) ≥ ν.
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If S = Sk (i.e., Step 1 is entered at iteration k for the first time), let xk = x̂ and
m̄k = m. Go to Step 2.

Step 2. Check whether reflected simplex satisfies fortified descent: Choose a
nonempty subset Σbad of Sbad satisfying

fmax(Σbad)− f̂ ≥ θbad

(
fmax(S)− f̂

)
(2.6)

and a nonempty subset Σr of Sr satisfying

Σbad − x̂ ⊆ τr conv(Sgood − Σr).(2.7)

(Since Sr satisfies (2.5), Σr may be chosen to be Sr.) If the fortified-descent criteria

fmin(Σr) ≤ fmax(Sgood)− α(∆) and(2.8)

fmin(Σr) ≤ fmax(Sgood)− θr

(
fmax(Σbad)− f̂

)
+ β(∆)(2.9)

are satisfied, then go to Step 3; else go to either Step 4 or Step 5. (The decision is
user specified.)

Step 3. Attempt an expansion and accept either the reflected or the expanded
simplex: Choose a set Se of n+ 1−m points in <n satisfying

diam(Sgood ∪ Sr) ≤ diam(Sgood ∪ Se) ≤ γe∆ and von(Sgood ∪ Se) ≥ ν.
(Se may be chosen to be Sr, if expansion is not desired.) Choose a nonempty subset
Σe of Se. If

fmin(Σe) ≤ fmin(Σr),(2.10)

then let Sk+1 = Sgood ∪ Se (accept the expanded simplex); else let Sk+1 = Sgood ∪ Sr

(accept the reflected simplex). In either case, let ∆k = ∆,mk = m, and terminate
iteration k.

Step 4. Attempt to find a contracted simplex satisfying fortified descent: Choose
a set Sc of n+ 1−m points in <n satisfying

diam(Sgood ∪ Sc) ≤ ∆ and von(Sgood ∪ Sc) ≥ ν.
If Sgood ∪ Sc satisfies the following consistency and fortified descent criteria relative
to Sk,

Fi(Sgood ∪ Sc) ≤ Fi(Sk), i = 1, . . . ,m+ 1, and(2.11)

m+1∑
i=1

Fi(Sgood ∪ Sc) ≤
m+1∑
i=1

Fi(S
k)− α(∆),(2.12)

then let Sk+1 = Sgood ∪ Sc (accept the contracted simplex), ∆k = ∆, mk = m + 1,
and terminate iteration k. Otherwise, go to Step 5.

Step 5. Shrink simplex toward a best vertex and check fortified descent: Choose
an sbest ∈ arg mins∈S f(s) and let S′ be S′ = sbest + γs(S − sbest). If

fmin(S′) ≤ fmin(Sk)− α(∆),(2.13)

then let Sk+1 = S′ (accept the shrunken simplex), ∆k = ∆, mk = 1, and terminate
iteration k. Otherwise, let S = S′, and return to Step 1 (accept a nonimproving
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shrink and restart the process). If Step 1 is returned to an infinite number of times
so we never terminate iteration k, output the point to which sbest converges and quit
the method. (The point sbest converges because each time Step 1 is returned, diam(S)
is decreased by a factor of γs and the new S is contained in the convex hull of the
previous S.)

Thus, each iteration k of the FDSS method either (i) performs a finite number of
nonimproving shrinks followed by an improving reflection/expansion/contraction/shrink
or (ii) performs an infinite number of nonimproving shrinks, in which case the method
outputs the limit point. Below we discuss in more detail the various features of the
method.

1. Choosing m. At each iteration k, when we enter Step 1 for the first time (from
Step 0), we have S = Sk so that l(F (S), F (Sk)) = n + 1, implying we can choose m
to be any integer between 1 and n. This m is denoted by m̄k. If we subsequently
return to Step 1 from Step 5, then l(F (S), F (Sk)) could possibly be less than n, and
hence m cannot be chosen as freely. If f is convex or, more generally, quasi-convex
(see [13]) in the sense that

f(x+ γ(y − x)) ≤ max{f(x), f(y)} ∀γ ∈ [0, 1], ∀x, y ∈ <n,(2.14)

then we have l(F (S), F (Sk)) ≥ n every time we return to Step 1 so that m can always
be chosen freely. This is because when we shrink the simplex S in Step 5 toward the
best vertex sbest to obtain S′ = sbest + γs(S− sbest), we have f(sbest) ≤ f(s) for each
s ∈ S which, together with (2.14), implies

f(sbest + γs(s− sbest)) ≤ max{f(sbest), f(s)} = f(s),

and so Fi(S
′) ≤ Fi(S), i = 1, . . . , n. An induction argument yields that, each time

we return to Step 1 from Step 5, we have Fi(S) ≤ Fi(S
k), i = 1, . . . , n, and so

l(F (S), F (Sk)) ≥ n.
2. Choosing x̂ and Sr. The set Sr is a reflection (in a general sense) of Sbad with

respect to Sgood. There are many choices for S0 and the weights µs, which define x̂
via (2.4) and Sr. For x̂, a possible choice is

S0 = Sgood, µs =
1

m
, x̂ =

1

m

∑
s∈Sgood

s,(2.15)

which makes x̂ the centroid of Sgood. For the reflected vertices Sr, a possible choice is

Sr = 2x̂− Sbad.(2.16)

When m = n, the choices (2.15) and (2.16) produce the standard reflected simplex
from the methods of Spendley, Hext, and Himsworth and Nelder and Mead. When
m = 1, these choices produce the reflected simplex from the MDS method. Further-
more, the resulting Sr automatically satisfies (2.5) with τr = 1 and diam(Sgood∪Sr) =
diam(S). This is illustrated in Figure 1 in the case n = 3, for m = 1, 2, 3. For example,
for m = 3, we have Sgood = {a, b, c}, Sbad = {d}, Sr = {d′}, and, by isometry of reflec-
tion, d−x̂ = x̂−d′. Since x̂ ∈ conv({a, b, c}) so that x̂−d′ ∈ conv({a−d′, b−d′, c−d′}),
we see that

Sbad − x̂ = {d− x̂} = {x̂− d′} ⊂ conv({a− d′, b− d′, c− d′}) = conv(Sgood − Sr).



276 PAUL TSENG

Fig. 1. S = {a, b, c, d} and m = |Sgood|. For m = 3, we have Sgood = {a, b, c}, Sbad = {d},
Sr = {d′}; for m = 2, we have Sgood = {a, b}, Sbad = {c, d}, Sr = {c′, d′}; for m = 1, we have
Sgood = {a}, Sbad = {b, c, d}, Sr = {b′, c′, d′}.

Another possible choice for Sr is

Sr = {2[s]+H − s : s ∈ Sbad}, with H = aff(Sgood) + aff(Sbad − sbad),

where sbad is any element of Sbad, [s]+H denotes the orthogonal projection of s onto H,
and aff( ) denotes the affine hull. With this choice of Sr, diam(Sgood∪Sr) = diam(S),
but (2.5) is not necessarily satisfied.

3. Choosing Σbad. There are many choices for Σbad (the subset of Sbad used in
Step 2 to check fortified descent). Possible choices are the worst vertex in Sbad or
Sbad itself. Choosing Σbad with a small cardinality may be advantageous in that Σr,
defined by (2.7), may also have a small cardinality. Since |Σr| additional function
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evaluations are needed to check the fortified-descent criteria in Step 2, a small |Σr|
leads to a more economical acceptance test at a given iteration. For example, if m = 1,
so that Sbad contains the n worst vertices, and if x̂ and Sr are chosen by (2.15) and
(2.16), then, by choosing

Σbad = arg max
s∈Sbad

f(s), Σr = 2x̂− Σbad,

only one additional function evaluation is needed to test fortified descent for the
reflected simplex. Note, however, that checking fortified descent for the reflected
simplex with a smaller number of function evaluations tends to make the reflected
simplex less likely to be accepted. A similar trade-off occurs when choosing Σe, the
analogous set for the expanded simplex. This trade-off is evidenced in our numerical
experience.

4. Relation to other methods. With appropriate algorithmic choices, the FDSS
method can be made to generate trial simplices analogous to those produced by other
simplex-based direct search methods. For example, whenm = min{n, l(F (S), F (Sk))},
the FDSS method may be viewed as similar in spirit to the methods of Spendley,
Hext, and Himsworth and Nelder and Mead. When m = 1, the FDSS method may
be viewed as related to the MDS method. On the other hand, the acceptance criteria
for a new simplex used in the FDSS method (based on fortified descent) are different
and inherently more stringent than strict descent used in these other methods. The
FDSS method further differs from the Nelder–Mead method in that it maintains the
interior angles of the simplex to be bounded away from zero.

5. Finite termination of FDSS method. As described, the FDSS method generates
an infinite sequence of simplices. In practice, suitable termination criteria are needed.
Previous suggestions for termination criteria (see, e.g., [24, 28]) are based on small
diameter for the simplex and/or small differences in the vertex function values. Here
we consider alternative criteria. For an n-dimensional simplex in <n with vertex set
S = {s1, . . . , sn+1}, let

g(S) =

 (s2 − s1)T

...
(sn+1 − s1)T


−1  f(s2)− f(s1)

...
f(sn+1)− f(s1)

 ,
where superscript T denotes transpose. Given a tolerance ε, one can terminate the
FDSS method whenever S in Step 1 satisfies

diam(S) ≤ ε and ‖g(S)‖ ≤ ε.
When f is continuously differentiable, von(S) is bounded away from zero, and diam(S)
tends to zero, we have that g(S) approaches ∇f(s1). To avoid solving an n×n linear
system, one can use the following alternative criteria:

diam(S) ≤ ε and ‖g̃(S)‖ ≤ ε,(2.17)

where

g̃(S) =

 (f(s2)− f(s1))/‖s2 − s1‖
...

(f(sn+1)− f(s1))/‖sn+1 − s1‖

 .(2.18)
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As long as von(S) is bounded away from zero, ‖g̃(S)‖ differs from ‖g(S)‖ by only a
constant factor. Criteria (2.17), which have the nice feature of yielding an approximate
stationary point, were used in our computational tests (see section 4).

6. The quantity f̂ in (2.4) is an approximation to f(x̂), and may be replaced
throughout the FDSS method by f(x̂) without affecting the theoretical convergence.
However, this change significantly increases the total number of function evaluations
in practice. Also, τr need not be constant, provided it is bounded away from 1/θr.

7. The quantity von(S) may be replaced throughout the FDSS method by any
nonnegative continuous function of S (with S viewed as a point in <(n+1)n) that is
zero if and only if the normalized simplex with vertex set (S − s)/diam(S), where
s ∈ S, has zero volume.

8. Significance of fortified descent. In the FDSS method, fortified-descent criteria
appear in (2.8) and (2.9) for the reflected simplex, in (2.10) for the expanded simplex,
in (2.11) and (2.12) for the contracted simplex, and in (2.13) for the shrunken simplex.
By requiring an improving simplex to satisfy one of these sets of conditions, we will
be able to prove that the simplex diameter converges to zero and that at least one
cluster point of {xk} is a stationary point of f .

From a numerical standpoint, there is very little difference between fortified-
descent criteria and the (less stringent) strict descent required in some other direct
search methods. In particular, we can choose the function α, which appears in (2.8),
(2.12), and (2.13), to be small everywhere (e.g., α(t) = 10−5 min{t2, 1}); we can choose
β, which appears in (2.9), to have fast growth away from zero (e.g., β(t) = 105t2);
and we can choose θr, which appears in (2.9), to have a value near zero. From a
theoretical standpoint, however, there is often a large difference between fortified
descent and strict (i.e., simple) descent. Almost all the complications in the proof of
Lagarias et al. [12] arise because arbitrarily small improvements can be accepted.

The fortified-descent condition (2.10) for the expanded simplex can be replaced
by the less stringent conditions

fmin(Σe) ≤ fmax(Sgood)− α(∆) and(2.19)

fmin(Σe) ≤ fmax(Sgood)− θr(fmax(Σbad)− f̂) + β(∆),(2.20)

where α, β, and θr may differ from their counterparts for the reflected simplex, i.e.,
(2.8)–(2.9). The convergence results of Theorem 3.2 will still apply with only minor
modifications in the proofs. In practice, using (2.19) and (2.20) rather than (2.10)
typically yields faster convergence of the simplices.

3. Convergence analysis of new method. In this section we analyze the
convergence properties of the FDSS method. In particular, we show that, under mild
assumptions on f , there is at least one cluster point of {xk} that is a stationary point
of f and, if we choose m̄k with the same value at all iterations k, then every cluster
point of {xk} is a stationary point of f . First, we need the following lemma showing
that, under appropriate assumptions, {diam(Sk)} → 0. The proof of this is based on
showing that {F (Sk)} is a sufficiently “lexicographically decreasing” sequence.

Lemma 3.1. Assume that the FDSS method does not quit at some iteration k
and let {(Sk, xk,∆k, m̄k,mk)}k=0,1,... be the generated sequence. Then, fmin(Sk+1) ≤
fmin(Sk) and von(Sk) ≥ ν for all k, and the following hold:

(a) For all k = 0, 1, . . .,

Fi(S
k+1) ≤ Fi(Sk), i = 1, . . . ,mk,

mk∑
i=1

(Fi(S
k+1)− Fi(Sk)) ≤ −α(∆k).(3.1)
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(b) If mk = 1 for all k or if f is uniformly continuous on {x ∈ <n : f(x) ≤
fmin(S0)}, then either (i) {fmin(Sk)} → −∞ or (ii) {∆k} → 0 and {diam(Sk)} → 0.

Proof. That fmin(Sk+1) ≤ fmin(Sk) for all k follows from the fact that, in re-
flecting or contracting or shrinking a simplex S, one of the best vertices of S (i.e.,
an element of arg mins∈S f(s)) is held fixed. That von(Sk) ≥ ν for all k follows from
the observation that, in reflecting or contracting S with respect to Sgood, the new S
is always chosen to satisfy von(S) ≥ ν while, in shrinking S toward sbest, von(S) is
unchanged.

(a) Fix any k ∈ {0, 1, . . .}. Consider the last time we pass through Steps 1–2
when generating Sk+1 and (xk,∆k,mk) from Sk at iteration k. We have that either
(i) (2.8) holds and Sk+1 = Sgood ∪ Sr and mk = m or (ii) (2.8) and (2.10) hold and
Sk+1 = Sgood ∪ Se and mk = m or (iii) (2.11) and (2.12) hold and Sk+1 = Sgood ∪ Sc

and mk = m+ 1 or (iv) (2.13) holds and Sk+1 = S′ and mk = 1. In case (i), we have
from (2.8) and Σr ⊆ Sr that

F1(Sr) = fmin(Sr) ≤ fmin(Σr) ≤ fmax(Sgood)− α(∆) = Fm(Sgood)− α(∆),

and from (2.2) and |Sgood| = m ≤ l(F (S), F (Sk)) that Fi(Sgood) = Fi(S) ≤ Fi(S
k)

for i = 1, . . . ,m, so Sk+1 = Sgood ∪Sr yields Fi(S
k+1) ≤ Fi(Sk) for i = 1, . . . ,m, and

m∑
i=1

(Fi(S
k+1)− Fi(Sk)) ≤

m−1∑
i=1

(Fi(Sgood)− Fi(Sk)) + (F1(Sr)− Fm(Sk)) ≤ −α(∆),

where the first inequality also uses the observation that the sum of the first m compo-
nents of F (Sk+1) is less than or equal to the sum of any m components of F (Sk+1).
This, together with (∆,m) = (∆k,mk), shows that (3.1) holds in case (i). A simi-
lar argument shows that (3.1) holds in case (ii). In cases (iii) and (iv), (3.1) holds
trivially.

(b) If mk = 1 for all iterations k, then we have from the choice of xk and part (a)
that

fmin(Sk+1) ≤ fmin(Sk)− α(∆k)

for all k so, by (2.1), either {fmin(Sk)} → −∞ or {∆k} → 0. Instead, suppose
f is uniformly continuous on {x ∈ <n : f(x) ≤ fmin(S0)} and we will argue by
contradiction that either {fmin(Sk)} → −∞ or {∆k} → 0. Suppose {fmin(Sk)} 6→
−∞ (which, since {fmin(Sk)} is nonincreasing, implies that {fmin(Sk)} converges)
and yet {∆k} 6→ 0. For each i ∈ {1, . . . , n+ 1}, let

Ki =
{
k ∈ {0, 1, . . .} : Fi(S

k+1) ≤ Fi(Sk)− α(∆k)/mk

}
.

Since (3.1) holds and mk ≤ n+ 1 for all k (so, for each k ∈ {0, 1, . . .}, there exists at

least one i ∈ {1, . . . , n+ 1} such that k ∈ Ki), we have
⋃n+1
i=1 Ki = {0, 1, . . .} and so

ī = min{i ∈ {1, . . . , n+ 1} : |Ki| =∞, {∆k}k∈Ki 6→ 0}

is well defined. Since {∆k}k∈Kī 6→ 0, there exist c > 0 and subsequence K of Kī such
that ∆k ≥ c for all k ∈ K. This implies

fmin(Sk+1) ≤ Fī(Sk+1) ≤ Fī(Sk)− α(∆k)/mk ≤ Fī(Sk)−
(

inf
t≥c

α(t)

)
/(n+ 1)
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for all k ∈ K. For each k ∈ {1, 2, . . .}, let rk be the largest t ∈ {1, 2, . . . , k} satisfying
Fī(S

t) > Fī(S
t−1) (with rk = 0 if no such t exists). Since {fmin(Sk)} converges

and, by (2.1), the infimum above is a positive constant, we have that rk → ∞ as
k → ∞ (otherwise, {Fī(Sk)} would have a monotonically decreasing tail, and the
above relation would imply {Fī(Sk)} → −∞ and so {fmin(Sk)} → −∞). Also, we
have trivially that Fī(S

k) ≤ Fī(Sk−1) ≤ · · · ≤ Fī(Srk), so the above relation implies

fmin(Sk+1) ≤ Fī(Srk)−
(

inf
t≥c

α(t)

)
/(n+ 1) ∀k ∈ K.(3.2)

Lastly, we have trivially that Fī(S
rk) > Fī(S

rk−1) for all k sufficiently large so that
rk > 0, in which case, since (3.1) holds at all iterations k (so, in particular, at iteration
rk − 1), there must exist an i < ī such that rk − 1 ∈ Ki. By further passing into
a subsequence if necessary, we can assume that rk > 0 and it is the same i for all
k ∈ K, implying {rk − 1 : k ∈ K} ⊆ Ki. Then, |Ki| =∞ (since rk →∞ as k →∞)
and so, by the choice of ī, we have {∆rk−1}k∈K → 0. Since Sk+1 is obtained by
reflecting/expanding (by a factor of at most γe) or contracting/shrinking a simplex S
with diam(S) = ∆k, we also have that

diam(Sk+1) ≤ γe∆k, k = 0, 1, . . . ,(3.3)

so together we have {diam(Srk)}k∈K → 0. Then, since fmin(Srk) ≤ fmin(S0) for
all k ∈ K, the uniform continuity of f on {x ∈ <n : f(x) ≤ fmin(S0)} implies
{Fī(Srk) − fmin(Srk)}k∈K → 0, which, together with {fmin(Sk+1) − fmin(Srk)} →
0 (since {fmin(Sk)} converges and rk → ∞ as k → ∞), contradicts (3.2). Thus,
{∆k} → 0 and, by (3.3), {diam(Sk)} → 0.

By using Lemma 3.1, we prove our main convergence result below, showing that
if f is continuously differentiable and bounded below (and some other mild conditions
hold) and {∆k} → 0, then at least one cluster point of {xk} is a stationary point of
f and, if we choose m̄k with the same value at every iteration k, then every cluster
point of {xk} is a stationary point of f . (It can be seen with examples that f be-
ing differentiable and bounded below and {∆k} → 0 are necessary for convergence
to a stationary point of f , so our sufficient conditions for convergence are in some
sense close to being necessary.) The proof is based on showing, using {∆k} → 0 and
the fortified-descent criteria, that, along any subsequence of {xk} where a contrac-
tion/shrinking step is taken at each iteration k in the subsequence, any cluster point
is a stationary point of f . To show that every cluster point of {xk} is a stationary
point when m̄k is constant, we show that whenever Sk is in a neighborhood of a non-
stationary point and diam(Sk) is sufficiently small, the sum

∑m
i=1 Fi(S

k) decreases
by an amount in the order of diam(Sk). Using this fact, we argue that if one of the
cluster points is nonstationary, then the above sum cannot converge, and we thereby
obtain a contradiction.

Theorem 3.2. Assume that infx∈<n f(x) > −∞ and f is continuously differen-
tiable on <n. Let {(Sk, xk,∆k, m̄k,mk)}k=0,1,... be generated by the FDSS method. If
at some iteration k, the method quits (because Step 1 is returned to an infinite number
of times), the output point is a stationary point of f . If the method does not quit at
some iteration and {diam(Sk)} → 0, then the following hold:

(a) If {x ∈ <n : f(x) ≤ fmin(S0)} is bounded, then at least one cluster point of
{xk} is a stationary point of f .

(b) If we choose, at all iterations k beyond some number, m̄k to be a constant
between 1 and n, then every cluster point of {xk} is a stationary point of f .
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Proof. If at some iteration k, the FDSS method quits because Step 1 is returned
to an infinite number of times, then, since each time as we return to Step 1 we shrink
S toward sbest (from Step 5) by a factor of γs, we have that diam(S) → 0. Then,
by using an argument analogous to the proof of the claim below, we obtain that
the point to which sbest converges is a stationary point. For brevity, we omit the
argument. Thus, in what follows, we assume that the FDSS method does not quit at
some iteration and {σk} → 0, where for brevity we let σk = diam(Sk) for all k.

We claim that, for any subsequence K of {0, 1, . . .} such that a contraction/shrink-
ing step is taken at iteration k for all k ∈ K and {xk}k∈K → some x∞, we have that
x∞ is a stationary point of f . To show this, fix any such subsequence K and, for each
k ∈ K, let Sk0 , S

k
good, S

k
bad, S

k
r , Σkbad, Σkr denote the S0, Sgood, Sbad, Sr, Σbad, Σr used

when Steps 1–2 are first entered during iteration k. By passing into a subsequence if
necessary, we will assume that |Sk0 |, |Skgood|, |Σkbad|, |Σkr | are the same for all k ∈ K,
so that

Sk0 = {ski }i∈I0 , Skgood = {ski }i∈I1 , Skbad = {skj }j∈I2 , Skr = {tkj }j∈I2 ,(3.4)

Σkbad = {skj }j∈J2 , Σkr = {tkj }j∈J3(3.5)

for some partition (I1, I2) of N = {1, . . . , n + 1}, some nonempty I0 ⊆ I1, J2 ⊆
I2, J3 ⊆ I2, and some sets of points {ski }i∈N and {tkj }j∈I2 in <n (k ∈ K). Since

maxi∈I0,j 6∈I0 ‖skj − ski ‖ ≤ diam(Skgood ∪ Skbad) = σk and maxi∈I1,j∈I2 ‖tkj − ski ‖ ≤
diam(Skgood ∪ Skr ) ≤ γeσk for all k ∈ K, by further passing into a subsequence if
necessary, we will assume that

{(skj−ski )/σk}k∈K → dij , i ∈ I0, j ∈ N, {(tkj−ski )/σk}k∈K → eij , i ∈ I1, j ∈ I2
(3.6)
for some sets of n-vectors {dij}i∈I0,j∈N and {eij}i∈I1,j∈I2 . Furthermore, we will as-
sume that maxj∈J2

f(skj ) is attained by the same index j̄ ∈ J2 for all k ∈ K. For each

k ∈ K, since (2.4) holds with (S0, x̂) = (Sk0 , x
k), we have (also using (3.4))

xk =
∑
i∈I0

µki s
k
i

for some set of scalars {µki }i∈I0 exceeding θr/|I0| and summing to 1, so that

skj − xk =
∑
i∈I0

µki (skj − ski ), j 6∈ I0.

Similarly, for each k ∈ K, since (2.7) holds with (Sgood,Σbad,Σr, x̂) = (Skgood,Σ
k
bad,Σ

k
r , x

k),
we have (also using (3.4) and (3.5))

skj̄ − xk ∈ τr conv{ski − tkj }i∈I1,j∈J3
.

By further passing into a subsequence if necessary, we will assume that, for each
i ∈ I0, {µki }k∈K converges to some positive scalar µi. Then, dividing each side of the
above two relations by σk and using {σk}k∈K → 0 and (3.6) yields in the limit (as
k →∞, k ∈ K)

dj =
∑
i∈I0

µidij , j 6∈ I0,(3.7)

−dj̄ = τr
∑

i∈I1,j∈J3

λijeij ,(3.8)
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where {λij}i∈I1,j∈J3
is a set of nonnegative numbers summing to 1 and {dj}j∈I2 is a

set of n-vectors satisfying

{(skj − xk)/σk}k∈K → dj , j 6∈ I0.

For each k ∈ K, since (2.2) and (2.3) hold with (S0, Sgood, Sbad) = (Sk0 , S
k
good, S

k
bad),

we have (also using (3.4))

f(skj )− f(ski ) ≥ 0, i ∈ I0, j 6∈ I0,
so dividing both sides by σk and using {σk}k∈K → 0 and (3.6) yield in the limit (as
k →∞, k ∈ K)

∇f(x∞)T dij ≥ 0, i ∈ I0, j 6∈ I0.(3.9)

Since a contraction or shrinking step is taken at iteration k for all k ∈ K, by further
passing into a subsequence if necessary, we can assume that either (a) (2.8) does not
hold with (Sgood,Σr,∆) = (Skgood,Σ

k
r , σk) for all k ∈ K or (b) (2.9) does not hold with

(Sgood,Σbad,Σr,∆) = (Skgood,Σ
k
bad,Σ

k
r , σk) and f̂ =

∑
i∈I0 µ

k
i f(ski ) for all k ∈ K. In

case (a), we have (also using (3.4) and (3.5))

f(tkj )− f(ski ) ≥ −α(σk), i ∈ I1, j ∈ J3,

so dividing both sides by σk and using {σk}k∈K → 0, α ∈ Φ, and (3.6) yield in the
limit (as k →∞, k ∈ K) ∇f(x∞)T eij ≥ 0 for i ∈ I1, j ∈ J3, so, by (3.8) and λij ≥ 0
for all i ∈ I1, j ∈ J3,

−∇f(x∞)T dj̄ = τr
∑

i∈I1,j∈J3

λij∇f(x∞)T eij ≥ 0.(3.10)

In case (b), we have (also using (3.4))

f(tkj )− f(ski ) ≥ θr

(∑
i∈I0

µki f(ski )− f(skj̄ )

)
+ β(σk), i ∈ I1, j ∈ J3,

so dividing both sides by σk and using {σk}k∈K → 0, β ∈ Φ, and (3.6) yield in the
limit (as k →∞, k ∈ K) that

∇f(x∞)T eij ≥ −θr

∑
i∈I0

µi∇f(x∞)T dij̄ = −θr∇f(x∞)T dj̄ , i ∈ I1, j ∈ J3,

where the equality follows from (3.7). This, together with (3.8) and λij ≥ 0 for all
i ∈ I1, j ∈ J3, and

∑
i∈I1,j∈J3

λij = 1, yields

−∇f(x∞)T dj̄ = τr
∑

i∈I1,j∈J3

λij∇f(x∞)T eij ≥ −τrθr · ∇f(x∞)T dj̄ ,

so, by θr ∈ (0, 1/τr), (3.10) holds. Thus, in either case, (3.10) holds. Since by (3.7)
and (3.9) we also have

∇f(x∞)T dj̄ =
∑
i∈I0

µi∇f(x∞)T dij̄ ≥ 0,
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this yields ∇f(x∞)T dj̄ = 0. For each k ∈ K, since (2.6) holds with (S,Σbad) =

(Sk,Σkbad) and f̂ =
∑
i∈I0 µ

k
i f(ski ) (also using (3.4) and (3.5)),

∑
i∈I0

µki f(ski )− f(skj̄ ) ≤ θbad

(∑
i∈I0

µki f(ski )− f(skj )

)
, j 6∈ I0.

Dividing both sides by σk and using {σk}k∈K → 0 and (3.6) yield in the limit (as
k →∞, k ∈ K)

−
∑
i∈I0

µi∇f(x∞)T dij̄ ≤ −θbad

∑
i∈I0

µi∇f(x∞)T dij , j 6∈ I0.

By (3.7), the left-hand side of this inequality equals −∇f(x∞)T dj̄ , which was just
shown to equal zero, so (3.9) and the fact µi > 0 for all i ∈ I0 imply

∇f(x∞)T dij = 0, i ∈ I0, j 6∈ I0.(3.11)

We show below that the elements of {dij}i∈I0,j 6∈I0 span <n, which together with
(3.11) would imply ∇f(x∞) = 0, thus proving the claim. Fix any ī ∈ I0. By (3.4)
and Lemma 3.1, we have

∣∣det [ (ski − skī )/σk ]i∈N\{ī}
∣∣ = von(Sk) ≥ ν for all k, so (3.6)

and the continuity of det[ ] yield in the limit (as k →∞, k ∈ K)
∣∣det [ dīi ]i∈N\{ī}

∣∣ ≥ ν.

Thus the elements of {dīi}i∈N span <n. Since, by (3.6), dīi = dīj − dij for all i ∈ I0
and j 6∈ I0, and so these elements may be expressed as linear combinations of the
elements of {dij}i∈I0,j 6∈I0 , the latter must also span <n.

(a) Suppose {x ∈ <n : f(x) ≤ fmin(S0)} is bounded. Since fmin(Sk) ≤ fmin(S0)
for each k so that at least one element of Sk is in this set, it follows from {σk} → 0
that {xk} approaches this set and hence is bounded. Since {σk} → 0 and σk+1 < σk
only if at least one contraction or shrinking step is taken at iteration k, there must
exist a subsequence K of {0, 1, . . .} such that a contraction or shrinking step is taken
at iteration k for all k ∈ K. By the above claim, any cluster point x∞ of {xk}k∈K is
a stationary point of f .

(b) Suppose that we choose, at all iterations k beyond some number k̂, m̄k = m̄
with m̄ ∈ {1, . . . , n}. Let x∞ be any cluster point of {xk}. Suppose x∞ is not a
stationary point of f and we will arrive at a contradiction. Since f is continuously
differentiable, this implies that there exists a δ > 0 such that B(x∞, δ) = {x ∈ <n :
‖x− x∞‖ ≤ δ} contains no stationary point of f . Let

K = {k ∈ {0, 1, . . .} : xk ∈ B(x∞, δ)}.

There must exist a k̃ ≥ k̂ such that no contraction or shrinking step is taken at
iteration k for all k ∈ K with k ≥ k̃ (otherwise there would exist a subsequence K ′ of
K such that a contraction or shrinking step is taken at iteration k for all k ∈ K ′ so,
by the preceding claim, any cluster point of {xk}k∈K′ , which would lie in B(x∞, δ),
would be a stationary point of f , contradicting our choice of δ). Then, at each iteration
k ∈ K with k ≥ k̃, since no contraction or shrinking step is taken so that Step 1 is
entered only once, we have mk = m̄.

For each k ∈ K, let f̂k denote the f̂ computed when Step 1 is first entered during
iteration k. If there exists a subsequence K ′ of K satisfying

lim
k→∞,k∈K′

(
f̂k − fmax(Sk)

)
/σk ≥ 0,(3.12)
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then, by passing into a subsequence if necessary, we can assume from the boundedness
of {xk}k∈K that {xk}k∈K′ → some x̄ ∈ B(x∞, δ) and from (2.4) that

Sk = {sk1 , . . . , skn+1}, xk =
∑
i∈I0

µki s
k
i , f̂k =

∑
i∈I0

µki f(ski )

for all k ∈ K ′, where I0 ⊂ N = {1, . . . , n+ 1} and, for each k ∈ K ′, {ski }i∈N is some
set of points in <n and {µki }i∈I0 is some set of scalars exceeding θr/|I0| and summing
to 1. Also, we can assume that

{(skj − ski )/σk}k∈K′ → dij , i ∈ I0, j ∈ N,

for some set of n-vectors {dij}i∈I0,j∈N in <n, and that, for each i ∈ I0, {µki }k∈K′
converges to some positive scalar µi. Then, we would have from (3.12) (and passing
into the limit as k →∞, k ∈ K ′) that

−
∑
i∈I0

µi∇f(x̄)T dij ≥ 0, j 6∈ I0,

and, as in the proof of (3.9), that ∇f(x̄)T dij ≥ 0 for all i ∈ I0, j 6∈ I0. These together
would imply

∇f(x̄)T dij = 0, i ∈ I0, j 6∈ I0,
and, since von(Sk) ≥ ν for all k so that the elements of {dij}i∈I0,j 6∈I0 span <n as
argued earlier, it would follow that ∇f(x̄) = 0, a contradiction of B(x∞, δ) containing
no stationary point of f . Thus, there cannot exist a subsequence K ′ of K satisfying
(3.12) or, equivalently, we must have

lim
t→∞ sup

k∈K,k≥t

{(
f̂k − fmax(Sk)

)
/σk

}
< 0.(3.13)

On the other hand, at each iteration k ∈ K with k ≥ k̃, since no contraction or
shrinking step is taken, then during the first pass through Steps 1–2 (so |Sgood| =
m = m̄ and (S, x̂,∆) = (Sk, xk, σk)), we have that (2.8)–(2.9) hold and either (i)
Sk+1 = Sgood ∪ Sr or (ii) (2.10) holds and Sk+1 = Sgood ∪ Se. In case (i), we have
from Σr ⊆ Sr and (2.6) and (2.9) that

F1(Sr) = fmin(Sr) ≤ fmin(Σr) ≤ Fm(Sgood) + θrθbad(f̂ − fmax(S)) + β(∆),

and from (2.2) and Sgood ∪ Sbad = S = Sk that Fi(Sgood) = Fi(S) = Fi(S
k) for

i = 1, . . . ,m, so the facts m = m̄ and Sk+1 = Sgood ∪ Sr yield Fi(S
k+1) ≤ Fi(Sk) for

i = 1, . . . , m̄, and

m̄∑
i=1

(Fi(S
k+1)− Fi(Sk)) ≤

m̄−1∑
i=1

(Fi(Sgood)− Fi(Sk)) + (F1(Sr)− Fm̄(Sk))

≤ θrθbad(f̂ − fmax(S)) + β(∆)

= θrθbad

(
f̂k − fmax(Sk)

)
+ β(σk),

where the first inequality also uses the observation that the sum of the first m̄ compo-
nents of F (Sk+1) is less than or equal to the sum of any m̄ components of F (Sk). A
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similar argument shows that the above relation holds in case (ii) also. Since {σk} → 0
and β ∈ Φ so that {β(σk)/σk} → 0, then (3.13) implies that there exist k̄ ≥ k̃ and a
constant c < 0 such that the right-hand side of the above relation is bounded above
by cσk for all k ∈ K with k ≥ k̄; i.e.,

m̄∑
i=1

(Fi(S
k+1)− Fi(Sk)) ≤ cσk ∀k ∈ K with k ≥ k̄.(3.14)

On the other hand, since {σk} → 0 (so there is an infinite number of iterations in
which a contraction or shrinking step is taken), then {1, 2, . . .}\K is also an infinite
subsequence, so {xk} enters and exits B(x∞, δ) an infinite number of times. Since
x∞ is a cluster point of {xk} and {σk} → 0, this implies that xk must cross between
R1 and R3 through R2 an infinite number of times, where we let

R1 = {x ∈ <n : 2δ/3 ≤ ‖x− x∞‖ ≤ δ},
R2 = {x ∈ <n : δ/3 < ‖x− x∞‖ < 2δ/3},
R3 = B(x∞, δ/3).

More precisely, there exist integers k1, l1, k2, l2, . . . such that k̄ < k1 < l1 < k2 < l2 <
· · · and

xkt ∈ R1, xkt+1 ∈ R2, . . . , x
lt−1 ∈ R2, xlt ∈ R3

for t = 1, 2, . . .. Then, we have {kt, kt + 1, . . . , lt} ⊂ {k ∈ K : k ≥ k̄} for all t, so
(3.14) yields

m̄∑
i=1

(Fi(S
lt)− Fi(Skt)) =

[
m̄∑
i=1

(Fi(S
lt)− Fi(Slt−1))

]
+ · · ·+

[
m̄∑
i=1

(Fi(S
kt+1)− Fi(Skt))

]
≤ cσlt−1 + · · ·+ cσkt
≤ c‖xlt − xlt−1‖/(γe + 1) + · · ·+ c‖xkt+1 − xkt‖/(γe + 1)

≤ c‖xlt − xkt‖/(γe + 1)

≤ cδ/(3(γe + 1)),

where the second inequality follows from c < 0 and the observation ‖xk+1 − xk‖ ≤
σk+1+σk ≤ (γe+1)σk for all k; the third inequality follows from the triangle inequality;
the last inequality follows from the observation that the Euclidean distance between
a point in R1 and a point in R3 is at least δ/3. Since the above inequality holds
for all t = 1, 2, . . ., we see that {∑m̄

i=1 Fi(S
k)}k∈K cannot converge. On the other

hand, we have that {fmin(Sk)} converges (since it is monotonically decreasing and
bounded below) and {σk} → 0, so, by xk ∈ B(x∞, δ) for all k ∈ K and the uniform
continuity of f on B(x∞, δ), we see that {Fi(Sk)}k∈K also converges (to the same
limit as does {fmin(Sk)}) for i = 1, . . . , m̄. This contradicts the nonconvergence of
{∑m̄

i=1 Fi(S
k)}k∈K .

By combining Lemma 3.1 and Theorem 3.2, we immediately obtain the following
convergence result for the FDSS method. Recall that m̄k can be chosen freely between
1 and n, so, in particular, we can choose m̄k to be any constant between 1 and n.

Corollary 3.3. Assume that infx∈<n f(x) > −∞ and f is continuously differ-
entiable on <n. Let {(Sk, xk,∆k, m̄k,mk)}k=0,1,... be generated by the FDSS method.
Then the following hold:
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(a) If {x ∈ <n : f(x) ≤ fmin(S0)} is bounded, then either the method quits at
some iteration k with a stationary point of f or the method does not quit at some
iteration and at least one cluster point of {xk} is a stationary point of f .

(b) If we choose, at all iterations k beyond some number, m = 1 each time we
enter Step 1, then either the method quits at some iteration k with a stationary point
of f or the method does not quit at some iteration and every cluster point of {xk} is
a stationary point of f . The same conclusion holds if f is uniformly continuous on
{x ∈ <n : f(x) ≤ fmin(S0)} and we choose, at all iterations k beyond some number,
m̄k to be a constant between 1 and n.

As a consequence of Corollary 3.3, part (a), we have that if, in addition to the
assumptions therein, it is assumed that f has a unique stationary point on {x ∈
<n : f(x) ≤ fmin(S0)}, then {xk} generated by the FDSS method converges to this
stationary point (which in fact would be the global minimizer of f). We note that
the assumption that f be uniformly continuous on {x ∈ <n : f(x) ≤ fmin(S0)} is
fairly mild and is satisfied by many functions that are continuously differentiable
and bounded below. An example of a function that is continuously differentiable
and bounded below but does not satisfy this assumption is f(x) = e−x + cos(x2)
with S0 = {−1, 0} (so fmin(S0) = 2). We have f(

√
2πk) → 1 as k → ∞ while

f(
√

2πk + εk)→ −1 as k →∞, where εk =
√
π/(2
√

2k)→ 0 as k →∞.

4. Preliminary numerical experience. While the focus of our work is on
the convergence analysis of the FDSS method, we also implemented and tested the
method to gain an understanding of its empirical behavior. We report our preliminary
experience below.

First we describe the implementation. We coded the FDSS method in Matlab
with x̂ and Sr chosen by (2.15) and (2.16) and with Se and Sc chosen by

Se = 3x̂− 2Sbad, Sc =

{
1.5x̂− .5Sbad if fmin(Σr) < fmin(Sbad),
.5x̂+ .5Sbad otherwise,

as motivated by the Nelder–Mead method. Also, for a given Σbad, we chose

Σr = 2x̂− Σbad,

and, accordingly, τr = 1 and γe = 2. Lastly, we chose θr = .01, ν = 10−5, γs = .5,
α(t) = 10−5 min{.5t2, t}, β(t) = 106t2, and, whenever we had a choice of going to
either Step 4 or Step 5 from Step 2, we always went to Step 4. (This still leaves us
with the freedom to choose m, S0, and Σbad.) We run our Matlab code on four test
functions: two functions of Powell [16, 17] (n = 4 and n = 3, respectively), a function
of Rosenbrock [18] (n = 2), and a quadratic function of Zangwill [31] (n = 3). For
each test function, the initial simplex was constructed by taking the starting point
used in the above references and adding to this point the ith unit coordinate vectors in
<n for i = 1, . . . , n. Termination occurs when the current simplex S = {s1, . . . , sn+1}
satisfies (2.17) and (2.18) with ε = 10−3. This yields ∇f(s1) ≈ 0 upon termination.

Next we describe our numerical experience. We found that the best performance
of the implemented method, as measured by the total number of function evaluations,
was achieved by choosing m as high as possible, i.e., m = min{n, l(F (S), F (Sk))}, and
choosing the sets S0 and Σbad as large as possible, i.e., S0 = Sgood and Σbad = Sbad.
(Smaller Σbad reduces the number of function evaluations per check for reflection,
but it increases the number of iterations and total number of function evaluations.)
In other words, the implementation that most closely resembles the Nelder–Mead
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Table 1
Performance of the Nelder–Mead method and a specific implementation of the FDSS method

on four test functions.

Nelder–Mead method FDSS method

Function #func. eval.∗ f -value∗∗ #func. eval.∗ f -value∗∗

Powell1 (n = 4) 236 4.3 · 10−6 230 1.1 · 10−9

Powell2 (n = 3) 95 −3.0000 95 −3.0000

Rosenbrock (n = 2) 149 1.1 · 10−7 149 1.1 · 10−7

Zangwill (n = 3) 86 3.1 · 10−7 86 3.1 · 10−7

∗ This is the number of times that f was evaluated upon termination.
∗∗ This is the value of f at the best vertex upon termination.

method worked the best.1 We also found the criterion (2.19)–(2.20) to yield better
performance than (2.10). The resulting implementation is then effectively the Nelder–
Mead method with two modifications: strict descent is replaced by fortified descent
and the interior angles of the simplex are kept away from zero. Table 1 tabulates
the performance of this implementation, as well as our Matlab implementation of the
Nelder–Mead method (as interpreted from the original paper [15]) using the same
initial simplex and termination criterion on the test functions. As can be seen from
Table 1, the two methods have identical performance on the last three functions. On
the first function, the FDSS method performed slightly better, apparently due to the
interior angles of the simplex being kept away from zero.

As with the Nelder–Mead method, the above implementation of the FDSS method
can suffer from poor performance even for moderately large n. In particular, the
method also exhibited slow convergence on a quadratic example of Wright [28, sec-
tion 7] in which n = 32 and f(x) = x2

1 + · · · + x2
32, and the initial simplex was

constructed by taking (1, 2, . . . , 32)T and adding to this point the ith unit coordinate
vector in <32 for i = 1, . . . , 32. This shows that alternative techniques, such as those
described in [3, 24, 28], are needed to make simplicial search methods effective on
higher dimensional problems.

Acknowledgment. I thank the SIOPT associate editor, Margaret Wright, for
her editorial efforts and, in particular, for her detailed comments and suggestions on
an earlier version of this paper.
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Abstract. The theory of increasing positively homogeneous functions defined on the positive
orthant is applied to the class of decreasing functions. A multiplicative version of the inf-convolution
operation is studied for decreasing functions. Modified penalty functions for some constrained opti-
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1. Introduction. In this paper we study positive decreasing functions defined
on the positive orthant Rn++ and their applications to nonlinear penalization formed
by increasing positively homogeneous (IPH) functions of the first degree. There exists
a natural isomorphism between the ordered space of all positive decreasing functions
and the ordered space of all IPH functions. The theory of abstract convexity (see
[9, 12, 18]) allows us to consider duality in various nonconvex situations. Recently
[16] a duality theory based on abstract convexity with respect to the so-called min-
type functions was developed for IPH functions. The isomorphism between IPH
functions and decreasing functions allows us to apply this theory in the study of
positive decreasing functions. This approach is developed in the first part of the
paper. We also introduce and study a multiplicative analogue of the inf-convolution
operation. This operation exhibits very nice properties in the class of decreasing
functions similar to the usual “sum” convolution, which exhibits very nice properties
in the class of convex functions.

The second part of the paper is devoted to the study of modified penalty functions
for the single constraint problem:

fo(x) −→ inf subject to x ∈ X, f1(x) ≤ 0

with a real-valued positive objective function fo and a real-valued constraint function
f1.

The perturbation function

β̃(y) = inf{fo(x) : x ∈ X, fi(x) ≤ yi, i = 1, . . . ,m}, y = (y1, . . . , ym),
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has useful applications in the study of the nonlinear programming problem:

fo(x) −→ inf subject to x ∈ X, fi(x) ≤ 0, i = 1, . . . ,m

(see for example [3, 5, 6, 8, 10, 11, 14] and the references therein). The perturbation
function is decreasing: y1 ≥ y2 =⇒ β(y1) ≤ β(y2). Consequently, the study of
perturbation functions should be based on a theory of decreasing functions.

It is well known that all constraints fi can be convoluted into a single constraint
(see [19] for a detailed discussion). For example, we can use a convolution by maxi-
mum: maxi fi(x) ≤ 0 ⇐⇒ fi(x) ≤ 0 for all i. So we restrict ourselves to the problem
with a single constraint.

The classical penalty function for an optimization problem with a single constraint
is formed by means of the classical convolution function p(y1, y2) = y1+y2. Sometimes
it is more convenient to consider the convolution by an increasing function p with
some additional properties. This approach has been developed by Rubinov, Glover,
and Yang [17] and Andramonov [1]. In such a case the modified penalty function
L+
p (x, d) has the form

L+
p (x, d) = p(fo(x), dmax(f1(x), 0)).(1.1)

Among the many issues that arise in connection with such a setting, we indicate the
following:

1. how to obtain conditions ensuring the zero duality gap property;
2. how to obtain conditions ensuring the exact penalization;
3. how to find convolution functions p such that an exact penalty parameter for

the function L+
p is substantially smaller than that of the classical function;

4. how to find convolution functions p such that the penalty function L+
p is

smooth at the solution.
The corresponding questions for the classical function (except question 3) have

been discussed, for example, in [2, 5, 7, 11, 14].
The first three questions are addressed in this paper. We consider the penalty

function of the form (1.1) involving only an IPH function p with some natural prop-
erties.

It is demonstrated that for a large class of IPH functions, p, the zero duality gap
property

inf{fo(x) : x ∈ X, f1(x) ≤ 0} = sup
d>0

inf
x∈X
L+
p (x, d)

holds if and only if the perturbation function

β(y) = inf{fo(x) : f1(x) ≤ y}, y ≥ 0,

is lower semicontinuous at the origin.
Thus the zero duality gap property depends only on the problem itself but does not

depend on an outer convolution function from a very large class of such functions. The
proof of this fact is based on the theory of multiplicative inf-convolution developed
in the first part of the paper. In contrast to this result, we show that the exact
penalization essentially depends on an outer convolution function. In particular, it
is proved that as a rule the penalization with respect to the function p+∞(α, y) =
max{α, y} is not exact.



DECREASING FUNCTIONS AND PENALIZATION 291

The convolution with respect to the family of IPH functions

pk(δ, y) = (δk + yk)
1
k (0 < k < +∞)

is considered. We study especially the exact penalization by p 1
2

and demonstrate
that this penalization always can be accomplished with a smaller penalty parameter
than that of the classical convolution function p1. We also obtain an asymptotically
sharp estimate of the ratio d̄ 1

2
/d̄1, where d̄k is the least exact penalization parameter

with respect to pk. This estimate allows us to draw the following conclusion: If the
constrained minimum of the objective function is not very far from the unconstrained
minimum of this function, then the penalization by p 1

2
can be accomplished with a

substantially smaller exact penalty parameter d̄ 1
2

than d̄1. Thus for many problems
the ill-conditionedness of the penalty function with a large penalty parameter can be
overcome using p 1

2
.

We prove that the class of IPH functions is sufficiently large to provide the exact
penalization: an exact modified penalty function can be found for a given problem
under some very mild assumptions.

The paper is structured as follows. The class of IPH functions is studied in section
2 and decreasing functions in section 3. The multiplicative inf-convolution of decreas-
ing functions is introduced and studied in section 4. The modified penalty function is
discussed in section 5. Section 6 is devoted to the perturbation function, and its links
with the modified penalty function and exact penalization are investigated in section
7.

2. Increasing positively homogeneous functions. Let I be a finite set of
indices. We shall use the following notation:

• RI is the space of all vectors (xi)i∈I ;
• xi is the ith coordinate of a vector x ∈ RI ;
• if x, y ∈ RI , then x ≥ y ⇐⇒ xi ≥ yi for all i ∈ I;
• if x, y ∈ RI , then x� y ⇐⇒ xi > yi for all i ∈ I;
• RI+ = {x = (xi) ∈ RI : x ≥ 0};
• RI++ = {x = (xi) ∈ RI : x� 0}.

If I consists of n elements we will also use the notation Rn, Rn+, and Rn++ instead of
RI , RI+, and RI++, respectively.

A function p defined on either the cone RI++ or the cone RI+ and mapping into
R+∞ := R+ ∪ {+∞} is called an IPH function if p is increasing (x ≥ y =⇒ p(x) ≥
p(y)) and positively homogeneous of degree 1 (p(λx) = λp(x) for λ > 0) and if there
is a point y ∈ RI++ such that p(y) < +∞. If p is an IPH function defined on RI+, then
the restriction of p to RI++ is also an IPH function. We shall denote the class of all
IPH functions defined on RI++ by IPH++.

It is known (see [16]) that every function p ∈ IPH++ is continuous on RI++.
The simplest example of an IPH function is a function of the form `(y) = 〈`, y〉,

where ` = (`1, . . . , `m) ∈ RI++ and

〈`, y〉 = min
i∈I

`iyi.(2.1)

The main tool in the study of IPH functions will be the so-called support set. In
particular, we will use support sets of IPH functions defined on RI++.

Definition 2.1 (see [16]). Let p ∈ IPH++. The set

supp(p) = {` ∈ RI++ : 〈`, y〉 ≤ p(y) for all y ∈ RI++}(2.2)
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is called the support set of the function p.
For IPH functions defined on the cone RI+ it is possible to define a support set

in different ways. One of them has been studied in [15]. However, it will be more
convenient to use the following definition in this paper.

Definition 2.2. Let p̄ be an IPH function defined on RI+ and let p be the
restriction of the function p̄ to the cone RI++. Then the support set of the function p,
defined by (2.2), is called the support set of the function p̄.

We shall study in this section only support sets for IPH functions defined on
RI++. The following result shows that each IPH function can be reconstructed from
its support set.

Theorem 2.1 (see [16]). Let p ∈ IPH++. Then p(y) = max{〈`, y〉 : ` ∈ supp(p)}
for all y ∈ RI++.

A subset U of RI++ is called normal if `1 ∈ U, `2 ∈ RI++, and `1 ≥ `2 imply
`2 ∈ U . A subset U of RI++ is called closed if it is closed in the topological space RI++.

Theorem 2.2 (see [16]). Let U ⊂ RI++. Then U = supp(p) for some p ∈ IPH++

if and only if U is normal and closed.
For a, x ∈ RI++, U ⊂ RI++ we shall require the following notational convention:

a · x = (aixi)i∈I , a · U = {a · u : u ∈ U}, a

x
=

(
ai
xi

)
i∈I

.(2.3)

If x ∈ RI++, then

1

x
≡ x−1 =

(
1

xi

)
i∈I

.

The following result provides an explicit description of the support set.
Theorem 2.3 (see [16]). Let p be an IPH function defined on the cone RI++.

Then

supp(p) = {` ∈ RI++ : p(`−1) ≥ 1}.

We now describe some properties of support sets. It follows immediately from
the definition that

p1 ≤ p2 ⇐⇒ supp(p1) ⊂ supp(p2) for p1, p2 ∈ IPH++.

Proposition 2.1. Let p(x) = infα∈A pα(x), where (pα)α∈A is a family of IPH
functions. Then

supp(p) = ∩α∈A supp(pα).

Proof. Since the sets supp(pα) are normal and closed it follows that their intersec-
tion is also normal and closed. Theorem 2.2 shows that there exists an IPH function
p̃ such that supp(p̃) = ∩α∈A supp(pα). Since p̃ ≤ pα for all α ∈ A it follows that
p̃ ≤ infα∈A pα = p. The function p(x) = infα∈A pα(x) is IPH. Since p ≤ pα for all α,
it follows that supp(p) ⊂ ∩α∈A supp(pα) = supp(p̃), so p ≤ p̃.

Let a = (ai)i∈I ∈ RI++ and p ∈ IPH++. We will require in what follows the
function pa, where pa(y) = p(a · y) and a · y is defined by (2.3).

Proposition 2.2. supp(pa) = a · supp(p) ≡ {a · ` : ` ∈ supp(p)}.
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Proof. Let ` ∈ supp(pa), y = (yi)i∈I ∈ RI++, and z = (zi)i∈I = a · y. Then

p(z) = p(a · y) ≥ 〈`, y〉 = min
i∈I

`iyi = min
i∈I

`i
ai
zi.

Thus the vector `′ = l/a belongs to supp(p). Since ` = a · `′ it follows that ` ∈
a · supp(p).

Lemma 2.1. If U is a normal set and a ≥ a′ � 0, then a · U ⊃ a′ · U.
Proof. Let ` ∈ a′ ·U . Then there exists u ∈ U such that ` = a′ ·u. Thus (`/a′) ∈ U.

Since U is normal it follows that (`/a) ∈ U , so ` ∈ a · U.
We now give some examples of IPH functions and support sets.
Example 2.1. Let p(y) = maxi∈I aiyi with a = (ai)i∈I and ai > 0. Clearly

p ∈ IPH++. Applying Theorem 2.3 we can easily conclude that the support set
supp(p) coincides with the following set Va:

Va = ∪i∈I{` = (`1, . . . , `m) ∈ RI++ : `i ≤ ai} =

{
` ∈ RI++ : min

i∈I
`i
ai
≤ 1

}
.(2.4)

Assume, more generally, that ai ≥ 0 for all i ∈ I. Let Ia = {i ∈ I : ai > 0}. It is easy
to check that

Va =

{
` ∈ RI++ : min

i∈Ia
`i
ai
≤ 1

}
.

Example 2.2. Let 0 < k < +∞ and

pk(x) =

(∑
i∈I

xki

) 1
k

for all x ∈ RI++.

Clearly pk ∈ IPH++. Applying Theorem 2.3 we obtain the following:

supp(pk) =

{
` ∈ RI++ :

∑
i∈I

1

`i
k
≥ 1

}
.(2.5)

If k1 ≥ k2, then pk1
≥ pk2

; thus supp(pk1
) ⊃ supp(pk2

). For the function p∞(x) :=
maxi∈I xi we have p∞(x) = infk>0 pk(x). From Proposition 2.1 it follows that

supp(p∞) =
⋂
k>0

supp(pk).

Thus, from (2.4) and (2.5),{
` ∈ RI++ : min

i∈I
`i ≤ 1

}
=

⋂
0<k<+∞

{
` ∈ RI++ :

∑
i∈I

1

`i
k
≥ 1

}
.

Clearly this equality can also be verified directly.

3. Decreasing functions. Let I = {1, . . . ,m}, I ′ = {0} ∪ I and let U be a
normal closed subset of RI′++. Consider the function

gU (y) = sup{α : (α, y) ∈ U}, y ∈ RI++.(3.1)
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This function maps RI++ into R+∞ = R+ ∪ {+∞}. Since U is closed it follows that
gU (y) = max{α : (α, y) ∈ U} whenever gU (y) < +∞. By normality of the set U we
obtain

U = {(α, y) ∈ RI′++ : α ≤ gU (y), y ∈ dom gU},(3.2)

where dom f = {y : f(y) < +∞}. Let hyp gU = {(α, y) ∈ R × RI++ : α ≤ gU (y), y ∈
dom gU} be the hypograph of the function gU . Then U = (hyp gU ) ∩RI′++, so we can
consider U as the positive part of the hypograph hyp gU .

Proposition 3.1. For a closed normal subset U of RI′++ the function gU is
decreasing (that is, y1 ≥ y2 =⇒ gU (y1) ≤ gU (y2)) and upper semicontinuous.

Proof. Let y1 ≥ y2 and (α, y1) ∈ U . Since U is normal and (α, y1) ≥ (α, y2) it
follows that (α, y2) ∈ U . Therefore, gU (y1) ≤ gU (y2). Thus gU is decreasing. Let
yk → y. First assume that there exists a sequence ks such that gU (yks) = +∞. Thus
(α, yks) ∈ U for all α > 0 and therefore (α, y) ∈ U for all α > 0. So gU (y) = +∞ ≥
lim supk gU (yk). Assume now that gU (yk) < +∞ for all k. Then (gU (yk), yk) ∈ U . If
λ := lim supk gU (yk) < +∞, then (λ, y) ∈ U and therefore λ ≤ gU (y). If λ = +∞
then it easily follows that gU (y) = +∞. Thus lim supk gU (yk) ≤ gU (y) in both
cases.

Proposition 3.2. Let g ≥ 0 be a decreasing and upper semicontinuous function
and U = {(α, y) : y � 0, 0 < α ≤ g(y), y ∈ dom g}. Then U is a normal closed set
and g = gU .

Proof. We first show that U is normal. Let (α1, y1) ∈ U, α2 > 0, y2 � 0, and
(α1, y1) ≥ (α2, y2). Since g is decreasing we have α2 ≤ α1 ≤ g(y1) ≤ g(y2). Thus
(α2, y2) ∈ U . Since g is upper semicontinuous it follows that U is closed. We also
have

gU (y) = sup{α : (α, y) ∈ U} = sup{α : α ≤ g(y)} = g(y) (y ∈ dom g).

Recall that I ′ = {0} ∪ I. Consider an IPH function p defined on the cone RI′++.
Let U = supp(p) be the support set of the function p; then the set U generates the
function gU by (3.1).

Definition 3.1. Let p ∈ IPH++ and U = supp(p). Then the function gU
defined by (3.1) is called the associated function to p.

We shall denote the associated function to p by hp.
Example 3.1. Let

p(δ, y) = max{αδ, a1y1, . . . , amym}

with α > 0, a = (a1, . . . , am) ∈ RI+. Then (see Example 2.1) U = supp(p) coincides
with the set V(α,a) defined as follows:

V(α,a) =

{
` ∈ RI′++ : min

(
`0
α
,min
i∈Ia

`i
ai

)
≤ 1

}
,

where Ia = {i : ai > 0}. If y ∈ RI++ is a vector such that yi ≤ ai for some i, then
(δ, y) ∈ U for all δ > 0 so hp(y) = gU (y) = +∞. Assume now that y � a. Then
(δ, y) ∈ V(α,a) if and only if δ ≤ ao, so hp(y) = ao. Thus

hp(y) =

{
α if y � a,

+∞ otherwise.
(3.3)
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Assume now that α = 0. Again applying Example 2.1, it is easy to check that hp is
defined by (3.3) with α = 0. Thus this function coincides with the indicator function
δZ of the set Z = {y : y � a}.

Example 3.2. Let 0 < k < +∞ and pk(δ, y) = (δk +
∑
i∈I y

k
i )

1
k . Let U =

supp(p). Furthermore, let

u =

(
1−

∑
i∈I

1

yki

) 1
k

.

Then (see Example 2.2) we have

U =

{
(α, y) ∈ RI′++ :

1

αk
+
∑
i∈I

1

yki
≥ 1

}
.

So

hp(y) = sup

{
α :

1

αk
≥ 1−

∑
i∈I

1

yki

}

=


1

u
if 1 >

∑
i∈I

1

yki
,

+∞ otherwise.

Let p be an IPH function defined on RI′++. We now show that

sup
y�0

p(1, y) = sup
y�0

hp(y).

We need the following simple assertion.
Lemma 3.1. Let ψ(λ) be a continuous decreasing function defined on the segment

(0,+∞) and let limλ→+0 ψ(λ) = M̄ > 0. Let χb(λ) = min{ψ(λ), bλ} for b > 0. Then
1. for all b > 0 the function χb attains its maximum at a unique point λb > 0;
2. λb is a solution of the equation ψ(λ) = bλ;
3. λb → 0 as b→ +∞;
4. χb(λb) = ψ(λb) = bλb → M̄ as b→ +0.

Proof. The proof is straightforward.
Proposition 3.3. Let p be an IPH function defined on RI′++. Then

sup
y�0

p(1, y) = sup
y�0

hp(y).

Proof. First we shall verify that

p(1, y) = sup
z�0

min{hp(z), 〈z, y〉} for all y ∈ RI++.(3.4)

Indeed it follows, from the definition of the associated function hp, that supp(p) =
{(δ, z) : z � 0, 0 < δ ≤ hp(z)}. So for y � 0 we have

p(1, y) = sup{〈(δ, z), (1, y)〉 : (δ, z) ∈ supp(p)} = sup
z�0,δ≤hp(z)

min(δ, 〈z, y〉).
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Thus (3.4) holds. It follows that for an arbitrary y � 0 and ε > 0 there exists a
vector z � 0 such that

p(1, y)− ε ≤ min(hp(z), 〈z, y〉) ≤ hp(z) ≤ sup
u�0

hp(u).

Thus

sup
y�0

p(1, y) ≤ sup
u�0

hp(u).

We now verify the reverse inequality.
Fix a vector z � 0 and consider the ray {λz : λ > 0}. Let ψ(λ) ≡ ψz(λ) = hp(λz).

The function ψ is decreasing and

lim
λ→+0

ψ(λ) = lim
y→0

hp(y) = sup
y�0

hp(y).(3.5)

For y � 0 consider the function χb(λ) = min{ψ(λ), byλ}, where by = 〈z, y〉. Let λy be
a solution of the equation ψ(λ) = byλ. Lemma 3.1 shows that maxλ>0 min{ψ(λ), byλ}
is attained at the point λy and equals ψ(λy). It follows from (3.4) that

p(1, y) ≥ max
λ>0

min(ψ(λ), byλ) = ψ(λy).

Applying (3.5) and Lemma 3.1 we have

sup
y�0

p(1, y) ≥ sup
y�0

ψ(λy) = lim
λ→+0

ψ(λ) = lim
λ→+0

hp(λz) = sup
u�0

hp(u).

We now show that the associated function hp can be expressed in terms of the
initial function p.

Proposition 3.4. Assume that p is an IPH function defined on RI′++. Let
z ∈ RI++. Then the following hold:

1. If limτ→+0 p(τ, z
−1) ≥ 1, then hp(z) = +∞.

2. If limτ→+∞ p(τ, z−1) < 1, then hp(z) = 0.
3. If limτ→+0 p(τ, z

−1) < 1 ≤ limτ→+∞ p(τ, z−1), then

hp(z) =
1

b( 1
z )
,

where b(z) is the smallest solution of the equation p(b, z) = 1.
Proof. It follows from Theorem 2.3 that

supp(p) = {(α, y) ∈ RI′++ : p(α−1, y−1) ≥ 1}.
Let z ∈ RI++ and y = z−1. Then

hp(z) = hp(y
−1) = sup{α : (α, y−1) ∈ supp(p)}

= sup{α : p(α−1, y) ≥ 1}
= sup{τ−1 : p(τ, y) ≥ 1}
=

1

inf{τ : p(τ, y) ≥ 1} .

Let ψy(τ) = p(τ, y). Thus

hp(z) =
1

inf{τ : ψy(τ) ≥ 1} .(3.6)
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It follows, from the properties of the function p, that ψy is an increasing continuous
function on R++. Let

γ− = lim
τ→+0

ψy(τ) and γ+ = lim
τ→+∞ψ(τ).

If γ− ≥ 1, then inf{τ : ψy(τ) ≥ 1} = 0; if γ+ < 1, then the set {τ : ψy(τ) ≥ 1}
is empty and so the infimum of this set is defined to be +∞. If γ− < 1 ≤ γ+, then
inf{τ : ψy(τ) ≥ 1} is equal to the smallest root of the equation ψy(τ) = 1. The
desired result follows from (3.6).

Proposition 3.4 allows us to describe some properties of IPH functions in terms
of associated functions.

Let p be an IPH function defined on the cone RI′+ . The support set of the function

p coincides (see Definition 2.2) with the support set of its restriction to RI′++. We will
denote this restriction by the same letter p. The following propositions will be useful
in what follows. We give a sketch of their proofs.

Proposition 3.5. Let p be a continuous IPH function defined on the cone RI′+ .
Then limminizi→+∞ hp(z) = 1 if and only if p(1, 0, . . . , 0) = 1.

Proof. Let limminizi→+∞ hp(z) = 1. Since 0 < hp(z) < +∞, it follows from
Proposition 3.4 that hp(z) = (b(z−1))−1, where p(b(z−1), z−1) = 1. Since p is contin-
uous we can conclude that

p(1, 0) = lim
minizi→+∞

p(b(z−1), z−1) = 1.(3.7)

Now assume that p(1, 0) = 1. Let t(z) = {α : p(α, z) = 1}. Since p is positively
homogeneous it follows from (3.7) that t(0) = {1}. By continuity of p we have

(α→ α′, z → 0, α ∈ t(z)) =⇒ α′ = 1.

Since b(z−1) ∈ t(z−1) it follows that hp(z) = (b(z−1))−1 → 1 as minizi → +∞.
Let h be a function defined on RI++ and L = lim‖z‖→+∞ h(1/z). We can present

this limit in the following form:

L = lim
maxi zi→+∞h(1/z) = lim

mini yi→+∞
h(y).(3.8)

Proposition 3.6. Let p be an IPH function defined on RI′++ with I ′ = {0} ∪ I
and lim‖u‖→+∞ p(1, u) = +∞. Then limmini zi→0 hp(z) = +∞.

Proof. First we show that

(p(α, y) = 1, ‖y‖ → +∞) =⇒ α→ 0.(3.9)

Indeed, if α ≥ 1 then p(α, y) ≥ p(1, y) → +∞ (as ‖y‖ → +∞), which is a contradic-
tion. Thus α < 1. Since p is IPH it follows from p(α, y) = 1 that p(1, (y/α)) = 1/α.
Since p is an increasing function we can conclude that p(α, y) = 1 implies

lim
‖y‖→+∞

p
(

1,
y

α

)
= lim
‖y‖→+∞

1

α
=

1

α′

with α′ ≤ 1. If α′ > 0, then ‖y/α‖ → +∞ and therefore p(1, y/α) = +∞, which is
again a contradiction. Thus α′ = 0. Since

hp

(
1

y

)
= (b(y))−1,
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where p(b(y), y) = 1, it follows from (3.9) and (3.8) that

lim
mini zi→0

hp(z) = lim
‖y‖→+∞

hp

(
1

y

)
= lim
‖y‖→∞

(b(y))−1 = +∞.

4. Multiplicative inf-convolution of decreasing functions.
Definition 4.1. Let h and l be functions defined on RI++ and mapping into

(0,+∞]. The function

(h � l)(z) = inf
y�0

h(y)l

(
z

y

)
, z ∈ RI++,(4.1)

is called the multiplicative inf-convolution of the functions h and l.
Since

inf
y�0

h(y)l

(
z

y

)
= inf
u�0

h
( z
u

)
l(u),

it follows that multiplicative inf-convolution is a commutative operation: h � l = l �h.
If l is a decreasing function, then, applying (4.1), it is easy to check that the

multiplicative inf-convolution, h � l, of l and an arbitrary positive function h is also
decreasing. Assume now that l is an upper semicontinuous function. Then for an
arbitrary function h the function z → h(y)l(z/y) is upper semicontinuous for all
y � 0 and therefore h � l is also upper semicontinuous. In particular, the following
assertion holds.

Proposition 4.1. If l is a positive decreasing upper semicontinuous function,
then h�l is decreasing and upper semicontinuous for any arbitrary positive function h.

Example 4.1. Let α be a nonnegative number and a = (a1, . . . , am) be a positive
vector. Let p(δ, y) = max{αδ, a1y1, . . . , amym}. Then (see Example 3.1) hp(y) = α if
y � a and hp(y) = +∞ otherwise. Let l be a continuous decreasing function defined
on RI++. We have

(l � hp)(z) = inf
y�0

l(y)hp

(
z

y

)
= inf
u�0

l
( z
u

)
hp(u) = inf

u�a l
( z
u

)
α.

Since l is continuous and decreasing we conclude that infu>a l(
z
u ) = l( za ). Thus

(l � hp)(z) = αl
(z
a

)
.

In particular, if α = 1 and a = (1, . . . , 1), then l � hp = l for all continuous decreasing
functions l.

We now describe the positive part of the hypograph of the multiplicative inf-
convolution of decreasing functions. It is convenient to describe this in terms of
the support set of the corresponding IPH function.

Proposition 4.2. Let l be a finite decreasing positive function defined on RI++

and p be an IPH function defined on RI′++ with I ′ = {0} ∪ I. Let hp be the associated
function for p. Then⋂

y�0

(l(y), y) · supp(p) = {(δ, z) : 0 < δ ≤ (l � hp)(z), z � 0},(4.2)

where the product a · U is defined by (2.3).



DECREASING FUNCTIONS AND PENALIZATION 299

Proof. Let us prove that for all y � 0:

(l(y), y) · supp(p) =

{
(δ, z) : δ ≤ l(y)hp

(
z

y

)}
.(4.3)

Indeed, since l(y) > 0 it follows from the definition of the associated function that

(l(y), y) · supp(p) = {(l(y) · γ, y · u) : (γ, u) ∈ supp(p)}
= {(l(y) · γ, y · u) : γ ≤ hp(u)}

=

{
(δ, z) :

δ

l(y)
≤ hp

(
z

y

)}

=

{
(δ, z) : δ ≤ l(y)hp

(
z

y

)}
.

Let V be the set on the left-hand side in (4.2). Then

(δ, z) ∈ V ⇐⇒ (δ, z) ∈ (l(y), y) · supp(p) (∀y � 0)

⇐⇒ δ ≤ l(y)hp

(
z

y

)
(∀y � 0)

⇐⇒ δ ≤ inf
y�0

l(y)hp

(
z

y

)
.

So V = {(δ, z) : δ ≤ (l � hp)(z), z � 0}.
Remark 4.1. Let U and V be closed normal subsets of RI′++ and gU = l. The

set {(l(y), y) : y � 0} represents the upper boundary of the normal set U . We can
consider the set defined by (4.2) with V = supp(p) as a “product” of the sets U and V .
Since the set V can be considered as the positive part of the hypograph hyphp and,
similarly, U can be considered the positive part of hyp l, it follows that the positive
part of the hypograph of the multiplicative inf-convolution of hp and l coincides with
the “product” of the positive parts of the hypographs hyphp and hyp l.

Let h = l � hp be a multiplicative inf-convolution, where l and hp are as in
Proposition 4.2. It follows from Proposition 4.1 that h is a decreasing and upper
semicontinuous function and therefore there exists an IPH function r such that h = hr.

Proposition 4.3. Let l be a decreasing positive function defined on RI++ and let

p, r : RI′++ → R+∞ be IPH functions. Then hr = l � hp if and only if

supp(r) =
⋂
y�0

(l(y), y) · supp(p).

Proof. This follows directly from Proposition 4.2.
Lemma 4.1. Let h be a finite decreasing function defined on RI++. Then the

following limits exist:

lim
z→0

h(z) = sup
z�0

h(z), lim
mini zi→+∞

h(z) = inf
z�0

h(z).

Proof. The proof is straightforward.
We now present the main result of this section.
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Theorem 4.1. Let l and h be decreasing functions defined on RI++ such that
1. 0 < γ := limmini zi→+∞ l(z),M := limy→0 l(y) < +∞;
2. domh = {y : h(y) < +∞} 6= ∅ and H := limmini zi→+∞ h(z) > 0;
3. lim infmin zi→0 h(z) > M

γ H.
Then

lim
z→0

(h � l)(z) = lim
z→0

l(z)× lim
mini zi→+∞

h(z) = MH.(4.4)

Proof. First we show that (h � l)(z) ≤MH for all z � 0. Let e = (1, . . . , 1). For
the functions u(λ) = l(λe) and vz(λ) = h( 1

λz) with z � 0, we have

u(λ) ≤ sup
λ′>0

u(λ) = lim
λ′→0

l(λ′e) = lim
y→0

l(y) = M,

inf
λ>0

vz(λ) = inf
µ>0

h(µz) = lim
µ→+∞h(µz) = lim

mini yi→+∞
h(y) = H.

So

(h � l)(z) = inf
y�0

l(y)h

(
z

y

)
≤ inf
λ>0

u(λ)vz(λ) ≤M inf
λ>0

vz(λ) = MH.(4.5)

Thus

lim
z→+0

(h � l)(z) ≤MH.(4.6)

We now prove the reverse inequality.
It follows from condition 3 that there exists numbers µ > 0 and ε > 0 such that

h(u) ≥ (1 + ε)(1/γ)MH whenever minui ≤ µ. Thus, if mini(z/y)i ≤ µ, then

l(y)h

(
z

y

)
≥ γh

(
z

y

)
≥ (1 + ε)MH.

Thus infy�0, min(z/y)i≤µ l(y)h(z/y) > MH. Applying (4.5) we can conclude that

MH ≥ (h � l)(z) = inf
y�0

l(y)h

(
z

y

)

= min

(
inf

y�0, min(z/y)i≤µ
l(y)h

(
z

y

)
, inf
y�0,(z/y)�µe

l(y)h

(
z

y

))

= inf
y�0,(z/y)�µe

l(y)h

(
z

y

)
.

Let z ∈ RI++ and zµ = (1/µ)z. We have

(h � l)(z) = inf
y�0, z/y�e

l(y)h

(
z

y

)
= inf

0�y�zµ
l(y)h

(
z

y

)
.(4.7)

Since l is decreasing we have l(y) ≥ l(zµ) for 0� y � zµ. So

(h � l)(z) ≥ inf
0�y�zµ

l(zµ)h

(
z

y

)
= l(zµ) inf

u�µe
h(u).
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It follows from Lemma 4.1 that

inf
u≥µe

h(u) = lim
mini ui→+∞

h(u) = H,

so (h � l)(z) ≥ Hl(zµ). Thus

lim
z→0

(h � l)(z) ≥ H lim
z→0

l(zµ) = H lim
y→0

l(y) = HM.(4.8)

It follows from (4.5) and (4.8) that (4.4) holds.
Remark 4.2. Condition 3 of the theorem holds if

lim infmini zi→0 h(z)

limmini zi→+∞ h(z)
>

limz→0 l(z)

limmini zi→+∞ l(z)
.

It is clear that this inequality holds if limmini zi→0 h(z) = +∞.

5. The modified penalty function. We now study the following constrained
optimization problem:

(P ) : fo(x) −→ inf subject to x ∈ X, f1(x) ≤ 0,(5.1)

where X ⊂ Rn and fi : X → R, i = 0, 1.
Remark 5.1. The more general problem

fo(x) −→ inf subject to x ∈ X, gi(x) ≤ 0, i ∈ I,(5.2)

can be represented in the form of (5.1) with f1(x) = supi∈I gi(x).
We will require the following assumption.
Assumption 5.1. infx∈X fo(x) := γ > 0.
Let Xo be the set of all feasible solutions for (P ):

Xo = {x ∈ X : f1(x) ≤ 0}.(5.3)

The set Xo can also be represented in the following form:

Xo = {x ∈ X : f+
1 (x) = 0},

where f+
1 (x) = max{f1(x), 0}. Thus the problem (P ) is equivalent to the following

problem:

(P+) : fo(x) −→ inf subject to f+
1 (x) = 0.(5.4)

It follows from Assumption 5.1 that f+
o (x) := max{fo(x), 0} = fo(x) for all x ∈ X.

Let

F+(x, do, d) = (dofo(x), df+
1 (x)), x ∈ X, do, d > 0.

We now consider the function p1 defined on R2
+ by p1(yo, y1) = yo + y1. Clearly p1 is

an IPH function. The function p1 generates the classical penalty function L+ for the
problem (P ):

L+(x, do, d) = dofo(x) + df+
1 (x) ≡ p1(F+(x, do, d)), x ∈ X, do, d > 0.

Suppose now that we have an arbitrary continuous IPH function p defined on R2
+.
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Definition 5.1. The function L+
p

L+
p (x, do, d) = p(F+(x, do, d)), x ∈ X, do > 0, d > 0,

is called the modified penalty function for the problem (P ), corresponding to the func-
tion p. Let

qp(do, d) = inf
x∈X

p(dofo(x), df+
1 (x)) ≡ inf

x∈X
L+
p (x, do, d), do > 0, d > 0.(5.5)

Definition 5.2. The problem

(Dp) : qp(1, d) −→ sup subject to d > 0,

where qp is defined by (5.5), is called the dual problem to the problem (P ), correspond-
ing to the function p.

We will denote by MP the value of the initial problem (P ) and by MDp the value
of the dual problem:

MP = inf{fo(x) : x ∈ Xo}, MDp = sup{qp(1, d) : d > 0}.

Note that the function d 7→ qp(1, d) is increasing and MDp = limd→+∞ qp(1, d).
We can express the function qp(do, d) defined by (5.5) in the following form:

qp(do, d) = inf
x∈X
L+
p (x, do, d) = min

{
inf
x∈Xo

L+
p (x, do, d), inf

x6∈Xo
L+
p (x, do, d)

}
.(5.6)

Let

X1 = {x ∈ X : f1(x) > 0} = {x ∈ X : x 6∈ Xo}(5.7)

and

rp(do, d) = inf
x∈X1

p(dofo(x), df1(x)).(5.8)

Proposition 5.1. If Assumption 5.1 holds, then

qp(do, d) = min

{
inf
x∈Xo

L+
p (x, do, d), rp(do, d)

}
.

Proof. This follows directly from (5.6) and (5.8).
We now study the function rp defined by (5.8) on R2

++. Since p is an IPH function
it follows that rp is also an IPH function. Recall (see Definition 2.2) that the support
set of the function p coincides with the support set of its restriction to the cone R2

++.
We will denote this restriction by the same letter p. We now describe the support set
supp(rp) of rp in terms of the set supp(p).

Proposition 5.2. Let p be an IPH function and let fo and f1 be, respectively,
the objective and constraint functions of the problem (P ). Furthermore, let the set
X1 and the function rp be defined by (5.7) and (5.8), respectively. Then the following
holds:

supp(rp) =
⋂
x∈X1

(fo(xo), f1(x)) · supp(p),(5.9)
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where the product a · U is defined by (2.3).
Proof. We have for do, d > 0:

rp(do, d) = inf
x∈X1

p(dofo(x), df1(x)) = inf
x∈X1

qxp (do, d),

where

qxp (do, d) = p((fo(x), f1(x)) · (do, d)) = p((fo(x), f+
1 (x)) · (do, d)).

It follows from Propositions 2.1 and 2.2 that

supp(rp) =
⋂
x∈X1

supp(qxp ) =
⋂
x∈X1

(fo(x), f1(x)) · supp(p).

6. Perturbation functions. We now study the perturbation function (see, for
example, [4, 5, 6, 14, 13] and references therein) for the problem (P ) defined by (5.1).

Definition 6.1. The function β defined on R+ = {y ∈ R : y ≥ 0} by

β(y) = inf{fo(x) : x ∈ X, f1(x) ≤ y}(6.1)

is called the perturbation function of the problem (P ).
The value β(0) of the perturbation function at the origin coincides with the value

MP of the problem (P ). We also have

inf
y>0

β(y) = inf
y>0

inf
x∈X, f1(x)≤y

fo(x) = inf
x∈X

fo(x).

Since infx∈X fo(x) = γ > 0 (by Assumption 5.1) we have infy>0 β(y) = γ > 0.
It follows directly from the definition that the perturbation function is decreasing:
y1 ≥ y2 =⇒ β(y1) ≤ β(y2).

Assumption 6.1. LetXo andX1 be the sets defined by (5.3) and (5.7), respectively.
There exists a sequence xk ∈ X1 such that f1(xk) → 0 and fo(xk) → MP , where
MP = infx∈Xo fo(x) is the value of the problem (5.1).

If Assumption 6.1 holds, then for each y > 0 we have infx∈X1,f1(x)≤y fo(x) ≤MP ,
so

β(y) = inf
x∈X1,f1(x)≤y

fo(x), y > 0.(6.2)

Proposition 6.1. Let p be an IPH function defined on R2
++ and let U = supp(p).

Let Assumptions 5.1 and 6.1 hold. Then, for the function rp defined by (5.8), we have

supp(rp) =
⋂
y>0

(β(y), y) · U.

Proof. Let

A =
⋂
x∈X1

(fo(x), f1(x)) · U and B =
⋂
y>0

(β(y), y) · U.

It follows from Proposition 5.2 that supp(rp) = A. We now check that B ⊂ A. Let
x ∈ X1 and y = f1(x). Then (see (6.2))

β(y) = inf
x′∈X1,f1(x′)≤y

fo(x
′) ≤ fo(x)
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and therefore (fo(x), f1(x)) ≥ (β(y), y). It follows from Lemma 2.1 that (fo(x), f1(x))·
U ⊃ (β(y), y) · U so

A =
⋂
x∈X1

(fo(x), f1(x)) · U ⊃
⋂

y=f1(x), x∈X1

(β(y), y) · U ⊃ B.

We now prove that A ⊂ B. Let y > 0. It follows from (6.2) that for each sufficiently
small ε′ > 0 there exists a vector x ∈ X1 such that f1(x) ≤ y and fo(x)− ε′ ≤ β(y).
It follows from Lemma 2.1 that (β(y), y) · U ⊃ (fo(x)− ε′, f1(x)) · U . Therefore,

B =
⋂
y>0

(β(y), y) · U

⊃
⋂
x∈X1

(fo(x)− ε′, f1(x)) · U.

Since ε′ > 0 is an arbitrary number it follows that B ⊃ ⋂
x∈X1

(fo(x), f1(x)) ·
U = A.

Corollary 6.1. hrp = β � hp.
Proof. This follows immediately from Proposition 4.3.
Remark 6.1. The perturbation function β does not depend on the IPH function

p, and the associated function hp does not depend on the problem (P ) (that is, on
the functions fo and f1).

Let M = limy→+0 β(y) = supy>0 β(y). Since Xo ≡ {x ∈ X : f1(x) ≤ 0} ⊂ {x ∈
X : f1(x) ≤ y}, it follows that β(y) ≤ infx∈Xo fo(x) = MP ; therefore, M ≤ MP =
β(0). Hence, the equality

MP = lim
y→+0

β(y)(6.3)

holds if and only if β is lower semicontinuous at the point zero.
Conditions ensuring lower semicontinuity of the perturbation function are well

known (see, for example, [12]). A simple sufficient condition has the following form:
if fo is continuous and there exists y > 0 such that the set Xy = {x ∈ X : f1(x) ≤ y}
is compact, then β is lower semicontinuous and (6.3) holds.

We shall assume below that both Assumptions 5.1 and 6.1 hold.
Theorem 6.1. Let hp be the associated function for p and assume

lim
z→+∞hp(z) = 1 and lim

z→+0
hp(z) = +∞.

Then

sup
z>0

hrp(z) = sup
d>0

rp(1, d) = inf
x∈Xo

fo(x)(6.4)

if and only if the perturbation function β is lower semicontinuous at the point zero.
Proof. This follows directly from Corollary 6.1, Theorem 4.1, Remark 4.2, and

Proposition 3.3.
The conditions in Theorem 6.1 are given in terms of the associated function hp

of an IPH function p. Applying Propositions 3.5 and 3.6 we can present conditions
guaranteeing the validity of (6.4) in terms of the function p itself.

Theorem 6.2. Let p be a continuous IPH function defined on the cone R2
+ with

p(1, 0) = 1 and limu→+∞ p(1, u) = +∞. Then (6.4) holds if and only if the function
β is lower semicontinuous at the point zero.
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Let us now consider the dual problem (see Definition 5.2) to the problem (P ),
where MDp is the value of the dual problem.

Lemma 6.1. Let p be an IPH function defined on R2
+ with p(1, 0) = 1. Then

MDp ≤MP and, for all x ∈ Xo and d > 0,

L+
p (x, 1, d) ≡ p(fo(x), df+

1 (x)) = fo(x).

Proof. Let d > 0 and x ∈ Xo. Since f+
1 (x) = 0 and p is positively homogeneous

with p(1, 0) = 1 we have

fo(x) = p(fo(x), 0) = p(fo(x), df+
1 (x)) = L+

p (x, 1, d).

Also

L+
p (x, 1, d) ≥ inf

x′∈X
p(fo(x

′), d1f
+
1 (x′)) = qp(1, d).

Thus MP = infx∈Xo fo(x) ≥ supd>0 qp(1, d) = MDp .

Lemma 6.2. Let p be a continuous IPH function defined on the cone R2
+ with

p(1, 0) = 1 and limu→+∞ p(1, u) = +∞. Then MDp = M , where M = limy→+0 β(y).

Proof. By Proposition 5.1 and Lemma 6.1 we have

qp(1, d) = min

{
inf
x∈Xo

L+
p (x, 1, d), rp(1, d)

}
= min{MP , rp(1, d)}.(6.5)

Propositions 3.5 and 3.6 show that

lim
z→+∞hrp(z) = 1 and lim

z→+0
hrp(z) = +∞.(6.6)

Applying Corollary 6.1 and Theorem 4.1 we can conclude that

lim
d→+0

hrp(d) = lim
y→+0

β(y) = M.

It follows from Proposition 3.3 that

sup
d>0

rp(1, d) = lim
d→+0

hrp(d) = M.(6.7)

Since MP ≥M we have, by applying (6.5) and (6.7), that

MDp = lim
d→+∞

qp(1, d) = lim
d→+∞

min{MP , rp(1, d)} = min{MP ,M} = M.

Remark 6.2. Let limy→+0 β(y) = MP . Then qp(1, d) = rp(1, d) for all d > 0.
Indeed, since the function d 7→ rp(1, d) is increasing it follows from (6.7) that rp(1, d) ≤
MP for all d > 0. Applying (6.5) we can conclude that qp(1, d) = rp(1, d) for all d > 0.

Theorem 6.3. Let p be a continuous IPH function defined on the cone R2
+

with p(1, 0) = 1 and limu→+∞ p(1, u) = +∞. Then MDp = MP if and only if the
perturbation function β is lower semicontinuous at the point zero.

Proof. This follows directly from Lemma 6.2.
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7. Exact penalty functions. Consider the optimization problem (P ) defined
by (5.1). In this section we will discuss the existence of an (exact) penalty parameter,
that is, a number d > 0 such that MDp = qp(1, d), for a given IPH function p.

If Assumptions 5.1 and 6.1 hold and the perturbation function β is lower semi-
continuous at the origin, then (see Remark 6.2) qp(1, d) = rp(1, d), where rp is defined
by (5.8). It has been shown (see Corollary 6.1) that the associated-to-rp function hrp
can be presented as the multiplicative inf-convolution of the perturbation function
β and the function hp: hrp = β � hp. We will use this formula in the study of the
problem under consideration.

We need the following assumption.
Assumption 7.1. The perturbation function β(y) is lower semicontinuous at the

origin.
If Assumption 7.1 holds, then (see Theorem 6.3) MP = MDp for each continuous

IPH function p defined on R2
+ with properties p(1, 0) = 1 and limy→+∞ p(1, y) = +∞.

Proposition 7.1. Let Assumptions 5.1, 6.1, and 7.1 hold. Let p be a continuous
IPH function defined on R2

+ with p(1, 0) = 1 and limy→+∞ p(1, y) = +∞. Then
rp(1, d̄) = MP if and only if the associated function hrp is constant on the segment
[0,MP /d̄1]:

hrp(y) = MP , 0 ≤ y ≤ MP

d̄1
.

Proof. Assume that there exists d̄ such that rp(1, d̄) = MP . Since the function
rp(1, d) is increasing and supd>0 rp(1, d) = MP , it follows that rp(1, d) = MP for all
d ≥ d̄. Thus we have for d/d0 ≥ d̄,

rp(d0, d) = d0rp(1, d/d0) = d0MP .

For the support set srp of the function rp the following is valid (see Theorem 2.3):

srp =

{
` = (l0, l1) : rp

(
1

l0
,

1

l1

)
≥ 1

}
.

Consider the point (l0, l1) = (MP ,MP /d̄). We have ( 1
l1

)( 1
l0

)−1 = d̄. Thus

rp

(
1

l0
,

1

l1

)
=

1

l0
MP = 1.

Hence (MP ,MP /d̄) ∈ srp . The set srp is normal so {(l0, l1) : l0 ≤MP , l1 ≤MP /d̄} ⊂
srp . By the definition of the associated function, we have

hrp(y) = sup{α : (α, y) ∈ srp}.
So if 0 ≤ y ≤ MP /d̄, then hrp(y) ≥ MP . On the other hand, hrp(y) is a decreasing
function with hrp(0) = MP . Thus hrp(y) = MP if y ≤MP /d̄.

Assume now that hrp(y) = MP for 0 ≤ y ≤ ȳ = MP /d̄. Since

hrp(ȳ) = sup{α : (α, ȳ) ∈ srp},
srp is closed, and hrp(ȳ) < +∞, we can deduce that (MP , ȳ) ∈ srp . Thus

rp

(
1

MP
,
d̄

MP

)
=

1

MP
rp(1, d̄) ≥ 1;



DECREASING FUNCTIONS AND PENALIZATION 307

that is, rp(1, d̄) ≥ MP . On the other hand, rp(1, d) ≤ MP for all d. Thus rp(1, d̄) =
MP .

Example 7.1. Let p(α, y) = max{α, y} and β be the perturbation function of
the problem (P ). Assume that β is continuous. Then (see Example 4.1) hrp(z) =
(β � hp)(z) = β(z). We have, by applying Theorem 2.1 and the definition of the
associated function,

rp(1, d) = max{〈l, y〉 : l ∈ supp(rp)} = max
z>0

min(hrp(z), zd) = max
z>0

min(β(z), zd).

Assume that the perturbation function β is strictly decreasing for sufficiently small
y, that is, that inf{fo(x) : f1(x) ≤ y1} > inf{fo(x) : f1(x) ≤ y2} whenever y1 < y2.
Then MP = limy→0 β(y) > β(z) for all z > 0. Since maxz>0 min(β(z), zd) = β(zd)
where zd is a solution of the equation β(z) = zd, we have

qp(1, d) = rp(1, d) = max
z>0

min(β(z), zd) = β(zd) < MP .

Thus there is no d > 0 such that rp(1, d) = MP .
We now consider the convolution function pk (k > 0) defined by

pk(δ, y) =
(
δk + yk

) 1
k (δ > 0, y > 0).(7.1)

For the sake of simplicity we shall denote the function rpk by r[k] and its associated
function hr[k]

by h[k]. The following assertion will be useful in the study of both
conditions for the exact penalization and estimations of penalty parameters.

Lemma 7.1. Let Assumptions 5.1, 6.1, and 7.1 hold. Let k > 0 and pk = p be the
function defined by (7.1). Let h[k] be the associated function to rpk . Then MP = h[k](z)
if and only if

MP ≤ β(y)
z

(zk − yk)
1
k

for 0 < y < z.(7.2)

Proof. It easily follows from Example 3.2 that

h[p](y) =

{
y

(yk−1)
1
k
, y > 1,

+∞, y ≤ 1.

Since limy→+∞ hp(y) = 1 and limy→+0 hp(y) = +∞, we can apply Theorem 6.1,
which shows that

MP = MDp = sup
z>0

h[k](z) = lim
z→0

h[k](z).(7.3)

By Corollary 6.1 we have

h[k](z) = inf
y>0

β(y)hp

(
z

y

)
= inf

0<y<z
β(y)hp

(
z

y

)
= inf

0<y<z
β(y)

z

(zk − yk)
1
k

.(7.4)

It follows from (7.3) that MP ≥ h[k](z
′) for all z′, so MP = h[k](z) if and only if

MP ≤ h[k](z); that is,

MP ≤ inf
0<y<z

β(y)
z

(zk − yk)
1
k

.(7.5)
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Clearly, (7.5) is equivalent to (7.2).
Theorem 7.1. Let Assumptions 5.1, 6.1, and 7.1 hold. Let k > 0 and the function

pk be defined by (7.1). Then there exists a number d̃ > 0 such that MP = qp(1, d̃) if
and only if

lim inf
y→+0

β(y)− β(0)

yk
> −∞.(7.6)

Proof. It follows from Proposition 7.1 that MP = r[k](1, d̃) for some d̃ > 0 if and
only if there exists z > 0 such that MP = h[k](z). According to Lemma 7.1, this
equality holds if and only if

β(y)

MP
≥
(

1−
(y
z

)k) 1
k

for 0 < y < z.(7.7)

Since MP = β(0) we can represent (7.7) in the following form:

β(y)− β(0)

yk
≥ β(0)

zk
(1− uk)

1
k − 1

uk
for 0 < y < z,(7.8)

where u = y/z. Clearly (7.6) holds if and only if there exists z such that (7.8) is
valid.

Remark 7.1. The notion of calmness (see, for example, [4, 6] and references
therein) has been used to study exact penalization with classical penalty functions
generated by the IPH function p1 (where p1(y1, y2) = y1 + y2). The family (Py) of
perturbed problems

fo(x) −→ min subject to x ∈ X, f+
1 (x) := max(f1(x), 0) ≤ y (y > 0),

is said to be calm at the point zero if (7.6) with k = 1 holds.
Using Theorem 7.1 it is possible to derive the well-known result (see, for example,

[4, 6]) that there exists a number d̃ > 0 such that MP = qp1(1, d̃) if and only if the
family (Py) is calm.

For many problems the exact penalization with respect to the classical penalty
function p1 can be accomplished only with very large penalty parameters, which
leads to ill-conditioned unconstrained optimization problems. Applying penalization
with respect to other convolution functions p we can sometimes decrease penalty
parameters providing exact penalization. We shall next study this question for the
convolution function p 1

2
. First we consider the arbitrary k > 0 and describe the least

penalty parameter, that is, the least number, for which the equality MP = r[k](1, d)
holds.

Assumption 7.2. Assume that the perturbation function β(y) is continuous on
[0,+∞) and β(y) < MP for y > 0.

Let Assumption 7.2 hold, k > 0, and

vk(y) =
y

(1− (β(y)M−1
P )k)

1
k

(y > 0).(7.9)

Let

ϕk(z) = inf
0<y<z

vk(y).(7.10)
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Since vk(y) is continuous for y > 0, it follows that ϕk(z) = inf0<y≤z vk(y) and ϕk(z)
is continuous for z > 0. Clearly ϕk is a decreasing function.

Lemma 7.2. Let k > 0 and (7.6) be valid. If Assumptions 5.1, 6.1, and 7.2
hold, then the least exact penalty parameter d̄k of the problem (P ) with respect to the
function pk is equal to 1/z̄k, where z̄k is the solution of the equation z = ϕk(z).

Proof. It follows from Proposition 7.1 that r[k](1, d) = MP if and only if h[k](z) =
MP with z = 1/d. Lemma 7.1 demonstrates that the equality MP = h[k](z) is valid
if and only if (7.2) holds; that is,

MP

β(y)
≤ z

(zk − yk)
1
k

for 0 < y < z.

It easy to check that this inequality is equivalent to the following:

z ≤ vk(y) for 0 < y < z,(7.11)

where vk is defined by (7.9).
Thus MP = h[k](z) if and only if z ≤ ϕk(z). Since (7.6) holds it follows from

Theorem 7.1 that there exists z > 0 such that MP = h[k](z); that is, z ≤ ϕk(z). Thus
r[k](1, d) = MP if and only if z ≤ ϕk(z), so the least exact penalty parameter d̄k is
equal to the inverse to the greatest element z̄k of the set {z : z ≤ ϕk(z)}. Since ϕk is
a continuous decreasing function we can deduce that the equation z = ϕk(z) has the
unique solution. It is clear that this solution coincides with z̄k.

Let β(y) < MP for y > 0. Set

u(y) =
1 +

√
β(y)M−1

P

1−
√
β(y)M−1

P

(y > 0).(7.12)

Since β is a decreasing function it follows that u is a decreasing function as well.
Lemma 7.3. Let β(y) < MP for y > 0, and let vk, ϕk, and u be functions defined

by (7.9), (7.10), and (7.12), respectively. Then

ϕ 1
2
(z) ≥ ϕ1(z)u(z) (z > 0).

Proof. We have

v1(y) =
y

1− β(y)M−1
P

, v 1
2
(y) =

y(
1−

√
β(y)M−1

P

)2 .

Hence

v 1
2
(y) = u(y)v1(y) (y > 0).

Let z > 0 and 0 < y < z. Since ϕ1(z) ≤ v1(y) and u is a decreasing function it follows
that

ϕ 1
2
(z) = inf

0<y<z
v 1

2
(y) ≥ ϕ1(z) inf

0<y<z
u(y) = ϕ1(z)u(z).

Lemma 7.4. Suppose Assumptions 5.1, 6.1, and 7.2 hold and

lim inf
y→+0

β(y)− β(0)

y
> −∞.
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Let d̄k be the least exact penalty parameter with respect to the function pk and z̄k =
1/d̄k (k = 1, 1

2 ). Let µ ∈ (0, 1) be a number such that

β(z) ≥ µMP for z ∈ (0, λz̄1),(7.13)

where

λ =
1 +
√
µ

1−√µ.(7.14)

Then

d̄ 1
2
≤ 1−√µ

1 +
√
µ
d̄1.

Proof. Let λ be the number defined by (7.14). It easily follows from (7.12), (7.13),
and (7.14) that u(z) ≥ λ for 0 < z ≤ λz̄1. Hence (see Lemma 7.3)

ϕ 1
2
(z) ≥ λϕ1(z) for 0 < z ≤ λz̄1.(7.15)

Since ϕ1(z̄1) = z̄1 it follows that λϕ1(z̄1) = λz̄1. Since ϕ 1
2

and ϕ1 are decreasing

functions and (7.15) holds, we can deduce that z̄ 1
2
≥ λz̄1. Thus d̄ 1

2
≤ 1

λ d̄1.

Theorem 7.2. Assume all conditions in Lemma 7.4 hold. Then

d̄ 1
2
≤

1−
√
γM−1

P

1 +
√
γM−1

P

d̄1,(7.16)

where γ = infx∈X f0(x) = infz>0 β(z).
Proof. The proof follows from Lemma 7.4 since β(z) ≥ µMP for all z, where

µ = γM−1
P .

Theorem 7.2 allow us to draw the following conclusion:
The exact penalty parameter d̄ 1

2
is always less than d̄1. If the perturbation function

β(y) changes fairly slowly (that is, the constrained minimum MP is not very far from
the unconstrained minimum γ), then the penalization by the convolution function p 1

2

can be accomplished with a substantially smaller exact penalty parameter than that of
the classical penalty function p1.

The following simple example confirms this conclusion.
Example 7.2. Let 0 < b < c < a be real numbers and X = [0, c]. Consider the

problem

(a− x)2 −→ min subject to x− b ≤ 0, x ∈ X.(7.17)

Let k = 1/2 and r[ 1
2 ] = rpk . We have r[ 1

2 ](1, d) = minb≤x≤c h2(x), where h(x) =

(a− x) + d
1
2 (x− b) 1

2 . Since h is a concave positive function, it easily follows that

r[ 1
2 ](1, d) =

{
[(a− c) + d

1
2 (c− b) 1

2 ]2 if 0 < d ≤ c− b,
(a− b)2 if d > c− b,

and that supd>0 r[ 1
2 ](1, d) = (a − b)2 is attained at the point d̄ 1

2
= c − b. Note that

d̄[ 1
2 ] does not depend on a.
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Consider now the classical penalty function with k = 1. It is easy to check that
supd>0 r[1](1, d) = (a− b)2 is attained at the point d̄1 = 2(a− b). Thus d̄1 → +∞ as
a→ +∞.

Proposition 7.2. The estimation (7.16) is asymptotically sharp in the following
sense: for each ε > 0 there exists a problem (P ) such that the difference between
expressions in the right-hand side and the left-hand side of (7.16) is less than ε.

Proof. Consider the problem (7.17) from Example 7.2. We have

MP = (a− b)2, γ = (c− a)2, d̄1 = 2(a− b), d̄ 1
2

= c− b.

Hence the inequality (7.16) can be presented in the following form:

c− b ≤ 1− a−c
a−b

1 + a−c
a−b

2(a− b).(7.18)

Note that the difference between expressions in the right-hand side and left-hand
side in (7.18) is equal to (c − b)2(2a − c − b)−1, so this difference tends to zero as
c− b→ 0.

Remark 7.2. Consider the following problem (Pc):

fo(x) + c −→ min subject to f1(x) ≤ 0,

which is equivalent to problem (P ). Clearly, both problems (P ) and (Pc) have the
same exact penalty parameter d̄1 with respect to the classical penalty function p1.
At the same time, they have different exact penalty parameters d̄ 1

2
with respect to

the convolution function p 1
2
. Let d̄ 1

2
(c) be the least penalty parameter with respect

to p 1
2

for the problem (Pc). It follows from (7.16) that d̄ 1
2
(c) tends to zero as c →

+∞. Note that the corresponding unconstrained optimization problem can become
ill-conditioned for very large c.

Remark 7.3. Consider the classical convolute function p1 and the coresponding
penalty parameter d̄1. It is well known (see [3]) that d̄1 can be estimated from below by
the optimal Lagrange multiplier λ of the problem (P ). Clearly, the optimal Lagrange
multiplier of the problem (Pc) (see Remark 7.2) coincides with λ. It follows from
Remark 7.2 that the estimation of the exact penalty parameter d̄ 1

2
by the Lagrange

multiplier λ is impossible.

We conclude the paper by showing that it is possible to find an IPH function p
and a number d such that for the modified penalty function L+

p generated by p we
have MP = infx∈X L+

p (x, 1, d) ≡ qp(1, d).

Theorem 7.3. Let Assumptions 5.1, 6.1, and 7.1 hold. Then for the problem (P)
defined by (5.1) there exists an IPH function p and a number d > 0 such that

MP = qp(1, d),

where qp is defined by (5.5).

Proof. Let β be the perturbation function of the problem (P ). Consider the lower
semicontinuous hull β̄ of the function β:

β̄(y) = max

(
β(y), lim inf

y′→y,y′ 6=y
β(y′)

)
.



312 A. M. RUBINOV, B. M. GLOVER, AND X. Q. YANG

Clearly β̄ is decreasing and lower semicontinuous. Since β is lower semicontinuous at
the origin we can conclude that β̄(0) = β(0) = MP . Let

g(y) =

{
+∞ if 0 < y ≤ 1,
MP /β̄(y−1) if y > 1.

Clearly g is a decreasing function. Since β̄ is lower semicontinuous it follows that g is
upper semicontinuous. We have also

lim
y→+∞ g(y) = lim

u→+0

MP

β̄(u)
= 1.

Since g is upper semicontinuous we can conclude (see Proposition 3.2) that there
exists a normal closed set U ⊂ R2

++ such that g = gU . Consider an IPH function p̄
defined on R2

++ by

p̄(y) = sup{min(l1y1, l2y2) : l ∈ U}.
Since the function y → p̄(1, y) is increasing it follows that a = limy→+0 p(1, y) < +∞.
Let the function p be defined on R2

+ by

p(y1, y2) =

 p̄(y1, y2) if y1, y2 > 0,
0 if y1 = 0,
ay1 if y2 = 0.

It is easy to check that p is a continuous IPH function and hp(y) = g(y) for y > 0.
Since limy→+∞ hp(y) = limy→+∞ g(y) = 1 it follows from Proposition 3.5 that a =
p(0, 1) = 1. The equality hp(y) = +∞ for y ≤ 1 shows that limu→+∞ p(1, u) = +∞.
It follows from Theorem 6.2 that MP = sup{hrp(z) : z > 0} so hrp(z) ≤ MP for all
z > 0. On the other hand, we have

hrp(z) = inf
y>0

β(y)hp

(
z

y

)
= inf
y>0

β(y)g

(
z

y

)
= inf
y<z

β(y)
MP

β̄(yz )
.

Let z = 1. If the function β is continuous at a point y, then β(y) = β̄(y); otherwise
β(y) ≥ β̄(y). So

hrp(1) = inf
y<1

β(y)

β̄(y)
MP = MP .

Thus hrp(z) = MP for z ≤ 1. It follows from Proposition 7.1 that there exists a
number d̄ > 0 such that rp(1, d̄) = MP .
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A REGULARIZED SMOOTHING NEWTON METHOD FOR BOX
CONSTRAINED VARIATIONAL INEQUALITY PROBLEMS WITH

P0-FUNCTIONS∗

HOU-DUO QI†
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Abstract. Based on Qi, Sun, and Zhou’s smoothing Newton method, we propose a regularized
smoothing Newton method for the box constrained variational inequality problem with P0-function
(P0 BVI). The proposed algorithm generates an infinite sequence such that the value of the merit
function converges to zero. If P0 BVI has a nonempty bounded solution set, the iteration sequence
must be bounded. This result implies that there exists at least one accumulation point. Under
CD-regularity, we prove that the proposed algorithm has a superlinear (quadratic) convergence rate
without requiring strict complementarity conditions. The main feature of our global convergence
results is that we do not assume a priori the existence of an accumulation point. This assumption
is used widely in the literature due to the possible unboundedness of level sets of various adopted
merit functions. Preliminary numerical results are also reported.

Key words. smoothing Newton’s method, semismoothness, global convergence, superlinear
convergence

AMS subject classifications. 90C33, 65K10, 65H10

PII. S1052623497324047

1. Introduction. Consider the box constrained variational inequality problem
with P0-function (P0 BVI for abbreviation), which is described as follows. Find
x∗ ∈ X such that

F (x∗)T (x− x∗) ≥ 0 for all x ∈ X,(1)

where F : Rn → Rn is a continuously differentiable P0-function and

X := {x ∈ Rn| a ≤ x ≤ b},

and a ∈ {R∪{−∞}}n, b ∈ {R∪{∞}}n, and a < b. If a = 0, b =∞, then BVI becomes
the well-known nonlinear complementarity problem (NCP). BVI, which is also called
the mixed complementarity problem, covers a large class of problems, e.g., convex
programming problems and monotone variational inequality problems (MVIP). We
refer the interested reader to the survey papers by Harker and Pang [13] and Ferris and
Pang [10] for various applications. Recently, P0 BVI/NCP has raised much interest
among researchers [1, 2, 4, 5, 9, 22, 23, 26].

Let ΠX(x) denote the Euclidean projection of x on X. It is well known that
solving BVI is equivalent to solving the Robinson’s normal equation

E(x) := F (ΠX(x)) + x−ΠX(x) = 0(2)

in the sense that if x∗ ∈ Rn is a solution of (2), then y∗ := ΠX(x∗) is a solution of (1)
and, conversely, if y∗ is a solution of (1), then x∗ := y∗ − F (y∗) is a solution of (2)
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[24]. We note that E(x) is a nonsmooth equation. By introducing the Gabriel–Moré
smoothing function for ΠX(x), we can approximate E(·) by

Ḡ(u, x) := F (p(u, x)) + x− p(u, x), (u, x) ∈ Rn × Rn,(3)

where for each i ∈ N := {1, . . . , n}, pi(u, x) is derived via the Gabriel–Moré smoothing
function; see [12, 22] for such a procedure. We note that for some popular choices,
p(u, x) is continuously differentiable except at the point (u, x) ∈ Rn × Rn with some
i ∈ N such that ui = 0. It is also noted that for any (u, x) ∈ Rn×Rn, p(u, x) ∈ X [12,
Lemma 2]. Hence for Ḡ to be well defined, it is sufficient to assume that F is defined
on X only. This is an interesting feature of the function Ḡ. Based on the function

H̄(z) :=

(
u

Ḡ(z)

)
,

where z = (u, x) ∈ Rn×Rn, Qi, Sun, and Zhou proposed a smoothing Newton method
with global and superlinear/quadratic convergence results for the three most popular
choices of the Gabriel–Moré smoothing function. The outstanding feature of their
method is that, in each iteration, they use a slightly modified Newton direction based
on H̄. This modification is crucial to the design of their algorithm. They showed that
if F is a uniform P -function, their method generates an infinite sequence converging
to the unique solution of BVI. In fact their method is well defined for P -functions. We
note that their method may not be well defined for P0 BVI with some free variables
since in this case the underlying Jacobian might be singular. Fortunately, we will show
in this paper that the drawback can be overcome by some regularization techniques
on F .

Regularization techniques were used recently by Facchinei to study the structure
of solution set of P0 nonlinear complementarity problems [8] and by Facchinei and
Kanzow to propose an inexact regularization method for P0 NCP and to study the
trajectory property of the regularized problems [9]. The regularization in the sense of
Tikhonov is to replace the function F (x) by Fu(x), where

Fu(x) := F (x) + diag(u)x and u ∈ Rn++.

Consequently, regularization methods try to solve, instead of the original problem, a
sequence of the regularized problems obtained by replacing F in the original problems
by Fu and let u converge to 0. The following desirable property obtained by Facchinei
and Kanzow [9, Lemma 3.2] will be used in our subsequent analysis.

Proposition 1.1. Let u ∈ Rn++ be arbitrary and F (x) be a continuously differ-
entiable P0-function in Rn. Then the Jacobian matrices F ′u(x) are P -matrices for all
x ∈ Rn. In particular, the function Fu is a P -function.

So it is natural to consider the regularized version of the function H̄ in the sense
of Tikhonov:

H(z) :=

(
u

G(z)

)
,

where z = (u, x) ∈ Rn × Rn and

G(z) := Ḡ(z) + diag(u)x.

We then apply the Qi–Sun–Zhou method to the function H. The regularization allows
us to establish stronger convergence results. More precisely, let {zk = (uk, xk)} be a
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sequence generated by the algorithm; we will show uk → 0 and ‖H(zk)‖ → 0. The
only additional assumption for those results is that F (x) is a P0-function on X. Note
that the solution set of the corresponding P0 BVI may be empty. We also note that
such convergence results hold without any restriction on the value choice of a or b
as required in [22]. If we further assume that the P0 BVI has a nonempty bounded
solution set, then the generated sequence {zk} remains bounded; hence it has at
least one accumulation point, the projection of which on X is a solution of the BVI.
In particular, the regularization method presented in this paper can handle problems
with free variables. This is an interesting feature of our method and makes the method
applicable to MVIP since it is well known that an MVIP can be reduced to a P0 BVI
(necessarily with some free variables) by enlarging the dimension of the problem [13].
We summarize that if F is assumed to be a P0-function on X and the solution set is
nonempty and bounded, then our regularized smoothing Newton method is able to
find a solution of BVI.

The paper is organized as follows. In section 2 we give some definitions and re-
view the Gabriel–Moré smoothing procedure. Section 3 includes the algorithm itself
with some properties. In section 4 we establish the global, superlinear/quadratic con-
vergence of the algorithm. We report some preliminary numerical results in section 5.
Conclusions are drawn in section 6.

We introduce some notation here. Let R++ denote the set of all positive real
numbers, and let Rn++ be the set of all vectors in Rn whose entries are positive. If
u ∈ Rn, diag(u) is the diagonal matrix whose ith diagonal element is ui. For a
continuously differentiable function Φ : Rn → Rm, we denote the Jacobian of Φ at
x ∈ Rn by Φ′(x), whereas the transposed Jacobian is denoted by ∇Φ(x). When
m = 1, ∇Φ(x) is viewed as a column vector. ‖ · ‖ denotes the Euclidean norm. Let 0
denote the zero vector in Rn and e be the vector of all ones in Rn. Let N := {1, . . . , n}
and S be the solution set of P0 BVI.

2. Preliminaries. In this section, we restate briefly the procedure of the Gabriel–
Moré smoothing method to choose the function p(u, x) involved in G(u, x) [22] and
review some definitions that will be used in the subsequent analysis.

Let ρ : R → R+ be a density function with a bounded absolute mean. For any
three numbers c ∈ R∪{−∞}, d ∈ R∪{∞} with c ≤ d and e ∈ R, let mid(c, d, e) denote
the median function, the projection of e on [c, d]. Then the Gabriel–Moré smoothing
function φ(µ, c, d, w) for Π[c,d]∩R(w) [12] is defined by

φ(µ, c, d, w) =

∫ ∞
−∞

mid(c, d, w − µs)ρ(s)ds, (µ,w) ∈ R++ × R.

If c = −∞ and/or d = ∞, the value of φ takes the limit of φ as c → −∞ and/or
d→∞, correspondingly. It is easy to see

φ(0, c, d, w) = Π[c,d](w).

Now we define the ith component of the function p(u, x) : Rn × Rn → Rn by

pi(u, x) := φ(|ui|, ai, bi, xi), i ∈ N.

In fact, our algorithm guarantees u > 0 at all iterations. We define p(u, x) in the whole
space in order to state its semismooth property, which in turn plays an important role
in the local convergence analysis. We also need some properties of φ with µ > 0. So
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let φcd : R++ × R→ R be defined by

φcd(µ,w) := φ(µ, c, d, w), (µ,w) ∈ R++ × R,
and for any given µ ∈ R++, let φµcd : R→ R be defined by

φµcd(w) := φ(µ, c, d, w), w ∈ R.
Then we have the following continuity properties; see [12, Lemma 2.3] for (i) and [22,
Lemma 2.2] for (ii).

Lemma 2.1. (i) For any given µ > 0, the mapping φµcd(·) is continuously differ-
entiable with φ′µcd(w) ∈ [0, 1] for any w ∈ R.

(ii) The mapping φcd(·) is Lipschitz continuous on R++ × R.
There are three popular choices for the density function ρ(s), which lead to three

well-known smoothing functions φ, namely, the neural networks smoothing function,
the Chen–Harker–Kanzow–Smale (CHKS) smoothing function [3, 15, 16], and the
uniform smoothing function. For example, let the density function be

ρ(s) =
2

(s2 + 4)3/2
.

Then the CHKS smoothing function is

φ(µ, c, d, w) =
c+

√
(c− w)2 + 4µ2

2
+
d−

√
(d− w)2 + 4µ2

2
,(4)

where (µ,w) ∈ R++ × R. Apparently, φcd(·) is continuously differentiable at any
(µ,w) ∈ R++×R. If c = 0 and d =∞, then the smoothing function in (4) reduces to
the CHKS smoothing NCP function:

φ(µ, 0,∞, w) =

√
w2 + 4µ2 + w

2
, (µ,w) ∈ R++ × R.

The CHKS smoothing function will be used in the numerical experiments of our
Algorithm 3.3. Since neither of the other two smoothing functions is used explicitly
in this paper, we do not state their analytic expression; for detailed discussion on those
functions see Examples 2.1–2.3 in [22]. We note that all those smoothing functions
give rise to the following properties [22, Theorem 3.1].

Proposition 2.2. (i) φcd(·) is continuously differentiable at (µ,w) ∈ R++ × R.
(ii) H is semismooth at any z ∈ R2n.
(iii) If for some point z ∈ R2n, F ′ is Lipschitz continuous around p(z) ∈ Rn, then

H is strongly semismooth at z.
If (i) in Proposition 2.2 holds, then the approximation function G(u, x) is con-

tinuously differentiable at any (u, x) ∈ Rn++ × Rn. We will extract this property as a
basic assumption on φ in Assumption 3.1. The concept of semismoothness was origi-
nally introduced by Mifflin [18] for functionals and later was extended by Qi and Sun
[21] to the vector-valued functions Φ : Rm1 → Rm2 . A locally Lipschitz continuous
vector-valued function Φ : Rm1 → Rm2 has a generalized Jacobian ∂Φ(x) in the sense
of Clarke [6]. Now we recall some definitions.

Definition 2.3. Suppose m1 = m2; we say Φ is CD-regular at a point x if all
V ∈ ∂Φ(x) are nonsingular.

Definition 2.4. The function F : X ⊂ Rn → Rn is said to be (over the set
X) a
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• P0-function if for all x, y ∈ X with x 6= y

max
i∈N
xi 6=yi

(xi0 − yi0)[Fi0(x)− Fi0(y)] ≥ 0;

• P -function if for all x, y ∈ X with x 6= y

max
i∈N

(xi − yi)[Fi(x)− Fi(y)] > 0;

• uniform P -function if there exists a constant µ > 0 such that for all x, y ∈ X

max
i∈N

(xi − yi)[Fi(x)− Fi(y)] ≥ µ‖x− y‖2;

• monotone function if for all x, y ∈ X

(x− y)T (F (x)− F (y)) ≥ 0.

Those function classes are closely related to each other; for example, a monotone
function is necessarily a P0-function. Although Proposition 1.1 showed that Fu(x) is
a P -function for u ∈ Rn++ if F is a P0-function, a counterexample in [9] shows that it
is not necessarily a uniform P -function.

3. Regularized smoothing Newton method. In this section, we apply the
Qi–Sun–Zhou smoothing Newton method to our regularized function H. First we state
assumptions that are crucial to our method.

Assumption 3.1. (i) The function φcd(·) is continuously differentiable at any
(µ,w) ∈ R++ × R.

(ii) F (x) is a P0-function on X.
We note that (i) in Assumption 3.1 is used only to guarantee the differentiability

of function H at any (u, x) ∈ Rn++ × Rn, while (ii) guarantees the nonsingularity of
the Jacobian of H.

Proposition 3.2. Suppose that Assumption 3.1 holds for a chosen smoothing
function φ(µ, c, d, w) with (µ,w) ∈ R++ × R. Then

(i) the mapping H(·) is continuously differentiable at any z = (u, x) ∈ Rn++×Rn
and

H ′(z) =

(
I 0

G′u(z) G′x(z)

)
,(5)

where

G′u(z) := (F ′(p(z))− I)D(u) + diag(x),

G′x(z) := F ′(p(z))C(x) + diag(u) + I − C(x)

and D(u) = diag(di(u), i ∈ N), C(x) = diag(ci(x), i ∈ N), di(u) = ∂pi(u, x)/∂ui,
ci(x) = ∂pi(u, x)/∂xi, and ci(x) ∈ [0, 1], i ∈ N .

(ii) H ′(z) is nonsingular at any z = (u, x) ∈ Rn++ × Rn.
Proof. (i) Since Assumption 3.1 holds for φ(·), it is easy to know that H(·) is

continuously differentiable at any z = (u, x) ∈ Rn++ × Rn. By direct computation we
have (5). From Lemma 2.1(i), ci(x) ∈ [0, 1], i ∈ N .

(ii) It is known [19, Corollary 5.3 and Theorem 5.8] that F ′(x) being a P0-matrix
(i.e., all of its principal minors are nonnegative) for all x in an open box X ⊂ Rn
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is equivalent to F being a P0-function on X. Now let z = (u, x) ∈ Rn++ × Rn. Since
F (x) is a P0-function on X and p(z) ∈ X, F (p(z)) is a P0-matrix. Now we assume
that there exists v ∈ Rn such that

(F ′(p(z))C(x) + diag(u) + I − C(x))v = 0.(6)

If C(x)v 6= 0, then, by noting ci(x) ≥ 0 for all i ∈ N, for any index i ∈ N with
(C(x)v)i 6= 0, we have

[C(x)v]i[F
′(p(z))C(x)v]i = −[C(x)v]i[(diag(u) + I − C(x))v]i

= −(ui + 1)ci(x)v2
i − [C(x)v]2i < 0,

which contradicts the fact that F ′(p(z)) is a P0-matrix. Hence C(x)v = 0; then (6)
implies (diag(u) + I)v = 0, which in turn implies v = 0 due to the fact u ∈ Rn++. This
proved that G′x(z) is nonsingular. Hence H ′(z) is nonsingular at any z = (u, x) ∈
Rn++ × Rn.

Before stating the Qi–Sun–Zhou smoothing Newton method, we need the follow-
ing parameter setting and some functions which are developed in [22].

Choose ū ∈ Rn++ and γ ∈ (0, 1) such that γ‖ū‖ < 1. Let z̄ := (ū, 0) ∈ Rn × Rn.
Define the merit function ψ : R2n → R+ by

ψ(z) := ‖H(z)‖2

and define β : R2n → R+ by

β(z) := γmin{1, ψ(z)}.

Let

Ω := {z = (u, x) ∈ Rn × Rn| u ≥ β(z)ū}.

Then, because for any z ∈ R2n, β(z) ≤ γ < 1, it follows that for any x ∈ Rn,

(ū, x) ∈ Ω.

Algorithm 3.3 (regularized smoothing Newton method).
(S.0) Initialization. Choose constants δ, γ ∈ (0, 1), σ ∈ (0, 1/2), and ū ∈ Rn++

such that γ‖ū‖ < 1. Let u0 := ū, x0 ∈ Rn be an arbitrary point. Let z0 :=
(u0, x0), z̄ := (ū, 0), and k := 0.

(S.1) Termination criterion. If H(zk) = 0, then stop. Otherwise, let βk := β(zk).
(S.2) Modified Newton direction. Compute ∆zk := (∆uk,∆xk) ∈ Rn × Rn by

H(zk) +H ′(zk)∆zk = βkz̄.(7)

(S.3) Line search strategy. Let `k be the smallest nonnegative integer ` satisfying

ψ(zk + δ`∆zk) ≤ [1− 2σ(1− γ‖ū‖)δ`]ψ(zk).(8)

Define zk+1 := zk + δ`k∆zk.
(S.4) Update. k := k + 1; return to step (S.1).
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Since we have assumed that Assumption 3.1 is satisfied, H(·) is continuously
differentiable at any zk ∈ Rn++ × Rn, and H ′(zk) is nonsingular with the following
relation:

H ′(u, x) = H̄ ′(u, x) +

(
0 0

diag(x) diag(u)

)
for any (u, x) ∈ Rn++ × Rn. We can view H ′(z) as a diagonal perturbation of H̄(z).
This observation makes it easy to understand that H inherits many properties of H̄,
especially properties related to Algorithm 3.3. For more comments on Algorithm 3.3,
see Remarks in [22]. The result below states that Algorithm 3.3 is well defined and
the generated sequence remains in Ω. Since the proof is similar to that of Proposition
4.5 in [22], we omit it.

Proposition 3.4. Suppose that Assumption 3.1 holds. Then Algorithm 3.3 is
well defined and generates an infinite sequence {zk = (uk, xk)}. Moreover,

uk ∈ Rn++ and {zk} ⊂ Ω.

4. Convergence analysis. In this section, we will prove that Algorithm 3.3
generates an infinite sequence such that the merit function converges to zero, and the
projection of any accumulation point on X is a solution of P0 BVI. Moreover, if the
solution set of BVI is nonempty and bounded, then Algorithm 3.3 is able to solve
problem (1). First, for any given u ∈ Rn, we define ψu(x) : Rn → R+,

ψu(x) := ‖G(u, x)‖2.
It is easy to see that for any fixed u ∈ Rn++, ψu is continuously differentiable with the
gradient given by

∇ψu(x) = 2(G′x(u, x))TG(u, x),

where G′x(u, x) = F ′(p(z))C(x) + diag(u) + I−C(x) and C(x) is defined as in Propo-
sition 3.2. By repeating the proof of (ii) in Proposition 3.2, G′x(u, x) is nonsingular at
any point (u, x) ∈ Rn++ × Rn. We note that for any z = (u, x) ∈ Rn × Rn,

ψ(z) = ‖u‖2 + ψu(x).(9)

Lemma 4.1. If S, the solution set of P0 BVI, is nonempty and bounded, then the
set

Γ := {x ∈ Rn|ψ0(x) = 0}
is also nonempty and bounded.

Proof. First, notice that ψ0(x) = ‖E(x)‖2, where E(x) is defined by (2). If y ∈ S,
then x := y − F (y) ∈ Γ [24]. Hence the nonemptiness of S implies the nonemptiness
of Γ. Now we assume S is bounded. Let x ∈ Γ; then ΠX(x) ∈ S [24] and

‖x‖ = ‖ΠX(x)− F (ΠX(x))‖
≤ ‖F (ΠX(x))‖+ ‖ΠX(x)‖
≤ sup
y∈S

(‖F (y)‖+ ‖y‖) .

The boundedness of S, together with the continuity of F (·), implies the boundedness
of Γ.
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The following lemma is key to our global convergence. The proof technique is
taken from [9].

Lemma 4.2. If F is a P0-function on X, for any u ∈ Rn++ and r > 0, define the
level set

Lu(r) := {x ∈ Rn| ψu(x) ≤ r} .(10)

Then, for any u1 ≥ u2 ∈ Rn++ and r > 0, the set

L(r) := ∪u∈[u1,u2]Lu(r)

is bounded.
Proof. Suppose to the contrary that the lemma is false. Then for some fixed r > 0,

we can find a sequence {(uk, xk)} such that uk ∈ [u1, u2] and

ψuk(xk) ≤ r and ‖xk‖ → ∞.(11)

Let zk = (uk, xk) ∈ Rn++ × Rn. It is easy to prove that

|mid(ai, bi, x
k
i )| → ∞ ⇒ |xki | → ∞ and |xki −mid(ai, bi, x

k
i )| → 0, i ∈ N.(12)

Since pi(z), i ∈ N, is Lipschitz continuous with Lipschitz constant L′ > 0 (Lemma
2.1), we have

|pi(uk, xk)−mid(ai, bi, x
k
i )| = |pi(uk, xk)− pi(0, xk)| ≤ L′|uki |, i ∈ N.(13)

Hence (12) and (13) imply that for all k large enough,

|mid(ai, bi, x
k
i )| → ∞ ⇒ |xki − pi(uk, xk)| ≤ 2L′|uki |, i ∈ N.(14)

Define index set J by J := {i| {pi(zk)} is unbounded, i ∈ N}. The set J is not empty,
because otherwise

ψuk(xk) = ‖F (p(zk)) + diag(uk)xk + xk − p(zk)‖ → ∞.
Let z̃k = (ũk, x̃k) ∈ Rn++ × Rn be defined by

ũki =

{
uki if i 6∈ J,
0 if i ∈ J, i ∈ N,

and

x̃ki =

{
xki if i 6∈ J,
0 if i ∈ J, i ∈ N.

Then

pi(z̃
k) =

{
pi(z

k) if i 6∈ J,
mid(ai, bi, 0) if i ∈ J, i ∈ N.

Hence {‖p(z̃k)‖} is bounded. Since p(z̃k) ∈ X and F is a P0-function on X, we get

0 ≤ max
i∈N

pi(zk)6=pi(z̃k)

(pi(z
k)− pi(z̃k))[Fi(p(z

k))− Fi(p(z̃k))]

= max
i∈J

(pi(z
k)− pi(z̃k))[Fi(p(z

k))− Fi(p(z̃k))]

= (pj(z
k)− pj(z̃k))[Fj(p(z

k))− Fj(p(z̃k))],(15)
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where j is one of the indices for which the max is attained, which we have, without
loss of generality, assumed to be independent of k. Since j ∈ J, we have that by
passing to a subsequence if necessary

|pj(zk)| → ∞.(16)

We now consider two cases.
Case 1. pj(z

k)→∞. It follows from (13) that

mid(aj , bj , x
k
j )→∞,

which implies in turn by (12) that xkj → ∞. Hence (14) holds for index j. Since

Fj(p(z̃
k)) is bounded by the continuity of Fj , (15) implies that Fj(p(z

k)) does not
tend to −∞. Thus

Fj(p(z
k)) + ukjx

k
j + xkj − pj(zk)→∞,

since ukjx
k
j →∞.

Case 2. pj(z
k) → −∞. Then once again (12) and (13) imply that xkj → −∞. It

follows from (15) that

Fj(p(z
k)) ≤ 2Fj(p(z̃

k))

for all k sufficiently large. Hence by (14)

Fj(p(z
k)) + ukjx

k
j + xkj − pj(zk)→ −∞,

since ukjx
k
j → −∞.

In either case, we get ψuk(xk)→∞, which contradicts (11). This completes the
proof.

Corollary 4.3. Suppose that F is a P0-function on X. Then for any u ∈ Rn++,
the function ψu(x) is coercive, i.e.,

lim
‖x‖→∞

ψu(x) =∞.

Proof. Let u1 = u2 = u in Lemma 4.2. Then Lu(r) is bounded for any r > 0 or,
equivalently, ψu(x) is coercive.

The next result can be proved by noticing the results in Lemma 4.1 and Corollary
4.3 above and by following the similar proof lines of [9, Theorem 5.4].

Lemma 4.4. Let F be a P0-function and assume that the solution set S of P0 BVI
is nonempty and bounded. Suppose that there is a sequence {(uk, xk)} ⊂ Rn++ × Rn
(not necessarily generated by Algorithm 3.3) such that

uk → 0 and ψuk(xk)→ 0.

Then the sequence {xk} remains bounded and every accumulation point of {xk} is a
solution of ψ0(x) = 0.

Now we state our global convergence result.
Theorem 4.5. Suppose that Assumption 3.1 is satisfied. Then the following con-

ditions hold.
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(1) An infinite sequence {zk} is generated by Algorithm 3.3 and

lim
k→∞

ψ(zk) = 0 and lim
k→∞

uk = 0.(17)

Hence each accumulation point of {zk} is a solution of H(z) = 0.
(2) The sequence {zk} is bounded if P0 BVI has a nonempty and bounded solution

set S. Hence there exists at least one accumulation point, say, z̃, of {zk}
satisfying H(z̃) = 0.

Proof. (1) Since Assumption 3.1 is satisfied, it follows from Proposition 3.4 that
an infinite sequence {zk} is generated by Algorithm 3.3. If (17) holds, it follows from
the continuity of H that each accumulation point of {zk} is a solution of H(z) = 0.
Now we show (17) is valid. From the design of Algorithm 3.3, ψ(zk+1) < ψ(zk) for all
k ≥ 0. Hence the two sequences {ψ(zk)} and {β(zk)} are monotonically decreasing.
Since ψ(zk), β(zk) ≥ 0 (k ≥ 0), there exist ψ̃, β̃ ≥ 0 such that ψ(zk) → ψ̃ and
β(zk)→ β̃ as k →∞. Suppose that the first equality in (17) is false, i.e., ψ̃ > 0. It is
easy to see

β̃ = γmin{1, ψ̃} > 0.

Since {zk} ⊂ Ω, we claim that

uk ≥ β̃ū for all k ≥ 0.(18)

Note that the boundedness of {ψ(zk)} implies the boundedness of uk. Let û ∈ Rn++

be sufficiently large such that uk ≤ û for all k ≥ 0. Let

L(ψ(z0)) := ∪u∈[β̃ū,û]Lu
(
ψ(z0)

)
,

where Lu(ψ(z0)) is defined by (10). It must hold that xk ∈ L(ψ(z0)), since xk belongs
to the set Luk(ψ(z0)) and uk ∈ [β̃ū, û]. It follows from Lemma 4.2 that the set
L(ψ(z0)) is bounded. Hence {xk} is bounded. By noticing the boundedness of {uk},
we have proved that the sequence {zk} is bounded. Let z̃ = (ũ, x̃) ∈ Rn × Rn be an
accumulation point of {zk}. By taking a subsequence if necessary, we may assume
that {zk} converges to z̃. It is easy to see that

ψ̃ = ψ(z̃), β(z̃) = β̃ and z̃ ∈ Ω, ũ ≥ β̃ū > 0.

Then from Proposition 3.2, H ′(z̃) exists and is nonsingular. By repeating the proof of
[22, Theorem 5.1], we can find a nonnegative integer ` such that for all k sufficiently
large,

ψ(zk+1) ≤ [1− 2σ(1− γ‖ū‖)δ`]ψ(zk).

This contradicts the fact that the sequence {ψ(zk)} converges to ψ̃ > 0. So we proved
that ψ̃ = 0, which necessarily implies uk → 0.

(2) Now we further assume that P0 BVI has a nonempty and bounded solution
set S. We note that ψu(x) is continuous for both variables u and x. The results in
(17) and (9) imply that

lim
k→∞

ψuk(xk) = lim
k→∞

(ψ(xk)− ‖uk‖2) = 0.

It is easy to see that the sequence {(uk, xk)} satisfies all the conditions in Lemma
4.4. Hence the sequence {xk} is bounded and any accumulation point x̃ of {xk} is a
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solution of ψ0(x) = 0. Hence z̃ := (0, x̃) is a solution of H(z) = 0. This completes our
proof.

Qi, Sun, and Zhou established superlinear/quadratic convergence results for Algo-
rithm 3.3 with H(z) replaced by H̄(z) under the nonsingularity assumption made on
∂H̄(z). If z∗ is a solution of H(z) = 0, then it is easy to know that ∂H(z∗) = ∂H̄(z∗).
We refer to [22] for a discussion on the nonsingularity of all V ∈ ∂H̄(z∗). Hence local
conditions guaranteeing the Qi–Sun–Zhou method to be superlinearly/quadratically
convergent should also lead to the same convergence rate for Algorithm 3.3. This ob-
servation makes the proof of the superlinear and quadratic convergence result below
for Algorithm 3.3 go along the same lines as that in [22, Theorem 7.1]. We omit the
proof.

Theorem 4.6. Suppose that Assumption 3.1 is satisfied and z∗ is an accumula-
tion point of the infinite sequence {zk} generated by Algorithm 3.3. Suppose that H
is semismooth (strongly semismooth, respectively) at z∗ and z∗ is a CD-regular point
with respect to H. Then the whole sequence {zk} converges to z∗,

‖zk+1 − z∗‖ = o(‖zk − z∗‖) (= O(‖zk − z∗‖2), respectively)

and

uk+1
i = o(uki ) (= O(uki )2, respectively), i ∈ N.

The convergence results established above are quite satisfactory. Even though we
do not know whether the P0 BVI has a solution, Algorithm 3.3 produces a sequence
such that the value sequence of the merit function converges to its global minimum;
meanwhile the smoothing parameter converges to zero, ensuring that any accumula-
tion point, say, z∗ = (0, x∗) if exists, is a solution of H(z) = 0. Hence the projection
ΠX(x∗) of x∗ on X is a solution of BVI. We note that those results hold under only
the assumption that F is a P0-function on X. Moreover, if the solution set of P0

BVI is nonempty and bounded, Algorithm 3.3 is able to solve the above problem.
We stress that the proof of the boundedness of the iteration sequence is not from
proving that the corresponding level set is bounded, but from Lemma 4.4, which is
the corresponding BVI part of the Facchinei and Kanzow result on NCP [9]. Both
of the following conditions imply that the merit function ‖H(z)‖2 has bounded level
sets [22, Theorems 6.1–6.2] and hence imply the boundedness of the solution set.

Corollary 4.7. Suppose one of the following conditions holds:

(i) X is bounded, i.e., ai > −∞, bi <∞ for all i ∈ N ;
(ii) F is a uniform P -function on X.

Then the solution set of BVI is bounded.

5. Preliminary numerical results. In this section, we present some numerical
experiments for the nonmonotone line search version of Algorithm 3.3. We replaced
the monotone Armijo condition (8) with the nonmonotone line search version:

(S.3′) Let `k be the smallest nonnegative integer ` satisfying

zk + δ`∆zk ∈ Ω(19)

and

ψ(zk + δ`∆zk) ≤ W − 2σ(1− γ‖ū‖)δ`ψ(zk),(20)
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Table 1
Numerical results for NCPs.

Example Dim. x0 It#1/#2 NF#1/#2 FF#1/#2

Prob. 1 4 0 6/6 9/9 1.1e-14/5.6e-18
4 e-F(e) 6/4 8/6 5.0e-17/2.7e-20

Prob. 2 10000 e 5/5 6/6 1.7e-25/1.1e-21
10000 0 5/5 6/6 1.1e-21/1.1e-21

Prob. 3 10000 e 17/5 30/6 4.6e-14/1.1e-21
10000 0 17/5 30/6 4.9e-14/1.1e-21

Prob. 4 5 e 16/16 17/17 5.8e-21/2.8e-24
5 0 19/19 20/20 8.8e-22/7.6-26

Prob. 5 4 0-F(0) 7/5 8/7 7.8e-18/8.8e-15
4 -10e 7/5 9/6 3.7e-20/2.4e-19

Prob. 6 10 0 10/10 11/11 4.5e-15/5.0e-15
10 e 7/8 8/9 7.8e-13/1.4e-22
10 10e 7/7 8/8 7.0e-13/1.6e-13

Prob. 7a 4 e 4/8 5/11 2.6e-18/3.4e-23
Prob. 7b 4 e 7/5 7/11 1.0e-15/2.7e-21
Prob. 8 4 -e 6/5 10/9 1.9e-18/4.2e-16

4 e-F(e) 7/6 9/8 6.6e-19/3.2e-19
Prob. 9 42 0 9/15 13/28 5.3e-18/8.2e-26

42 e 9/14 15/24 5.9e-15/8.3e-20
42 -e 10/10 14/15 2.2e-18/8.5e-25

Prob. 10 50 a 27/14 89/28 1.8e-18/1.2e-19
50 0 29/17 92/41 1.9e-18/5.5e-15

Prob. 12 10 0 6/6 11/10 1.4e-15/9.9e-20

where W is any value satisfying

ψ(zk) ≤ W ≤ max
j=0,1,...,Mk

ψ(zk−j)

and Mk are nonnegative integers bounded above for all k such that the oc-
currence of nonnegative indices does not happen. Define zk+1 := zk+δ`k∆zk.

The reason why we choose a nonmonotone line search here is that in most cases
it increases the stability of algorithms. The requirement (19), which automatically
holds for Algorithm 3.3, is to guarantee the global convergence of the algorithm. In
the implementation we choose W as follows:

(1) Set W = ψ(z0) at the beginning of the algorithm.
(2) Keep the value of W fixed as long as

ψ(zk) ≤ min
j=0,1,...,5

ψ(zk−j).(21)

(3) If (21) is not satisfied at the kth iteration, set W = ψ(zk).
For a detailed description of the above nonmonotone line search technique and

its motivation, see [7].
We choose the CHKS smoothing function in G. The function has been widely

used in continuation methods. Algorithm 3.3 with the above steps was implemented
in Matlab on an SGI INDIGO workstation. In all computations, the termination
criterion is

ψ(zk) ≤ 10−12

and the parameter setting is

σ = 0.5× 10−3, δ = 0.5, ū = (0.1, . . . , 0.1), γ = 0.2×min{1, 1/‖ū‖}.
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Table 2
Numerical results for VIPs.

Example Dim. x0 It NF FF

5.1 5 (0 0 100 0 0) 22 33 1.2e-17
(100 0 0 0 0) 28 47 7.8e-18
(1 2 3 4 5) 12 15 7.3e-27
(0 0 0 0 0) 11 17 8.5e-27
(1 1 1 1 1) 12 19 1.8e-18

5.2 3 (0 0 0) 4 6 6.0e-16
(0.5 0.5 0.5) 4 5 2.6e-22

( 1 2 3) 4 5 5.8e-23
(4 3 2) 4 5 2.8e-20

5.3 10 e 19 43 3.4e-19
0 20 44 1.4e-18

5.4 4 0 7 11 8.1e-18
e 5 6 1.4e-13

(-4 -13 -7 -5) 6 10 1.7e-16
5.5 3 (1 1 0) 6 7 4.2e-15

(4 3 2) 8 9 1.2e-13
(1 1 1) 7 8 1.3e-17
(1 2 3) 8 9 3.5e-15

5.6 1 0 15 16 1.4e-13
e 15 16 9.2e-13

5.7 2 0 4 5 3.4e-16
e 3 4 2.4e-13

10e 6 7 2.2e-19
-e 5 6 1.5e-13

Our numerical results are summarized in Tables 1 and 2, where we present the fol-
lowing data:

Example: Number of test examples,
Dim: Dimension of the test problem,
x0: Starting point,
It: Number of iterations needed until termination,
NF : Number of function evaluations needed until termination,
FF : Value of ψ(·) at the final iterate.

The test problems are separated into two groups. One group consists of 11 nonlin-
ear complementarity problems, which were also tested by Qi, Sun, and Zhou [22] with
the same problem names. Hence we do not give the detailed description of the prob-
lems in this group. Numerical results on those problems are summarized in Table 1.
The other groups of the test problems are variational inequality problems VIP(F,X),
which are taken from the literature with a brief description as follows. It is known
that, by introducing Lagrange multipliers, VIP(F,X) can be equivalently reformu-
lated as BVI under some reasonable conditions. We stress that the last two small
problems in this group were proposed to show the behavior of our regularized method
for problems with unbounded or empty solution sets. The numerical results for this
group are reported in Table 2.

Example 5.1. The problem was tested by Taji, Fukushima, and Ibaraki [27] and
also was tested as the second example by Kanzow and Qi [17]. F is nonlinear, the
dimension n = 5, and the feasible region in this example is polyhedral and is given by

X := {x ∈ Rn| Ax ≤ b, x ≥ 0},
where the data for F,A, b is specified in Table 6 of [27].
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Example 5.2. This example is a variational inequality reformulation of the convex
optimization problem 35 from the test problem collection [14] by Hock and Schitt-
kowski and was tested in [17]. Its dimension is n = 3, and the feasible set is given by

X := {x ∈ R3| 3− x1 − x2 − 2x3 ≥ 0, x ≥ 0}.

Example 5.3. The function F is from the Nash–Cournot production problem
discussed in [20]; here n = 10. The feasible region was given by

X :=

{
x ∈ R10|

10∑
i=1

xi = 10, x ≥ 0

}
.

The problem was initially tested by Solodov and Tseng [25].
Example 5.4. The function F is from the Kojima–Shindo problem discussed in

[20]; here n = 4. The feasible region was given by

X :=

{
x ∈ R4|

4∑
i=1

xi = 4, x ≥ 0

}
.

The problem was initially tested by Solodov and Tseng [25].
Example 5.5. This is the first example used in the paper by Fukushima [11]. F

is a nonlinear function of dimension n = 3, and the feasible set, in contrast to all
previous examples is nonlinear; more precisely, it is given by

X := {x ∈ R3| 1− x2
1 − 0.4x2

2 − 0.6x2
3 ≥ 0}.

Example 5.6. This is an one-dimensional problem with no constraints, i.e.,

F (x) = ex and X = R.

Obviously F (x) = 0 has no solution and F (x) is a nonuniform P -function.
Example 5.7. This problem is a two-dimensional linear complementarity problem

problem with an unbounded solution set. Here F (x) = Mx+ q and

M =

(
1 1
0 0

)
and q =

( −1
0

)
.

F is a P0-function and the solution set is given by

S = {(x1, x2)| (0, x2), x2 ≥ 1} ∪ {(x1, x2)| x1 ≥ 0, x2 ≥ 0, x1 + x2 − 1 = 0}.

If they were available, we took for x0 the starting point(s) from the literature
and set all components of the initial Lagrange multipliers to one when we tested
variational inequality problems.

In Table 1, we also give numerical results of the Qi–Sun–Zhou method on those
nonlinear complementarity problems for comparison. For example, It#1 stands for
the iteration number of our Algorithm 3.3, while It#2 is the iteration number of the
Qi–Sun–Zhou algorithm on the same problems. NF#1/#2 and FF#1/#2 have the
same meaning. As we see from Table 1, our regularized smoothing Newton method
behaves similarly to the one in [22]. It is quite reasonable since for NCPs ai = 0
and bi = ∞, for all i ∈ N, i.e., for each i ∈ N, at least one of ai and bi is finite.
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The property [22, Theorem 2.1] makes the Qi–Sun–Zhou method applicable to P0

NCP. The numerical results given in Table 2 are quite promising, and most problems
are solved only after a small number of iterations. Although Example 5.6 has no
solution, we found that the function value sequence ‖F (xk)‖2 converges to zero and
the algorithm always terminated somewhere around 10−14, a point satisfying the
termination criterion. Regarding Example 5.7 which has an unbounded solution set,
we observed that the iterations, from various starting points, converge to the solutions
on the segment {(x1, x2)| x1 ≥ 0, x2 ≥ 0, x1 +x2−1 = 0}. We also note that Example
5.5 is the only example where the feasible region is nonlinear.

6. Conclusions. In this paper, we introduced a regularized smoothing Newton
method for the solution of box constrained variational inequality problems with P0-
functions. Our numerical results on some selected variational inequality problems
show the success of the proposed method. We do not make numerical experiments with
the neural network or the uniform smoothing function since we feel that the strong
convergence property and the successful numerical results with CHKS smoothing
function verified the promise of the method considered. We expect that the method
can be used to solve practical large-scale problems efficiently. Recently, Zhou, Sun,
and Qi [28] made extensive numerical experiments on a class of regularized smoothing
methods, including the one proposed in this paper. Their results show the promise
and robustness of the regularization technique. When we were finalizing the paper,
we received a new report by Sun [26] that describes a regularization Newton method
for the solution of nonlinear complementarity problems. In fact we consider a larger
class of problems; in particular, our method can treat problems with free variables.
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1. Introduction. In 1797, Lagrange [14] published his famous multiplier rule,
which turned out to be an essential tool in constrained optimization. He developed
this rule in connection with problems from mechanics. First he applied this principle
to infinite dimensional problems in the calculus of variations and then he extended
it to finite dimensional optimization problems. It is well known that the Karush–
Kuhn–Tucker conditions in finite dimensional optimization, the maximum principle
in optimal control theory, and the extended Kolmogorov criterion in approximation
theory can be deduced from a general multiplier rule.

In this paper we consider general optimization problems with a set-valued objec-
tive map and a set-valued constraint, and we show that the Lagrange rule remains
valid in such a general setting as well.

Throughout this paper we use the following standard assumption:

Let (X, ‖ · ‖X) be a real normed space;
let (Y, ‖ · ‖Y ) and (Z, ‖ · ‖Z) be real normed spaces
partially ordered by convex pointed cones CY ⊂ Y
and CZ ⊂ Z, respectively;

let Ŝ be a nonempty subset of X;

and let F : Ŝ → 2Y and G : Ŝ → 2Z be set-valued maps.

(1.1)

Notice that a cone CY (or CZ) is called pointed if CY ∩ (−CY ) = {0Y } (or
CZ ∩ (−CZ) = {0Z}). It is well known that the convex pointed cones CY and CZ
induce partial orderings ≤CY and ≤CZ (i.e., reflexive transitive and antisymmetric
binary relations being compatible with addition and scalar multiplication) in the
spaces Y and Z (for instance, compare [8]).

Under the assumption (1.1) we consider the constrained set-valued optimization
problem 

min F (x)
subject to the constraints
G(x) ∩ (−CZ) 6= ∅,
x ∈ Ŝ.

(1.2)
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For simplicity let S := {x ∈ Ŝ | G(x) ∩ (−CZ) 6= ∅} denote the feasible set of
this problem, which is assumed to be nonempty. If G is single-valued, the constraint
in (1.2) reduces to G(x) ∈ −CZ or G(x) ≤CZ 0Z generalizing equality and inequality
constraints. If, in addition, F is single-valued, then the problem (1.2) is a general
vector optimization problem.

In the standard optimization theory it is always assumed that the objective func-
tion and the function describing the constraints are exactly given. Sometimes these
functions are not exactly given or their values may vary in a certain range. Opti-
mization problems with uncertain functions can be found in stochastic optimization
and fuzzy set optimization. In set-valued optimization it is assumed that these func-
tions are set-valued and that the ranges (in which the function values can vary) are
explicitly known. Hence, there are close relationships between these three types of
optimization problems.

As in vector optimization there are different optimality concepts in use. We recall
two standard optimality notions (where we use the names given in [15], [16], and [11]).

Definition 1.1. Let the problem (1.2) be given. Let F (S) :=
⋃
x∈S F (x) denote

the image set of F .
(a) A pair (x̄, ȳ) with x̄ ∈ S and ȳ ∈ F (x̄) is called a minimizer of the problem

(1.2) (or a minimizer of F on S), if ȳ is a minimal element (or an Edgeworth–
Pareto point) of the set F (S), i.e.,

y ∈ F (S), y ≤CY ȳ =⇒ y = ȳ,

or in other words

({ȳ} − CY ) ∩ F (S) = {ȳ}.
(b) Let CY have a nonempty interior int(CY ). A pair (x̄, ȳ) with x̄ ∈ S and

ȳ ∈ F (x̄) is called a weak minimizer of the problem (1.2) (or a weak minimizer
of F on S), if ȳ is a weakly minimal element of the set F (S), i.e.,

({ȳ} − int(CY )) ∩ F (S) = ∅.
It is known from vector optimization that the minimality notion is the suitable

optimality concept in applications, but in important cases it is not possible to give
optimality conditions for it that are necessary and sufficient. On the other hand, the
weak minimality notion is not the right tool for applications but in many cases it can
be completely characterized (for instance, see [8]). Therefore, we restrict ourselves
mainly to the concept of a weak minimizer.

Set-valued optimization problems have been investigated by many authors; for
instance, there are papers on optimality conditions (e.g., [2], [19], [3], [4], [6], [16],
[18], [11]), duality theory (e.g., [20], [5], [17]), and related topics (e.g., [21], [13]).

For the formulation of a multiplier rule in the nonlinear case one needs an appro-
priate differentiability concept. As early as 1981 Aubin [1] introduced the (nowadays)
so-called contingent derivative which is of great importance in set-valued analysis. But
it turned out that this differentiability notion is not the right tool for the formulation
of optimality conditions in set-valued optimization (see [11]). Therefore, a modifi-
cation called contingent epiderivative has been presented (in [11]) which modifies a
notion introduced by Aubin [1] as upper contingent derivative. It has been shown in
[11] that one gets optimality conditions for unconstrained problems that are neces-
sary and sufficient under suitable assumptions. Therefore, contingent epiderivatives
are used for the investigations in this paper.
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Definition 1.2. Let (E1, ‖ · ‖E1
) and (E2, ‖ · ‖E2

) be real normed spaces, let E2

be partially ordered by a convex cone K ⊂ E2, let M be a nonempty subset of E1, and
let H : M → 2E2 be a set-valued map.

(a) The set

epi(H) := {(x, y) ∈ E1 × E2 | x ∈M, y ∈ H(x) +K}
is called the epigraph of H.

(b) Let a pair (x̄, ȳ) ∈ E1 × E2 with x̄ ∈ M and ȳ ∈ H(x̄) be given. A single-
valued map DH(x̄, ȳ) : E1 → E2 whose epigraph equals the contingent cone
to the epigraph of H at (x̄, ȳ), i.e.,

epi(DH(x̄, ȳ)) = T (epi(H), (x̄, ȳ)),

is called the contingent epiderivative of H at (x̄, ȳ).
Recall that the contingent cone T (epi(H), (x̄, ȳ)) consists of all tangent vectors

h := limn→∞ λn((xn, yn) − (x̄, ȳ)) with (x̄, ȳ) = limn→∞(xn, yn) ((xn, yn) ∈ epi(H)
for all n ∈ N) and λn > 0 (n ∈ N). Properties of the contingent epiderivative can be
found in [11].

Since convexity plays an important role in the following investigations, recall the
definition of cone-convex maps.

Definition 1.3. Let E1 and E2 be real linear spaces, let E2 be partially ordered
by a convex cone K ⊂ E2, and let M be a nonempty convex subset of E1. A set-valued
map H : M → 2E2 is called K-convex if for all x1, x2 ∈M and λ ∈ [0, 1],

λH(x1) + (1− λ)H(x2) ⊂ H(λx1 + (1− λ)x2) +K.

Moreover, the dual cone of CY in assumption (1.1) is defined as

CY ∗ := {y∗ ∈ Y ∗ | y∗(y) ≥ 0 for all y ∈ CY }.
(Similarly, the dual cone of CZ is denoted CZ∗ .) The cone generated by a nonempty
subset M of a real linear space is denoted

cone(M) := {λx | λ ≥ 0 and x ∈M}.
On the basis of the concept of contingent epiderivatives we prove in section 2

a multiplier rule as a necessary optimality condition of problem (1.2) and discuss a
regularity assumption. In section 3 assumptions are presented which guarantee that
this multiplier rule is a sufficient optimality condition as well. The results are based
on the presentation in [7].

2. A necessary optimality condition. We begin our investigations with a
generalized Lagrange multiplier rule as a necessary optimality condition for set-valued
optimization problems.

Theorem 2.1. Let the cone CY have a nonempty interior int(CY ), let the set
Ŝ be convex, and let the maps F and G be CY -convex and CZ-convex, respectively.
Assume that (x̄, ȳ) ∈ X × Y with x̄ ∈ S and ȳ ∈ F (x̄) is a weak minimizer of the
problem (1.2). Let the contingent epiderivative of (F,G) at (x̄, (ȳ, z̄)) for an arbitrary
z̄ ∈ G(x̄) ∩ (−CZ) exist. Then there are continuous linear functionals t ∈ CY ∗ and
u ∈ CZ∗ with (t, u) 6= (0Y ∗ , 0Z∗) so that

t(y) + u(z) ≥ 0 for all (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄) with x ∈ Ŝ
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and

u(z̄) = 0.

If, in addition to the above assumptions, the regularity assumption{
z | (y, z) ∈ D(F,G)(x̄, (ȳ, z̄))

(
cone(S − {x̄}))}+ cone(CZ + {z̄}) = Z(2.1)

is satisfied, then t 6= 0Y ∗ .
Proof. In the product space Y × Z we define for an arbitrary z̄ ∈ G(x̄) ∩ (−CZ)

the following set:

M :=

⋃
x∈Ŝ

D(F,G)(x̄, (ȳ, z̄))(x− x̄)

+
(
CY × (CZ + {z̄})).

The proof of this theorem consists of several steps. First, we prove two important
properties of this set M and then we apply a separation theorem in order to obtain
the multiplier rule. Finally, we show t 6= 0Y ∗ under the regularity assumption.

(a) We show that the nonempty set M is convex. We prove the convexity for
the translated set M ′ := M − {(0Y , z̄)} and immediately get the desired result. For
this proof we fix two arbitrary pairs (y1, z1), (y2, z2) ∈ M ′. Then there are elements
x1, x2 ∈ Ŝ with

(yi, zi) ∈ D(F,G)(x̄, (ȳ, z̄))(xi − x̄) +
(
CY × CZ

)
for i = 1, 2,

resulting in

(xi − x̄, (yi, zi)) ∈ T
(
epi(F,G), (x̄, (ȳ, z̄))

)
for i = 1, 2.

This contingent cone is convex because the map (F,G) is cone-convex and, therefore,
the epigraph epi(F,G) is a convex set (see [11, Lem. 1]). Then we obtain for all
λ ∈ [0, 1]

λ(x1 − x̄, (y1, z1)) + (1− λ)(x2 − x̄, (y2, z2)) ∈ T (epi(F,G), (x̄, (ȳ, z̄))
)
,

implying

(λy1 +(1−λ)y2, λz1 +(1−λ)z2) ∈ D(F,G)(x̄, (ȳ, z̄))(λx1 +(1−λ)x2−x̄)+(CY ×CZ).

Consequently, the set M is convex.
(b) In the next step of the proof we show the equality

M ∩
[(− int(CY )

)× (− int(CZ)
)]

= ∅.(2.2)

Assume that this equality does not hold. Then there are elements x ∈ Ŝ and (y, z) ∈
Y × Z with

(y, z + z̄) ∈
[
D(F,G)(x̄, (ȳ, z̄))(x− x̄) +

(
CY × (CZ + {z̄}))]

∩
[(− int(CY )

)× (− int(CZ)
)]
,(2.3)

implying

(x− x̄, (y, z)) ∈ T (epi(F,G), (x̄, (ȳ, z̄))
)
.
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This means that there are sequences (xn, (yn, zn))n∈N of elements in epi(F,G) and a
sequence (λn)n∈N of positive real numbers with

(x̄, (ȳ, z̄)) = lim
n→∞(xn, (yn, zn))

and

(x− x̄, (y, z)) = lim
n→∞λn

(
xn − x̄, (yn − ȳ, zn − z̄)

)
.(2.4)

Since y ∈ −int(CY ) by (2.3), we conclude λn(yn− ȳ) ∈ −int(CY ) for sufficiently large
n ∈ N resulting in

yn ∈ {ȳ} − int(CY ) for sufficiently large n ∈ N.(2.5)

Because of (xn, (yn, zn)) ∈ epi(F,G) for all n ∈ N there are elements ŷn ∈ F (xn) with

yn ∈ {ŷn}+ CY for all n ∈ N.
Together with (2.5) we obtain

ŷn ∈ {ȳ} − int(CY )− CY = {ȳ} − int(CY ) for sufficiently large n ∈ N
or ({ȳ} − int(CY )

) ∩ F (xn) 6= ∅ for sufficiently large n ∈ N.(2.6)

Moreover, from (2.3) we conclude z + z̄ ∈ −int(CZ), and with (2.4) we obtain

λn(zn − z̄) + z̄ ∈ −int(CZ) for sufficiently large n ∈ N
or

λn

(
zn −

(
1− 1

λn

)
z̄
)
∈ −int(CZ) for sufficiently large n ∈ N,

implying

zn −
(

1− 1

λn

)
z̄ ∈ −int(CZ) for sufficiently large n ∈ N.(2.7)

Since y 6= 0Y (by (2.3)), we conclude with (2.4) that

λn > 1 for sufficiently large n ∈ N.
By assumption we have z̄ ∈ −CZ and, therefore, we get from (2.7)

zn ∈ −CZ − int(CZ) = −int(CZ) for sufficiently large n ∈ N.(2.8)

Because of (xn, (yn, zn)) ∈ epi(F,G) for all n ∈ N there are elements ẑn ∈ G(xn) with

zn ∈ {ẑn}+ CZ for all n ∈ N.
Together with (2.8) we then get

ẑn ∈ {zn} − CZ ⊂ −int(CZ) for sufficiently large n ∈ N
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and

ẑn ∈ G(xn) ∩ (−CZ) for sufficiently large n ∈ N.(2.9)

Hence, for a sufficiently large n ∈ N we have x̂n ∈ Ŝ,
({ȳ}− int(CY )

)∩F (xn) 6= ∅ (by
(2.6)), and G(xn)∩(−CZ) 6= ∅ (by (2.9)) and, therefore, (x̄, ȳ) is not a weak minimizer
of the problem (1.2), which is a contradiction to the assumption of the theorem.

(c) In this step we now prove the first part of the theorem. By part (a) the set M is
convex and by (b) the equality (2.2) holds. By Eidelheit’s separation theorem (e.g., see
[9]) there are continuous linear functionals t ∈ Y ∗ and u ∈ Z∗ with (t, u) 6= (0Y ∗ , 0Z∗)
and a real number γ > 0 so that

t(cY ) + u(cZ) < γ ≤ t(y) + u(z)(2.10)

for all cY ∈ −int(CY ), cZ ∈ −int(CZ), (y, z) ∈M.

Since (0, z̄) ∈M, we obtain from (2.10) for cY = 0Y

u(cZ) < u(z̄) for all cZ ∈ −int(CZ).(2.11)

If we assume that u(cZ) > 0 for a cZ ∈ −int(CZ), we get a contradiction to (2.11)
because CZ is a cone. Therefore, we obtain

u(cZ) ≤ 0 for all cZ ∈ −int(CZ),

resulting in u ∈ CZ∗ because CZ ⊂ cl(int(CZ)). For (0, z̄) ∈ M and cZ = 0Z we get
from (2.10)

t(cY ) < u(z̄) ≤ 0 for all cY ∈ −int(CY )(2.12)

(notice that z̄ ∈ −CZ and u ∈ CZ∗). This inequality implies t ∈ CY ∗ . From (2.11)
and (2.12) we immediately obtain u(z̄) = 0. In order to prove the inequality of the
multiplier rule we conclude from (2.10) with cY = 0Y and cZ = 0Z

t(y) + u(z) ≥ 0 for all (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄) with x ∈ Ŝ.
Hence, the first part of the theorem is shown.

(d) Finally, we prove t 6= 0Y ∗ under the regularity assumption (2.1). For an
arbitrary ẑ ∈ Z there are elements x ∈ Ŝ, cZ ∈ CZ and nonnegative real numbers α
and β with

ẑ = z + β(cZ + z̄) for (y, z) = D(F,G)(x̄, (ȳ, z̄))
(
α(x− x̄)

)
.

Since D(F,G)(x̄, (ȳ, z̄)) is positively homogeneous (see [11, Thm. 4], where one does
not need the cone-convexity of G), we can write

(y, z) = αD(F,G)(x̄, (ȳ, z̄))(x− x̄) =: α(ỹ, z̃).

Assume that t = 0Y ∗ . Then we conclude from the multiplier rule

u(ẑ) = u(z) + βu(cZ + z̄)

= αu(z̃)︸︷︷︸
≥ 0

+β u(cZ)︸ ︷︷ ︸
≥ 0

+β u(z̄)︸︷︷︸
= 0

≥ 0.
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Because ẑ is arbitrarily chosen we have

u(ẑ) ≥ 0 for all z ∈ Z,
implying u = 0Z∗ . But this is a contradiction to (t, u) 6= (0Y ∗ , 0Z∗).

Theorem 2.1 generalizes the Lagrange multiplier rule as a necessary optimality
condition to set-valued optimization. Since a minimizer of the problem (1.2) is also
a weak minimizer (compare [8, p. 106]), this multiplier rule is a necessary optimality
condition for a minimizer as well.

The basic idea for the first part of the proof of Theorem 2.1 has been given by
Corley [6] using a different differentiability concept. This idea of proof has also been
used by Luc and Malivert [18] (e.g., see Theorem 5.6) for the contingent derivative.
They have already proved an optimality condition under a regularity assumption
(a generalized Slater condition). The regularity condition in Theorem 2.1 extends the
Kurcyusz–Robinson–Zowe regularity assumption (e.g., see [9]) to set-valued optimiza-
tion problems. It is weaker than a generalized Slater condition (compare Lemma 2.3).
Although the regularity condition in Theorem 2.1 also includes the objective map F,
one uses only the second component of the contingent epiderivative of (F,G).

In Theorem 2.1 the existence of the contingent epiderivative of (F,G) is assumed.
It is still an open problem whether there are close relations between this derivative
and the contingent epiderivatives of F and G in the general case.

It is important to note that the maps F and G are assumed to be cone-convex in
Theorem 2.1, whereas convexity of the objective function and the constraint function
is not needed in the single-valued scalar case (e.g., see [9, Thm. 5.3]). In fact, the
cone-convexity is only needed in part (a) of the proof in order to obtain the convexity
of the contingent cone. If we would modify the notion of the contingent epiderivative
in such a way that we replace the contingent cone by Clarke’s tangent cone, which is
always convex, we could drop the cone-convexity assumption in Theorem 2.1.

With the following example we illustrate the usefulness of the necessary condition
in Theorem 2.1.

Example 2.2. Let (X, ‖ · ‖X) be a real normed space, and let f, g, h : X → R be
given functionals with

f(x) ≤ g(x) for all x ∈ X.
Then we consider the set-valued map F : X → 2R with

F (x) := {y ∈ R | f(x) ≤ y ≤ g(x)}
and the set-valued map G : X → 2R (which is actually single-valued) with

G(x) := {h(x)}.
Under these assumptions we investigate the optimization problem

min F (x)
subject to the constraints
G(x) ∩ (−R+) 6= ∅,
x ∈ X.

(2.13)

This is a special problem of the general type (1.2). Notice that the constraint is
equivalent to the inequality h(x) ≤ 0. If f = g this problem reduces to a standard
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optimization problem. But if the data of the objective function of a standard problem
are not exactly known, it makes sense to replace the objective by a set-valued objective
representing fuzzy outcomes. In this example the values of the objective may vary
between the values of two known functions.

Next, we assume that (x̄, f(x̄)) is a weak minimizer of problem (2.13) and that f
and h are continuous at x̄ and convex. Since

epi(F,G) = {(x, (y, z)) ∈ X × R2 | x ∈ X, y ≥ f(x), z ≥ h(x)},

we conclude

T (epi(F,G), (x̄, (f(x̄), h(x̄)))) = epi(f, g)′(x̄),

i.e., that the contingent derivative of (F,G) at (x̄, (f(x̄), h(x̄))) exists and equals the
directional derivative (f, h)′(x̄) = (f ′, h′)(x̄) of (f, h) at x̄ (see [10, Cor. 1] for the
case of one functional). Consequently, by the previous theorem there are nonnegative
numbers t and u with (t, u) 6= (0, 0) so that

tf ′(x̄)(x− x̄) + uh′(x̄)(x− x̄) ≥ 0 for all x ∈ X

and

uh(x̄) = 0.

If f ′(x̄) and h′(x̄) are linear (e.g., in the case of Fréchet differentiability), we even
conclude that

tf ′(x̄) + uh′(x̄) = 0X∗

and

uh(x̄) = 0.

Hence, for the special set-valued optimization problem (2.13) we obtain a classical
multiplier rule. Finally, we discuss the regularity condition of Theorem 2.1 for this
problem. Assume that for every z < 0 there is an x ∈ X with z = h′(x̄)(x). Then
h′(x̄)(X) ⊃ −R+, and because of h(x̄) ≤ 0 we obtain

h′(x̄)(cone(X − {x̄})) + cone(R+ + {h(x̄)})
= h′(x̄)(X)︸ ︷︷ ︸

⊃−R+

+

{
R if h(x̄) < 0,
R+ if h(x̄) = 0,

= R.

Hence, the general regularity condition (2.1) is satisfied in this case.
The next lemma shows that a generalization of the well-known Slater condition

implies the extended Kurcyusz–Robinson–Zowe constraint qualification.
Lemma 2.3. Let int(Ŝ) 6= ∅; let x̄ ∈ S, ȳ ∈ F (x̄), and z̄ ∈ G(x̄) ∩ (−CZ) be

arbitrarily given; and let the contingent epiderivative of (F,G) at (x̄, (ȳ, z̄)) exist. If
there is an x̂ ∈ int(Ŝ) with

z̄ + z ∈ −int(CZ) for (y, z) = D(F,G)(x̄, (ȳ, z̄))(x̂− x̄),
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then the regularity assumption (2.1) is fulfilled.
Proof. Take an arbitrary ẑ ∈ Z. Since D(F,G)(x̄, (ȳ, z̄)) is positive homogeneous

(this result is proved in [11, Thm. 4], where one does not need the cone-convexity of
G), we obtain for a sufficiently large λ > 0 and λ(y, z) = D(F,G)(x̄, (ȳ, z̄))(λ(x̂−x̄)) ∈
D(F,G)(x̄, (ȳ, z̄))

(
cone(S − {x̄}))

ẑ = λz + λ
[
−z̄ − z +

1

λ
ẑ︸ ︷︷ ︸

∈ CZ

+z̄
]

∈ {z̃ | (y, z̃) ∈ D(F,G)(x̄, (ȳ, z̄))
(
cone(S − {x̄}))}+ cone(CZ + {z̄}).

Hence, we conclude

Z ⊂ {z̃ | (y, z̃) ∈ D(F,G)(x̄, (ȳ, z̄))
(
cone(S − {x̄}))}+ cone(CZ + {z̄}).

Because the converse inclusion is trivial, the regularity assumption (2.1) is thus
fulfilled.

The following example shows that the regularity condition (2.1) can be satisfied
although the regularity assumption in Lemma 2.3 is not fulfilled.

Example 2.4. We consider X = Z = L2[0, 1] with the natural ordering cone

CZ := {x ∈ L2[0, 1] | x(t) ≥ 0 almost everywhere on [0, 1]}
(notice that int(CZ) = ∅). Take an arbitrary a ∈ L2[0, 1] and define the set-valued
map G : X → 2Z with

G(x) = {−x+ a}+ CZ for all x ∈ X.
Then we investigate the constraint of problem (1.2)

G(x) ∩ (−CZ) 6= ∅, x ∈ X,
being equivalent to

−x+ a ∈ −CZ , x ∈ X.
For instance, choose the objective map F : X → 2R with

F (x) = {〈x, x〉} for all x ∈ X
(〈·, ·〉 denotes the scalar product in X).

Since int(CZ) = ∅, it is obvious that Lemma 2.3 is not applicable in this case.
Therefore, we investigate the regularity assumption (2.1) in Theorem 2.1. For an
arbitrary x̄ ∈ X with z̄ := −x̄+ a ∈ −CZ , we obtain with

epi(F,G) = {(x, (y, z)) ∈ X × R× Z | x ∈ X, y ≥ 〈x, x〉, −x+ a ≤CZ z}
the equality

T (epi(F,G), (x̄, (〈x̄, x̄〉, z̄))) = epi(2〈x, ·〉,−id),

implying

D(F,G)(x̄, (ȳ, z̄)) = (2〈x, ·〉,−id)

(id denotes the identity). Then we get

−id(cone(X − {x̄})) + cone(CZ + {z̄}) = X + cone(CZ + {z̄}) = X = Z,

i.e., the regularity condition (2.1) in Theorem 2.1 is fulfilled.
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3. A sufficient optimality condition. In this section we answer the question
under which assumptions the multiplier rule in Theorem 2.1 is also a sufficient op-
timality condition. It is known from standard optimization theory that convexity or
generalized concepts like quasi convexity play the essential role. Therefore, we begin
with an extension of the quasi convexity concept to set-valued maps.

Definition 3.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, let Ŝ be a
nonempty subset of X, let C̃ be a nonempty subset of Y, and let F : Ŝ → 2Y be a set-
valued map whose contingent epiderivative exists at (x̄, ȳ) with x̄ ∈ Ŝ and ȳ ∈ F (x̄).
The map F is called C̃-quasi-convex at (x̄, ȳ) if for all x ∈ Ŝ(

F (x)− {ȳ}) ∩ C̃ 6= ∅ =⇒ ({DF (x̄, ȳ)(x− x̄)}+ CY
) ∩ C̃ 6= ∅.

This notion extends a concept introduced in [12] (see also [9]) for problems in
single-valued optimization. The following lemma shows that cone-convexity implies
quasi convexity in this set-valued setting.

Lemma 3.2. Let Ŝ be a nonempty convex subset of a real normed space (X, ‖·‖X),
let C̃ be a nonempty subset of the real normed space (Y, ‖ · ‖Y ) partially ordered by a
convex pointed cone CY ⊂ Y, and let a set-valued map F : Ŝ → 2Y be given whose
contingent epiderivative exists at (x̄, ȳ) with x̄ ∈ Ŝ and ȳ ∈ F (x̄). If F is CY -convex,
then it is also C̃-quasi-convex at (x̄, ȳ).

Proof. Choose an arbitrary x ∈ Ŝ with(
F (x)− {ȳ}) ∩ C̃ 6= ∅.

Since F is CY -convex, we conclude with [11, Lem. 3]

F (x)− {ȳ} ⊂ {DF (x̄, ȳ)(x− x̄)}+ CY .

Consequently, we obtain({DF (x̄, ȳ)(x− x̄)}+ CY
) ∩ C̃ 6= ∅.

It is known from standard optimization theory (see [12] and [9]) that the quasi
convexity of a certain composite map completely characterizes the sufficiency of a
multiplier rule. This idea is extended in the next theorem.

Theorem 3.3. Let the cone CY have a nonempty interior int(CY ), and let the
contingent derivative of (F,G) exist at (x̄, (ȳ, z̄)) with x̄ ∈ S, ȳ ∈ F (x̄), and z̄ ∈ G(x̄).
Moreover, assume that there are continuous linear functionals t ∈ CY ∗\{0Y ∗} and
u ∈ CZ∗ with

t(y) + u(z) ≥ 0 for all (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄) with x ∈ Ŝ(3.1)

and

u(z̄) = 0.(3.2)

Then (x̄, ȳ) is a weak minimizer of F on

S̃ :=
{
x ∈ Ŝ | G(x) ∩ (− CZ + cone(z̄)− cone(z̄)

) 6= ∅}
if and only if the map (F,G) : Ŝ → 2Y × 2Z is C̃-quasi-convex at (x̄, (ȳ, z̄)) with

C̃ :=
(− int(CY )

)× (− CZ + cone(z̄)− cone(z̄)
)
.
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Proof. First we show under the given assumptions(({y}+CY )×({z}+CZ))∩ C̃ = ∅ for all (y, z) = D(F,G)(x̄, (ȳ, z̄))(x−x̄) with x ∈ Ŝ.
(3.3)
For the proof of this assertion assume that there is an x ∈ Ŝ with(({y}+ CY

)× ({z}+ CZ
)) ∩ C̃ 6= ∅ for (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄),

i.e., ({y}+ CY
) ∩ (− int(CY )

) 6= ∅(3.4)

and ({z}+ CZ
) ∩ (− CZ + cone(z̄)− cone(z̄)

) 6= ∅.(3.5)

The condition (3.4) implies

y ∈ −CY − int(CY ) = −int(CY ),

and with the condition (3.5) we obtain

z ∈ −CZ − CZ + cone(z̄)− cone(z̄) = −CZ + cone(z̄)− cone(z̄).

Consequently, we get with (3.2)

t
(
y
)

+ u
(
z
)
< 0,

which contradicts the inequality (3.1). Hence, the set equation (3.3) is satisfied.
Now we come to the actual proof of this theorem. First, we assume that the map

(F,G) is C̃-quasi-convex at (x̄, (ȳ, z̄)). Then we conclude with the equality (3.3)((
F (x)− {ȳ})× (G(x)− {z̄})) ∩ C̃ = ∅ for all x ∈ Ŝ.

Hence, there is no x ∈ Ŝ with(
F (x)− {ȳ}) ∩ (− int(CY )

) 6= ∅
and (

G(x)− {z̄}) ∩ (− CZ + cone(z̄)− cone(z̄)
) 6= ∅.

Consequently, there is no x ∈ Ŝ with(
F (x)− {ȳ}) ∩ (− int(CY )

) 6= ∅
and

G(x) ∩ (− CZ + cone(z̄)− cone(z̄)
) 6= ∅.

This means that (x̄, ȳ) is a weak minimizer of F on S̃.
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Finally, we assume that (x̄, ȳ) is a weak minimizer of F on S̃. Then there is no
x ∈ Ŝ with (

F (x)− {ȳ}) ∩ (− int(CY )
) 6= ∅

and

G(x) ∩ (− CZ + cone(z̄)− cone(z̄)
) 6= ∅,

implying (
G(x)− {z̄}) ∩ (− CZ + cone(z̄)− cone(z̄)

) 6= ∅.
Then we obtain((

F (x)− {ȳ})× (G(x)− {z̄})) ∩ C̃ = ∅ for all x ∈ Ŝ.

Together with the equality (3.3), we conclude that the map (F,G) is C̃-quasi-
convex.

Notice that the set cone(z̄)− cone(z̄) in Theorem 3.3 equals the one-dimensional
linear subspace of Z generated by z̄, i.e., {λz̄ ∈ Z | λ ∈ R}.

Based on the result of Theorem 3.3 we can now formulate the type of quasi
convexity that is needed for the multiplier rule to be a sufficient optimality condition.

Corollary 3.4. Let the cone CY have a nonempty interior int(CY ), and let the
contingent derivative of (F,G) exist at (x̄, (ȳ, z̄)) with x̄ ∈ S, ȳ ∈ F (x̄) and z̄ ∈ G(x̄).
If there are continuous linear functionals t ∈ CY ∗\{0Y ∗} and u ∈ CZ∗ with

t
(
y
)

+ u
(
z
) ≥ 0 for all (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄) with x ∈ Ŝ

and

u(z̄) = 0,

and if the map (F,G) : Ŝ → 2Y × 2Z is C̃-quasi-convex at (x̄, (ȳ, z̄)) with

C̃ :=
(− int(CY )

)× (− CZ + cone(z̄)− cone(z̄)
)
,

then (x̄, ȳ) is a weak minimizer of the problem (1.2).
Proof. By Theorem 3.3 (x̄, ȳ) is a weak minimizer of F on

S̃ =
{
x ∈ Ŝ | G(x) ∩ (− CZ + cone(z̄)− cone(z̄)

) 6= ∅}.
For every x ∈ S we obtain

∅ 6= G(x) ∩ (−CZ) ⊂ G(x) ∩ (− CZ + cone(z̄)− cone(z̄)
)
,

implying x ∈ S̃. Hence, we have S ⊂ S̃ and (x̄, ȳ) is a weak minimizer of the problem
(1.2).

Example 3.5. We investigate the optimization problem in Example 2.2 again.
Since F is R+-convex (notice that f is a convex functional) and G is R+-convex
(notice that h is also a convex functional), the composite map (F,G) : X → 2R × 2R

has the required quasi-convexity property. Hence, if there are real numbers t > 0 and
u ≥ 0 with

tf ′(x̄)(x− x̄) + uh′(x̄)(x− x̄) ≥ 0 for all x ∈ X
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and

uh(x̄) = 0,

then (x̄, f(x̄)) is a weak minimizer of the optimization problem (2.13) in Example
2.2.

If we combine Theorem 2.1 and Corollary 3.4, we obtain the main result of this
paper: a complete characterization of weak minimizers using the Lagrange multiplier
rule.

Corollary 3.6. Let the cone CY have a nonempty interior int(CY ), let the set
Ŝ be convex, and let the maps F and G be CY -convex and CZ-convex, respectively.
Assume that a pair (x̄, ȳ) ∈ X × Y with x̄ ∈ S and ȳ ∈ F (x̄) is given. Let the
contingent epiderivative of (F,G) at (x̄, (ȳ, z̄)) for an arbitrary z̄ ∈ G(x̄) ∩ (−CZ)
exist. Moreover, let the regularity assumption (2.1) be satisfied. Then (x̄, ȳ) is a weak
minimizer of the problem (1.2) if and only if there are continuous linear functionals
t ∈ CY ∗\{0Y ∗} and u ∈ CZ∗ with

t
(
y
)

+ u
(
z) ≥ 0 for all (y, z) = D(F,G)(x̄, (ȳ, z̄))(x− x̄) with x ∈ Ŝ

and

u(z̄) = 0.

4. Conclusion. For general set-valued optimization problems, a Lagrange mul-
tiplier rule is shown using the concept of contingent epiderivatives. Under appropriate
assumptions this multiplier rule is necessary and sufficient for weak minimizers in the
cone-convex case. Since in the standard optimization theory this optimality condition
has important applications in optimal control and approximation theory, it would
be interesting to see whether the maximum principle or the extended Kolmogorov
criterion can be generalized to set-valued problems. The main difficulty arises in the
calculation of the contingent epiderivative of the objective and constraint maps.
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Abstract. Recently, important contributions on convergence studies of conjugate gradient meth-
ods were made by Gilbert and Nocedal [SIAM J. Optim., 2 (1992), pp. 21–42]. They introduce a
“sufficient descent condition” to establish global convergence results. Although this condition is not
needed in the convergence analyses of Newton and quasi-Newton methods, Gilbert and Nocedal hint
that the sufficient descent condition, which was enforced by their two-stage line search algorithm, may
be crucial for ensuring the global convergence of conjugate gradient methods. This paper shows that
the sufficient descent condition is actually not needed in the convergence analyses of conjugate gra-
dient methods. Consequently, convergence results on the Fletcher–Reeves- and Polak–Ribière-type
methods are established in the absence of the sufficient descent condition.

To show the differences between the convergence properties of Fletcher–Reeves- and Polak–
Ribière-type methods, two examples are constructed, showing that neither the boundedness of the
level set nor the restriction βk ≥ 0 can be relaxed for the Polak–Ribière-type methods.
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1. Introduction. We consider the global convergence of conjugate gradient
methods for the unconstrained nonlinear optimization problem

min f(x),(1.1)

where f : Rn → R1 is continuously differentiable and its gradient is denoted by g. We
consider only the case where the methods are implemented without regular restarts.
The iterative formula is given by

xk+1 = xk + λkdk,(1.2)

where λk is a step-length and dk is the search direction defined by

dk =

{
−gk for k = 1,

−gk + βkdk−1 for k ≥ 2,
(1.3)

where βk is a scalar and gk denotes g(xk).
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The best-known formulas for βk are the following Fletcher–Reeves, Polak–Ribière,
and Hestenes–Stiefel formulas:

βFR
k = ‖gk‖2/‖gk−1‖2,(1.4)

βPR
k = gTk (gk − gk−1)/‖gk−1‖2,(1.5)

βHS
k = gTk (gk − gk−1)/dTk−1(gk − gk−1),(1.6)

where ‖ · ‖ denotes the l2-norm. The Fletcher–Reeves [4] method with an exact line
search was proved to be globally convergent on general functions by Zoutendijk [18].
However, the Polak–Ribière [13] and Hestenes–Stiefel [8] methods with the exact line
search are not globally convergent; see the counterexample of Powell [14]. Conjugate
gradient methods (1.2)–(1.3) with exact line searches satisfy the equality

−gTk dk = ‖gk‖2,(1.7)

which directly implies the sufficient descent condition

−gTk dk ≥ c‖gk‖2(1.8)

for some positive constant c > 0. This condition has been used often in the litera-
ture to analyze the global convergence of conjugate gradient methods with inexact
line searches. For instance, Al-Baali [1], Touati-Ahmed and Storey [15], Hu and
Storey [9], and Gilbert and Nocedal [5] analyzed the global convergence of algorithms
related to the Fletcher–Reeves method with the strong Wolfe line search. Their con-
vergence analyses used the sufficient descent condition, which is implied by the strong
Wolfe line search and Fletcher–Reeves-type βk formulas. For algorithms related to
the Polak–Ribière methods, Gilbert and Nocedal [5] investigated wide choices of βk
that resulted in globally convergent methods. In particular, they first gave the global
convergence result for the Polak–Ribière-type methods βk = max{0, βPR

k } with inex-
act line searches. In order for the sufficient descent condition to hold, they modified
the strong Wolfe line search to the two-stage line search: the first stage is to find a
point using the strong Wolfe line search, and the second stage is, when the sufficient
descent condition does not hold, to do more line search iterations until a new point
satisfying the sufficient descent condition is found. They hinted that the sufficient
descent condition may be crucial for conjugate gradient methods.

It is noted that the sufficient descent condition is not needed in the convergence
analyses of Newton and quasi-Newton methods. This motivates us to investigate
whether the sufficient descent condition is necessary, as it seemed to be, for the global
convergence of conjugate gradient methods. In [11], Liu, Han, and Yin have proved
the global convergence properties of the Fletcher–Reeves method under weaker con-
ditions than those of [1]. In [3], Dai and Yuan have proved that the Fletcher–Reeves
method using the strong Wolfe line search is globally convergent as long as each
search direction is downhill. In the next section, we will provide some basic results
for general conjugate gradient methods with a descent condition, instead of the suf-
ficient descent condition. In section 3, we will establish the convergence results for
the Fletcher–Reeves- and Polak–Ribière-type methods without assuming the suffi-
cient descent condition. To show the differences between the convergence of Fletcher–
Reeves-type methods and Polak–Ribière-type methods, two nonconvergence examples
are constructed in section 4 for the Polak–Ribière-type methods, showing that neither
the boundedness of the level set nor the restriction βk ≥ 0 can be relaxed in some
sense. A brief discussion is given in the last section.
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2. Results for general conjugate gradient methods. Throughout this sec-
tion, we assume that every search direction dk satisfies the descent condition

gTk dk < 0(2.1)

for all k ≥ 1.
We make the following basic assumptions on the objective function.
Assumption 2.1. (i) f is bounded below on the level set L = {x|f(x) ≤ f(x1)},

where x1 is the starting point. (ii) In some neighborhood N of L, f is continuously
differentiable, and its gradient is Lipschitz continuous; namely, there exists a constant
L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖ for all x, y ∈ N .(2.2)

The step-length λk in (1.2) is computed by carrying out a line search. The Wolfe
line search [16] consists of finding a positive step-length λk such that

f(xk + λkdk) ≤ f(xk) + ρλkg
T
k dk,(2.3)

g(xk + λkdk)T dk ≥ σgTk dk,(2.4)

where 0 < ρ < σ < 1. In order to prove global convergence for the Fletcher–Reeves
method, [1], [5] and [9] used the strong Wolfe line search, which requires λk to satisfy
(2.3) and

|g(xk + λkdk)T dk| ≤ −σgTk dk.(2.5)

The following important result was obtained by Zoutendijk [18] and Wolfe [16,
17].

Lemma 2.2. Suppose that Assumption 2.1 holds. Consider any iteration method
of the form (1.2)–(1.3), where dk satisfies (2.1) and λk is obtained by the Wolfe line
search. Then

∞∑
k=1

(gTk dk)2

‖dk‖2 < +∞.(2.6)

The following theorem is a general and positive result for conjugate gradient
methods with the strong Wolfe line search.

Theorem 2.3. Suppose that Assumption 2.1 holds. Consider any method of the
form (1.2)–(1.3) with dk satisfying (2.1) and with the strong Wolfe line search (2.3)
and (2.5). Then either

lim inf
k→∞

‖gk‖ = 0(2.7)

or

∞∑
k=1

‖gk‖4
‖dk‖2 < +∞.(2.8)

Proof. (1.3) indicates that for all k ≥ 2,

dk + gk = βkdk−1.(2.9)
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Squaring both sides of (2.9), we obtain

‖dk‖2 = −‖gk‖2 − 2gTk dk + β2
k‖dk−1‖2.(2.10)

It follows from this relation and (2.1) that

‖dk‖2 ≥ β2
k‖dk−1‖2 − ‖gk‖2.(2.11)

Definition (1.3) implies the following relation:

gTk dk − βkgTk dk−1 = −‖gk‖2,(2.12)

which, with the line search condition (2.5), shows that

|gTk dk|+ σ|βk| |gk−1dk−1| ≥ ‖gk‖2.(2.13)

The above inequality and the Cauchy–Schwartz inequality yield

(gTk dk)2 + β2
k(gTk−1dk−1)2 ≥ c1‖gk‖4,(2.14)

where c1 = (1 + σ2)−1 is a positive constant. Therefore, it follows from (2.11) and
(2.14) that

(gTk dk)2

‖dk‖2 +
(gTk−1dk−1)2

‖dk−1‖2 =
1

‖dk‖2
[
(gTk dk)2 +

‖dk‖2
‖dk−1‖2 (gTk−1dk−1)2

]

≥ 1

‖dk‖2
[

(gTk dk)2 + β2
k(gTk−1dk−1)2 − (gTk−1dk−1)2

‖dk−1‖2 ‖gk‖2
]

≥ 1

‖dk‖2
[
c1‖gk‖4 −

(gTk−1dk−1)2

‖dk−1‖2 ‖gk‖2
]
.(2.15)

If (2.7) is not true, relations (2.15) and (2.6) imply that the inequality

(gTk dk)2

‖dk‖2 +
(gTk−1dk−1)2

‖dk−1‖2 ≥ c1
2

‖gk‖4
‖dk‖2(2.16)

holds for all sufficiently large k. Now inequality (2.8) follows from (2.16) and
(2.6).

The following result is a direct corollary of the above theorem.
Corollary 2.4. Suppose that Assumption 2.1 holds. Consider any method of

the form (1.2)–(1.3) with dk satisfying (2.1) and with the strong Wolfe line search
(2.3) and (2.5). If

∞∑
k=1

‖gk‖t
‖dk‖2 = +∞(2.17)

for any t ∈ [0, 4], the method converges in the sense that (2.7) is true.
Proof. If (2.7) is not true, it follows from Theorem 2.3 that

∞∑
k=1

‖gk‖4
‖dk‖2 < +∞.(2.18)
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Because ‖gk‖ is bounded away from zero, and t ∈ [0, 4], it is easy to see that (2.18)
contradicts (2.17). This shows that the corollary is true.

If a conjugate gradient method fails to converge, one can easily see from the above
corollary that the length of the search direction will converge to infinity. Results
similar to Corollary 2.4 can also be established using the Zoutendijk condition and
the sufficient descent condition (1.8). It should be noted that we have not assumed
the sufficient descent condition. Hence our results are powerful tools for our analyses
in the next section, where we will concentrate on proving the global convergence of
some conjugate gradient methods without assuming the sufficient descent condition
(1.8). Another point worth mentioning is that we do not assume the boundedness of
the level set.

3. Global convergence. In this section, we establish some global convergence
results for the Fletcher–Reeves- and Polak–Ribière-type methods. The general outline
of the proofs is that, assuming that the convergence relation (2.7) does not hold, we

can derive that
∑∞
k=1

‖gk‖2
‖dk‖2 = +∞ or

∑∞
k=1

1
‖dk‖2 = +∞, which with Corollary 2.4

in turn implies that (2.7) holds, giving a contradiction.
First, we consider the Fletcher–Reeves-type methods of the form (1.2)–(1.3),

where βk is any scalar satisfying

σ|βk| ≤ σ̄βFR
k(3.1)

for all k ≥ 2, where σ is the parameter defined in (2.4) and σ̄ ∈ (0, 1/2] is a con-
stant. In order to prove its global convergence, Hu and Storey [9] had to restrict the
parameter σ̄ to be strictly less than 1/2 to derive the sufficient descent condition.
The following result shows that such a restriction can be relaxed while preserving the
global convergence.

Theorem 3.1. Suppose that Assumption 2.1 holds. Consider any method of the
form (1.2)–(1.3) with the strong Wolfe line search (2.3) and (2.5), where βk satisfies
(3.1) with σ̄ ∈ (0, 1/2], and

‖gk‖2
k∑
j=2

k∏
i=j

(
βi
βFR
i

)2

≤ c2k(3.2)

for some constant c2 > 0. Then

lim inf
k→∞

‖gk‖ = 0.(3.3)

Proof. From (1.3), (1.4), (2.5), and (3.1), we deduce that

−gTk dk
‖gk‖2 = 1− βk−g

T
k dk−1

‖gk‖2 = 1−
(
βk
βFR
k

) −gTk dk−1

‖gk−1‖2

≤ 1 +

∣∣∣∣ βkβFR
k

∣∣∣∣ −σgTk−1dk−1

‖gk−1‖2

≤ 1 + σ̄

(
−gTk−1dk−1

‖gk−1‖2
)

≤ · · ·
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≤
k−2∑
j=0

σ̄j + σ̄k−1

(−gT1 d1

‖g1‖2
)

=
1− σ̄k
1− σ̄ <

1

1− σ̄ .(3.4)

Similarly, we have that

−gTk dk
‖gk‖2 ≥ 1− σ̄ 1− σ̄k−1

1− σ̄ > 0(3.5)

because σ̄ ≤ 1/2. Thus, dk is a descent direction.
On the other hand, it follows from (2.10) that

‖dk‖2 ≤ −2gTk dk + β2
k‖dk−1‖2.(3.6)

Using (3.6) recursively and observing that d1 = −g1, we get that

‖dk‖2 ≤ −2gTk dk − 2

k∑
j=2

k∏
i=j

β2
i g
T
j−1dj−1

= −2gTk dk − 2‖gk‖4
k∑
j=2

k∏
i=j

(
βi
βFR
i

)2
(
gTj−1dj−1

‖gj−1‖4
)
.(3.7)

If the theorem is not true, (3.2) holds and there exists a positive constant γ such that

‖gk‖ ≥ γ for all k.(3.8)

Thus, it follows from the above inequality, (3.4), and (3.7) that

‖dk‖2
‖gk‖2 ≤

2

1− σ̄

1 +
‖gk‖2
γ2

k∑
j=2

k∏
i=j

(
βi
βFR
i

)2
 .(3.9)

The above relation and (3.2) imply that

∞∑
k=1

‖gk‖2
‖dk‖2 = +∞.(3.10)

This, with Corollary 2.4, implies that lim infk ‖gk‖ = 0. This completes our
proof.

The above theorem extends Hu and Storey’s [9] result to the case when σ̄ = 1/2.
If σ̄ ∈ (0, 1/2), we can see from (3.5) that the sufficient descent condition (1.8) holds.
If σ̄ = 1/2, however, we only have that

−gTk dk
‖gk‖2 ≥

1

2k
,(3.11)

which does not imply the sufficient descent condition.
Now we consider methods that are related to the Polak–Ribière and Hestenes–

Stiefel algorithms. We need the following assumption.
Assumption 3.2. The level set L = {x|f(x) ≤ f(x1)} is bounded.
Under Assumptions 2.1 and 3.2, there exists a positive constant γ̄ such that

‖g(x)‖ ≤ γ̄ for all x ∈ L.(3.12)
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Denote sk−1 = xk − xk−1 and uk = dk/‖dk‖. In [5], Gilbert and Nocedal intro-
duced the following property.

Property (∗). Consider a method of the form (1.2)–(1.3), and suppose that
(3.12) and (3.8) hold. Then we say that the method has Property (∗) if there exist
constants b > 1 and λ > 0 such that for all k,

|βk| ≤ b(3.13)

and

‖sk−1‖ ≤ λ =⇒ |βk| ≤ 1

2b
.(3.14)

Let N∗ denote the set of positive integers. For λ > 0 and positive integer ∆,
denote

Kλk,∆ := {i ∈ N∗ : k ≤ i ≤ k + ∆− 1, ‖si−1‖ > λ}.

Let |Kλk,∆| denote the number of elements of Kλk,∆ and let b·c and d·e denote, respec-
tively, the floor and ceiling operators. The following lemmas are drawn from [5].

Lemma 3.3 (see [5]). Suppose that Assumptions 2.1 and 3.2 hold. Consider any
method of the form (1.2)–(1.3) with a descent direction dk. If, at the kth step, βk ≥ 0,
then dk 6= 0 and

‖uk − uk−1‖ ≤ 2
‖gk‖
‖dk‖ .(3.15)

Lemma 3.4 (see [5]). Suppose that Assumptions 2.1 and 3.2 hold. Consider the
method of (1.2)–(1.3) with any line search satisfying (2.1). Assume that the method
has Property (∗) and that

∞∑
k=1

1

‖dk‖2 < +∞.(3.16)

Assume also that (3.8) holds. Then there exists λ > 0 such that, for any ∆ ∈ N∗ and
any index k0, there is a greater index k > k0 such that

|Kλk,∆| >
∆

2
.

The conditions used in Lemma 3.4 are not the same as those used in [5]. In
particular, the sufficient descent condition (1.8) used in [5] is here replaced by the
descent condition (2.1). Under this weaker condition, we can also establish a similar
global convergence result as that in [5].

The next theorem is a global convergence result of conjugate gradient methods
with Property (∗). It is applicable, for example, to the Polak–Ribière-type method

βk = max{0, βPR
k }.(3.17)

The proof of the theorem is similar to that in [5].
Theorem 3.5. Suppose that Assumptions 2.1 and 3.2 hold. Consider the method

(1.2)–(1.3) with the following three properties: (i) βk ≥ 0; (ii) the strong Wolfe line
search conditions (2.3) and (2.5) and the descent condition (2.1) hold for all k; (iii)
Property (∗) holds. Then the method converges in the sense that (3.3) holds.
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Proof. We proceed by contradiction, assuming that the theorem is not true.
Then there exists a positive constant γ such that (3.8) holds. Since βk ≥ 0 and dk is
a descent direction, it follows from Lemma 3.3 that

‖uk − uk−1‖ ≤ 2
‖gk‖
‖dk‖(3.18)

for all k ≥ 2. The above inequality, (3.8), and Theorem 2.3 imply that

∞∑
k=1

‖uk − uk−1‖2 ≤ 4

γ2

∞∑
k=1

‖gk‖4
‖dk‖2 < +∞.(3.19)

For any two indices l, k, with l ≥ k, we can write

xl − xk−1 =
l∑

i=k

‖si−1‖ui−1

=
l∑

i=k

‖si−1‖uk−1 +
l∑

i=k

‖si−1‖(ui−1 − uk−1).

This relation and the fact that ‖uk−1‖ = 1 give

l∑
i=k

‖si−1‖ ≤ ‖x1 − xk−1‖+
l∑

i=k

‖si−1‖ ‖ui−1 − uk−1‖.(3.20)

Since fk decreases with k, we have that {xk} ⊂ L, which together with Assumption 3.2
implies that there exists a positive constant B such that ‖xk‖ ≤ B for all k ≥ 1. Hence

l∑
i=k

‖si−1‖ ≤ 2B +
l∑

i=k

‖si−1‖ ‖ui−1 − uk−1‖.(3.21)

By Corollary 2.4, we can assume that (3.16) holds. Thus the conditions of Lemma 3.4
are satisfied. Let λ > 0 be given by Lemma 3.4 and define ∆ := d8B/λe. By (3.19),
we can find an index k0 ≥ 1 such that∑

i≥k0

‖ui − ui−1‖2 ≤ 1

4∆
.(3.22)

With this ∆ and k0, Lemma 3.4 gives an index k ≥ k0 such that

|Kλk,∆| >
∆

2
.(3.23)

Next, for any index i ∈ [k, k+ ∆− 1], by the Cauchy–Schwartz inequality and (3.22),

‖ui − uk−1‖ ≤
i∑

j=k

‖uj − uj−1‖

≤ (i− k + 1)1/2

 i∑
j=k

‖uj − uj−1‖2
1/2

≤ ∆1/2

(
1

4∆

)1/2

=
1

2
.(3.24)
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Using this relation and (3.23) in (3.21), with l = k + ∆− 1, we get that

2B ≥ 1

2

k+∆−1∑
i=k

‖si−1‖ > λ

2
|Kλk,∆| >

λ∆

4
.(3.25)

Thus ∆ < 8B/λ, which contradicts the definition of ∆. Therefore, the theorem is
true.

4. Nonconvergence examples. In the previous section, we have proved two
convergence theorems, namely, Theorems 3.1 and 3.5, for the Fletcher–Reeves- and
Polak–Ribière-type methods. Neither of the theorems needs the line search to satisfy
the sufficient descent condition (1.8). In this section, we will present two nonconver-
gence examples for the Polak–Ribière methods.

It can be seen from Theorem 3.1 that the boundedness of the level set is not
required in analyzing the Fletcher–Reeves-type methods. Therefore, the convergence
results for the Fletcher–Reeves-type methods also apply to noncoercive objective func-
tion. In contrast, we are able to construct an example, as included in the following
theorem, to show that the boundedness of the level set is necessary for the conver-
gence of Polak–Ribière methods even if line searches are exact. It is easy to see that
the theorem is also true for the Polak–Ribière-type method (3.17).

Theorem 4.1. Consider the Polak–Ribière method (1.2), (1.3), and (1.5) with
λk chosen to be any local minimizer of Φk(λ) = f(xk + λdk), λ > 0. Then there
exists a starting point x1 and a function f(x) satisfying Assumption 2.1 such that the
iterations generated by the method satisfy, for all k ≥ 1,

βPR
k+1 ≥ 0(4.1)

and

‖gk‖ = 1.(4.2)

Proof. We define

θk =



−π
2

for k = 0,

0 for k = 1,

1

6

[
1−

(
−1

2

)k−1
]
π for k ≥ 2

(4.3)

and consider the gradients and the search directions given by

gk = (−1)k

(
sin θk−1

− cos θk−1

)
(4.4)

and

dk = csc
π

2k

(
cos θk

sin θk

)
,(4.5)
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where

csc
π

2k
=

1

sin π
2k
.

It follows that (4.2) holds for all k ≥ 1. In addition, (4.4) and (4.5) clearly satisfy the
equality

gTk+1dk = 0.(4.6)

Because

|θk − θk−1| = π

2k
(4.7)

holds for all k ≥ 1, it follows from (1.5), (4.2), and (4.4) that

βPR
k+1 = 1− gTk+1gk = 1 + cos(θk − θk−1) = 1 + cos

π

2k
= 2 cos2 π

2k+1
.(4.8)

Thus (4.1) also holds for all k ≥ 1. Further, direct calculations show that

−gk+1 + βPR
k+1dk = (−1)k+1

(
− sin θk

cos θk

)
+ 2 cos2 π

2k+1
csc

π

2k

(
cos θk

sin θk

)

= csc
π

2k+1

[
sin

π

(−2)k+1

(
− sin θk

cos θk

)
+ cos

π

2k+1

(
cos θk

sin θk

)]

= csc
π

2k+1

 cos
(
θk + (−1)k+1 π

2k+1

)
sin
(
θk + (−1)k+1 π

2k+1

)


= csc
π

2k+1

(
cos θk+1

sin θk+1

)
= dk+1.(4.9)

This together with d1 = −g1 imply that if the gradients are given by (4.4), then the
Polak–Ribière method will produce the search directions as in (4.5).

Now, we let λk = 1/‖dk‖ and define

xk =
k−1∑
i=0

(
cos θi

sin θi

)
(4.10)

and

fk = −
k−1∑
i=0

sin
π

2i
.(4.11)

Then (1.2) holds and since ‖dk‖ = csc π
2k

and gTk dk = −1, (2.3) and (2.5) hold.
Because

lim
k→∞

θk =
π

6
(4.12)
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and

‖xk+1 − xk‖ = 1,(4.13)

we can see that {xk} has no cluster points and hence that it is easy to construct a
function f satisfying Assumption 2.1 such that for all k ≥ 1,

f(xk) = fk, g(xk) = gk,(4.14)

and λk is a local minimizer of Φk(λ). Therefore, for the starting point x1 = (0,−1)T

and the function f , the iterations generated by the Polak–Ribière method satisfy (4.1)
and (4.2) for all k ≥ 1.

As opposed to Theorem 3.1, Theorem 3.5 does not allow any negative values of βk.
However, as pointed out in Gilbert and Nocedal [5], the Polak–Ribière method can
produce negative values of βPR

k even for strong convex objective functions. Therefore,
it is interesting to investigate in what range the restriction βk ≥ 0 in Theorem 3.5
can be relaxed. After further studies of the n = 2, m = 8 example of Powell [14], we
obtain the following result.

Theorem 4.2. For any given positive constant ε, consider the method (1.2)–(1.3)
with

βk = max{βPR
k ,−ε}(4.15)

and with λk chosen to be any local minimizer of Φk(λ) = f(xk + λdk), λ > 0. There
exists a starting point x1 and a function f(x) satisfying Assumptions 2.1 and 3.2 such
that the sequence of the gradient norms {‖gk‖} generated by the method is bounded
away from zero.

Proof. For any positive constant φ ∈ (0, 1), let the steps of the method have the
form

s8j+i = ai

(
1

biφ
2j

)
, s8j+4+i = ai

(
−1

biφ
2j+1

)
, j ≥ 0, i = 1, 2, 3, 4,(4.16)

where the numbers {ai; i = 1, 2, 3, 4} are all positive, and consider the values

b1 = −2, b2 =
6− 2φ− 2φ2

2 + 5φ
, b3 = −φ, b4 = −2.

To satisfy the line search condition

gTk+1dk = 0,(4.17)

we assume that the gradients have the form

g8j+1 = c1

(
b4φ

2j−1

1

)
, g8j+i = ci

(
−bi−1φ

2j

1

)
, i = 2, 3, 4;

(4.18)

g8j+5 = c1

(
−b4φ2j+1

1

)
, g8j+4+i = ci

(
bi−1φ

2j+1

1

)
, i = 2, 3, 4,

where {ci; i = 1, 2, 3, 4} are constants. To ensure the conjugacy condition

sTk (gk+1 − gk) = 0(4.19)
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for all k ≥ 1, we choose each ci as follows:

c1 = 3φ(1− φ)(5− φ), c2 = −3(1 + φ)(2 + φ2),
(4.20)

c3 = (1 + φ)(2− φ)(2 + 5φ), c4 = 2(5− φ)(1− φ2).

Because n = 2, relations (4.17) and (4.19) ensure that each dk is produced by the
Polak–Ribière method. In addition, direct calculations show that gTk sk < 0 holds for
all k ≥ 1; namely, each dk is a descent direction.

Due to symmetry, we can reduce the objective function at every iteration if the
following relations hold:

f(x8j+1) > f(x8j+2) > f(x8j+3) > f(x8j+4) > f(x8j+5).(4.21)

Now, when the first component of x is equal to the first component of xk, where k is
any positive integer, then the values in (4.18) allow the second component of g(x) to
be constant, provided that the first components of the points {x8j+i; i = 1, 2, . . . , 8}
are all different. Thus, the equation

f(xk)− f∗ = (xk)2(gk)2(4.22)

is satisfied, where f∗ is the limit of fk. Given the limit point x̂1 = limj→∞ x8j+1, we
can compute x8j+1 in the following way:

x8j+1 = x̂1 −
∞∑
k=j

8∑
i=1

s8k+i =

(
0

hφ2j/(φ− 1)

)
(4.23)

and

x8j+i+1 = x8j+i + s8j+i, i = 1, 2, . . . , 7,(4.24)

where h = a1b1 + a2b2 + a3b3 + a4b4. It follows that expression (4.21) is equivalent to
the inequalities

−c1(a1b1 + a2b2 + a3b3 + a4b4) > −c2(a1b1φ+ a2b2 + a3b3 + a4b4)

> −c3(a1b1φ+ a2b2φ+ a3b3 + a4b4)

> −c4(a1b1φ+ a2b2φ+ a3b3φ+ a4b4)

> −c1φ(a1b1 + a2b2 + a3b3 + a4b4).(4.25)

These inequalities are consistent because, if

a1 = 10, a2 = 35φ, a3 = 38, a4 = φ,(4.26)

and if φ is small, then the dominant terms of the five lines of (4.25) are 300φ, 270φ,
240φ, 220φ, and 300φ, respectively. Now, as in Powell [14], we can construct a function
satisfying Assumptions 2.1 and 3.2 such that the gradient conditions (4.18) hold.

By direct estimations, we can obtain that the dominant terms of {βPR
4j+1; i =

1, 2, 3, 4} are

−3

2
φ,

4

25φ2
,

10

9
,

9

4
,

respectively, when φ is small and j is large. Therefore, for any positive number ε > 0,
we have that βPR

k ≥ −ε for all large j, provided that φ ∈ (0, 1) is sufficiently small.
This completes our proof.
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In [2], the above theorem is proved by using a three-dimensional example, in
which line searches choose the first local minimum in every iteration.

5. Discussions. In this paper we have presented some global convergence results
for nonlinear conjugate gradient methods, where the step-length is computed by the
strong Wolfe conditions under the assumption that all the search directions are descent
directions. The sufficient descent condition (1.8) has not been used in our convergence
proofs and we have established convergence results for Fletcher–Reeves- and Polak–
Ribière-type methods.

We have also provided two examples for which Polak–Ribière-type methods fail
to converge. From these examples, we can see that the Fletcher–Reeves-type methods
have better convergence properties than the Polak–Ribière-type methods, even though
the latter perform better in practice. We believe that the results given in this paper
will lead to a deeper understanding of the behavior of nonlinear conjugate gradient
methods with inexact line searches.

This paper is a combination of two research reports, [6] and [2]; readers can find
a more extensive discussion on the subject of this paper in those reports. See also [7],
[10], and [11]. Some recent advances can be found in [7] and [10].
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Professor Jorge Nocedal for his grant support and supervision. The authors thank
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[12] J. J. Moré and D. J. Thuente, On line search algorithms with guaranteed decrease, ACM
Trans. Math. Software, 20 (1994), pp. 286–307.

[13] E. Polak and G. Ribière, Note sur la convergence de méthods de directions conjugées, Revue
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ON LOCAL SOLUTIONS OF THE CELIS–DENNIS–TAPIA
SUBPROBLEM∗
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Abstract. We discuss the distribution of the local solutions of the Celis–Dennis–Tapia (CDT)
subproblem, which appears in some trust region algorithms for nonlinear optimization. We also give
some examples to show the differences between the CDT subproblem and the single-ball-constraint
subproblem. These results show that the complexity of the CDT subproblem does not depend on
the complexity of the structure of the dual plane. Thus they provide the possibility to search for the
global minimizer in the dual plane.

Key words. trust region subproblem, local solutions, optimality conditions

AMS subject classifications. 65K10, 90C20

PII. S1052623498335018

1. Introduction. In this paper, we study some theoretical properties of local
solutions to the following minimization problem with a quadratic objective and two
quadratic constraints:

min
d∈Rn

Φ(d) =
1

2
dTBd+ gTd(1.1)

subject to

‖d‖ ≤ ∆,(1.2)

‖ATd+ c‖ ≤ ξ,(1.3)

where g ∈ Rn, B ∈ Rn×n, A ∈ Rn×m, c ∈ Rm, ∆ > 0, ξ ≥ 0, and B is a symmetric
matrix. Throughout this paper, the norm ‖ · ‖ is the 2-norm. Problem (1.1)–(1.3) is
a subproblem of some trust region algorithms for nonlinear programming (see Celis,
Dennis, and Tapia [2] and Powell and Yuan [15]), and it is often called the CDT
subproblem.

As an important application, the CDT subproblem was used as an inner iteration
in the algorithm given by Powell and Yuan [15], whose superlinear convergence prop-
erty is obtained under certain conditions. However, for general B and A, there is still
no satisfactory method with which to find the global solution of problem (1.1)–(1.3)
which is required in some trust region algorithms.

The properties of the CDT subproblem have been studied; see Yuan [16] and Peng
and Yuan [13] for its extension. Under some additional assumptions, some algorithms
have been given to solve it. For example, under the assumption that B is positive
definite, different kinds of algorithm are presented by Ecker and Niemi [6], Mehrotra
and Sun [12], Phan-Huy-Hao [14], Yuan [17], and Zhang [18]. Instead of the above
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assumption, under the assumption that A = I and B is semidefinite an algorithm is
given by Heinkenschloss [9], which is modified by Chen [3]. A global algorithm for
the case A = I and general symmetric B is given by Mart́ınez and Santos [11].

Some approximate methods are given since the CDT problem, used as a subprob-
lem of nonlinear programming algorithms, is needed to obtain a sufficient descent
feasible point instead of the global minimizer. See El-Alem and Tapia [7] and Fu,
Luo, and Ye [8] for algorithms based on approximations of the feasible region. Byrd
and Schnabel [1] and Dennis and Williamson [4] solve the CDT subproblem in the
two-dimensional subspace {g, (AT )+c}. These alternative CDT subproblems work in
some nonlinear programming to some extent—for example, in the so-called PNCDT
method of El-Alem and Tapia [7]. However, it is not clear how to compute the global
solution of the CDT problem efficiently.

As a subproblem, ξ can be chosen such that problem (1.2)–(1.3) has feasible
points; see Dennis, El-Alem, and Maciel [5] and references therein. If the CDT sub-
problem has no interior point, it is deduced to a simple case which is discussed in
Yuan [16]. So we assume that problem (1.2)–(1.3) has interior points and we do not
discuss the choice of ξ.

The rest of this paper is organized as follows. Some basic results are restated
in section 2. The structure of the dual plane of the CDT problem is investigated
in section 3. The dual function of the CDT problem is extended to a closed region,
and some properties of the extend dual function are given, in section 4. Sections 5
and 6 are the main part of this paper. The global minimizer of the CDT problem is
divided into three cases. By defining a “related region,” we prove that the Lagrangian
multipliers corresponding to the global minimizer locate in the related region if the
maximizer of the dual function does not correspond to a global minimizer. Then we
find the smallest related region. The differences between the local minimizers of the
trust region subproblem and those of the CDT problem are presented in section 7.
Also shown is that the Lagrangian multipliers of the CDT problem corresponding
to local minimizers are permuted in the way of the connected branches of the region
where the Hessian has exactly one negative eigenvalue. Conclusions and some possible
ways to solve the CDT problem are presented in section 8.

2. Some basic results. In this section, we restate some fundamental results of
the CDT problem. For their proofs, see Yuan [16].

Theorem 2.1. Let d∗ be a global solution of the problem (1.1)–(1.3). Assume
that ξ > min‖d‖≤∆ ‖AT d+ c‖. Then there exist nonnegative constants λ, µ such that

(B + λI + µAAT )d∗ = −(g + µAc),(2.1)

where λ and µ satisfy the complementarity conditions

λ(∆− ‖d∗‖) = 0,(2.2)

µ(ξ − ‖AT d∗ + c‖) = 0.(2.3)

Furthermore, the matrix

H(λ, µ) = B + λI + µAAT(2.4)

has at most one negative eigenvalue if the multipliers λ and µ are unique.
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To say that H(λ, µ) has one negative eigenvalue means that the negative eigen-
value of H(λ, µ) is a single eigenvalue. For the case that the multipliers λ and µ are
not unique, we have the following result.

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold. Then there
exists (λ, µ) ∈ Ω such that the matrix (2.4) has at most one negative eigenvalue,
where Ω is the set of Lagrangian multipliers.

We have the following sufficient optimality condition for a global minimizer of
problem (1.1)–(1.3).

Theorem 2.3. If d∗ is a feasible point of (1.2)–(1.3), if there are two multipliers
λ and µ such that (2.1)–(2.3) hold, and if the matrix (2.4) is positive semidefinite,
then d∗ is a global solution of the problem (1.1)–(1.3).

3. Structure of dual plane. A dual algorithm is given in Yuan [17] for solving
subproblem (1.1)–(1.3) with B positive definite, based on the equivalent problem:

min
d∈Rn

Φ(d) =
1

2
dTBd+ gTd(3.1)

subject to

‖d‖2 ≤ ∆2,(3.2)

‖ATd+ c‖2 ≤ ξ2.(3.3)

Similar to the single-ball constrained trust region subproblem, the CDT subproblem
may be hard when the Hessian of the Lagrangian is positive semidefinite but not pos-
itive definite. Furthermore, the Hessian at the global solution may have one negative
eigenvalue (see Theorem 2.1). The dual problem for (3.1)–(3.3) can also be defined
when the Hessian of the Lagrangian is singular. This will be discussed in the next
section.

First, we consider the case in which the Hessian of the Lagrangian is nonsingular.
The Hessian of the Lagrangian is (2.4), where λ ≥ 0, µ ≥ 0 are the Lagrangian
multipliers of problem (3.1)–(3.3), and they are also the dual variables. Using the
notations of Yuan [17], we define the vector

d(λ, µ) = −H(λ, µ)−1(g + µAc),(3.4)

which satisfies the first equation of the well-known KKT system (2.1)–(2.3) of problem
(3.1)–(3.3). We also define the Lagrangian dual function of problem (3.1)–(3.3) as

Ψ(λ, µ) = Φ(d(λ, µ)) +
λ

2
(‖d(λ, µ)‖2 −∆2) +

µ

2
(‖ATd(λ, µ) + c‖2 − ξ2)(3.5)

and the region

Ω0 = {(λ, µ) ∈ R2
+ | H(λ, µ) is positive semidefinite},(3.6)

where d(λ, µ) is defined by (3.4) and R2
+ = {λ ≥ 0, µ ≥ 0}. Direct calculations show

that

∇Ψ(λ, µ) =
1

2

( ‖d(λ, µ)‖2 −∆2

‖ATd(λ, µ) + c‖2 − ξ2

)
(3.7)
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and

∇2Ψ(λ, µ) = −
(
d(λ, µ)TH(λ, µ)−1d(λ, µ) d(λ, µ)TH(λ, µ)−1y(λ, µ)
d(λ, µ)TH(λ, µ)−1y(λ, µ) y(λ, µ)TH(λ, µ)−1y(λ, µ)

)
,(3.8)

where y(λ, µ) is the vector

y(λ, µ) = A(ATd(λ, µ) + c).(3.9)

In order to study the dual function, we define the region

Ω(ε) = {(λ, µ) ∈ Ω0 | dist((λ, µ), ∂Ω0) ≥ ε},(3.10)

where ε > 0, dist(·, ·) is the 2-norm distance function, and ∂Ω denotes the boundary
of a region Ω. It is easy to see that Ω0 and Ω(ε) are convex sets. First we show a
property of the Hessian on Ω(ε).

Lemma 3.1. For any (λ, µ) ∈ Ω(ε), H(λ, µ) is positive definite.
Proof. Define Bη to be the Euclidean ball in R2 with radius η and

X ⊕ Y = {x+ y | x ∈ X, y ∈ Y }(3.11)

for two sets X and Y . We have, for any (λ, µ) ∈ Ω(ε),

(λ, µ)⊕ B ε
2
⊂ Ω(ε)⊕ B ε

2
⊂ Ω

(ε
2

)
,(3.12)

which implies that (λ− ε
2 , µ) ∈ Ω( ε2 ) and H(λ− ε

2 , µ) is positive semidefinite. There-
fore,

H(λ, µ) = H
(
λ− ε

2
, µ
)

+
ε

2
I(3.13)

is positive definite.
From the above lemma, the dual function Ψ(λ, µ), its gradient, and its Hessian

are well defined in intΩ0, the interior of Ω0, and the region Ω(ε) for any ε > 0. Thus
by the concavity of Ψ(λ, µ) (from (3.8)), we can obtain the maxima of Ψ(λ, µ) on
Ω(ε). If there is an ε > 0 such that

(λ+, µ+) = arg max
(λ,µ)∈Ω(ε)

Ψ(λ, µ) ∈ intΩ(ε),(3.14)

then H(λ+, µ+) is positive definite and we can prove the following theorem. Actually,
this theorem holds for any positive definite H(λ+, µ+) if (λ+, µ+) ∈ Ω0.

Theorem 3.2. Suppose that (λ+, µ+) is any point defined by (3.14). Then the
global solution of (3.1)–(3.3) is d(λ+, µ+) given by (3.4).

Proof. Because H(λ+, µ+) is positive definite, d(λ+, µ+) is well defined by (3.4),
and (λ+, µ+) is a local maximizer of Ψ(λ, µ) in R2

+. Therefore, we have that

∇Ψ(λ+, µ+) ≤ 0(3.15)

and

(λ+, µ+)T∇Ψ(λ+, µ+) = 0.(3.16)

This shows that d(λ+, µ+) is the global solution of (3.1)–(3.3) and (λ+, µ+) are the
corresponding Lagrangian multipliers.



ON LOCAL SOLUTIONS OF THE CDT SUBPROBLEM 363

Since arg max Ψ(λ, µ) is a convex set, it includes an interior point of Ω0 if it
strictly includes a segment. If arg max Ψ(λ, µ) on intΩ0 is a segment and there is a
point of this segment in the interior of Ω0, there exists a sufficient small ε > such that
(3.14) holds. Thus it follows from Theorem 3.2 that there exists a global solution of
(3.1)–(3.3) with a positive definite Hessian of the Lagrangian. Otherwise, the Hessian
of the Lagrangian might not be positive semidefinite. By the theorems stated in
section 2, the Hessian H(λ, µ) at the global solution of (3.1)–(3.3) has at most one
negative eigenvalue, and the corresponding Lagrangian multipliers (λ, µ) may locate
in the region

Ω1 = {(λ, µ) ∈ R2
+ | H(λ, µ) has one negative eigenvalue}.(3.17)

Next we investigate the structure of Ω1. Let

Ω1 =
⋃
k∈K

Ω1k,(3.18)

where K is an index set; Ω1k, k ∈ K, are connected sets; and Ω1k and Ω1j are discon-
nected for any k 6= j, k, j ∈ K. Whether K is a finite index set makes no difference to
our discussions by the location theorem given in section 5. By defining

uλk = sup(λ,µ)∈Ω1k
λ,(3.19)

uµk = sup(λ,µ)∈Ω1k
µ,(3.20)

lλk = inf(λ,µ)∈Ω1k
λ,(3.21)

and

lµk = inf(λ,µ)∈Ω1k
µ,(3.22)

we have the following lemma,
Lemma 3.3. If there are (λ1, µ1) ∈ Ω1k, (λ2, µ2) ∈ Ω1j, where k 6= j and λ1 > λ2,

then we have

lλk ≥ uλj ,(3.23)

uµk ≤ lµj .(3.24)

Moreover, (3.23) and (3.24) are both equalities or strict inequalities.
Proof. It is easy to show that the set {λ | ∃(λ, µ) ∈ Ω1k} is a segment for any fixed

µ, as is {µ | ∃(λ, µ) ∈ Ω1k} for any fixed λ. If lλk < uλj , there is a λ0 ∈ (lλk, uλj). By
the above definitions, there are µ0

k, µ0
j ∈ R such that (λ0, µ

0
k) ∈ Ω1k and (λ0, µ

0
j ) ∈ Ω1j .

Without loss of generality, let µ0
k < µ0

j . Denote ρi(B) as the ith eigenvalue of B. We
have

ρn(H(λ0, µ
0
k)) ≤ ρn(H(λ0, µ)) ≤ ρn(H(λ0, µ

0
j )) < 0,(3.25)

0 ≤ ρn−1(H(λ0, µ
0
k)) ≤ ρn−1(H(λ0, µ)) ≤ ρn−1(H(λ0, µ

0
j ))(3.26)
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for all µ ∈ (µ0
k, µ

0
j ). Thus (λ0, µ) ∈ Ω1 for all µ ∈ (µ0

k, µ
0
j ), which implies that Ω1k

and Ω1j are connected. The contradiction proves (3.23), and (3.24) can be proved
similarly.

If lλk > uλj and uµk = lµj , H(uλj , lµj) is positive semidefinite and H(lλk, uµk) =
H(uλj , lµj) + (lλk − uλj)I is positive definite, contradicting the definitions (3.19)–
(3.22).

Suppose that lλk = uλj and uµk < lµj . Since for any sufficiently small ε > 0,

(lλk − ε, µ) 6∈ Ω1l(3.27)

for any µ ∈ (uµk, lµj) and l ∈ K, H(lλk−ε, µ) has at least two negative eigenvalues. It
also can be shown that H(lλk+ε, µ) is positive definite. Thus taking ε→ 0, we obtain
that H(lλk, µ) has zero eigenvalues with multiplicity at least two for µ ∈ (uµk, lµj).

Since det(H(lλk, µ)) is a polynomial with zeros with multiplicity at least two for
µ ∈ (uµk, lµj), det(H(lλk, µ)) has zeros with multiplicity at least two for all µ ≥ 0,
which means that the dimension of Null(H(lλk, µ)) is no less than two. Therefore,
H(uλj − ε, µ) has at least two negative eigenvalues for all ε > 0 and µ > lµj , contra-
dicting the definition of Ω1j .

In the following, we denote Ω1k � Ω1j if (3.23)–(3.24) hold. Moreover, from the
above proof, there is at most one segment in the intersection of any positive-slope
straight line in R2

+ and any connected branch of Ω1.
Definition 3.4. Two connected branches Ω1k � Ω1j of Ω1 are called consecutive

connected branches if there is no other connected branch Ω1l of Ω1 such that

Ω1k � Ω1l � Ω1j ,(3.28)

and they are called two adjoint connected branches if (3.23) and (3.24) hold as equal-
ities.

The following lemma tells us the more detailed structure of the border of Ω0.
Lemma 3.5. For any two adjoint connected branches Ω1k and Ω1j of Ω1, Ω1k �

Ω1j, (lλk, uµk) is an extreme point of the convex set Ω0.
Proof. It suffices to prove that ∂Ω0

⋂
∂(Ω1k

⋃
Ω1j) is not a segment in any neigh-

borhood of (lλk, uµk). We prove this lemma by contradiction. Suppose

(lλk, uµk) ∈ Ω1k

⋂
Ω1j ,(3.29)

(λ̄k, µ̄k) ∈ ∂Ω0

⋂
Ω1k,(3.30)

and

(λ̄j , µ̄j) ∈ ∂Ω0

⋂
Ω1j(3.31)

are in a straight line. Then there exists 0 < δ < 1, such that

H(lλk, uµk) = δH(λ̄k, µ̄k) + (1− δ)H(λ̄j , µ̄j).(3.32)

Since (λ̄k − ε, µ̄k − ε) ∈ Ω1k for ε > 0 sufficient small, H(λ̄k − ε, µ̄k − ε) has
exactly one negative eigenvalue. Taking ε → 0+, we can show that H(λ̄k, µ̄k) is
positive semidefinite and has one multiple zero eigenvalue. The fact is also true for
H(λ̄j , µ̄j). Suppose that

z1 ∈ Null(H(λ̄k, µ̄k))(3.33)
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and

z2 ∈ Null(H(λ̄j , µ̄j)),(3.34)

where Null(·) denotes the null space of a matrix. Since H(lλk, uµk) is positive semidef-
inite, for any ε > 0, H((1+ε)lλk, (1+ε)uµk) is positive definite. For any Ω1l satisfying
Ω1l � Ω1k,

lλl > (1− ε)lλk,(3.35)

while for any Ω1l satisfying Ω1j � Ω1l,

uµl > (1− ε)uµk,(3.36)

for any ε > 0. So for any ε > 0, ((1 − ε)lλk, (1 − ε)uµk) 6∈ Ω1j for all j, and hence
H((1 − ε)lλk, (1 − ε)uµk) has at least two negative eigenvalues. Let ε → 0+; we can
see that H(lλk, uµk) is positive semidefinite and has zero eigenvalues with multiplicity
at least two.

Suppose span{v1, v2} ⊂ Null(H(lλk, uµk)). Then for all z ∈ span{v1, v2},
zTH(lλk, uµk)z = zT(δH(λ̄k, µ̄k) + (1− δ)H(λ̄j , µ̄j))z = 0.(3.37)

The above equality implies that zTH(λ̄k, µ̄k)z = 0 and zTH(λ̄j , µ̄j)z = 0, so z1 = z2,
and

Null(H(λ̄k, µ̄k)) = Null(H(λ̄j , µ̄j)),(3.38)

and the dimension of Null(H(lλk, uµk)) is equal to 1, contradicting the fact that
H(lλk, uµk) has zero eigenvalues with multiplicity two.

4. Definitions on the boundary. In this section, we deal with the boundary of
Ω0. First we define the dual function on the boundary of Ω0 based on the definitions
in intΩ0. Assuming that (λ̄, µ̄) ∈ ∂Ω0 with H(λ̄, µ̄) singular, we define

Ψ(λ̄, µ̄) = lim
ε→0+

Ψ(λ̄+ ε, µ̄).(4.1)

In summary, Ψ(λ̄, µ̄) is the right limit of Ψ(·, ·) at the point (λ̄, µ̄) along the line µ = µ̄.
Because Ψ(·, ·) is continuous in intΩ0, definition (4.1) also holds for the interior point
of Ω0.

Lemma 4.1. Equation (4.1) is well defined.
Proof. Equation (3.5) can be rewritten as

Ψ(λ, µ) = −1

2
(g + µAc)TH(λ, µ)−1(g + µAc)− λ

2
∆2 − µ

2
(ξ2 − ‖c‖2)(4.2)

when (λ, µ) ∈ intΩ0. Therefore,

Ψ(λ, µ) ≤ −λ
2

∆2 − µ

2
(ξ2 − ‖c‖2),(4.3)

which shows that Ψ(λ, µ) is locally upper bounded in intΩ0.
If (2.1) is inconsistent, the right-hand side of (4.1) is −∞. Otherwise, suppose

that g + µ̄Ac = H(λ̄, µ̄)v for some v ∈ Rn. It is easy to see that for any positive
semidefinite matrix A,

lim
ε→0+

(A+ εI)−1A = A+A.(4.4)
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Therefore, the following limit exists:

limε→0+ d(λ̄+ ε, µ̄)
= limε→0+−H(λ̄+ ε, µ̄)−1(g + µ̄Ac)
= limε→0+−H(λ̄+ ε, µ̄)−1H(λ̄, µ̄)ḡ
= −H(λ̄, µ̄)+H(λ̄, µ̄)ḡ.

(4.5)

d(λ̄ + ε, µ̄) is uniformly bounded when ε → 0+. Suppose there are two sequences
{λ1k} and {λ2k} such that

lim
λ1k→λ̄+

Ψ(λ1k, µ̄) 6= lim
λ2k→λ̄+

Ψ(λ2k, µ̄).(4.6)

By the mean value theorem, we have

Ψ(λ1k, µ̄)−Ψ(λ2k, µ̄) =
1

2
(λ1k − λ2k)‖d(λm, µ̄)‖.(4.7)

The right-hand side of (4.7) vanishes by the boundedness of d(·, µ̄), contradicting
(4.6). This completes our proof.

Thus Ψ(λ, µ) is defined on the closed set Ω0 and can take a finite value or −∞,
but not +∞. However,

max
(λ,µ)∈Ω0

Ψ(λ, µ)(4.8)

may be +∞, and

arg max
(λ,µ)∈Ω0

Ψ(λ, µ)(4.9)

may lie at the infinity on the dual space R2
+. In section 5, we will see that this case

can be handled in the same way as the finite case. Since Ψ(·, ·) is well defined on the
closed set Ω0, we define the set

S =

{
(λ, µ) ∈ Ω0 | (λ, µ) = arg max

Ω0

Ψ(λ, µ)

}
.(4.10)

Because Ψ(λ, µ) is concave in intΩ0 and also concave on Ω0 by Lemma 4.2 given
below, its maxima point set may be a segment on the ∂Ω0. Then Lemma 3.5 implies
that this segment belongs to only one connected branch.

Lemma 4.2. Ψ(λ, µ) is a concave function on the closed set Ω0.
Proof. Let (λ1, µ1) and (λ2, µ2) be two points in Ω0. Then we have that

H(λ1 + ε, µ1) and H(λ2 + ε, µ2) are positive definite for all ε > 0, and hence so
is H(λ1+λ2+2ε

2 , µ1+µ2

2 ). Since Ψ(·, ·) is concave in intΩ0,

Ψ

(
λ1 + λ2 + 2ε

2
,
µ1 + µ2

2

)
≥ 1

2
(Ψ(λ1 + ε, µ1) + Ψ(λ2 + ε, µ2)).(4.11)

Taking limits on both sides of the above inequality we deduced that Ψ(λ, µ) is concave
on Ω0.

Assuming (λ̄, µ̄) ∈ ∂Ω0, we define

d(λ̄, µ̄) = lim
ε→0+

d(λ̄+ ε, µ̄).(4.12)
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If (2.1) is inconsistent for (λ̄, µ̄), the right-hand side of (4.1) goes to −∞. In this
case d(λ̄, µ̄) is undefined in (4.12). Suppose (2.1) is consistent at (λ̄, µ̄). Then we
can choose, for convenience, the minimum norm least square solution of (2.1). In the
following, we will see that it is important that the limit (4.12) satisfies the property
stated in Lemma 4.3 instead of the definition (4.12) itself.

Lemma 4.3. Assuming that (2.1) holds at (λ̄, µ̄) ∈ ∂Ω0, we have the following
property:

lim
ε→0+

H(λ̄, µ̄)d(λ̄+ ε, µ̄) = −(g + µ̄Ac).(4.13)

Proof. First we have

H(λ̄, µ̄)d(λ̄+ ε, µ̄) = −H(λ̄, µ̄)H(λ̄+ ε, µ̄)−1(g + µ̄Ac)

= −H(λ̄, µ̄)
(
H(λ̄, µ̄) + εI

)−1
(g + µ̄Ac).

(4.14)

It is easy to see that for any positive semidefinite matrix A,

lim
ε→0+

A(A+ εI)−1 = AA+,(4.15)

where A+ is the Moore–Penrose generalized inverse of A. Thus, it follows from (4.14)
and (4.15) that

limε→0+H(λ̄, µ̄)d(λ̄+ ε, µ̄) = −H(λ̄, µ̄)H(λ̄, µ̄)+(g + µ̄Ac)

= −(g + µ̄Ac),
(4.16)

which gives (4.13).

Since we have

limε→0+(g + µ̄Ac)TH(λ̄+ ε, µ̄)−1(g + µ̄Ac)

= limε→0+(g + µ̄Ac)TH(λ̄+ ε, µ̄)−1H(λ̄+ ε, µ̄)H(λ̄+ ε, µ̄)−1(g + µ̄Ac)

= limε→0+(g + µ̄Ac)TH(λ̄+ ε, µ̄)+H(λ̄+ ε, µ̄)H(λ̄+ ε, µ̄)+(g + µ̄Ac)

= (g + µ̄Ac)TH(λ̄, µ̄)+(g + µ̄Ac),

(4.17)

the following result follows from our extended definitions given in (4.1).

Lemma 4.4. For (λ̄, µ̄) ∈ Ω0,

Ψ(λ̄, µ̄) =


−∞ if (2.1) is inconsistent,

− 1
2 (g + µ̄Ac)TH(λ̄, µ̄)+(g + µ̄Ac)− λ

2 ∆2 − µ
2 (ξ2 − ‖c‖2)

otherwise

(4.18)

and

d(λ̄, µ̄) =

 undefined if (2.1) is inconsistent,

−H(λ̄, µ̄)+(g + µ̄Ac) otherwise.
(4.19)
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Fig. 5.1. Example 5.1.
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Fig. 5.3. Example 5.3.

5. Location of global solution. In this section, we study the relations between
the set S defined by (4.10) and the Lagrangian multipliers (λ̄, µ̄) at the global solutions
of problem (1.1)–(1.3). First, we consider the following cases:

• There exists a (λ+, µ+) ∈ S satisfying (3.14). So, d(λ+, µ+) is a global
solution of problem (3.1)–(3.3) due to Theorem 3.2. In this case, S may be a
singleton or a segment.
• A segment of S lies in ∂Ω1k for some k ∈ K. (k is unique due to Lemma 3.5.)

Theorem 5.4, given below, states that we have obtained the desired global
solution.
• S is a singleton such that S ⊂ ∂Ω1. For this case, in this section we give the

locating branches in which the global solution lies, which generally includes
two or three connected branches of Ω1. In this case, the Hessian of any global
solution of problem (3.1)–(3.3) might not be positive semidefinite. And we
still cannot determine in which connected branch the global solution lies.
This is the hard case of subproblem (1.1)–(1.3).

The following examples show the last two cases.
Example 5.1. A segment maxima of the dual function. Let

B = diag(−4,−2), A = diag(1, 2), g = (0, 4)′, c = (0, 3)′,∆ = 3, ξ =
√

6.

Then d = (±√5,−2)′ with the Lagrangian multiplier (4 − µ, µ) and the Hessian of
Lagrangian diag(0, 2 + 3µ), where µ ∈ [0, 4].

The following two examples show the hardness of the last case.
Example 5.2. Let

B = diag(−2, 2), A = diag(1, 1), g = (2, 0)′, c = (−2, 0)′,∆ = 2, ξ = 1.

Then d = (2, 0)′ with the Lagrangian multiplier (1, 0) and the Hessian of Lagrangian
diag(−1, 3).

Example 5.3. Let

B = diag(−1,−2), A = diag(1, 1), g = (−4, 6)′, c = (0,−6)′,∆ = 5, ξ = 5.

Then d = (4, 3)′ with the Lagrangian multiplier (1, 1) and the Hessian of Lagrangian
diag(1, 0).

The contours of the dual functions of the above examples are given in Figures
5.1, 5.2, and 5.3.

If S ⊂ Ω1k is a segment for some k ∈ K, we already get the solution by adding a
null-space-step of the Hessian of the Lagrangian by Theorem 5.4.
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Theorem 5.4. If S ⊂ ∂Ω1k is a segment, then there exists a solution of (2.1)–
(2.3) where the Hessian of the Lagrangian is positive semidefinite.

Proof. Let (λ̄, µ̄) and (λ̂, µ̂) be two different points of S. By the definition of S,
we have

lim
i→+∞

Ψ(λ̄i, µ̄) = max
Ω0

Ψ(λ, µ),(5.1)

lim
i→+∞

Ψ(λ̂i, µ̂) = max
Ω0

Ψ(λ, µ),(5.2)

where λ̄i − λ̄ → 0+ and λ̂i − λ̂ → 0+. Since Ψ(·, ·) approximates to a constant in a
neighborhood of S, the above two relations give that

lim
i→+∞

( ‖d(λ̄i, µ̄)‖2 −∆2

‖AT d(λ̄i, µ̄) + c‖2 − ξ2

)T(
λ̄− λ̂
µ̄− µ̂

)
= 0(5.3)

and

lim
i→+∞

d(λ̄i, µ̄)(λ̄i − λ̂i)− y(λ̄i, µ̄)(µ̄− µ̂) = 0.(5.4)

Since S ⊂ ∂Ω1k, H(λ̄, µ̄), and H(λ̂, µ̂) are singular. By the concavity of Ψ(·, ·), we
have that H(λ, µ) is singular and positive semidefinite for all (λ, µ) in the segment

between (λ̄, µ̄) and (λ̂, µ̂). For any 0 6= v ∈ Null(H(λ̄, µ̄)) we have that

vTH(λ̄, µ̄)v = vTH(λ̂, µ̂)v = 0,(5.5)

which implies that

‖v‖2(λ̄− λ̂) + ‖AT v‖2(µ̄− µ̂) = 0.(5.6)

Therefore,

lim
i→+∞

vT (d(λ̄i, µ̄)(λ̄i − λ̂i)− y(λ̄i, µ̄)(µ̄− µ̂)) = 0,(5.7)

which, together with (5.4) and (5.6), gives that

lim
i→+∞

( ‖d(λ̄i, µ̄) + tv‖2 −∆2

‖AT (d(λ̄i, µ̄) + tv) + c‖2 − ξ2

)T(
λ̄− λ̂
µ̄− µ̂

)
= 0(5.8)

for all t ∈ R. Since the right-hand sides of (5.1) and (5.2) are not −∞, it can be seen

that (2.1) is consistent at (λ̄, µ̄) and (λ̂, µ̂). Thus

lim
i→∞

d(λ̄i, µ̄) = d(λ̄, µ̄).(5.9)

Since (λ̄, µ̄) ∈ S, by the reasons mentioned in Theorem 3.2, we see that ‖d(λ̄, µ̄)‖ ≤ ∆.
Therefore, we can choose ti such that

lim
i→+∞

‖d(λi, µ) + tiv‖ = ∆.(5.10)
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Let d̄ be any limit point of {d(λi, µ) + tiv}, so

‖d̄‖ = ∆,(5.11)

‖AT d̄+ c‖ = ξ,(5.12)

and

H(λ̄, µ̄)d̄ = −(g + µ̄Ac),(5.13)

which implies that d̄ is a global solution, (λ̄, µ̄) is the corresponding pair of Lagrangian
multipliers, and H(λ̄, µ̄) is positive semidefinite.

6. Location of global solution: Hard case. We now consider the hard case
of problem (1.1)–(1.3), in which S is a singleton on ∂Ω0 and the Hessian at the global
solution may have one negative eigenvalue. In order to determine the region where the
solution locates, we introduce the following definition. In all the following discussion
we assume that S = {(λ+, µ+)} ⊂ ∂Ω0 is a singleton.

Definition 6.1. Define two sets

L = {λe < λ+ | ri{{λ = λe} ∩ Ω1} = ∅} ∪ {0}(6.1)

and

M = {µe < µ+ | ri{{µ = µe} ∩ Ω1} = ∅} ∪ {0}.(6.2)

For λe ∈ L and µe ∈M, the set

Ω(λe, µe) =
(
Ω1 ∪ S

) ∩ {λ ≥ λe, µ ≥ µe}(6.3)

is called a related region of S.
Because S might not be in Ω1 or even Ω1, the term Ω1 ∪ S must occur in (6.3).

Here, ri{{λ = λe}∩Ω1} = ∅ implies that it is impossible for H(λe, µ) to have exactly
one negative eigenvalue for any µ. In the latter case, for the λ-direction, we may have
the following two cases:

(i) λ+ > 0, and for all 0 ≤ λe < λ+, ri{{λ = λe} ∩ Ω1} 6= ∅;
(ii) λ+ = 0.

Similarly, we have two cases for the µ-direction. If λe = 0 or µe = 0, the related
region is the same as Ω1 ∪S in the λ-direction or in the µ-direction. Therefore, there
exists a Lagrange multiplier at the global solution lies in the related region in the λ-
direction or in the µ-direction. Thus, we need only to consider the case when λe 6= 0
and µe 6= 0. In this case we have that λ+ 6= 0 and µ+ 6= 0.

First, we need the following lemma to prove our location theorem.
Lemma 6.2. Assume that S is a singleton. If the triple (λ∗, µ∗, d∗) satisfies KKT

system (2.1)–(2.3) with (λ∗, µ∗) ∈ Ω0, and if either of the statements
(i) λ∗ 6= 0,
(ii) µ∗ 6= 0 and det(B + λ∗I + µAAT ) does not vanish identically for µ ≥ µ∗

holds, then

S = {(λ∗, µ∗)}.(6.4)

Proof. It suffices to prove, for any fixed (λ, µ) ∈ intΩ0,

Ψ(λ∗, µ∗) ≥ Ψ(λ, µ).(6.5)
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We assume, first, that λ∗ 6= 0. For any ε > 0, it is easy to see that d∗ is a global
solution of the subproblem

min
d∈Rn

Φ̄(d) =
1

2
dTBd+ ḡTd(6.6)

subject to

‖d‖ ≤ ∆,(6.7)

‖ATd+ c‖ ≤ ξ,(6.8)

where ḡ = g−εd∗ and the corresponding pair of Lagrangian multipliers is (λ∗+ε, µ∗).
Define that

d̄(λ, µ) = −H(λ, µ)−1(ḡ + µAc)(6.9)

and

Ψ̄(λ, µ) = −1

2
(ḡ + µAc)TH(λ, µ)−1(ḡ + µAc)− λ

2
∆2 − µ

2
(ξ2 − ‖c‖2)(6.10)

when H(λ, µ) is positive definite. If H(λ, µ) is singular, Ψ(λ, µ) can be defined as in
(4.1). Then we have

∇Ψ̄(λ∗ + ε, µ∗) ≤ 0(6.11)

and

(λ∗ + ε, µ∗)T∇Ψ̄(λ∗ + ε, µ∗) = 0.(6.12)

Since the Hessian H(λ∗ + ε, µ∗) is positive definite, (6.11) and (6.12) imply that
(λ∗+ε, µ∗) is a stationary point of Ψ̄(λ, µ). Since Ψ̄(λ, µ) is concave in Ω0, (λ∗+ε, µ∗)
is a global maximizer of Ψ̄(λ, µ) on Ω0, i.e.,

Ψ̄(λ∗ + ε, µ∗) ≥ Ψ̄(λ, µ) for all (λ, µ) ∈ intΩ0.(6.13)

For the left-hand side of (6.13), we have

limε→0+ Ψ̄(λ∗ + ε, µ∗)

= limε→0+− 1
2d
∗TH(λ∗ + ε, µ∗)d∗ − λ∗+ε

2 ∆2 − µ∗

2 (ξ2 − ‖c‖2)

= − 1
2d
∗TH(λ∗, µ∗)d∗ − λ∗

2 ∆2 − µ∗

2 (ξ2 − ‖c‖2).

(6.14)

Because (λ∗, µ∗, d∗) satisfies the KKT system, it follows that

− 1
2d
∗TH(λ∗, µ∗)d∗

= − 1
2d
∗TH(λ∗, µ∗)H+(λ∗, µ∗)H(λ∗, µ∗)d∗

= − 1
2 (g + µ∗Ac)TH+(λ∗, µ∗)(g + µ∗Ac).

(6.15)

Equations (6.14), (6.15), and (4.18) imply that

lim
ε→0+

Ψ̄(λ∗ + ε, µ∗) = Ψ(λ∗, µ∗).(6.16)
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For any (λ, µ) ∈ intΩ0, H(λ, µ) is positive definite. Thus, it is easy to see that

lim
ε→0+

Ψ̄(λ+ ε, µ) = Ψ(λ, µ) for all (λ, µ) ∈ intΩ0.(6.17)

Therefore, (6.5) follows from (6.13), (6.16), and (6.17).
Now we consider the case that µ∗ 6= 0, and det(B+λ∗I +µAAT ) 6≡ 0 for µ ≥ µ∗.

Let ḡ = g − εAAT d∗, where d∗ is a global solution of (6.6)–(6.8) with (λ∗, µ∗ + ε)
the corresponding pair of Lagrangian multipliers. Our assumption implies that there
exists a small ε∗ such that

B + λ∗I + (µ∗ + ε)AAT(6.18)

is positive definite for all 0 < ε < ε∗. Then, we also have equalities (6.15) and (6.17),
and, similarly, we have

limε→0+ Ψ̄(λ∗, µ∗ + ε)

= − 1
2d
∗TH(λ∗, µ∗)d∗ − λ∗

2 ∆2 − µ∗

2 (ξ2 − ‖c‖2).
(6.19)

Thus we can prove the same result.
Moreover, with the additional assumption that d∗ is feasible for both constraints,

we can prove the result of Lemma 6.2 without the assumption that det(H(λ∗, µ)) 6≡ 0
for µ > µ∗. Suppose the condition det(H(λ∗, µ)) 6≡ 0 for µ > µ∗ fails, i.e., det(B +
λ∗I + µAAT ) ≡ 0 for µ ≥ µ∗. Let µc be the minimal µ such that (λ∗, µ) ∈ Ω0, i.e.,
H(λ∗, µ) is positive semidefinite for µ = µc and is not positive semidefinite for µ < µc.
By Lemma 4.2, Ψ(λ∗, µ) is a concave function on µ ∈ [µc,+∞). By the arguments of
Theorem 3.2,

dΨ(λ∗, µ)

dµ
|µ=µ∗ ≤ 0,(6.20)

which holds as an inequality only if µ∗ = µc. Hence µ∗ is the maximizer of function
Ψ(λ∗, ·) on [µc,+∞). Thus, by (3.15) and (3.16), (λ∗, µ∗) is the maximizer of Ψ(λ, µ).

In the following, we discuss some properties of the so-called shifted problem.
We consider the “shifted” problem P̂ :

min Φ̂(d̂) =
1

2
d̂T (B + λeI + µeAA

T )d̂+ (g + µeAc)
Td̂(6.21)

subject to

‖d̂‖2 ≤ ∆2,(6.22)

‖ATd̂+ c‖2 ≤ ξ2.(6.23)

Actually, except for a constant, the objective function Φ̂(d) is the sum of the original
objective function Φ(d) and a penalty term 1

2 (λe‖d‖2 + µe‖ATd+ c‖2).

The dual function of P̂ is

Ψ̂(λ̂, µ̂) = Φ̂(d̂) +
λ̂

2
(‖d̂‖2 −∆2) +

µ̂

2
(‖ATd̂+ c‖2 − ξ2),(6.24)

where

d̂ = d̂(λ̂, µ̂) = −(B̂ + λ̂I + µ̂AAT)−1(ĝ + µ̂Ac),(6.25)
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B̂ = B+λeI +µeAA
T, ĝ = g+µeAc, and λ̂ ≥ 0, µ̂ ≥ 0 are the multipliers of problem

P̂ . The Hessian of the Lagrangian is Ĥ(λ̂, µ̂) = B̂ + λ̂I + µ̂AAT . We also define the
regions,

Ω̂0 = {(λ̂, µ̂) ∈ R2
+ | Ĥ(λ̂, µ̂) is positive semidefinite},(6.26)

and

Ω̂1 = {(λ̂, µ̂) ∈ R2
+ | Ĥ(λ̂, µ̂) has one negative eigenvalue}.(6.27)

It is easy to show that

Ω̂0 = (Ω0 ∩ {λ ≥ λe, µ ≥ µe})− (λe, µe)(6.28)

and

Ω̂1 = (Ω1 ∩ {λ ≥ λe, µ ≥ µe})− (λe, µe).(6.29)

The statement (6.29) also holds for the connected branches Ω̂1j and Ω1j of the regions

Ω̂1 and Ω1, respectively, if Ω1j ∪ {λ ≥ λe, µ ≥ µe} 6= ∅. We also have that two

connected branches Ω̂1j and Ω̂1k of Ω̂1 are consecutive or adjoint if and only if their
counterparts, Ωij and Ω1k, the connected branches of Ω1, are consecutive or adjoint
(assuming that all the connected branches are well defined). In other words, the
translated dual plane holds all these properties of the dual plane of original problem
if the dual variables satisfy λ ≥ λe and µ ≥ µe. Similarly to (3.7),

∇Ψ̂(λ̂, µ̂) =
1

2

( ‖d̂(λ̂, µ̂)‖2 −∆2

‖ATd̂(λ̂, µ̂) + c‖2 − ξ2

)
.(6.30)

From the KKT conditions of the original problem and those of problem P̂ , we have

d(λ+ λe, µ+ µe) = d̂(λ, µ).(6.31)

So, by (6.30) and (3.7), the following equation holds:

∇Ψ(λ+ λe, µ+ µe) = ∇Ψ̂(λ, µ).(6.32)

Moreover, the difference between the dual functions of these two problems is only a
constant depending on λe and µe:

Ψ(λ+ λe, µ+ µe) = Ψ̂(λ, µ) +
λe
2

∆2 +
µe
2

(ξ2 − ‖c‖2).(6.33)

By definition (4.1), the equality (6.33) holds also for (λ, µ) ∈ ∂Ω0. Hence,

(λ+ − λe, µ+ − µe) = arg max
(λ̂,µ̂)∈Ω̂0

Ψ̂(λ̂, µ̂).(6.34)

Now we are ready to prove the main result of this section.
Theorem 6.3. If S is a singleton, there exist multipliers (λ, µ) in the related

region of S such that (λ, µ) are the corresponding Lagrangian multipliers of a global
minimizer of (1.1)–(1.3).

Proof. If there is a feasible point d∗ such that the triple (λ+, µ+, d∗) solves (2.1)–
(2.3), then the global solution of problem (3.1)–(3.3) is d∗.
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Suppose d̂g is a global solution of problem (6.21)–(6.23), and (λ̂g, µ̂g) ∈ Ω̂1 are

the corresponding Lagrangian multipliers. If we suppose λe 6= 0, then we have λ̂g 6= 0.
Otherwise, since

ri{{λ̂ = λ̂g} ∩ Ω1} = ∅,(6.35)

Ĥ(λ̂g, µ̂g) is positive semidefinite, and then Ψ̂ reaches its maximum at two points

(λ̂g, µ̂g) and (λ+−λe, µ+−µe), which means that Ψ also reaches its maximum at two

points. This contradicts the assumption that S is a singleton. If λ̂g = 0, then λe = 0

and λe + λ̂g = 0. Then we have

(λ̂g + λe)(‖d(λ̂g + λe, µ̂g + µe)‖ −∆) = λ̂g(‖d̂(λ̂g, µ̂g)‖ −∆) = 0(6.36)

and, similarly,

(6.37)

(µ̂g + µe)(‖ATd(λ̂g + λe, µ̂g + µe) + c‖ − ξ) = µ̂g(‖ATd̂(λ̂g, µ̂g) + c‖ − ξ) = 0.

This implies that

Φ̂(d̂g) = Φ(d̂g) +
λe
2

∆2 +
µe
2

(ξ2 − ‖c‖2).(6.38)

Moreover,

d(λg, µg) = d̂(λ̂g, µ̂g)(6.39)

follows (6.31) with (λg, µg) the corresponding Lagrangian multipliers. Furthermore,
for any feasible d ∈ Rn of the original problem, we have that

Φ̂(d̂g) ≤ Φ̂(d).(6.40)

Expressions (6.38) and (6.40) imply that

Φ(d(λg, µg)) ≤ Φ(d) + λe(‖d‖2 −∆2) + µe(‖ATd+ c‖2 − ξ2)
≤ Φ(d).

(6.41)

The above inequality indicates that d(λg, µg) is a global solution of the original prob-
lem. This completes our proof.

The above theorem illustrates the relation between the location of the Lagrangian
multipliers and the maxima of the dual function on the region where the Hessian of
the Lagrangian is positive semidefinite. From Definition 6.1, we can see that the
choices of λe and µe are independent of each other. It can be seen that the larger
λe and µe are, the smaller the related region is. Now we choose the minimal related
region of S, i.e., we find the maxima (or supremum) of L and M.

First, we consider the set M. For ε > 0, we consider all the indices j such that

Ω1j ∩ {µ+ − ε < µ < µ+} 6= ∅.(6.42)

By Lemma 3.3, this set can be divided into three cases.
Case 1. For sufficiently small ε > 0, there is no such j. Then, we may choose

µe = µ+−ε for sufficiently small ε > 0. Actually, the global solution lies in {µ ≥ µ+}.
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Fig. 6.1. (a) of Example 6.4. Fig. 6.2. (b) of Example 6.4. Fig. 6.3. (c) of Example 6.4.

Ω12

Ω11

Ω2

Ω11

Case 2. For sufficiently small ε > 0, there is exactly one such j. Then we easily
see that the best choice of µe is µe = lµj .

Case 3. For any small ε > 0, there are infinitely many j such that (6.42) holds.
Then µe can be chosen as any lµj , which implies, actually, that the global solution
lies in {µ ≥ lµj} for all j. Since the supremum of all these indices is µ+, then the
global solution lies in {µ ≥ µ+} as in the first case.

These three cases show that the number of existent connected branches in {µ <
µ+} is at least one. See Figures 6.1, 6.2, and 6.3.

Example 6.4. (a) Let

B = diag(−2,−4), A = diag

(√
2

2
,
√

2

)
.

The related region of (4/3, 4/3) is Ω11 ∪ Ω12.
(b) Let

B = diag(−2,−2,−4), A = diag

(√
2

2
,

√
2

2
,
√

2

)
.

The related region of (4/3, 4/3) is Ω11, and the Hessian with Lagrangian multiplier in
Ω2 has two negative eigenvalues.

(c) We would like to show an example where there are infinitely many connected
branches near one point. However, we could not find such an example or prove its
nonexistence.

For the λ-direction, the case is slightly different. Considering Case 2, if there
exists k such that Ω1k ∩ {λ+ − ε < λ < λ+} 6= ∅, then the following statement may
fail:

ri{{λ = λλk} ∩ Ω1} = ∅.(6.43)

That is to say, B + lλkI + µAAT can be singular and have one negative eigenvalue in
an interval (µs, µs). Therefore, we cannot set λe = lλk. In this case,

det(B + lλkI + µAAT ) = 0(6.44)

for µ ∈ (µs, µs). Since det(B+ lλkI +µAAT ) is a polynomial of µ, the above relation
implies that

det(B + lλkI + µAAT ) = 0 for allµ ≥ 0.(6.45)
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Thus for any λ < λλk, B + λI + µAAT has at least one negative eigenvalue for all
µ, which implies that lλk′ = 0 and uµk′ = +∞ if there is a connected branch Ω1k′

such that Ω1k � Ω1k′ . Therefore, there is at most one Ω1k′ such that Ω1k � Ω1k′ .
So we can set λe = 0 and there are at most two connected branches in the region
{0 ≤ λ ≤ λ+}.

For example, let

B = diag(−5,−8,−3), A =

 1 0
0 2
0 0

 ;(6.46)

then λ = 3 is the singular line and (µs, µs) = ( 5
4 , 2). In section 7, we will present

an example to show that the Hessian at the global solution may have one negative
eigenvalue and can be singular.

From the above analyses, there are at most three connected branches of Ω1 in the
minimal related region of S. In the case that there are three connected branches in
the minimal related region of S, we will have that (λ+, µ+) is an adjoint point of two
connected branches of Ω1. Moreover, there must be a singular line of the Lagrangian
Hessian in the related region. Thus there are indices k, k′ ∈ K such that

lλk = λ+ = uλk′(6.47)

uµk = µ+ = lµk′ ,(6.48)

and

det(B + lλk′I + µAAT ) ≡ 0 for allµ ≥ 0.(6.49)

Here, it follows from (6.47)–(6.48) that Ω1k and Ω1k′ are two adjoint connected
branches.

7. Distribution of local solutions. In this section we show that, for the CDT
problem, there may exist two local solutions whose corresponding Lagrangian mul-
tipliers lie in the same connected branch Ω1k defined by (3.18) of the region where
the Hessian of the Lagrangian possesses exactly one negative eigenvalue. It is also
possible that the Hessian of the Lagrangian can have one negative eigenvalue and a
zero eigenvalue. The following example shows that there may exist two local solutions
in one connected branch of Ω1.

Example 7.1. Let

B =

( −34/9
−3

)
, A =

(
4/3

1

)
, g =

(
24
27

)
, c =

( −10
13

)
,(7.1)

∆ = 13, and ξ = 10.
The global and local-nonglobal solutions of problem (3.1)–(3.3) are

dg =

(
0
−13

)
, dl =

(
12
−5

)
,(7.2)

with the Lagrangian multipliers (λg, µg) = (12/13, 9/5) and (λl, µl) = (28/51, 94/51),
respectively. Then we easily see, from Figures 7.1 and 7.2, that the two points
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Fig. 7.1. Primal space. Fig. 7.2. Dual space.

(0,−13) = dg

dl = (12,−5)

λ

µ

(λl, µl) = (28/51, 94/51)

(λg , µg) = (12/13, 9/5)

(12/13, 9/5), (28/51, 94/51) are in the same connected branch. For the single-ball-
constrained quadratic minimization, there is at most one local-nonglobal solution; see
Mart́ınez [10].

To show the distribution of local solutions, first we need a lemma.
Lemma 7.2. Assume that
(a) d(λ∗1, µ

∗
1) and d(λ∗2, µ

∗
2) are two stationary points of problem (3.1)–(3.3), i.e.,

satisfy the KKT system, (2.1)–(2.3);

(b) λ∗2 ≥ λ∗1 ≥ 0 and µ∗2 ≥ µ∗1 ≥ 0;
then

Φ(d(λ∗2, µ
∗
2)) ≤ Φ(d(λ∗1, µ

∗
1)).(7.3)

The equality in (7.3) holds if and only if

λ∗2 = λ∗1(7.4)

and

(µ∗2 − µ∗1)AT(d(λ∗2, µ
∗
2)− d(λ∗1, µ

∗
1)) = 0.(7.5)

Proof. For simplicity, we use the notations

H1 = H(λ∗1, µ
∗
1), H2 = H(λ∗2, µ

∗
2),(7.6)

and

g1 = g + µ∗1Ac, g2 = g + µ∗2Ac.(7.7)

Let di = d(λ∗i , µ
∗
i ), i = 1, 2. Then we get

H1d1 = −g1, H2d2 = −g2.(7.8)

Using (7.8), we have

Φ(di) = −1

2
di
THidi − λ∗i

2
∆2 − µ∗i

2
(ξ2 − ‖c‖2)(7.9)
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for i = 1, 2. Hence

Φ(d1)− Φ(d2)

= 1
2d
T
2 H2d2 − 1

2d
T
1 H1d1 + 1

2 (λ∗2 − λ∗1)∆2 + 1
2 (µ∗2 − µ∗1)(ξ2 − ‖c‖2)

≥ 1
2d
T
1 g1 − 1

2d
T
2 g2 + 1

2 (λ∗2 − λ∗1)dT1 d2

+ 1
2 (µ∗2 − µ∗1)((AT d1 + c)T (AT d2 + c)− ‖c‖2)

= 1
2d
T
1 g1 − 1

2d
T
2 g2 + 1

2d
T
1 (H2 −H1)d2 + 1

2 (µ∗2 − µ∗1)(d1 + d2)TAc

= 1
2d
T
1 g1 − 1

2d
T
2 g2 − 1

2d
T
1 g2 + 1

2d
T
2 g1 + 1

2 (d1 + d2)T (g2 − g1)

= 0.

(7.10)

The equality in (7.3) holds if and only if the equality in (7.10) holds, which is
equivalent to

(λ∗2 − λ∗1)(∆2 − d1
Td2) = 0(7.11)

and

(µ∗2 − µ∗1)(ξ2 − (ATd1 + c)T(ATd2 + c)) = 0.(7.12)

If λ∗2 > λ∗1, (7.11) gives

d1
Td2 = ∆2 = d1

Td1 = d2
Td2,(7.13)

which implies that d1 = d2. Then,

(λ∗2 − λ∗1)d1 + (µ∗2 − µ∗1)A(ATd1 + c) = 0,(7.14)

and any triple (λ, µ, d), with (λ, µ) in the straight line joining (λ∗2, µ
∗
2) and (λ∗1, µ

∗
1),

is also a solution to the KKT system. Similar to equation (2.48) of Yuan [16],

d1
TA(ATd1 + c) ≥ 0.(7.15)

Relations (7.14), (7.15) and µ∗2 ≥ µ∗1 give

(λ∗2 − λ∗1)‖d1‖2 ≤ 0,(7.16)

which contradicts λ∗2 > λ∗1 and (7.13). Therefore, (7.11) is true if and only if λ∗2 = λ∗1.
If µ∗2 > µ∗1, the equality in (7.12) gives

(ATd1 + c)T(ATd2 + c) = ξ2 = ‖ATd1 + c‖2 = ‖ATd2 + c‖2,(7.17)

which implies ATd1 + c = ATd2 + c, i.e., AT(d1 − d2) = 0. On the other hand, if
A(d1 − d2) = 0, we have AT d1 + c = AT d2 + c, which implies

(ATd1 + c)T(ATd2 + c) = ‖ATd1 + c‖2 = ‖ATd2 + c‖2.(7.18)

Since µ∗2 > µ∗1 ≥ 0, we have

‖ATd2 + c‖ = ξ;(7.19)

therefore (ATd1 + c)T(ATd2 + c) = ξ2. Thus we see that (7.12) is equivalent to
(7.5).
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In Theorem 7.4, we have two points satisfying (b) of Lemma 7.2. Furthermore,
Theorem 7.4 states that these two points are not local solutions at the same time while
both the Hessians are not singular. This assumption cannot be moved, as the following
example shows. In this example we show that there may exist a global solution of
(3.1)–(3.3) with its Hessian having one negative eigenvalue and being singular.

Example 7.3. In this example, (3.1)–(3.3) have the global solution (λg, µg, dg)
satisfying λg = 0, both constraints are active at dg and the Hessian H(λg, µg) has
one negative eigenvalue.

B =

( −1
−4

)
, A =

(
1

1

)
, g =

(
2
−10

)
, c =

(
0
3

)
,(7.20)

∆ =
√

2 and ξ =
√

5; then dg = (−1,−1)T with its Lagrangian multipliers (λg, µg) =
(0, 3) is the global solution of (3.1)–(3.3). Then the problem is

min
d̄∈R3

1

2
d̄TB̄d̄+ ḡTd̄(7.21)

subject to

‖d̄‖2 ≤ ∆2,(7.22)

‖ĀTd̄+ c̄‖2 ≤ ξ2,(7.23)

where d̄ = (d1, d2, d3)T, B̄ = diag(B, 0), ĀT = (AT , 0), ḡT = (gT, 0), and c̄T = (cT, 0).
Its global solution is d̄g = (−1,−1, 0)T, with the Lagrangian multipliers (λg, µg) =
(0, 3) and the Hessian Hg = diag(2,−1, 0). So the Hessian Hg at the global solution
has one negative eigenvalue and is singular. However, for the single-ball-constrained
quadratic minimization, there is no local solution where the Hessian has one negative
eigenvalue and is singular (see Mart́ınez [10]).

Theorem 7.4. It is not possible for two local solutions d(λ∗1, µ
∗
1) and d(λ∗2, µ

∗
2)

of problem (3.1)–(3.3) to satisfy λ∗1 > λ∗2 > 0, µ∗1 ≥ µ∗2 > 0, with H(λ∗i , µ
∗
i ), i = 1, 2,

being a nonsingular matrix with exactly one negative eigenvalue.
Proof. Suppose that (λ∗1, µ

∗
1) and (λ∗2, µ

∗
2) are the Lagrangian multipliers satisfying

the above assumption.
Consider the following problem (P̃ ):

min
d̃∈Rn

1

2
d̃TB̃d̃+ g̃Td̃(7.24)

subject to

‖D̃Td̃+ c̃‖ ≤ ξ̃,(7.25)

where

B̃ = B + λ∗2I + µ∗2AA
T,

g̃ = g + µ∗2Ac,
D̃ = (τ1I + τ2AA

T)
1
2 ,

c̃ = τ2D̃
−1Ac,

ξ̃ = (c̃Tc̃− τ2ξ2 + τ2c
Tc+ τ1∆2)

1
2 ,

(7.26)
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and τ1 = λ∗1 − λ∗2 and τ2 = µ∗1 − µ∗2.
Since λ∗1 > λ∗2 > 0 and µ∗1 ≥ µ∗2 > 0, D̃ and c̃ in (7.26) are well defined. Suppose

t̃ is the Lagrangian multiplier of (P̃ ); then the KKT system of (P̃ ) is

(B̃ + t̃D̃D̃T)d̃∗ = −(g̃ + t̃D̃c̃)(7.27)

and

t̃(‖D̃Td̃∗ + c̃‖ − ξ̃) = 0.(7.28)

It can be verified that d(λ∗1, µ
∗
1) and d(λ∗2, µ

∗
2) are two stationary points of (P̃ ) with

multipliers t̃ = 1 and t̃ = 0, respectively. Set

φ(t̃) =
1

2
(‖D̃Td̃(t̃) + c̃‖2 − ξ̃2).(7.29)

By direct calculations and from the result given by Mart́ınez [10], we have

φ′(t̃)|t̃=0

= −(g̃ − B̃D̃−T c̃)TH̃−1D̃D̃TH̃−1D̃D̃TH̃−1(g̃ − B̃D̃−T c̃)|t̃=0

= −(τ1d
∗
1 + τ2y

∗
1)TH(λ∗1, µ

∗
1)−1(τ1d

∗
1 + τ2y

∗
1)

= (τ1, τ2)∇2Ψ(λ∗1, µ
∗
1)

(
τ1
τ2

)
< 0,

(7.30)

where H̃ = B̃ + t̃D̃D̃T, d∗1 = d(λ∗1, µ
∗
1), and y∗1 = A(ATd∗1 + c). Since there are

two stationary points with the Hessian one negative eigenvalue, from Lemma 4.3 in
Mart́ınez [10], (7.30) is a strict inequality.

Let δd = d∗2 − d∗1, where d∗2 = d(λ∗2, µ
∗
2); then

H(λ∗1, µ
∗
1)δd = τ1d

∗
1 + τ2y

∗
1(7.31)

follows by direct calculations. Hence

δdTH(λ∗1, µ
∗
1)δd = δdTH(λ∗1, µ

∗
1)H(λ∗1, µ

∗
1)−1H(λ∗1, µ

∗
1)δd

= −(τ1, τ2)∇2Ψ(λ∗1, µ
∗
1)

(
τ1
τ2

)
> 0.

(7.32)

Define

S1 =

{
d | 〈 d‖d‖ ,

δd

‖δd‖〉 ≥ 1− ε
}
∪ {0}(7.33)

and

S2 =

{
d | 〈 d‖d‖ ,

δd

‖δd‖〉 ≤ 1− 1

2
ε

}
∪ {0},(7.34)

where

ε
1
2 =

δdTH∗δd
8‖δd‖2‖H∗‖(7.35)
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and H∗ = H(λ∗1, µ
∗
1). Since H∗ has one negative eigenvalue and δd 6= 0, (7.35) is well

defined. It is easy to verify that S1 and S2 are closed sets. Moreover, if d ∈ S1,∥∥∥∥ d

‖d‖ −
δd

‖δd‖
∥∥∥∥ ≤ 2ε(7.36)

and
1
‖d‖2 d

TH∗d

=
(

d
‖d‖ − δd

‖δd‖ + δd
‖δd‖

)T
H∗
(

d
‖d‖ − δd

‖δd‖ + δd
‖δd‖

)
≥ δdTH∗δd

‖δd‖2 − 2
√

2ε‖H∗‖ − 2ε‖H∗‖
≥ 0,

(7.37)

while if d ∈ S2,

dT
(
I − δdδdT

‖δd‖2
)
d ≥ 0.(7.38)

Let

θ1 = min{dTH∗d | ‖d‖ = 1, d ∈ S1},(7.39)

θ2 = min

{
dT
(
I − δdδdT

‖δd‖2
)
d | ‖d‖ = 1, d ∈ S2

}
,(7.40)

and θ = min{θ1, θ2}. It can be verified that θ > 0 since S1, S2, and {d | ‖d‖ = 1}
are all closed sets. From Lemma 2.3 of Yuan [16], there are α1 ≥ 0 and α2 ≥ 0 with
α1 + α2 = 1 such that

α1(H∗ − θI) + α2

(
I − θI − δdδdT

‖δd‖2
)

(7.41)

is positive semidefinite. Since neither (H∗ − θI) nor (I − θI − δdδdT

‖δd‖2 ) is positive semi-

definite, α1 6= 0 and α2 6= 0. Let m0 = α2

α1
; the matrix H∗ +m0(I − δdδdT

‖δd‖2 ) is positive

semidefinite. Now the problem (Pp)

min
d

1

2
dTBpd+ gTpd(7.42)

subject to

‖d‖ ≤ ∆,(7.43)

‖ATd+ c‖ ≤ ξ,(7.44)

where Bp = B+m0(I− δdδdT

‖δd‖2 ) and gp = g−(Bp−B)d∗1, possesses two global solutions

(λ∗1, µ
∗
1, d
∗
1) and (λ∗2, µ

∗
2, d
∗
2),(7.45)

both with positive semidefinite Hessian. That their objective function value must be
the same contradicts Lemma 7.2.

Remark. From Theorem 7.4, all the local solutions with the multipliers in intΩ1

are permuted in the way the connected branches of Ω1 are. As Example 7.1 shows,
in one connected branch of Ω1, there may exist a global and a local solution simul-
taneously. It is important to give the characteristic of the global solution and hence
construct an algorithm with which to find the global solution instead of the local
solution.
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8. Conclusions and future work. We investigated the dual plane of the CDT
subproblem which is related to a matrix pencil with two parameters. We also extended
the general Lagrangian dual function from the region where the Lagrangian Hessian
is positive definite to its closure. The location and permutation of the Lagrangian
multipliers were studied and the differences between the CDT subproblem and the
trust region subproblem were presented.

We have given various results on the locations of the corresponding Lagrange
multipliers. These results may be used in the construction of numerical methods for
the CDT subproblem based on identifying the multipliers. The main result shows that
the Lagrangian multipliers corresponding to a global minimizer of the CDT problem
locates in finitely many, often two or three, connected branches of Ω1 if there is no
global minimizer with the Hessian of the Lagrangian positive semidefinite. Roughly
speaking, if we define the degree of the nonpositive definite of a symmetric matrix as
the number of its negative eigenvalues, an important property of the CDT problem
is that its complexity is not related to the nonpositive degree of the Hessian.

For some trust region methods, the trial step can be any sufficient descent feasible
direction instead of the global minimizer or a local minimizer. Thus, it is interesting
to search for efficient algorithms to compute approximate global minimizers of the
CDT subproblem in the primal space.

Acknowledgment. We would like to thank two anonymous referees for their
valuable comments which improved the paper.
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Abstract. In this paper we study a class of discrete optimization problems, where the objective
function for a given configuration can be expressed as the expectation of a random variable. In
such problems, only samples of the random variables are available for the optimization process. An
iterative algorithm called the stochastic comparison (SC) algorithm is developed. The convergence
of the SC algorithm is established based on an examination of the quasi-stationary probabilities of a
time-inhomogeneous Markov chain. We also present some numerical experiments.
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1. Introduction. Discrete optimization plays an increasingly important role in
system design and analysis. Examples include the configuration design of distributed
computer systems, routing design in communication networks, and scheduling prob-
lems in communication networks, production systems, and transportation systems.
The common features of these discrete optimization problems are (1) the number of
feasible alternatives increases exponentially with the system size and (2) it is usu-
ally not possible to obtain an analytic expression for the objective function being
optimized. To tackle the first difficulty, one has to relax the goal. That is, instead
of asking for the true optimal solution, one must be satisfied with algorithms that
provide a good design with high probability (rather than 100% certainty) in realistic
time. Simulated annealing (SA) is one such algorithm, and it has been successful in
solving many practical problems (see, for example, [1]). However, for SA to work well,
it needs a good neighborhood structure and accurate estimates of the objective func-
tion values. Experiments show that a poor choice of a neighborhood structure and the
use of rough estimates of the objective function values can lead to poor performance
(cf. [14], [20], [7]). When one does not have an analytic expression for the objective
function, one must usually resort to Monte Carlo simulation to obtain estimates. The
quality of these estimates depends on the length of the simulation run. Much the-
oretical work has been done to evaluate the performance of SA when the objective
function is noisy. Two types of errors have been classified: instantaneous error (the
difference between the true and the observed objective functions) and accumulated
error (the sum of a sequence of the instantaneous errors). Grover [15] presented an
early analysis on the effect of the instantaneous errors. Durand and White [8] analyzed
equilibrium properties for bounded instantaneous errors. Gelfand and Mitter [9], [10]
showed that, under certain conditions, slowly decreasing state-independent Gaussian
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noise does not affect asymptotic convergence. Romeo and Sangiovanni-Vincentelli [23]
gave conditions on the errors such that transition probabilities of a noisy annealing
process converge to those of the accurate process as T → 0. Greening [13] proved a
slightly more general result by relating the error range and the cooling temperature.
While these studies show that SA can work with Monte Carlo estimates, it would take
extensive computer time to simulate a complex system to get sufficiently accurate es-
timates. Another algorithm, proposed by Yan and Mukai [27], takes this point into
consideration. We call their algorithm the stochastic ruler (SR) algorithm. Yan and
Mukai proved that, under fairly general conditions, the sequence of feasible alterna-
tives visited by the SR algorithm converges, in probability, to the optimum. In the SR
algorithm the estimated objective function is compared with a random number called
the stochastic ruler. The original SR algorithm used a random variable uniformly
distributed over an interval [a, b] as the ruler. This requires some a priori knowledge
regarding the range of the objective function values to determine an appropriate in-
terval size for the ruler. Too big a ruler reduces the sensitivity of the algorithm and
slows down the optimization process. Conversely, too small a ruler may not be able
to distinguish the best solutions from other good solutions that fall outside the range
of the ruler.

In this paper, we propose a new algorithm that we call the stochastic compar-
ison (SC) algorithm. The algorithm is designed for discrete optimization problems
with large unstructured search spaces. It has its roots in the ranking and selection
procedures well known in statistics (see, for example, [16], [25], [11]). The typical
ranking and selection procedures, however, deal only with small search spaces and
are not concerned with the convergence of the type of iterative procedure that we
propose. Bandit theory also deals with similar problems, but again, such theory deals
with much smaller problems (see, for example, [21], [26], and references therein). Our
work belongs to the general class of random search algorithms (see, e.g., [24, Chap.
5] and references therein). An initial, much shorter version of this work was presented
in [12].

The remainder of the paper is organized as follows. In section 2, we present the
discrete optimization with estimation problem and discuss the existing SA and SR
algorithms. Section 3 proposes the SC algorithm and establishes an equivalence result
to pave the way for the convergence proof. Section 4 analyzes the time-homogeneous
Markov chain generated by the SC algorithm when the “testing sequence” is constant.
The convergence proof of the SC algorithm via the analysis of the underlying time-
inhomogeneous Markov chain is given in section 5. Numerical examples are presented
in section 6. We close with a brief discussion in section 7.

2. The problem and existing algorithms.

2.1. The optimization problem. Because we were originally motivated by
a computer system configuration design problem, we will call each element of the
search space a configuration. The optimization problem is to find a configuration, i
(not necessarily unique), from a discrete finite set of alternatives, S, that minimizes
an objective function, g(i), i.e.,

min
i∈S
{g(i)}

with g : S → R and S = {1, 2, . . . , s}. That is, we wish to find a global optimal
configuration i ∈ S∗, where S∗ is the global optimal set, given by

S∗ = {i ∈ S | g(i) ≤ g(j) ∀j ∈ S}.(1)
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Let us denote the cardinality of the solution space S by |S| (note that |S| = s). A
key assumption is that |S| is very large. We will also assume, as is often the case in
practice, that we do not have an analytic expression for the objective function g(i) and
that it can only be evaluated via Monte Carlo simulation. Let H(i) be a sample esti-
mate of g(i) and assume that g(i) = E[H(i)] ∀i ∈ S (i.e., H(i) is unbiased). Further,
assume that the variance of the estimate is finite, i.e., that E[H(i)− E[H(i)]]2 < ∞
∀i ∈ S.

The unbiasedness assumption is generally required in order to prove various the-
oretical properties (e.g., convergence) of stochastic optimization schemes. This is the
case for the SR algorithm [27], which largely motivated our work here. Unbiasedness is
satisfied, for example, when the simulation system used to obtain H(i) has a regener-
ative structure. In that case, regenerative simulation provides unbiased, independent,
identically distributed (i.i.d.) samples of the objective function (see, for example, [2,
p. 95]). More concretely, consider a GI/GI/1 queue, where the quantities belong to
single busy periods and are i.i.d. random variables. However, performance measures
estimates are often given as ratios of such random variables. For example, the estimate
of the mean waiting time in a single server queue is the ratio of the expected total
waiting time of customers within a busy period to the expected number of customers
during that busy period. In this case, a regenerative estimate of the ratio is biased.
The following technique can be employed to compare two competing configurations i
and j in our optimization scheme.

Suppose the ratio estimator for configuration i is h(i) = Ri
Yi

and the estimator

for configuration j is h(j) =
Rj
Yj

. Instead of comparing h(i) to h(j) directly, we

should instead compare RiYj to RjYi. Since the regenerative estimates for Ri, Rj ,
Yi, and Yj are unbiased, and Ri and Yj are independent (as are Rj and Yi), we
have E[RiYj ] = E[Ri]E[Yj ] and E[RjYi] = E[Rj ]E[Yi], and consequently, E[RiYj ] <

E[RjYi] is equivalent to E[Ri]
E[Yi]

<
E[Rj ]
E[Yj ]

. In other situations, bias reduction techniques,

such as jackknifing (cf. [2]) can be used to reduce the bias. Finally, experimental
results demonstrate that algorithms developed under unbiasedness assumptions are
nevertheless useful in practice with slightly biased estimates.

2.2. SA and SR algorithms. The SA and SR algorithms are two generic ran-
dom search algorithms designed to solve the discrete optimization problem (1). To
briefly describe these algorithms, we first introduce the following standard definitions
and assumption.

Definition 2.1. For each i ∈ S, there exists a subset N(i) of S \ {i}, which is
called the set of neighbors of i.

Definition 2.2. A function R: S × S → [0, 1] is said to be a generating proba-
bility for S and N if

1. R(i, j) > 0⇐⇒ j ∈ N(i) and
2.
∑
j∈S R(i, j) = 1 for i, j ∈ S.

Assumption 2.1. For any pair (i, j) ∈ S × S, j is reachable from i; i.e., there
exists a finite sequence {nm}`m=0 for some `, such that in0

= i, in` = j, and inm+1
∈

N(inm) for m = 0, 1, 2, . . . , `− 1.

For SA, it has been proved [22] that a real sequence {Tk}∞k=0 satisfying Tk =
γ

log(k+k0+1) , k = 0, 1, 2, . . . , for some positive numbers γ and k0 will guarantee that

the algorithm will converge to a global optimum. Tk is called the temperature at the kth
iteration of the sequence and {Tk}∞k=0 is called the cooling schedule. For SR, it has been
proved [27] that an integer sequence {Mk}∞k=0 satisfying Mk = bc logσ(k+k0+1)c, k =
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0, 1, 2, . . . (bξc denotes the greatest integer that is smaller than or equal to ξ), for some
positive numbers c, σ, and k0 will guarantee that the algorithm will converge to a global
optimum. We call Mk the kth testing number and {Mk}∞k=0 the testing sequence. Note
that to guarantee the convergence of these algorithms, the temperature or the testing
number has to change as slowly as a logarithmic function of the iteration number k
[17], [22], [27].

The standard way to prove the above results is to note that the sequence of
configurations visited by the algorithm forms a Markov chain. That is, if we let Xk

denote the configuration visited by the algorithm at the kth iteration, then {Xk}∞k=1

is a Markov chain. Then, to prove the convergence of the algorithm, all one has to do

is to show that the probability vector e(k) = [e1(k) . . . es(k)] with ei(k)
4
= Pr{Xk = i}

for i = 1, . . . , s converges to an optimal probability vector e∗ = [e∗1 . . . e
∗
s], i.e., that

e∗i > 0 for i ∈ S∗,

e∗i = 0 for i /∈ S∗.

This is typically done using the theory of weak and strong ergodicity of time-inhomoge-
neous Markov chains [1], [17], [19], [22].

For SA, the one-step transition probabilities of the Markov chain {Xk} for a given
temperature T are

Pij(T ) =


R(i, j) min[1, e−{g(j)−g(i)}/T ] if j ∈ N(i);
1−∑n∈N(i) Pin(T ) if j = i;

0 otherwise.

(2)

Observe that Pij(T ) > 0, even when g(j) > g(i). In other words, SA visits
poor configurations with positive probability in order to jump out of local minima.
However, it does so less frequently as the optimization proceeds, so as to mimic the
physical “annealing” process in steel, which provided the inspiration for the algorithm.

The SR algorithm works by comparing sample estimates of the objective function
to an a priori chosen random variable Θ(a, b). Θ(a, b), the stochastic ruler, has a
uniform distribution over [a, b], the range of “good” values of the sample estimates.
Defining

P (i, a, b) = P [H(i) ≤ Θ(a, b)],

then the one-step state transition probabilities for a given testing number M are given
by

Pij(M) =


R(i, j){P (j, a, b)}M if j ∈ N(i);
1−∑n∈N(i) Pin(M) if j = i;

0 otherwise.
(3)

That is, Pij(M) is the probability that the search goes from configuration i to con-
figuration j when the testing number is M .

2.3. Practical issues and motivation. The development of the SC algorithm
was motivated by certain practical limitations of the existing SA and SR algorithms.
First, our experiments show that SA does not converge when the objective function
estimates are noisy. This suggests that SA needs long simulation runs to get improved
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estimates. SR is more robust with respect to estimation error. This is a consequence
of the robustness of Monte Carlo estimates for order statistics. As a result, algorithms
based on order statistics can significantly reduce the required simulation time [18].
Second, the SA algorithm must often visit poor configurations so as not to overlook
the possibility that there might be a very good configuration surrounded by poor
configurations. This, however, is only beneficial when one can identify a good neigh-
borhood structure, which is often a difficult task. Similarly, for the SR algorithm, one
has to choose the size of the stochastic ruler, which can also be difficult in practice,
where one often has very limited information about the configuration space.

Motivated by the shortcomings of the SA and SR algorithms, we propose the SC
algorithm. The algorithm is designed for large-scale optimization problems driven by
noisy estimates of the objective function. Like the SR algorithm, the SC algorithm
exploits the robustness of order statistics to deal with the noisy estimates. It differs
from the SR algorithm in that, instead of comparing candidate configurations to a
stochastic ruler, it directly compares the current configuration to a candidate con-
figuration. The SC algorithm, therefore, does not require any knowledge whatsoever
about the structure of the search space. This does mean, however, that convergence
is only guaranteed when any configuration (in the whole configuration space) can be
reached from any other in one step. In other words, we have eliminated the neighbor-
hood structure for the sake of convergence.

Our SC algorithm is actually a stochastic version of the crude random search
algorithm proposed by Brooks [3], the main difference being that Brooks’s algorithm
assumes that the exact values of the objective function are available, and it there-
fore has a straightforward convergence proof. While a good neighborhood structure
can speed up the search process of algorithms like SR, a poor neighborhood struc-
ture can hurt performance. Eliminating the use of a neighborhood structure is not
a limitation for many practical optimization problems, like the computer configura-
tion design problem mentioned earlier, since for such problems a good neighborhood
structure is generally very difficult to identify. While it is possible to eliminate the
neighborhood structure in the SR algorithm (by taking the whole configuration space
as the neighborhood), it is easy to show that when this is done, the SC algorithm is
more efficient than the SR algorithm, at least when the objective function estimation
error is small. This is because, when the objective function is known exactly, the SC
algorithm becomes the usual crude random search, while the SR algorithm still com-
pares the objective function values against a random ruler to decide when to move.
In this case, the SR algorithm is not as efficient as the SC algorithm; when there is
no uncertainty, there is no need to introduce randomness in comparing alternative
configurations.

One may question the effectiveness of searching a huge configuration space without
exploiting the neighborhood structure that may be present. The following calculation,
however, demonstrates that blind random search can be very effective, especially when
the noise in the estimated objective function is small. Suppose that the objective
function g(i) ∀i ∈ S is known exactly. At each iteration a blind random search
compares the current configuration against a configuration chosen uniformly from the
configuration space, i.e., R(j, i) = 1/(|S| − 1) ∀j ∈ S \ {i}. The configuration giving
better performance becomes the new “current configuration.” If the cardinality of
the search space, |S|, is sufficiently large, then after k iterations of the algorithm,
the probability of finding a configuration whose performance is in the top α% (i.e.,
(1− α)% of the configurations give worse performance) is approximately
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Pα(k) ≈ 1−
(

1− 1

|S| − 1

)0.01α|S|k
≈ 1− exp(−0.01αk).

The derivation of this approximation is straightforward. Note that 1
|S|−1 is the proba-

bility of choosing one of the top α% configurations, thus (1− 1
|S|−1 ) is the probability

that this configuration is not chosen, and (1− 1
|S|−1 )0.01α|S| is the approximate proba-

bility that none of the top α% configurations are chosen. Therefore, after k iterations
of the algorithm, the probability that the current configuration is not in the top α%
is (1− 1

|S|−1 )0.01α|S|k, and 1− (1− 1
|S|−1 )0.01α|S|k is the probability that the current

configuration is in the top α%.

As an example, suppose that the size of the configuration space |S| is large and
that we are looking for a configuration whose performance is in the top α = 0.5% of all
configurations. After only k = 1000 iterations of a blind random search, the probability
that we have found such a configuration is P0.5(1000) ≈ 1− e−5 = 0.99326—a virtual
certainty. This suggests that, for certain applications, a crude random search (i.e.,
without neighborhood structure) can indeed be very useful. This property of the
blind random search algorithm is the inspiration for the SC algorithm to be presented
next.

3. The stochastic comparison algorithm.

3.1. An alternative problem. A key feature of the SC algorithm is that we do
not try to minimize E[H(i)] directly. Instead, we try to maximize an alternative ob-
jective function, which we call the sigma-probability function. The sigma-probability
function, which we denote by sp(·), is defined for each configuration i ∈ S by

sp(i) =
∑
j∈S\{i} Pr [H(i) < H(j)].

The SC algorithm, therefore, seeks to identify a member of the optimum set S̄∗, where

S̄∗ = {i ∈ S | sp(i) ≥ sp(j) ∀j ∈ S}.

Let Wi = H(i) − g(i) denote the estimation error, and assume that it satisfies the
following conditions.

Assumption 3.1.

1. {Wi, i ∈ S} are i.i.d.

2. Each Wi, i ∈ S, has a symmetric continuous probability density function with
a zero mean.

Given Assumption 3.1, we will now show that the optimization problem above is
equivalent to the original discrete optimization problem in the sense that S̄∗ = S∗.

Theorem 3.1. Under Assumption 3.1,

E[H(i)] < E[H(j)] ⇐⇒ sp(i) > sp(j) ∀i 6= j, i, j ∈ S.

Proof. Note that we can express H(i) as H(i) = g(i) + Wi, where g(i) =
E[H(i)] ∀i ∈ S. Let c = g(i)− g(j).

By Assumption 3.1, the differences Wj−Wi,Wk−Wi, and Wk−Wj ∀k ∈ S\{i, j}
are identically distributed random variables with a symmetric continuous density
function. Let ξ be a random variable with the same density. Then we have
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sp(i) = Pr[H(i) < H(j)] +
∑
k∈S\{i,j} Pr[H(i) < H(k)]

= Pr[Wj −Wi > g(i)− g(j)] +
∑
k∈S\{i,j} Pr[Wk −Wi > g(i)− g(k)]

= Pr[ξ > c] +
∑
k∈S\{i,j} Pr[ξ > c+ g(j)− g(k)]

and

sp(j) = Pr[H(j) < H(i)] +
∑
k∈S\{i,j} Pr[H(j) < H(k)]

= Pr[Wj −Wi < g(i)− g(j)] +
∑
k∈S\{i,j} Pr[Wk −Wj > g(j)− g(k)]

= Pr[ξ < c] +
∑
k∈S\{i,j} Pr[ξ > g(j)− g(k)].

Since Pr[ξ < c] = 1− Pr[ξ ≥ c] = 1− Pr[ξ > c], we have

sp(i)−sp(j) = 2 Pr[ξ > c]−1+
∑

k∈S\{i,j}
{Pr[ξ > c+g(j)−g(k)]−Pr[ξ > g(j)−g(k)]}.

Note that the right-hand side of the above equation is a monotonic decreasing function
of c, and that sp(i) − sp(j) = 0 when c = 0. Therefore, we have sp(i) > sp(j) ⇐⇒
E[H(i)] < E[H(j)].

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.1. Given H(i), H(j) ∀i 6= j, i, j ∈ S, we have under Assumption

E[H(i)] < E[H(j)]⇐⇒ Pr[H(i) < H(j)] > Pr[H(j) < H(i)].

Proof. Let S = {i, j} and apply Theorem 3.1.

We will find the following lemma useful later in the paper.

Lemma 3.1.Given H(i), H(j), H(k) ∀i 6= j, j 6= k, k 6= i, i, j, k ∈ S, and
Assumption 3.1, the following two conditions are equivalent:

1. E[H(i)] < E[H(j)] < E[H(k)];
2. Pr[H(i) < H(k)] > Pr[H(j) < H(k)] and Pr[H(i) < H(k)] > Pr[H(i) <
H(j)].

Proof. Using the same notation as in the proof of Theorem 3.1, we have

Pr[H(i) < H(k)] = Pr[Wi −Wk < g(k)− g(i)] = Pr[ξ < g(k)− g(i)],

Pr[H(j) < H(k)] = Pr[Wj −Wk < g(k)− g(j)] = Pr[ξ < g(k)− g(j)],

Pr[H(i) < H(j)] = Pr[Wi −Wj < g(j)− g(i)] = Pr[ξ < g(j)− g(i)].

The results of the lemma follow immediately.

To guarantee that the SC algorithm converges, we require that any configuration
be reachable from any other in one step. That is, we require the following.

Assumption 3.2. R(i, j) > 0 ∀i, j ∈ S and i 6= j.

3.2. Implementation of the SC algorithm. Let S be the configuration space,
k the iteration number, Xk the configuration accepted at iteration k, and Mk the
testing number at iteration k. Similar to the SR algorithm, Mk is the number of
sample estimates of H that must be obtained for a configuration at the kth iteration.
For some configuration i, denote these samples by H`(i) for ` = 1, . . . ,Mk.
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The stochastic comparison algorithm.
Data: R, {Mk}, i0 ∈ S.
Step 0: Set X0 = i0 and k = 0.
Step 1: Given Xk = i, choose a candidate Zk from S \ {i} with probability

P [Zk = j|Xk = i] = R(i, j), j ∈ S \ {i}.
Step 2: Given Zk = j, set

Xk+1 =

{
Zk if H`(j) < H`(i) ∀` = 1, . . . ,Mk,
Xk otherwise.

Step 3: Set k = k + 1 and go to Step 1.
The implementation of Step 2 can be described as follows. We generate a sample

(via Monte Carlo simulation) for both H(i) and H(j). If H(j) ≥ H(i), then we
immediately reject Zk, set Xk+1 = Xk, and go to Step 3. On the other hand, if
H(j) < H(i), then we generate another pair of samples, and we compare them again.
If H(j) < H(i) for all Mk samples, only then do we accept Zk, set Xk+1 = Zk, and
go to Step 3. For convergence, the testing sequence used by the SC algorithm must
satisfy the same conditions as those required by the SR algorithm; i.e., Mk must be
such that Mk = bc logσ(k + k0 + 1)c, k = 0, 1, 2, . . . , for some positive numbers c, σ,
and k0. While the number of comparisons Mk does increase as the algorithm proceeds,
it is important to notice that it increases very slowly. As will be seen, this means that
the algorithm has the capability to converge to a good solution very quickly, although
it is possible that convergence to a true optimum may take a very long time.

3.3. Sketch of the convergence proof. If the objective function can be eval-
uated exactly, then the SC algorithm converges trivially to an optimal configuration.
We will show, however, that the algorithm will also converge when the objective
function value has to be estimated.

Due to the i.i.d. assumption of {H`(i), ` = 1, . . . ,Mk; i ∈ S}, the state transition
probability from i to j is

R(i, j) Pr[H1(j) < H1(i), . . . , HMk
(j) < HMk

(i)] = R(i, j){Pr[H(j) < H(i)]}Mk .

Thus, the sequence of configurations visited by the SC algorithm forms a time-
inhomogeneous Markov chain {Xk}. Using the results for time-homogeneous Markov
chains presented in [19], we can show convergence.

An outline of our analysis is as follows.
1. Set Mk = M and study the corresponding Markov chain at its steady state

(the steady-state probability distribution is denoted by π(M)).
2. Let M go to infinity and show that

(a) π(M) converges to an optimal probability vector; and
(b) for large M , π(M) is monotonic in M .

3. Show that the Markov chain with Mk = M is weakly ergodic by calculating
the coefficient of ergodicity.

4. Show that the Markov chain with Mk = M is strongly ergodic.
5. Show the convergence of the Markov chain {Xk} based on its strong ergo-

dicity.
Essentially, the convergence proof for the SC algorithm follows the same lines as

those for the SA and SR algorithms; however, the main component of the proof (the
second step, which involves showing the convergence of π(M) to an optimal probability
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vector), is very different from the approach used for the SA and SR algorithms. In the
next section, section 4, we discuss the quasi-stationary probabilities of the Markov
chains that describe the SC algorithm. The convergence of the SC algorithm is proved
in section 5. We point out that the Markov chain describing the SC algorithm belongs
to the class studied by Connors and Kumar in [6].

4. Markov chain under a constant testing number.

4.1. Markov chain equations. The one-step state transition probabilities of
the Markov chain {Xk} generated by the SC algorithm for a given testing number M
are

Pij(M) =

{
R(i, j){Pr[H(j) < H(i)]}M if j 6= i,
1−∑s

n=1,n 6=i Pin(M) if j = i.
(4)

To simplify notation, we will let rij = R(i, j), pij = Pr[H(j) < H(i)], and
tij = rijp

M
ij (i 6= j), where s = |S| represents the size of the configuration space.

Using our shorthand notation, we can write the one-step transition probabilities as

P (M) =


1−∑s

n=2 t1n t12 t13 · · · t1s
t21 1−∑s

n=1,n 6=2 t2n t23 · · · t2s
t31 t32 1−∑s

n=1,n 6=3 t3n · · · t3s
...

...
...

. . .
...

ts1 ts2 ts3 · · · 1−∑s−1
n=1 tsn

 .

Let

A =


1 1 1 · · · 1
t12 −∑s

n=1,n 6=2 t2n t32 · · · ts2
t13 t23 −∑s

n=1,n 6=3 t3n · · · ts3
...

...
...

. . .
...

t1s t2s t3s · · · −∑s−1
n=1 tsn


=
[
a1 a2 a3 · · · as

]
and

b =
[

1 0 0 · · · 0
]T
.

We will show that there exists a vector π(M) = [π1(M), π2(M), . . . , πs(M)] that
satisfies

AπT (M) = b.

To do so, define

Bm =
[
a1 · · · am−1 b am+1 · · · as

]
;

i.e., {Bm}sm=1 is obtained by replacing the mth column of the matrix A by the vector
b.

Let |X| represent the determinant of the matrix X. It can be verified that |A|
and {|Bm|}sm=1 are related by

|A| = |B1|+ |B2|+ · · ·+ |Bs|.(5)



STOCHASTIC COMPARISON ALGORITHM 393

By Assumption 3.2, any configuration can be chosen in the next step with positive
probability. Therefore, the Markov chain, {Xk}, generated by the SC algorithm is ir-
reducible and positive recurrent. Furthermore, it has a unique stationary distribution.
From Lemma 4.2 and equation (5), we have that |A| 6= 0. By Cramér’s rule,

π1(M) =
|B1|
|A| , π2(M) =

|B2|
|A| , · · · , πs(M) =

|Bs|
|A| .

Since π(M) satisfies π(M) = π(M)P (M) and
∑
i∈S πi(M) = 1, it must be the

unique stationary probability distribution defined by the state transition probability
matrix [P (M)]. We also call π(M) the quasi-stationary probability distribution of the
time-inhomogeneous Markov chain {Xk} [22].

We now expand each |Bi|, ∀i ∈ S, along its ith column. The resulting expansions
are given by the following lemma.

Lemma 4.1. For i ∈ S, |Bi| can be expanded as follows.
1. For i = 1,

|B1| =

∣∣∣∣∣∣∣∣∣
−∑s

n=1,n 6=2 t2n t32 · · · ts2
t23 −∑s

n=1,n 6=3 t3n · · · ts3
...

...
...

...

t2s t3s · · · −∑s−1
n=1 tsn

∣∣∣∣∣∣∣∣∣ .
2. For 1 < i < s,

|Bi| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−∑s
n=2 t1n · · · t(i−1)1 t(i+1)1 · · · ts1
...

. . .
...

...
. . .

...
t1(i−1) · · · −∑s

n=1,n 6=i−1 t(i−1)n t(i+1)(i−1) · · · ts(i−1)

t1(i+1) · · · t(i−1)(i+1) −∑s
n=1,n 6=i+1 t(i+1)n · · · ts(i+1)

...
. . .

...
...

. . .
...

t1s · · · t(i−1)s t(i+1)s · · · −∑s−1
n=1 tsn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

3. For i = s,

|Bs| =

∣∣∣∣∣∣∣∣∣
−∑s

n=2 t1n t21 · · · t(s−1)1

t12 −∑s
n=1,n 6=2 t2n · · · t(s−1)2

...
...

. . .
...

t1(s−1) t2(s−1) · · · −∑s
n=1,n 6=s−1 t(s−1)n

∣∣∣∣∣∣∣∣∣ .

Proof. Expand each |Bi|, ∀i ∈ S, along its ith column. The resulting determinant
is also denoted by |Bi|. If i = 1, then statement 1 follows immediately. If 1 < i ≤ s,
then for every ` = 1, . . . , i − 1, multiply the `th row by −1 and subtract the rest of
the rows from the `th row. Note that the expansion introduces i+1 sign changes, and
the multiplication introduces i−1 sign changes, so there is no sign change. We obtain
2 and 3 after performing the aforementioned multiplications and subtractions.

We further expand each |Bi|, ∀i ∈ S, into a summation form, such that each
term in the summation is a product of (s − 1) elements chosen from {tij | i, j ∈ S}
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according to the expansion theorem. The subscripts of tij (the i and the j) represent
two configurations. To refer to a particular tij , we have to clearly indicate its subscripts
i, j, especially when there are many tij ’s involved. To help keep track of the subscripts,
we define the following sets.

Definition 4.1. For each i = 1, . . . , s, we define a permutation set and its index
set:

1. Permutation set:

PSi
4
= {{kj}sj=1,j 6=i | {kj}sj=1,j 6=i is a permutation of s− 1 integers in

{1, . . . , s} \ {i}};
PS′i

4
= PSi \ {{kj}sj=1,j 6=i|kj = j};

IPSi
4
= {` | ` is an index for each {kj}sj=1,j 6=i ∈ PSi};

IPS′i
4
= {` | ` is an index for each {kj}sj=1,j 6=i ∈ PS′i}.

2. Combination set:

QSi
4
= {{kj}sj=1,j 6=i | kj ∈ {1, . . . , s} \ {j}, j = 1, . . . , s, j 6= i};

QS′i
4
= QSi \ {{kj}sj=1,j 6=i|kj = i};

IQSi
4
= {` | ` is an index for each {kj}sj=1,j 6=i ∈ QSi};

IQS′i
4
= {` | ` is an index for each {kj}sj=1,j 6=i ∈ QS′i}.

3. Optimum combination set:

OSi
4
= {{kj}sj=1,j 6=i ∈ QSi | kj ∈ S∗, for each j = 1, . . . , s, j 6= i};

IOSi
4
= {` | ` is an index for each {kj}sj=1,j 6=i ∈ OSi}.

4. Nonoptimum combination set:

NSi
4
= QSi \OSi;

INSi
4
= IQSi \ IOSi.

For example, if the configuration set S = {1, 2, 3} and the global optimum
set, as defined in equation (1), S∗ = {1}, then

PS1 = {{2, 3}, {3, 2}},
PS′1 = {{2, 3}, {3, 2}} \ {2, 3} = {{3, 2}},
IPS1 = {A1, A2|A1 represents {2, 3}, A2 represents {3, 2}},
IPS′1 = {A2|A2 represents {3, 2}},
QS1 = {{1, 1}, {1, 2}, {3, 1}, {3, 2}},
QS′1 = QS1 \ {1, 1} = {{1, 2}, {3, 1}, {3, 2}},
IQS1 = {B1, B2, B3, B4|B1 represents {1, 1}, B2 represents {1, 2},

B3 represents {3, 1}, B4 represents {3, 2}},
IQS′1 = {B2, B3, B4|B2 represents {1, 2}, B3 represents {3, 1},

B4 represents {3, 2}},
OS1 = {{1, 1}},
IOS1 = {C1|C1 represents {1, 1}}.
NS1, INS1 can be expressed similarly and are omitted here.
Lemma 4.2. Let Ri =

∏s
j=1,j 6=i rji and Pi =

∏s
j=1,j 6=i pji ∀i ∈ S. Let also

R(`)
i =

∏s
j=1,j 6=i rjkj and P(`)

i =
∏s
j=1,j 6=i pjkj ∀i ∈ S, where {kj}sj=1,j 6=i ∈ QS′i and

` ∈ IQS′i.
Then the expansion of |Bi|, ∀i ∈ S, has the following properties:

1. |Bi| = (−1)(s−1)[RiPi +
∑
`∈IQS′

i
C

(`)
i R(`)

i P(`)
i ], where C

(`)
i is the number of

times that R(`)
i P(`)

i appears in the summation;
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2. (−1)(s−1)|Bi| > 0;

3. ∀i ∈ S∗,Pi = P(`)
i , if ` ∈ IOSi;

4. ∀i ∈ S∗,Pi > P(`)
i , if ` ∈ INSi;

5. ∀i ∈ S∗,Pi > Pn, if n ∈ S \ S∗;
6. ∀i ∈ S∗,Pi > P(`)

n , if n ∈ S \ S∗.
Proof. Let tii = −∑s

n=1,n 6=i tin and U (`)
i =

∏s
j=1,j 6=i tjkj , where {kj}sj=1,j 6=i ∈

PS′i and ` ∈ IPS′i. Let also nsc(`) be the number of sign changes for U (`)
i .

When we apply the Laplace expansion theorem for determinants to |Bi|, we get

|Bi| = (−1)s−1

 s∏
j=1,j 6=i

 s∑
n=1,n 6=j

tjn

+
∑

`∈IPS′
i

(−1)s−1+nsc(`) · U (`)
i

 .
If we further expand |Bi| into a summation of R(`)

i P(`)
i ’s, the index set QS′i will be

used. We can find only one RiPi term from
∏s
j=1,j 6=i(

∑s
n=1,n 6=j tjn), and none from

the summands of
∑
`∈IPS′

i
(−1)s−1+nsc(`) · U (`)

i , since the second index of all tı’s in

R(`)
i P(`)

i cannot be i simultaneously. Note also that all negative (−1)s−1+nsc(`)R(`)
i P(`)

i ’s

for ` ∈ IQS′i (if any) in
∑
`∈IPS′

i
(−1)s−1+nsc(`)U (`)

i are canceled because a correspond-

ing term can be found in
∏s
j=1,j 6=i(

∑s
n=1,n 6=j tjn). Therefore, we proved 1 and 2.

To complete the proof, we will need the results of Corollary 3.1, Theorem 3.1,
and Lemma 3.1. For all i ∈ S∗ and {kj}sj=1,j 6=i ∈ QS′i with its index ` ∈ IQS′i, we
have

Pi =
s∏

j=1,j 6=i
pji =

s∏
j=1,j 6=i

Pr[H(i) < H(j)],

P`i =
s∏

j=1,j 6=i
pjkj =

s∏
j=1,j 6=i

Pr[H(kj) < H(j)].

If {kj}sj=1,j 6=i ∈ OS′i, then E[H(i)] = E[H(kj)] ∀kj , which implies Pr[H(i) < H(j)] =
Pr[H(kj) < H(j)]. Therefore, 3 is true.

If {kj}sj=1,j 6=i ∈ NS′i, then ∃kj′ , such that E[H(i)] < E[H(kj)], which implies
Pr[H(i) < H(j)] > Pr[H(kj′) < H(j)]. Therefore, 4 is true.

For all n ∈ S \ S∗, we have

Pi = Pr[H(i) < H(n)]
s∏

j=1,j 6=i,n
Pr[H(i) < H(j)]

and

Pn = Pr[H(n) < H(i)]
s∏

j=1,j 6=i,n
Pr[H(n) < H(j)],

since Pr[H(i) < H(n)] > 1
2 > Pr[H(n) < H(i)] and Pr[H(i) < H(j)] > Pr[H(n) <

H(j)], ∀j 6= i, n. Therefore, 5 is true.
Furthermore, we have

P(`)
n = Pr[H(ki) < H(i)]

s∏
j=1,j 6=i,n

Pr[H(kj) < H(j)],



396 WEI-BO GONG, YU-CHI HO, AND WENGANG ZHAI

since Pr[H(i) < H(n)] > 1
2 ≥ Pr[H(ki) < H(i)] and Pr[H(i) < H(j)] ≥ Pr[H(kj) <

H(j)], ∀j 6= i, n. Therefore, 6 is true.

4.2. Convergence of π(M) to an optimal probability vector. Let M →∞
and note that PMi and [P(`)

i ]M ∀i ∈ S∗ and ∀` ∈ IOSi will dominate all other [P(`)
i ]M

∀` ∈ INSi and PMj , [P(`)
j ]M ∀j ∈ S \ S∗ and ∀` ∈ IQSj . Therefore, we have

lim
M→∞

πi(M) =

{
e∗i > 0 if i ∈ S∗,
0 if i ∈ S \ S∗.

Hence as M → ∞, the quasi-stationary probability vector converges to an optimal
probability vector.

4.3. Monotone property of the quasi-stationary probabilities. From the
form of π1(M), π2(M), . . . , πs(M), we see that ∃M∗ < ∞, such that for Mk > M∗

the quasi-stationary probabilities have a monotone property, namely,

πi(Mk+1) > πi(Mk) for i ∈ S∗,
πi(Mk+1) < πi(Mk) for i ∈ S \ S∗.

5. Convergence of the SC algorithm. The convergence proof of the SC
algorithm is based on theorems in [19] about weak and strong ergodicity of time-
inhomogeneous Markov chains.

Let P1, P2, . . . , represent the sequence of one-step state transition probability ma-
trices of a time-inhomogeneous Markov chain, {Yk}, with starting probability vector
f (0). Define

f (k) = f (0)P1P2 · · ·Pk and f (m,k) = f (0)Pm+1Pm+2 · · ·Pm+k.

We are interested in the limiting behavior of f (k) and f (m,k) for any integer m <
k, as k → ∞. This limiting behavior is captured by the notions of ergodicity. If
{f (k)} converges to the same fixed probability vector, q, irrespective of the starting
vector f (0), then we say that the Markov chain is strongly ergodic. Such behavior is
often referred to as loss of memory with convergence. If, however, for any starting
probability vectors f (0) and g(0), f (k) and g(k) are “close” for sufficiently large k
(although f (k) and f (k+1) need not to be very “close” for large k), then we say that
the Markov chain is weakly ergodic. In this case, the chain has the property of loss
of memory without convergence.

To give rigorous definitions of weak and strong ergodicity, we first introduce a
norm operator ‖ · ‖. If f = (f1, f2, . . .) is a vector, define the norm of f by

‖f‖ =
∞∑
i=1

|fi|.

A time-inhomogeneous Markov chain {Yk} is called weakly ergodic if, ∀m,

lim
k→∞

sup
f (0),g(0)

‖f (m,k) − g(m,k)‖ = 0,

where f (0) and g(0) are starting probability vectors.
A time-inhomogeneous Markov chain {Yk} is called strongly ergodic if there exists

a probability vector q such that, ∀m,

lim
k→∞

sup
f (0)

‖f (m,k) − q‖ = 0,

where f (0) is a starting probability vector.
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5.1. Weak ergodicity. We introduce the following notation for the smallest
nonzero R(i, j) and the smallest Pr[H(j) < H(i)]:

ρ = min
i∈S

min
j∈S\{i}

R(i, j),

µ = min
i∈S

min
j∈S\{i}

Pr[H(j) < H(i)].

From Assumption 3.2, we have ρ > 0, and from Assumption 3.1 we have 0 < µ < 1
(Pr[H(j) < H(i)] = Pr[Wi −Wj < g(i) − g(j)] ∈ (0, 1)). Choose σ ≥ 1

µ , 0 < c < 1,

k0, such that 1 ≤ c logσ k0 and Mk = bc logσ(k + k0)c for k = 0, 1, 2, . . ., and recall
that bξc denotes the greatest integer that is smaller than or equal to ξ.

Then we have

Pij(Mk) = R(i, j) Pr[H(j) < H(i)]Mk ≥ ρ
( 1

σ

)Mk

.

Define P (k + 1, k) = P (Mk) · P (Mk+1). The coefficient of ergodicity [19] is

α[P (k + 1, k)]
4
= min

i,j

∑
`∈S

min
`

[Pi`, Pj`] ≥ min
i,j

min[Pi`′ , Pj`′ ] ≥ ρ
( 1

σ

)Mk

.

It can be seen that

∞∑
k=k∗

α(P (k + 1, k)) ≥
∞∑

k=k∗
ρ
( 1

σ

)Mk ≥
∞∑

k=k∗
ρ
( 1

σ

)c logσ(k+k0)

=
∞∑

k=k∗
ρ

1

(k + k0)c
→∞

if c ≤ 1. Hence, the Markov chain generated by the SC algorithm is weakly ergodic
by Theorem V.3.2 of [19] (see the appendix for a statement of the theorem).

5.2. Strong ergodicity. With the monotone property of the quasi-stationary
probabilities we have the following lemma.

Lemma 5.1. The probability vector, π(M), defined in π(M)P (M) = π(M) satis-
fies

∞∑
k=0

‖πi(Mk+1)− πi(Mk)‖ <∞.

Proof. It follows from the monotone property of πi that there exists an integer k∗

such that, for any k > k∗,

πi(Mk+1) ≥ πi(Mk) ∀i ∈ S∗,
πi(Mk+1) ≤ πi(Mk) ∀i ∈ S \ S∗.

Hence, for any k ≥ k∗,

‖πi(Mk+1)− πi(Mk)‖ =
∑
i∈S∗

[πi(Mk+1)− πi(Mk)]−
∑

i∈S\S∗
[πi(Mk+1)− πi(Mk)].

Note that from
∑
i∈S∗ πi(Mk) +

∑
i∈S\S∗ πi(Mk) = ‖π(Mk)‖ = 1, we conclude that,

for any k ≥ k∗,

‖πi(Mk+1)− πi(Mk)‖ = 2
∑
i∈S∗

[πi(Mk+1)− πi(Mk)].
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Table 6.1
Percentage of objective function values that fall in each interval.

` 1 2 3 4 5
[10,30] [30,50] [50,70] [70,90] [90,110]

p` 3 37 30 15 15

Therefore, we have, for any ` ≥ k∗,

∑̀
k=k∗

‖πi(Mk+1)−πi(Mk)‖ = 2
∑
i∈S∗

[πi(M`+1)−πi(Mk∗)] ≤ 2
∑
i∈S∗

πi(M`+1) ≤ 2.

By Theorem V.4.3 of [19] (see the appendix for a statement of the theorem), we
have the following theorem.

Theorem 5.1. The Markov chain {Xk} generated by the SC algorithm, with Mk

taking Mk = bc logσ(k + k0)c, is strongly ergodic. Furthermore,

1. limk→∞ supx0
‖x(`, k)− e∗‖ = 0,

2. limk→∞ Pr[Xk ∈ S∗] = 1,

where x(`, k) = x0P (`, k) = x0

∏k−1
i=` P (Mi), x0 is the initial probability vector, e∗ is

an optimal probability vector, and c, σ, k0 are some constants.
Proof. By Lemma 5.1 of this paper and Theorem V.4.3 in [19], the Markov chain,

{Xk}, is strongly ergodic. Conclusions 1 and 2 are true.
To summarize, what we have shown is that the SC algorithm converges to an

optimal solution under the following conditions: (i) the estimates of H(i) are unbiased
and identically distributed; (ii) the estimation error Wi = H(i)−g(i) is i.i.d. and each
Wi ∈ S has a symmetric continuous probability distribution; (iii) any configuration
can be reached from any other in one step; i.e., R(i, j) > 0 ∀i, j ∈ S; and (iv) the
testing sequence Mk satisfies Mk = bc logσ(k + k0 + 1)c, k = 0, 1, 2, . . ., for some
positive numbers c, σ, and k0.

6. Numerical examples.

6.1. A testbed system. We design a testbed system with one million configu-
rations. To generate the objective function, we divided the interval [10.0,110.0] into
five subintervals with equal lengths of 20.0. Then we generated p`%, ` = 1, . . . , 5,
from the total configurations with objective function value uniformly distributed in
subinterval `. We consider a minimization problem. To make the search more diffi-
cult, we allocate fewer points in the first interval (“good interval”) than in others.
The parameters used are shown in Table 6.1.

Each sample of objective function for configuration i is generated according to
H(i) = g(i) + Wi, where Wi models the behavior of a Monte Carlo simulator. For
these experiments, we take Wi ∼ unif[−a/2, a/2] ∀i ∈ S.

6.2. Comparison of the SC and SR algorithms. Using the testbed system
described above, we performed some experiments to compare the performance of our
SC algorithm to the SR algorithm. The purpose of these experiments is to demon-
strate that the SC algorithm is capable of outperforming the SR algorithm in certain
practical situations.
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Fig. 1. Optimization trajectory of SC (a = 10).
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Fig. 2. Optimization trajectory of SC (a = 40).

Both the SC and the SR algorithms are guaranteed to converge when the test-
ing number increases logarithmically. However, in practice, the log function increases
too fast during the first few iterations. For our experiments, therefore, we used the
linear sequence, Mk = 1 + bk/500c. It is a reasonable approximation to the loga-
rithm sequence over the finite range of k used in the experiments. While our theoret-
ical results do not guarantee the convergence to the optimum in these experiments,
the experiments do reflect what happens in practical optimization. Although our ex-
periments did not indicate any significant sensitivity with respect to the starting
configuration, we, nevertheless, decided to initialize the algorithms at the same ini-
tial configuration X0 for all of the experiments. The generating function is given by
R(i, j) = 1/999999 ∀i, j ∈ S, i 6= j.

We performed the experiments at several different noise levels by letting a = 0,
10, 20, 30, 40, 50, 60, 70. Figures 1, 2, and 3 show the performance of the SC algorithm
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Fig. 3. Optimization trajectory of SC (a = 70).
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Fig. 4. Optimization trajectory of SR with a closed neighborhood (a = 10).

for a = 10, 40, 70, respectively. Each curve is an average of 100 replica with the same
initial configuration and different random speeds. As can be seen, even at the highest
noise level, a = 70, the SC algorithm quickly settles down after about 2200 iterations
and gives very good performance.

For comparison, we performed the same experiments with the SR algorithm. For
these experiments, we chose the same linear testing sequence Mk as used for the SC
algorithm. The stochastic ruler was chosen to cover the entire configuration space, i.e.,
Θ(a, b) ∼ unif[0, 120]. Then we performed two sets of experiments, one with a “closed
neighborhood structure” and one with an “open neighborhood structure.” The closed
neighborhood structure N(i) was defined as follows.

We placed the one million configurations on a circle with equal distance between
them. For each configuration, the left 100 configurations and the right 100 configu-
rations are chosen as its neighbor set. During the optimization, a neighbor is chosen
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Fig. 5. Optimization trajectory of SR with a closed neighborhood (a = 40).
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Fig. 6. Optimization trajectory of SR with a closed neighborhood (a = 70).

uniformly from the neighbor set of the current configuration. Figures 4, 5, and 6 show
the performance of the SR algorithm with the closed neighborhood structure for noise
levels a = 10, 40, 70, respectively. For the open neighborhood structure a neighbor is
chosen uniformly from the entire configuration space, as in the SC algorithm. Fig-
ures 7, 8, and 9 show the performance of the SR algorithm with open neighborhood
structure for a = 10, 40, 70, respectively.

As can be seen from the figures, the SC algorithm performs much better than the
SR algorithm on the particular optimization problem examined. We are quick to point
out, however, that, in general, it is difficult to “compare” the performance of different
optimization algorithms. The particular structure of the problem and the choice of pa-
rameters are often crucial. We also emphasize that when there is a good neighborhood
structure available, then the SR algorithm, which exploits this structure, may easily
outperform the SC algorithm, which does not. For those problems where it is difficult
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Fig. 7. Optimization trajectory of SR with an open neighborhood (a = 10).
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Fig. 8. Optimization trajectory of SR with an open neighborhood (a = 40).

to find a useful neighborhood structure (e.g., computer configuration problems), we
argue that the SC provides a good alternative.

7. Discussion. In this paper we proposed the SC algorithm as an alternative
to the SA and SR algorithms. The SC algorithm is a simple optimization algorithm
designed for problems where we have only noisy estimates of the objective function
and where the search space is very large. The main advantage of the algorithm is
that it is essentially parameter free (except for the choice of the constants k0, σ,
and c in the testing sequence) and requires no knowledge about the structure of the
search space. Experimental results show that it converges to a good solution very
quickly, even when the estimates of the objective function are very noisy. Unlike the
SA and SR algorithms, the SC algorithm does not utilize, nor does it require, that
the configuration space have any neighborhood structure. This is important for many
of the discrete optimization problems encountered in computer and communication
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Fig. 9. Optimization trajectory of SR with an open neighborhood (a = 70).

network design, where it is difficult to find a natural neighborhood structure. In
addition to the simple example used in this paper, the SC algorithm has been applied
successfully to a realistic computer configuration design problem and to a large-scale
transportation scheduling problem. For such problems, it appears to be more practical
to apply the SC algorithm, instead of investing effort to identify a good neighborhood
structure before beginning the optimization procedure.

Appendix.

Theorem A.1 (Theorem V.3.2 of [19]). Let {Xn} be a nonstationary Markov
chain with transition matrices, {Pn}∞n=1. The chain, {Xn}, is weakly ergodic if and
only if there exists a subdivision of P1 ·P2 ·P3 · · · into blocks of matrices [P1 ·P2 · · ·Pn1

]·
[Pn1+1 · Pn1+2 · · ·Pn2 ] · · · [Pnj+1 · Pnj+2 · · ·Pnj+1 ] . . . such that

∞∑
j=0

α(P (nj ,nj+1)) =∞,

where n0 = 0.

Theorem A.2 (Theorem V.4.3 of [19]). Let {Pn} be a sequence of transition
matrices corresponding to a nonstationary weakly ergodic Markov chain with Pn ∈ A
for all n. If there exists a corresponding sequence of left eigenvectors φn, satisfying

∞∑
j=0

‖φj − φj+1‖ <∞,

then the chain is strongly ergodic.
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Abstract. A general decomposition framework for solving large-scale convex programming
problems is described. New algorithms are obtained and several known techniques are recovered as
special cases, including Dantzig–Wolfe column generation, the finite envelope method of Rockafellar,
and Zhu’s primal-dual steepest descent method.
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1. Introduction. This paper describes a decomposition framework for large-
scale convex programming problems in which there is a natural primal-dual structure.
Our framework generalizes the methods proposed by Zhu [11] and Rockafellar [6]
for problems of extended linear-quadratic programming (ELQP). The methods and
proofs of both Zhu and Rockafellar were extended to convex nonquadratic problems
by (respectively) Zhu [10] and Wright [8] by using quadratic lower approximations.
The proofs given here combine and refine the arguments of those four papers.

Our aim is to solve the saddle point problem

(S) minimax L(u, v) over all (u, v) ∈ U × V,
where L is a finite convex-concave saddle function defined on a product of closed
convex sets U×V ⊂ Rn×Rm. Such minimax problems provide useful reformulations
of optimality conditions for extremal problems and also arise in a variety of engineering
and economic contexts.

The primal and dual problems associated with (S) are, respectively,

(P) minimize f(u) := sup
V
L(u, ·) over u ∈ U

and

(D) maximize g(v) := inf
U
L(·, v) over v ∈ V.

We define the duality mappings for (S) by

u 7→ F (u) := argmax
V

L(u, ·),
v 7→ G(v) := argmin

U
L(·, v).

We assume that these set-valued mappings are nonempty-valued on U and V, respec-
tively. Observe that F and G are single-valued mappings in the case where L is strictly
convex-concave; in such cases we shall treat F and G as functions.
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The family of algorithms we propose relies on the ability to find elements in the
sets F (u) and G(v) in an efficient manner. In particular, exact evaluation of the
primal and dual objective functions f and g must be easily managed. This would
be the case when the optimizations defining F (u) and G(v) are highly separable, as
occurs in many large-scale problems.

The general algorithm, and a new algorithm based on it, are introduced in the
next section. In section 3 we derive the algorithms of Rockafellar and Zhu as special
cases. Section 4 is devoted to a proof of global linear convergence under the assumption
of strong convexity. Some concluding remarks are given in section 5.

2. The general algorithm. We propose the following algorithmic framework
for solving (S).

Algorithm 2.1. General envelope method.
(1) Envelope generation: Given a current best guess (uk, vk) ∈ U × V, choose

sets Uk, U
′
k ⊂ U and Vk, V

′
k ⊂ V, with Uk and Vk convex, which satisfy the following

conditions:

uk ∈ Uk, U ′k ⊂ Uk, U ′k ∩G(vk) 6= ∅,
vk ∈ Vk, V ′k ⊂ Vk, V ′k ∩ F (uk) 6= ∅.(2.1)

(2) Search directions: Calculate saddle points

(ûk, v
′
k) ∈ argminimax

Uk×V ′k
L, (u′k, v̂k) ∈ argminimax

U ′
k
×Vk

L.

(3) Line searches: Compute (approximately) the linesearch elements

ūk ∈ argmin
[uk,ûk]

f, v̄k ∈ argmax
[vk,v̂k]

g.

(4) Restart and update: If using the optional “restarts,” set

uk+1 =

{
ūkif f(ūk) ≤ f(u′k),
u′kif f(ūk) > f(u′k),

vk+1 =

{
v̄kif g(v̄k) ≥ g(v′k),
v′kif g(v̄k) < g(v′k).

Otherwise, set uk+1 = ūk, vk+1 = v̄k. Replace k by k + 1 and go to step 1.
The main idea here is that the primal and dual problems are approximated by

replacing U and V in the definitions of (P) and (D) by some choice of subsets. Specif-
ically, the search directions correspond to optimal solutions for the approximating
problems

(Pk) minimize fk(u) := sup
V ′
k

L(u, ·) over u ∈ Uk

and

(Dk) maximize gk(v) := inf
U ′
k

L(·, v) over v ∈ Vk.

The intersection criteria in (2.1) guarantee that these approximations hold exactly
at the current iterates uk and vk. The method recovers several previously known
algorithms, as will be shown in the next section.
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Notice that for the algorithm to be well defined, one must of course verify that
the problem satisfies suitable hypotheses (such as compactness) to guarantee that the
envelope minimax problems in step 2 actually have solutions.

We mention that our convergence proof in section 4 does not actually require Uk
and Vk to be convex, but merely star-shaped about the current best guesses uk and
vk, respectively:

[u, uk] ⊂ Uk ∀u ∈ Uk,
[v, vk] ⊂ Vk ∀v ∈ Vk.

This requirement provides a criterion, stated formally in Theorem 4.1, by which the
approximate linesearches of step 3 can be judged adequate. The linesearches can
be executed in a variety of ways, including a fixed step-length or a modified Armijo
rule. We refer the reader to the papers of Zhu [10], [11] for a discussion of possible
implementations of such a criterion.

Finally, the optional restarts of step 4 provide the opportunity to use the best
points actually calculated so far. For certain choices of search directions, the restarts
lead to a slight theoretical improvement in convergence. We include them here for
comparison with the algorithm of Zhu [10].

The simplest envelope generation method is given by using the minimal choices
of sets satisfying (2.1). The resulting algorithm is new.

Algorithm 2.2. Duality-descent method with inexact linesearch.
(1) Given current best guesses uk ∈ U and vk ∈ V, choose elements u′k ∈ G(vk)

and v′k ∈ F (uk) and calculate

ûk ∈ argmin
[uk,u′k]

L(·, v′k), v̂k ∈ argmax
[vk,v′k]

L(u′k, ·).

(2) Compute (approximately) the linesearch elements

uk+1 ∈ argmin
[uk,ûk]

f, vk+1 ∈ argmax
[vk,v̂k]

g.

Replace k by k + 1 and go to step 1.
We have omitted the optional restarts for simplicity. Also, the theory under which

the restarts provide an advantage does not apply in this particular case.
Observe that Algorithm 2.2 amounts to an inexact linesearch in the primal and

dual directions ûk − uk and v̂k − vk provided by the duality mappings. As mentioned
above, the first step (which in many situations is relatively easy to carry out) provides
a criterion for judging the adequacy of the approximate linesearch in step 2. Clearly,
an exact linesearch can only improve on this method and removes the requirement for
step 1. We state this as a separate algorithm.

Algorithm 2.3. Duality-descent method with exact linesearch. Given
a current best guess (uk, vk) ∈ U×V, choose ũk ∈ G(vk) and ṽk ∈ F (uk) and compute
(exactly) linesearch elements

uk+1 ∈ argmin
[uk,ũk]

f, vk+1 ∈ argmax
[vk,ṽk]

g.

Replace k by k + 1 and repeat.
The reader should note that Algorithm 2.3 does not fit into the framework of

Algorithm 2.1. Nevertheless, a direct comparison with Algorithm 2.2 shows that it
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must converge at least as fast as that algorithm, under the assumptions used in
section 4.

Rockafellar [6] observed that, in the case where F and G are single-valued, the
primal-dual direction (G(vk)−uk, F (uk)−vk) is necessarily a descent direction for the
duality gap. However, his convergence proof does not quite cover either version of the
duality-descent method. The proof we give in section 4 extends that of Rockafellar
to a broader class of methods, as well as to a broader class of saddle functions.

In the next section we give some specializations of the general envelope method
which recover several other known algorithms. We prove the main convergence results
for our method in section 4.

3. Other special cases. In this section we show that our algorithmic framework
generalizes two earlier methods, the finite envelope method of Rockafellar [6] and
the primal-dual steepest descent algorithm of Zhu [10], [11]. Both of these methods
are envelope generation techniques with different restrictions on the choice of sets
satisfying conditions (2.1).

First we consider the method proposed by Zhu. The statement of this algorithm
assumes that the duality mappings F and G are single-valued.

Algorithm 3.1. Primal-dual steepest descent, PDSD-2.
(1) Given current best guesses uk ∈ U and vk ∈ V, calculate

ûk = G(F (uk)), v̂k = F (G(vk)).

(2) Compute (approximately) the linesearch elements

ūk = argmin
[uk,ûk]

f, v̄k = argmax
[vk,v̂k]

g.

(3) If using optional restarts, set

uk+1 =

{
ūk if f(ūk) ≤ f(G(vk)),
G(vk) if f(ūk) > f(G(vk)),

vk+1 =

{
v̄k if g(v̄k) ≥ g(F (uk)),
F (uk) if g(v̄k) < g(F (uk)).

Otherwise, set uk+1 = ūk, vk+1 = v̄k. Replace k by k + 1 and go to step 1.
The name of this algorithm stems from the fact that the direction vector ûk − uk

represents a “projected steepest descent direction” for f at uk, where the direction
and projection are computed with respect to the inner product determined by the
Hessian matrix ∇2

uuL(uk, vk) (when positive definite). Similarly, v̂k − vk represents a
projected steepest ascent direction. The PDSD-2 variant given here was proposed by
Zhu in [10]. The basic idea was introduced earlier by Zhu and Rockafellar [9], who
developed a general class of primal-dual projected gradient algorithms, including a
primal-dual extension of the conjugate gradient method.

The PDSD-2 algorithm above amounts to envelope generation with the choice

Uk ≡ U, U ′k := {G(vk)}, Vk ≡ V, V ′k := {F (uk)}.

To see this, note that step 2 of Algorithm 2.1 can now be replaced by the calculation
of

ûk = G(F (uk)), v̂k = F (G(vk)).
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Next consider the case where we require the sets used in envelope generation to
satisfy Uk = U ′k and Vk = V ′k. Then step 1 of Algorithm 2.1 consists of solving a single
minimax problem over the restricted domain Uk × Vk. By omitting the restarts we
recover the finite envelope method of Rockafellar [6].

Algorithm 3.2. Finite envelope method.
(1) Given current best guesses uk ∈ U and vk ∈ V, choose closed convex sets

Uk ⊂ U and Vk ⊂ V satisfying the conditions

uk ∈ Uk, G(vk) ∩ Uk 6= ∅,
vk ∈ Vk, F (uk) ∩ Vk 6= ∅.

(2) Calculate the saddle point

(ûk, v̂k) = argminimax
Uk×Vk

L.

(3) Compute (approximately) the linesearch elements

uk+1 = argmin
[uk,ûk]

f, vk+1 = argmax
[vk,v̂k]

g.

Replace k by k + 1 and go to step 1.
We mention that Rockafellar’s description of this algorithm actually imposes the

additional requirement that

G(F (uk)) ∈ Uk, F (G(vk)) ∈ Vk,
although his proof of convergence does not use this fact. However, he goes on to show
that when defined in this way, the finite envelope method identifies the “optimal face”
after finitely many iterations in the fully quadratic situation.

Algorithm 3.2 can be viewed as a generalization of the classical Dantzig–Wolfe
and Benders (or “L-shaped”) decompositions for linear programming. The former
corresponds to choosing

Uk := co{uk′ : k′ ≤ k}, Vk ≡ V,
whereas the latter is given, via the dual, through the choice

Uk ≡ U, Vk := co{vk′ : k′ ≤ k}.
Observe that the linesearches are redundant in both of these. A simple basis-counting
argument can be used to prove the finite termination of these two methods. It is
possible that such an argument could be extended to the case where L is biaffine
and U and V are convex polyhedra, as long as suitably large choices of the sets
Uk, U

′
k, Vk, V

′
k are used.

4. Convergence results. In this section, we shall prove global linear conver-
gence of the general envelope method (Algorithm 2.1) for saddle functions of the
form

L(u, v) = J(u, v) +
p

2
‖u‖2 − q

2
‖v‖2,

where J is a convex-concave saddle function and p and q are positive real numbers.
The quadratic terms guarantee that L admits a unique saddle point on U × V . In
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addition, they force the duality mappings F and G to be single-valued: we shall treat
F and G as functions in this section. This assumption corresponds to strong convexity
in the u variables and strong concavity in the v variables.

A comment is perhaps in order here. Imposing strong convexity (via definiteness of
the Hessian, say) with respect to the primal variables is a fairly common assumption,
but strong concavity in the dual variables is somewhat less usual. This condition is
satisfied when augmented Lagrangians or primal-dual barrier representation are used.
In such settings, one might use an envelope method to generate a good starting point
and then switch to a method giving superlinear local convergence.

Alternatively, to apply the convergence theory given here, some sort of regulariza-
tion may be needed, possibly in the form of proximal terms introduced for the primal
and/or dual variables. (We refer the reader to Rockafellar [4] for a discussion of the
proximal point algorithm.) Any separability making envelope methods attractive is
not adversely affected by such regularization. For some examples of this in stochastic
linear programming, see Rockafellar and Wets [5] and Ruszczyǹski [7].

We also assume that J is differentiable on some open set containing U × V and
has a Lipschitzian gradient:

‖∇J(u, v)−∇J(u′, v′)‖ ≤ K ·max{‖u− u′‖, ‖v − v′‖}

for all (u, v) and (u′, v′) in U×V . The rate of convergence of the algorithm will depend
on the parameter γ := K2/pq.

We can now state our convergence theorem.
Theorem 4.1. Suppose that Algorithm 2.1 is applied to problem (S). Assume

that in iteration k the (approximate) linesearches in step 3 lead to iterates satisfying

f(ūk) ≤ f(uk + λk(ûk − uk)
)
,

g(v̄k) ≥ g(vk + λk(v̂k − vk)
)(4.1)

for some λk with 0 < λk ≤ min{1, 1/γ}. Then the new duality gap satisfies

f(uk+1)− g(vk+1) ≤ θk[f(uk)− g(vk)],(4.2)

where θk = 1− λk + γλ2
k ∈ (0, 1].

Observe that the quantity f(uk)− g(vk) in inequality (4.2) is the duality gap for
the current iterates. By weak duality, this gap provides an estimate for the quality of
the objective values for (P) and (D). Because of the quadratic terms in L, the duality
gap also allows estimating the distances of the iterates uk and vk to the optimal
solutions. This is shown in Corollary 4.4 below.

Interestingly, there is a default step-size for λk, which can in fact be used for both
the primal and dual problems. This is given by

λ̄ := min {1, 1/2γ} ,

which is the unique minimizer over [0, 1] of the function λ 7→ 1− λ+ γλ2. According
to Theorem 4.1, this default step-size guarantees linear convergence.

Corollary 4.2. Suppose that in Algorithm 2.1 the linesearch criterion (4.1) is
applied with the default step-size λk = λ̄ defined above. Then the method converges at
a global linear rate in the sense that the iterates satisfy

f(uk+1)− g(vk+1) ≤ θ̄[f(uk)− g(vk)],
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where θ̄ ∈ (0, 1) is defined as

θ̄ :=

{
γ if γ < 1/2,
1− 1/4γ if γ ≥ 1/2.

The default step-size allows us to use fixed-length steps, assuming we know a
value for the Lipschitz constant K. Zhu [10], [11] discusses several ways to exploit
this information, including a modified form of the Armijo step.

To prove Theorem 4.1 we require a few technical lemmas.
Lemma 4.3. If û ∈ argmin[û,u] L(·, v′), then f(u)− L(û, v′) ≥ (p/2)‖u− û‖2.

Proof. Note first that if ϕ0 is convex and ϕ = ϕ0 + p
2‖ · ‖2, then

ϕ(x̄) +∇ϕ(x̄) · (x− x̄) +
p

2
‖x− x̄‖2 ≤ ϕ(x).

Applying this to L(·, v′) we obtain

f(u)− L(û, v′) ≥ L(u, v′)− L(û, v′)

≥ ∇uL(û, v′) · (u− û) +
p

2
‖u− û‖2

≥ p

2
‖u− û‖2.

Here the first inequality follows from the definition of f, the second from the convexity
of L(·, v′), and the last from the hypothesis.

Lemma 4.3 leads immediately to an estimate of the distance from any point to
the optimal solution, in terms of the duality gap.

Corollary 4.4. Suppose (u∗, v∗) is the unique saddle point for S. If f(u) −
g(v) ≤ ε, then one has

‖u− u∗‖2 ≤ 2ε/p, ‖v − v∗‖2 ≤ 2ε/q.

Proof. Applying the preceding lemma with û := u, u := u∗, and v′ = F (û) yields
the inequality for ‖u− u∗‖. The proof for ‖v − v∗‖ is the same.

Our next lemma estimates the quality of the lower approximation for f given by
using points in the image of the duality mapping F .

Lemma 4.5. For any u and ū one has f(ū) ≤ L(ū, F (u)) + (K2/2q)‖ū− u‖2.
Proof. By the definition of F and the concavity of L(u, ·) we have

0 ≥ ∇vL(u, F (u)) · (v − F (u)) = [∇vJ(u, F (u))− qF (u)] · (v − F (u))(4.3)

for all v. Consequently,

f(ū)− L(ū, F (u)) +
q

2
‖F (ū)− F (u)‖2

= L(ū, F (ū))− L(ū, F (u)) +
q

2
‖F (ū)− F (u)‖2

= J(ū, F (ū))− J(ū, F (u))− qF (u) · (F (ū)− F (u))

≤ J(ū, F (ū))− J(ū, F (u))−∇vJ(u, F (u)) · (F (ū)− F (u))

≤ ∇vJ(ū, F (u)) · (F (ū)− F (u))−∇vJ(u, F (u)) · (F (ū)− F (u))

= [∇vJ(ū, F (u))−∇vJ(u, F (u))] · (F (ū)− F (u)),
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where the first inequality follows from (4.3) and the second from the concavity of
J(ū, ·). Thus

f(ū)− L(ū, F (u)) ≤ sup
v

{
(∇vJ(u, F (u))−∇vJ(ū, F (u))) · v − q

2
‖v‖2

}
=

1

2q
‖∇vJ(u, F (u))−∇vJ(ū, F (u))‖2.

The desired inequality follows from the Lipschitz assumption for ∇vJ(·, F (u)).
The above proof is the only place where we use the Lipschitz assumption. It is

clear that this assumption can be weakened somewhat. For instance, it only needs
to hold separately in u and v. The argument can also be extended to J with locally
Lipschitz gradients, but this requires a more careful analysis of the boundedness of
the iterates generated.

Our final lemma combines the earlier lemmas to justify the use of a default step-
size.

Lemma 4.6. Suppose that û ∈ argmin[û,u] L(·, v′) and L(û, F (u)) ≤ L(û, v′).
Then, for any λ ∈ [0, 1], one has

f
(
u+ λ(û− u)

)− f(u) ≤ [f(u)− L(û, v′)](−λ+ γλ2).(4.4)

Proof. Combining Lemma 4.5 (with ū := u + λ(û − u)) and the convexity of
L(·, F (u)) we get

f(u+ λ(û− u))

≤ L(u+ λ(û− u), F (u)) + (K2/2q)‖u− [u+ λ(û− u)]‖2
≤ L(u, F (u)) + λ[L(û, F (u))− L(u, F (u))] + (K2/2q)‖u− [u+ λ(û− u)]‖2
= f(u) + λ[L(û, F (u))− f(u)] + (K2/2q)λ2‖û− u‖2.

Thus

f(u+ λ(û− u))− f(u) ≤ −λ[f(u)− L(û, F (u))] + (K2/2q)λ2‖û− u‖2
≤ −λ[f(u)− L(û, v′)] + (K2/2q)λ2‖û− u‖2,

where the second inequality is due to the hypothesis. Recalling that γ = K2/pq and
applying Lemma 4.3 to the right-hand side above yields the inequality (4.4).

We can now prove our convergence theorem.
Proof of Theorem 4.1. Since (ûk, v

′
k) solves the left-hand minimax problem in step

2 of Algorithm 2.1, we see that ûk, uk, and v′k satisfy the hypotheses of Lemma 4.6.
Thus (4.4) holds when all the variables are subscripted by k. Combining this with
(4.1) and the fact (via step 4) that f(uk+1) ≤ f(ūk) leads to

f(uk+1)− f(uk) ≤ (−λk + γλ2
k)[f(uk)− L(ûk, v

′
k)].

Similar arguments give

g(vk)− g(vk+1) ≤ (−λk + γλ2
k)[L(u′k, v̂k)− g(vk)].

Adding these one obtains

f(uk+1)− g(vk+1) + λk(1− γλk)[L(u′k, v̂k)− L(ûk, v
′
k)]

≤ (1− λk + γλ2
k)[f(uk)− g(vk)].

(4.5)
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Now observe that we have

L(ûk, v
′
k) = inf

u∈Uk
sup
v∈V ′

k

L(u, v) ≤ inf
u∈U ′

k

sup
v∈Vk

L(u, v) = L(u′k, v̂k),

where the inequality follows from the requirement (in step 1) that U ′k ⊂ Uk and
V ′k ⊂ Vk. Consequently, we see that

0 ≤ L(u′k, v̂k)− L(ûk, v
′
k).

This, together with the assumption that λk ≤ 1/γ, combines with (4.5) to yield (4.2),
as desired.

We close this section with a final observation on a slight improvement that is
sometimes possible.

Corollary 4.7. Under the hypotheses of Theorem 4.1, in any iteration where

f(uk+1)− g(vk+1) ≤ L(u′k, v̂k)− L(ûk, v
′
k),(4.6)

the decrease in the duality gap can be improved to

f(uk+1)− g(vk+1) ≤ θk
2− θk [f(uk)− g(vk)].(4.7)

Proof. Combining (4.6) with (4.5) gives us (4.7).
The inequality (4.6) in Corollary 4.7 holds in the situation where the optional

restarts of step 4 are employed and the saddle points of step 2 satisfy

f(u′k) = L(u′k, v̂k), g(v′k) = L(ûk, v
′
k).

This is the case when Uk = U and Vk = V, as occurs in the primal-dual steepest
descent algorithm of Zhu (Algorithm 3.1 in section 3). The coefficient given here is
essentially the same as that found by Zhu.

Notice that in Rockafellar’s finite envelope method (Algorithm 3.2 in section 3),
the right-hand side of inequality (4.6) is always zero. Consequently, the optional
restarts yield no theoretical advantage in this case, nor for Algorithms 2.2 and 2.3 of
section 2.

5. Conclusion. Decomposition methods are especially useful for large-scale prob-
lems consisting of many smaller optimization problems with a few coupling constraints
between them. These have an inherent potential for parallelization. Thus envelope
methods are appealing for generating an improved solution on the basis of a known
feasible point.

Global linear convergence is guaranteed for envelope methods when applied to
problems with strongly convex-concave Lagrangians. This result extends those of
Rockafellar [6] and Zhu [10], [11] to a larger class of methods and objective functions.
As in those papers, the close relationship to steepest descent/ascent methods makes
the possibility of a superlinear convergence proof unlikely, even under the assumption
of a strongly convex-concave Lagrangian.

The required strong dual concavity may be present in formulations involving
augmented Lagrangians or barrier functions. For large-scale linear programs such
reformulations can lead to very simple duality mappings F and G; the low overhead
per iteration of the duality-descent method (Algorithms 2.2 and 2.3) makes it par-
ticularly attractive in this case. One might also combine an envelope method with a
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regularization scheme, as suggested by Rockafellar and Wets [5] or Ruszczyński [7].
In any event, an envelope method might be used as a “crash routine,” providing a
good starting guess for a method having superior local convergence but poor global
convergence.

A point of interest especially deserving of attention is parallel “nested” decompo-
sition. In the context of stochastic linear programs, several versions of the L-shaped
method have been proposed which pass dual information back and forth across the
underlying scenario tree [1], [2], [3], [7]. In effect, the method is applied simultane-
ously on several different levels of decoupling. Similar opportunities exist for the other
forms of envelope methods and should be explored.
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Abstract. Convergence of an algorithm for strongly monotone variational inequality problems
(VIPs) is investigated. At each iteration, the algorithm adds a quadratic cut through the analytic
center of the consequently shrinking convex set. It is shown that the sequence of analytic centers
converges to the unique solution in O(1/

√
k), where k is the number of iterations.
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1. Introduction. Variational inequality problems (VIPs) provide a convenient
mathematical framework for discussing a number of interesting problems such as op-
timization problems, saddle point problems, or equilibrium problems. It has been
known for many years that a specific ellipsoid algorithm solves strongly monotone
VIPs with polynomial-time complexity; see Lüthi [6].1 In practice, however, the ellip-
soid method is not convincing. More recently, Nesterov and Nemirovskii [8] suggested
a path-following approach with pseudopolynomial-time complexity for a class of mono-
tone VIPs. In this approach, higher order derivatives are required, whereas first-order
information suffices in the case of the ellipsoid cutting plane method. In recent years,
a number of authors have studied various linear or quadratic cut methods for solving
VIPs [3, 7, 9] or convex feasibility problems [5, 2].

In particular, Nesterov and Vial [9] have introduced a homogeneous analytic cen-
ter cutting plane method (HACCPM), which solves monotone VIPs in a conic setting
and with pseudopolynomial-time complexity, when measured by the dual gap func-
tion. They also presented a Lipschitzian and monotone example for which ACCPM
does not converge to the solution of the VIP. Here ACCPM denotes the original an-
alytic center cutting plane method, which does not embed the problem in a conic
space; see Sonnevend [10] and Goffin, Haurie, and Vial [1].

Assuming a strongly monotone and Lipschitzian operator, a first pseudopolyno-
mial complexity bound for ACCPM was derived by Goffin, Marcotte, and Zhu [3],
yielding ‖xk − x∗‖ = O((ln(k)/k)1/4). It is noteworthy, however, that in their ap-
proach the “condition” number of the initial feasible convex set directly influences the
complexity bound.

While avoiding a conic embedding, an algorithm with a better complexity bound
can be devised by exploiting the curvature information of strongly monotone VIPs.
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1For the complexity discussion herein we assume a computer device with arbitrary precision.

Namely we assume that all arithmetic operations require an amount of time which is independent of
the number of digits needed in the representation of the numbers. In such a computational model
the time complexity is proportional to the number of elementary arithmetic operations.
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We show in this paper that the iterates of the resulting analytic center quadratic cut
method (ACQCM) converge ‖xk−x∗‖ = O(k−1/2) to the unique solution of the VIP.

The following notation is used. Let A,B ∈ Rn×n be symmetric. We then call A
p.s.d. if it is positive semidefinite and p.d. if it is positive definite. By A ≥ B we
mean that A − B is p.s.d. and by A > B that A − B is p.d. Furthermore, let A be
p.d.; we then define ‖x‖A := 〈x,Ax〉1/2 for all x ∈ Rn. Finally, by 1l we denote the
unit matrix of appropriate dimension.

2. Description of the ACQCM. Given a closed, convex set P ⊂ Rn and a
continuous map f : P → Rn, we want to solve the VIP

find x∗ ∈ P , such that 〈f(x∗), x− x∗〉 ≥ 0 ∀x ∈ P.(2.1)

Throughout the paper we make the following assumptions.
Assumption 2.1.

(i) P has a nonempty interior and it can be described by an m-self-concordant
barrier function F0; furthermore, without loss of generality (w.l.o.g.) P can be as-
sumed to be compact.

(ii) f is bounded on P , i.e., maxx∈P ‖f(x)‖ ≤ L <∞.
(iii) f is strongly monotone; i.e., there exists α > 0 such that

〈f(y)− f(x), y − x〉 ≥ α‖y − x‖2 ∀x, y ∈ P.(2.2)

(iv) F ′′0 (x) > 0 ∀x ∈ int P .
Note that (i) is satisfied if P = {x ∈ Rn|si(x) ≥ 0, i = 1, . . . ,m} is defined

by m concave constraints si ∈ C3. In this case F0(x) := −∑m
i=1 ln si(x) is an m-

self-concordant barrier for P . As a further observation assume that the algorithm
described below starts with a quadratic cut through x0 ∈ int (P ) and call the remain-
ing part P̄ . Then continuity and strong monotonicity of f imply compactness of P̄ ,
and furthermore (ii) and (iv) hold as well. In particular, using this P̄ construction we
also encompass the unconstrained case, i.e., when m = 0.

In addition, it is well known [4] that for strongly monotone VIPs continuity of f
implies the existence of a unique solution x∗ ∈ P of (2.1). Indeed, the existence of a
solution x∗ and hence continuity of f will not be needed for the algorithm nor for the
convergence analysis, as will be discussed at the beginning of section 3.

For a definition and an in-depth discussion of self-concordant functions, see Nes-
terov and Nemirovskii [8]. Three properties of self-concordant barriers, which will be
used in what follows, are given in the following lemma.

Lemma 2.1. Let F be an m-self-concordant barrier with F ′′ > 0 on domF , and
let x, y ∈ domF .

(i) Then we know from Nesterov and Vial (Lemma 9 in [9]) that

〈F ′(y) − F ′(x), y − x〉 ≥
‖y − x‖2F ′′(x)

1 + ‖y − x‖F ′′(x)
.(2.3)

(ii) From Nesterov and Nemirovskii [8, (2.2.1) and Definition 2.3.1] we have

‖F ′(x)‖(F ′′(x))−1 ≤ √m(2.4)

(iii) and

〈F ′(x), y − x〉 ≤ m .(2.5)
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Strong monotonicity implies that the solution x∗ to (2.1) is unique and also that

−〈f(x), x∗ − x〉 − α‖x− x∗‖2 ≥ −〈f(x∗), x∗ − x〉
= 〈f(x∗), x− x∗〉 ≥ 0 ∀x ∈ P.(2.6)

If we denote by

tk(x) := −〈f(xk), x− xk〉 − α‖xk − x‖2

the slack with respect to a quadratic cut through an arbitrary xk ∈ P , then from
(2.6) it immediately follows that the corresponding quadratic cut set

Cxk := {x ∈ Rn | tk(x) ≥ 0}
contains the solution x∗. Cxk is characterized in the following lemma.

Lemma 2.2. Let xk ∈ P ; then the set Cxk is a ball with center

zk := xk − f(xk)

2α

and radius

rk :=
‖f(xk)‖

2α
.

Furthermore, zk = arg maxx∈Cxk tk(x) and

max
x∈P

tk(x) ≤ L2

4α
.

Proof. The characterization of the ball with center zk and radius rk is given by∥∥∥∥(xk − x)− f(xk)

2α

∥∥∥∥2

= ‖xk − x‖2 − 2

〈
xk − x, f(xk)

2α

〉
+
‖f(xk)‖2

4α2
≤ ‖f(xk)‖2

4α2
,

which is equivalent to

α‖x− xk‖2 + 〈f(xk), x− xk〉 ≤ 0.

This proves the relations concerning zk and rk. Due to its symmetric quadratic nature
tk(x) attains its maximum at zk, and because tk(zk) = αr2

k and ‖f(xk)‖ ≤ L the last
claim is proved.

It is known (cf. Nesterov and Nemirovskii [8]) that F0 has a unique minimizer
x0 ∈ int(P ). For k ≥ 1, consider the logarithmic barrier

Fk(x) := F0(x)−
k−1∑
i=0

ln ti(x),

where xk, needed for the definition of tk(x), is defined as the unique minimizer of
Fk(x) over Pk := P ∩k−1

i=0 Cxi and called the analytic center of Pk. Based on this
notation, the ACQCM presented below can be used to solve strongly monotone VIPs.

ACQCM:
(i) Let k = 0, P0 := P , F0 as in Assumption 2.1, and choose ε > 0.
(ii) Compute the analytic center xk = arg minx∈Pk Fk(x);

let Fk+1(x) = Fk(x)− ln(tk(x)) and Pk+1 = Pk ∩ Cxk .
(iii) Stop if ‖xk − x∗‖ ≤ ε; otherwise set k := k + 1 and return to step (ii).
The convergence of ACQCM is discussed in the next section.
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3. Convergence analysis. This section is dedicated to the proof of the follow-
ing theorem.

Theorem 3.1. Let θ := 1
2 (1 +

√
5), a := ln

(
L
√

1+θ
2α

)
+
√
m · θ + 1, and for all

k ≥ 1, Sk :=
∑k−1
i=0 (ti(xk))−1. Then, we have for all k ≥ 1:

‖xk − x∗‖ ≤
√
k +m

αSk
(3.1)

≤ ea√
αk

√
1 +

m

k
.(3.2)

In particular, if k ≥ m, then

‖xk − x∗‖ ≤ L

α

√
1 + θ

k
e
√
m·θ+1.

As we will see in the proof of the above theorem, x∗ can be replaced by any
feasible point x ∈ Pk. Hence, Theorem 3.1 simply states that at iteration k, we can
bound the distance from the analytic center xk to any feasible point x ∈ Pk by (3.2);
i.e., the diameter of Pk is at most two times the bound on ‖xk − x‖ as given in (3.2).

It is important to note that the continuity of f is not used in the convergence
analysis. We assume it only in order to guarantee the existence of a solution x∗ of (2.1).
In view of this, ACQCM remains a valid algorithm for noncontinuous operators f .

For example, if we know a priori that a solution exists, or, to the contrary, if we
have some structure that allows us to conclude the nonexistence of a solution given,
the diameter of Pk is small enough.

Using the above theorem, the stopping criterion ‖xk − x∗‖ ≤ ε in step (iii) of
ACQCM, which cannot be measured explicitly, can therefore be replaced by two
conditions: the algorithm stops either when k exceeds a bound given by L, α, and m
or when f(xk) = 0, which implies Pk+1 = {xk} = {x∗}.

The proof of Theorem 3.1 is based on four lemmas.
Lemma 3.2. Let θ := 1

2 (1 +
√

5). Furthermore, let βk := ‖xk − xk−1‖F ′′
k−1

(xk)

and Sk :=
∑k−1
i=0 (ti(xk))−1 ∀k ≥ 1. Then we have for all k ≥ 1

βk ≤ θ(3.3)

and

‖xk − xk−1‖ ≤
√

1 + θ

2αSk
(3.4)

≤ L

α

√
1 + θ

8

1√
k
.(3.5)

Proof. The proof of (3.3) relies on the following two observations. First, xk is the
minimizer of the barrier Fk, hence 0 = F ′k(xk); in view of the definition of the barrier
this implies for k ≥ 1 that

F ′k−1(xk) =
t′k−1(xk)

tk−1(xk)
.(3.6)
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The second observation uses the centrality of the quadratic cuts, i.e., tk−1(xk−1) = 0.
From the Taylor series for the quadratic function tk−1 we observe that

0 = tk−1(xk−1) = tk−1(xk)+〈t′k−1(xk), xk−1−xk〉+1

2
〈xk−1−xk, t′′k−1(xk)(xk−1−xk)〉.

Hence, from the definition of tk−1 we obtain for k ≥ 1

〈t′k−1(xk), xk − xk−1〉 = tk−1(xk)− α‖xk − xk−1‖2.(3.7)

Also, from (2.3) we know that

〈F ′k−1(xk) − F ′k−1(xk−1), xk − xk−1〉 ≥ β2
k

1 + βk
.(3.8)

Using 0 = F ′k−1(xk−1) and (3.6) we derive from (3.8)〈
t′k−1(xk)

tk−1(xk)
, xk − xk−1

〉
≥ β2

k

1 + βk
,

which, by (3.7), yields

1− α‖xk − xk−1‖2
tk−1(xk)

≥ β2
k

1 + βk
.(3.9)

Because xk ∈ int Cxk−1
, we know that tk−1(xk) > 0, and hence we obtain 1 ≥ β2

k

1+βk
.

By definition, βk ≥ 0, and hence the equivalent relation β2
k − βk − 1 ≤ 0 implies

0 ≤ βk ≤ 1
2 (1 +

√
5). This proves the first statement of the lemma.

To prove (3.4) we first treat the case k = 1; i.e., we study ‖x1 − x0‖. Note that
β1 ≥ 0, which, by (3.9), implies

1 ≥ α‖x1 − x0‖2
t0(x1)

.

Due to θ ≥ 1, we find for k = 1 a first positive answer:

‖x1 − x0‖2 ≤ t0(x1)

α
≤ 1 + θ

2
· t0(x1)

α
=

1 + θ

2αS1
.

As for k ≥ 2, note that

F ′′k−1(xk) = F ′′0 (xk)−
k−2∑
i=0

t′′i (xk)

ti(xk)
1l +

k−2∑
i=0

t′i(xk)(t′i(xk))T

t2i (xk)

≥
k−2∑
i=0

2α

ti(xk)
1l,

where the last inequality is a consequence of the positive semidefiniteness of both
F ′′0 (xk) and t′i(xk)(t′i(xk))T together with the positivity of ti(xk). Therefore,

β2
k ≥

k−2∑
i=0

2α

ti(xk)
‖xk − xk−1‖2.
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From (3.9) we have

1− α‖xk − xk−1‖2
tk−1(xk)

≥ 1

1 + θ

k−2∑
i=0

2α

ti(xk)
‖xk − xk−1‖2

or, after rewriting,

1 ≥ 1

1 + θ

(
k−2∑
i=0

2α

ti(xk)
+
α(1 + θ)

tk−1(xk)

)
‖xk − xk−1‖2,

which, by 1 + θ ≥ 2, finally yields

1 ≥ 1

1 + θ

(
k−1∑
i=0

2α

ti(xk)

)
‖xk − xk−1‖2.

This proves (3.4). The relation (3.5) follows from the bound ti(x) ≤ L2

4α established
in Lemma 2.2.

The bound (3.5), i.e., ‖xk − xk−1‖ = O(k−1/2), is interesting yet does not suffice
to bound ‖x∞−xk‖. We have not even shown in the above lemma that xk is a Cauchy

sequence. Nevertheless, the relations ‖xk − xk−1‖ = O(S
−1/2
k ) = O(k−1/2) will play

a crucial role in the subsequent analysis, where a lower bound on the growth of the
potential Fk(xk) is derived.

Lemma 3.3. For k ≥ 1, we have −∑k−1
i=0 ln ti(xk) ≥ −∑k−1

i=0 ln ti(xi+1)−k√m·θ.
Proof. The proof is based on

−
k−1∑
i=0

ln ti(xk) = Fk(xk)− F0(xk) = Fk(xk)− F0(x0)︸ ︷︷ ︸
(∗)

+F0(x0)− F0(xk)︸ ︷︷ ︸
(∗∗)

.

From the definition of the barrier we have

Fk(xk) = Fk−1(xk)− ln tk−1(xk) ≥ Fk−1(xk−1)− ln tk−1(xk).

This in turn implies the following lower bound for (*):

Fk(xk)− F0(x0) ≥ −
k−1∑
i=0

ln ti(xi+1).(3.10)

To bound the term (**), note that from the convexity of F0, we have

F0(xk)− F0(xk−1) ≤ 〈F ′0(xk), xk − xk−1〉.(3.11)

Given a p.d. matrix A ∈ Rn×n, we have for any vectors a, b ∈ Rn the relation 〈a, b〉 =
〈A−1/2a,A1/2b〉 ≤ ‖a‖A−1‖b‖A. Thus,

〈F ′0(xk), xk−xk−1〉 ≤ ‖F ′0(xk)‖(F ′′0 (xk))−1‖xk−xk−1‖F ′′0 (xk) ≤
√
m‖xk−xk−1‖F ′′0 (xk),

where the last inequality is a consequence of (2.4). Since F ′′0 (xk) ≤ F ′′k−1(xk), we can
conclude from (3.3) that

‖xk − xk−1‖F ′′0 (xk) ≤ ‖xk − xk−1‖F ′′
k−1

(xk) ≤ θ.
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In view of (3.11) we have shown F0(xk)− F0(xk−1) ≤ √m · θ and hence

F0(xk)− F0(x0) ≤ k
√
m · θ.(3.12)

With (3.10) and (3.12) as bounds for (*) and (**), respectively, the lemma fol-
lows.

Based on the above two lemmas we can now establish a lower bound on the growth
of −∑k−1

i=0 ln ti(xi+1), which depends only on k and some constants.

Lemma 3.4. For k ≥ 1, we have
∑k−1
i=0 ln ti(xi+1) ≤ −k ln k + ck, where c =

2 [ln(L
√

1+θ
2α ) +

√
m
2 · θ + 1]

Proof. For convenience we abbreviate in the proof:

τ := L

√
1 + θ

2α
.

By the arithmetic-geometric mean inequality, we can deduce from the definition of Sk
that

Sk ≥ k exp

(
− 1

k

k−1∑
i=0

ln ti(xk)

)
.(3.13)

We bound tk(xk+1) from above by

tk(xk+1) ≤ L‖xk+1 − xk‖
and furthermore use (3.4) to bound ‖xk+1 − xk‖, yielding

ln tk(xk+1) ≤ lnL+ ln

√
1 + θ

2α
− 1

2
lnSk+1.

Using the definition of τ and (3.13) we have

ln tk(xk+1) ≤ ln τ − 1

2
ln(k + 1) +

1

2(k + 1)

k∑
i=0

ln ti(xk+1).

By Lemma 3.3 we then find

ln tk(xk+1) ≤ ln τ − 1

2
ln(k + 1) +

1

2(k + 1)

k∑
i=0

ln ti(xi+1) +

√
m

2
· θ.(3.14)

If we denote d := ln τ +
√
m
2 · θ and define, for k ≥ 1, Dk =

∑k−1
i=0 ln ti(xi+1), then

ln tk(xk+1) = Dk+1 −Dk,

and (3.14) becomes

Dk+1 −Dk ≤ d− 1

2
ln(k + 1) +

Dk+1

2(k + 1)

or, equivalently,

Dk ≥ −d+
1

2
ln(k + 1) +

[
1− 1

2(k + 1)

]
Dk+1.(3.15)
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From Lemma 3.6 stated below, we conclude that

Dk ≤ −k ln k + 2(d+ 1)k

since D1 := ln t0(x1) ≤ 2(d + 1), which follows from (3.5) for k = 1. Finally, we
observe from the definitions that c = 2(d+ 1).

Combining Lemmas 3.3 and 3.4 immediately yields the following corollary.

Corollary 3.5. Let a := ln
(
L
√

1+θ
2α

)
+
√
m · θ + 1; then for all k ≥ 1 we have

−
k−1∑
i=0

ln ti(xk) ≥ k ln k − 2ak,(3.16)

and in particular

Sk ≥ k2e−2a.

Finally, we have to prove the bound on Dk as used in the proof of Lemma 3.4.
Lemma 3.6. For any sequence D1, D2, . . . satisfying (3.15), the following inequal-

ities holds for any constant C ≥ max{D1, 2(d+ 1)}:
Dk ≤ −k ln k + kC.(3.17)

Proof. For k = 1, (3.17) holds, since D1 ≤ C. We prove the claim by induction
(k − 1→ k) for k > 1. First note that (3.15) is equivalent to

Dk ≤ 2k

2k − 1

(
Dk−1 + d− 1

2
ln k

)
.(3.18)

By the induction assumption (3.17),

Dk−1 ≤ −(k − 1) ln(k − 1) + (k − 1)C,(3.19)

and so from (3.18)

Dk ≤
(

2k

2k − 1

)(
−(k − 1) ln(k − 1) + (k − 1)C + d− 1

2
ln k

)
.(3.20)

Using

ln(k − 1) > ln k − 1

(k − 1)
,

which is derived from the concavity of the logarithm, we obtain from (3.20)

Dk <
2k

2k − 1

[
−1

2
(2k − 1) ln k + 1 + (k − 1)C + d

]
= −k ln k +

2k

2k − 1
(d+ 1 + (k − 1)C)

≤ −k ln k +
2k

2k − 1

(
C

2
+ (k − 1)C

)
(using C ≥ 2(d+ 1))

= −k ln k +
2k

2k − 1
· 1

2
(2k − 1)C

= −k ln k + Ck,
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which proves the claim.
Using Corollary 3.5, Theorem 3.1 can now be proved.
Proof of Theorem 3.1. Since xk is by definition the minimizer of the barrier Fk,

the first-order optimality condition yields F ′k(xk) = 0. In view of the definition of the
barrier, this implies for k ≥ 1 that

F ′0(xk)−
k−1∑
i=0

t′i(xk)

ti(xk)
= 0.(3.21)

Multiplying (3.21) by (xk − x∗) yields

〈F ′0(xk), (xk − x∗)〉 −
k−1∑
i=0

〈t′i(xk), (xk − x∗)〉
ti(xk)

= 0.(3.22)

Since for the quadratic function ti

〈t′i(xk), (xk − x∗)〉 ≤ ti(xk)− α‖x∗ − xk‖2,
we conclude from (3.22) and the definition of Sk that

〈F ′0(xk), (xk − x∗)〉 − k + αSk‖x∗ − xk‖2 ≤ 0(3.23)

or, by rearranging the terms,

αSk‖x∗ − xk‖2 = k + 〈F ′0(xk), (x∗ − xk)〉 ≤ k +m,(3.24)

where the last inequality is a consequence of property (iii) in Lemma 2.1. This proves
inequality (3.1) in Theorem 3.1.

Inequality (3.2) follows directly from (3.1) by using the lower bound on Sk as
given in Corollary 3.5. The last assertion is an obvious consequence of (3.2) and the
definition of the constant a.

4. Numerical experiments. The three examples presented in this section are
all based on continuous operators f with polyhedral feasible sets. The first two exam-
ples are two-dimensional, and we picture the centers and the cuts of the algorithm.
The last example is taken from [11].

Example 1. Interior solution and integrable operator. Let

f(x) := 〈c, x〉+
1

2
〈x,Qx〉, where c :=

[ −3
−0.5

]
and Q :=

[
10 0
0 1

]
.

We then have f := f ′, and α = 1 is the smallest eigenvalue of Q. The first 10 itera-
tions are depicted in Figure 4.1. This example demonstrates the specific advantages
of quadratic cuts when the solution lies in the interior of P and the operator f is
continuous on P. (Due to the compactness of P , this implies Lipschitz continuity on
P .) In such a situation the radii of the quadratic cuts tend to zero and can thereby
speed up convergence considerably.

Because Corollary 3.5 directly underlies the convergence proof of Theorem 3.1, it
is interesting to look at −∑k−1

i=0 ln ti(xk) and its lower bound k ln k−2ak, as shown in
Figure 4.1. Note that k ln k− 2ak exceeds zero only for k ≥ 1.5 · 106. The comparison
between Sk and its lower bound k2e−2a is also of interest. For example, we find
S10 = 21763, whereas, based on L := 7.5, its lower bound is only 102 ·e−2a = 6.6·10−5.

In both cases we observe a huge gap between proved lower bound and realized
quantities. This suggests that for problems with a continuous operator and a solution
in the interior of P , a better convergence rate might be attainable.
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2 4 6 8 10

-100

-75

-50

-25

25

50

k

Fig. 4.1. Left: feasibility set, vector field, and quadratic cuts; right: −
∑k−1

i=0
ln ti(xk) (dotted)

and k ln k − 2ak (outlined).
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Fig. 4.2. Left: feasibility set, vector field, and quadratic cuts; right: −
∑k−1

i=0
ln ti(xk) (dotted)

and k ln k − 2ak (outlined).

Example 2. Small curvature and multiple constraints. Let

f(x) :=

[
10
100

]
+

[
1 0.01

0.001 0.2

]
x;

we then have α = 0.2, the smallest eigenvalue of Q. The first 10 iterations are depicted
in Figure 4.2. Here the feasible set is the unit cube, where the inequality x2 ≥ 0 is
repeated 20 times. The solution lies at the boundary of P , but while in the previous
example the radii of the quadratic cuts shrink when approaching the solution, the
radii in this example are almost constant and very large; that is, in this example the
quadratic cut method behaves somewhat like a linear cut method.

Concerning the relation Sk ≥ k2e−2a, we find S10 = 0.666, whereas, based on
L := 100, the lower bound is only 102 · e−2a = 2.7 · 10−11. Again, in this example the
gap between Sk and the proven lower bound is large.

Example 3 (taken from Taji, Fukushima, and Ibaraki [11]). We tested ACQCM
for two examples described in [11]. In the first example (Example 1 in [11]), the
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Table 4.1
Example 1 in [11] with ρ = 10 and α = 0.005.

Iteration x1 x2 x3 x4 x5 ‖xk − x∗‖
√

k+m
αSk

0 8.6304 8.6304 8.6304 8.6304 8.6304 14.8261
10 2.5966 2.3288 2.5078 1.5332 1.5028 1.0895 80.5572
20 2.1444 2.0312 1.9927 1.9172 1.9968 0.1695 33.5782
30 2.0114 2.0064 2.0082 1.9774 2.0048 0.0278 11.3023
40 2.0121 1.9927 2.0033 1.9906 2.0020 0.0174 3.4291
50 1.9975 1.9952 2.0007 2.0020 2.0046 0.0074 1.4724

constraint set S and the mapping F are taken, respectively, as

S =

{
x ∈ R5

∣∣∣∣∣50 ≥
5∑
i=1

xi ≥ 10, xi ≥ 0, i = 1, 2, . . . , 5

}

and

F (x) = Mx+ ρC(x) + q,

where M is a 5 × 5 asymmetric p.d. matrix and C(x) is a nonlinear mapping with
components Ci(x) = arctan(xi − 2), i = 1, 2, . . . , 5. The parameter ρ is used to vary
the degree of asymmetry and nonlinearity. The data for Example 1 are taken from
[11]. Numerical results for this example are shown in Table 4.1.

In the second example, the constraint set S takes the form

S = {x ∈ Rn|Ax ≤ b, x ≥ 0},

and the mapping F is given by

F (x) = Mx+D(x) + q,

where M is an n× n asymmetric p.d. matrix and D(x) is a nonlinear mapping with
components Di(x) = dix

4
i , where di are positive constants. Again, the data for

Example 2 are taken from [11]. Numerical results for this example are shown in Table
4.2.

In both cases the algorithm returned an approximate solution with ‖xk − x∗‖ ≤
10−2 after 50 quadratic cuts. Convergence may appear slow in comparison with [11],
where after 5 iterations the problem was solved up to 10−6. But note that for each cut
we used only one evaluation of f , whereas in [11] a linearized variational problem was
solved in each iteration using Lemke’s LCP-algorithm (making use of the Jacobian
matrix of f). In particular, if the feasible region is nonpolyhedral, then the approach
in [11] is difficult to apply, whereas in our case the performance remains the same.

In Tables 4.1 and 4.2 we show the convergence of ACQCM together with its actual
and estimated accuracy in terms of Sk; see (3.1).

5. Final remarks. The analysis in this paper is restricted to exact centers. In
this sense the ACQCM suggested in this paper is only a conceptual algorithm. We
are currently looking at approximate centers, with the aim of bounding the number
of Newton steps instead of the number of iterations in ACQCM.
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Table 4.2
Example 2 in [11] with α = 0.005.

Iteration x1 x2 x3 x4 x5 ‖xk − x∗‖
√

k+m
αSk

0 10.2860 4.0387 12.0730 4.5102 14.1316 15.8613
10 10.7696 3.8432 1.0148 0.2303 5.3239 2.2442 412.0752
20 9.1794 4.4419 0.0249 0.0136 5.0148 0.4116 92.8726
30 9.1033 4.7810 0.0009 0.0005 5.0005 0.0634 20.9305
40 9.0616 4.8885 0.0000 0.0000 5.0000 0.0518 4.7562
50 9.0776 4.8461 0.0000 0.0000 5.0000 0.0066 0.8610
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Abstract. This paper establishes theorems about the simultaneous variation of right-hand
sides and cost coefficients in a linear program from a strictly complementary solution. Some results
are extensions of those that have been proven for varying the right-hand side of the primal or the
dual, but not both; other results are new. In addition, changes in the optimal partition and what
that means in economic terms are related to the basis-driven approach, notably to the theory of
compatibility. In addition to new theorems about this relation, the transition graph is extended to
provide another visualization of the underlying economics.
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1. Introduction. Consider the primal-dual pair of linear programs:

P : min{cx : x ≥ 0, Ax ≥ b}, D : max{πb : π ≥ 0, πA ≤ c},
where x is a column vector in Rn of levels; b is a column vector in Rm of right-hand
sides; c is a row vector in Rn of objective coefficients; π is a row vector in Rm of prices;
and A is an m× n matrix.

This paper concerns the simultaneous variation of right-hand sides and objective
coefficients (dual right-hand sides), which we call rim data: r = (b, c). The change is
of the form θh, where θ > 0 and h is a nonzero direction vector. We have traditionally
been concerned with the effect a change has on the optimality of a basis [2]. Here
we suppose we have a strictly complementary solution, which is generally not basic
(unless the primal-dual solution is unique). A key property of a strictly complementary
solution is that it identifies the optimal partition. While we define this formally in the
next section, it is a unique partition of the rows and columns of the linear program
matrix, A, into “active” and “inactive” parts, somewhat analogous to a partition into
“basic” and “nonbasic” activities. We are interested in the following questions:

• Must the optimal partition change for any positive value of θ? If so, what is
the new optimal partition? If not, for what range does this partition remain
optimal?
• How does this relate to basic ranges?
• How does this relate to the differential Lagrangian?
• How does the optimal objective value change as a function of θ?

Previous results [1, 10, 12] answered most of these questions when b or c change
separately, but some of those proofs do not have natural extensions to deal with their
simultaneous variation, and we shall consider the “decoupling principle” mentioned
in [9].
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The rest of this paper is organized as follows. In the next section, we briefly
give the terms and concepts needed for the main results. (In general, the techni-
cal terms used throughout this paper are defined in the Mathematical Programming
Glossary [6].) Then, we consider the first set of questions concerning the optimal
partition, both when it does not change and when it does. In doing so, we shall relate
this to the differential Lagrangian, and we shall derive the piecewise quadratic form of
the objective value from a new vantage point. Finally, we relate the optimal partition
change (if any) to basis-driven sensitivity analysis, notably to the theory of compatible
bases (see [4]).

2. Terms and concepts. Let P (b) and D(c) denote the primal and dual polyhe-
dra, respectively. For (x, π) ∈ P (b) × D(c), we associate surplus variables, s = Ax−b,
and reduced costs, d = c− πA. Let P ∗(r) and D∗(r) denote the primal and dual op-
timality regions, respectively, which we suppose are not empty. The support set of a
nonnegative vector, v, is denoted σ(v) = {k : vk > 0}. Then, primal-dual optimality
can be represented by complementary slackness: σ(x)∩σ(d) = ∅ and σ(π)∩σ(s) = ∅.
As shown by Goldman and Tucker [3], there must exist a strictly complementary solu-
tion, whereby the support sets span the rows and columns: σ(π) ∪ σ(s) = {1, . . . ,m}
and σ(x) ∪ σ(d) = {1, . . . , n}. This defines the (unique) optimal partition, obtained
from any strictly complementary (i.e., interior) solution.

Although the optimal partition was discovered in 1956 [3] and has been shown to
be an important part of algorithm design [14, 16] and sensitivity analysis [5], it has
not become familiar enough to appear in the linear programming textbooks. For that
reason we consider a small example to illustrate the optimal partition and related
concepts. Later, after presenting the theory in sections 3 and 4, we shall consider
another example pertaining to electricity generation from competing sources.

Example. min − x1: x ≥ 0, −x1 ≥ −b1, −x2 ≥ −b2. The primal optimality
region is the line segment, [(b1, 0), (b1, b2)], whose relative interior simply excludes the
extreme points. The optimal partition has σ(x) = {1, 2}, σ(d) = ∅, σ(s) = {2}, and
σ(π) = {1}. As long as c does not change, this partition remains optimal (for all b >
0). If c changes such that ∆c2 6= 0, one of the two extreme points becomes uniquely
optimal, and the optimal partition must change immediately. That is, suppose we
have the perturbed problem

min (−1 + ∆c1)x1 + ∆c2x2: x ≥ 0, −x1 ≥ −b1, −x2 ≥ −b2,

where ∆c1 < 1. Then,

∆c2 > 0 → x∗ = (b1, 0),
∆c2 < 0 → x∗ = (b1, b2).

In the first case, the optimal partition changes to σ(x) = {1} and σ(d) = {2} (no
change in σ(s) and σ(π)). In the second case, we have σ(s) = ∅ and σ(π) = {1, 2}
(no change in σ(x) and σ(d)).

We call the rows in σ(π) active because they never have surplus in any optimal
solution (i.e., si = 0 ∀i ∈ σ(π)), and for each row we have an optimal solution where
its price is positive (namely, the π obtained). Similarly, we call the columns in σ(x)
active because they never have a positive reduced cost (i.e., dj = 0 ∀j ∈ σ(x)), and
for each column we have an optimal solution where its level is positive (namely, the
x obtained). The complementary rows and columns are called inactive. The rows in
σ(s) never have a positive price, and each inactive row has a positive surplus in at
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least one optimal solution (namely, the s obtained). The columns in σ(d) never have
a positive level, and each inactive column has positive reduced cost in at least one
optimal solution (namely, the d obtained).

In [5] several problems were presented to illustrate how the optimal partition pro-
vides the information sought, and that this is not available from just one optimal basic
solution (unless it is unique). The postoptimal sensitivity analysis examples included
job shop scheduling (critical path problem) and peer group identification (DEA). The
examples went on to show how the optimal partition helps with debugging, such as
finding irreducible infeasible subsystems or all implied equalities with less computa-
tional effort than a simplex method due to knowing when a level is positive in some
optimal solution.

Partition A according to the optimal partition:

A =

[
B N
B∗ N∗

] ← σ(π) = rows active in some optimal solution
← σ(s) = rows inactive in all optimal solutions

↑ ↑| || σ(d) = columns inactive in all optimal solutions
σ(x) = columns active in some optimal solution.

Partition the rim data vectors conformally: b =
(
bN
bB

)
and c = (cB cN ). Also,

x =
(
xB
xN

)
, s =

(
sN
sB

)
, π = (πN πB), and d = (dB dN ).

Let us extend the previous example to illustrate this notation:

min − x1 + x3: x ≥ 0, −x1 ≥ −b1, −x2 ≥ −b2, −x1 − x2 − x3 ≥ −b3,
where b1 + b2 > b3 > max{b1, b2}. A strictly complementary optimal solution is
x = (b1,

1
2
(b3−b1), 0)t, d = (0, 0, 1), s = (0, b2− 1

2
(b3−b1), 1

2
(b3−b1))t, and π = (1, 0, 0).

The optimal partition, revealed by this solution, has only one active row, {1} (= σ(π)),
and two active columns, {1, 2} (= σ(x)). Thus, the induced partitions are as follows:

Active Inactive︷ ︸︸ ︷ ︷︸︸︷
A =

 −1 0 0
0 −1 0
−1 −1 −1

 } Active}
Inactive,

 b1
b2
b3

  0
+
+

 = s,

 +
0
0

 = πt,

c = ( −1 0 0 ),
xt = ( + + 0 ),
d = ( 0 0 + ).

Using the optimal partition, the original linear programs are equivalent to the
following primal-dual pair:

Primal Dual
min cBxB + cNxN : max πNbN + πBbB :
B xB + N xN − sN = bN , πNB + πBB

∗ + dB = cB ,
B∗xB +N∗xN − sB = bB , πNN + πBN

∗ + dN = cN ,
x, s ≥ 0, π, d ≥ 0.

Maintaining the partition conditions, xN = 0, sN = 0, πB = 0, and dB = 0, we
define the following primal and dual polyhedral conditions, which we shall use later:

P(b; r) = {(xB , 0) : xB ≥ 0, BxB = bN , B
∗xB ≥ bB},

D(c; r) = {(πN , 0) : πN ≥ 0, πNB = cB , πNN ≤ cN},
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where the current rim data value, r, determines the partition, B,N . (While P(b; r) =
P ∗(r) and D(c; r) = D∗(r), we use P(b; r) and D(c; r) to denote the same polyhedral
conditions for (b, c) 6= r, keeping the partition fixed at B,N .) Their relative interiors
are the strictly complementary solutions:

ri(P(b; r)) = {(xB , 0) : xB > 0, BxB = bN , B
∗xB > bB},

ri(D(c; r)) = {(πN , 0) : πN > 0, πNB = cB , πNN < cN}.

We say h = (δb, δc) is admissible if the linear program has an optimal solution for
r + θh for some θ > 0. The set of admissible directions, say H, is composed of those
h for which the primal and dual feasibility conditions hold:

H = {(δb, δc) ∈ Rm+n : ∃θ > 0, x ≥ 0, π ≥ 0 3 Ax ≥ b+ θδb and πA ≤ c+ θδc}.
A basis, B, is optimal at r if its associated primal and dual solutions are feasible.

(We use B, not to be confused with the active submatrix, B, in an optimal partition. In
general, B 6= B unless the solution is unique.) For h ∈ Rm+n, we say B is compatible
with h (and h with B) if B is also optimal for r + θh for some θ > 0. Its range
of compatibility is ρ(B;h) = sup{θ: B is optimal for r + θh}. (Note: B is optimal
throughout [r, r + ρ(B;h)h].) Let H(B) denote the set of directions compatible with
B:

H(B) = {h ∈ Rm+n : ρ(B;h) > 0}.
One of the fundamental theorems of (basic) compatibility [4] is H =

⋃
BH(B). We

shall relate this to a new theory of compatibility in connection with the optimal par-
tition. Also, we denote the basic spectrum: ρ∗(h) = sup{ρ(B;h): B is optimal for r}.

Given h ∈ H, the objective value is z(r+θh), as θ increases from zero. Suppose B
is a compatible basis (one must exist) with (x, π) the associated basic solution. Then,
since the basis remains optimal in [0, ρ(B;h)], the optimal value is quadratic:

z(r + θh) = z(r) + θ(δcBxB + πN δbN ) + θ2(δcBB−1δbN ),

where N is the complement of B (following notation analogous to the partition, but
induced by basic status). We shall prove a similar result holds when the optimal
partition does not change.

We say z has constant functional form if the coefficients are constant. In partic-
ular, z has constant functional form on [0, ρ∗(h)] ∀h ∈ H. Further, if either δb = 0 or
δc = 0, the quadratic term is zero and z(r+ θh)− z(r) is linear in θ. In this case, we
call the range of θ for which z has constant functional form a linearity interval. It has
already been proven [1, 10] that the break points of the linearity intervals correspond
precisely to where the optimal partition changes (which is not necessarily the same
as when the basis must change—see [7] for an example). Here we extend this to the
more general rim variation, where the functional form is piecewise quadratic.

3. The optimal partition for the perturbation. Define the range for which
the optimal partition does not change for a given direction (h):

τ(h) ≡ sup{θ : the optimal partition does not change throughout [r, r + θh]}.
In this definition, the left endpoint of the line segment is closed, so if the partition
must change at r (for any θ > 0), τ(h) = 0. If 0 < τ(h) < ∞, the optimal partition
is invariant on [r, r + τ(h)h), but it could change at r + τ(h)h.
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Lemma 3.1. Suppose h = {δb, δc} is an admissible direction and (∆b,∆c) = θh
for θ > 0 such that r+ θh has a primal-dual solution. Then, the optimal partition for
r+θh is the same as the optimal partition for r if and only if ri(P(∆b; r)×D(∆c; r)) 6=
∅. Further, when the optimal partition is the same at both endpoints, it remains the
same throughout the line segment, [r, r + θh].

Proof. The first part follows from the uniqueness of the optimal partition, deter-
mined by any strictly complementary solution. To show the optimal partition remains
invariant on the line segment, [r, r + θh], let (x0, π0) be a strictly complementary
solution in P ∗(r) × D∗(r), and let (x′, π′) be a strictly complementary solution in
P ∗(r+ θh)×D∗(r+ θh). Suppose r′′ = αr+ (1− α)(r+ θh) for some α ∈ [0, 1], and
define (x, π) = α(x0, π0) + (1−α)(x′, π′). Since the optimal partition for r and r+ θh
is the same, we have

xB = αx0
B + (1− α)x′B > 0 and xN = αx0

N + (1− α)x′N = 0;

πN = απ0
N + (1− α)π′N > 0 and πB = απ0

B + (1− α)π′B = 0.

Thus, σ(x) = σ(x0) and σ(π) = σ(π0). Further,

B xB = B[αx0
B + (1− α)x′B ] = αbN + (1− α)b′N = b′′N ,

B∗xB = B∗[αx0
B + (1− α)x′B ] > αbB + (1− α)b′B = b′′B ,

πBB = [απ0
B + (1− α)π′B ]B = αcB + (1− α)c′B = c′′B ,

πNN = [απ0
N + (1− α)π′N ]N < αcN + (1− α)c′N = c′′N .

Thus, σ(s) = σ(s0) and σ(d) = σ(d0), so (x, π) is a strictly complementary solution for
the linear program defined by r′′, and it has the same partition. This must therefore
be the optimal partition, since it is unique.

Suppose h = (δb, δc) is an admissible direction, so θ∗h is an admissible change for
some θ∗ > 0. If the optimal partition for r + θ∗h is the same as it is for r, Lemma
3.1 establishes that it is the same for r + θh ∀θ ∈ [0, θ∗]. In that case, the objective
value changes with constant functional form. To see this, use the construction in the
proof: (x, π) = α(x0, π0) + (1 − α)(x′, π′), where (x0, π0) is strictly complementary
for r, (x′, π′) is strictly complementary for r + θ∗h, and α = 1 − θ/θ∗. Then, since
the optimal partition is the same, (x, π) is strictly complementary for r + θh, and

z(r + θh) = (c+ θδc)[(1− θ/θ∗)x+ θ/θ∗x′]
= z(r) + θ[cB(x′B − x0

B)/θ∗ + δcB x
0
B ] + θ2 δcB(x′B − x0

B)/θ∗.

This proves the following generalization of the linear case [1, 10, 12, 13].
Theorem 3.2 (optimal value function). If the optimal partition does not change

at r for the admissible change direction h, then z has constant functional form.
Further, Lemma 3.1 extends to the following convexity property.
Theorem 3.3 (optimal partition convexity). If the optimal partition is the same

throughout [r, r + h1] as it is throughout [r, r + h2], it is the same throughout [r, r +
αh1 + (1− α)h2] ∀α ∈ [0, 1].

Proof. Let (xk, πk) be a strictly complementary solution for k = 1, 2, so they
satisfy the primal-dual conditions:

B xkB = bN + δbkN , πkNB = cB + δckB ,

B∗xkB > bB + δbkB , πkNN < cN + δckN ,

xkB > 0, xkN = 0, πkN > 0, πkB = 0.
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Define (x, π) = α(x1, π1) + (1−α)(x2, π2). Multiply the above by α for k = 1 and by
1− α for k = 2 to satisfy the following for h = αh1 + (1− α)h2 = (∆b,∆c):

B xB = bN + ∆bN , πNB = cB + ∆cB ,

B∗xB > bB + ∆bB , πNN < cN + ∆cN ,

xB > 0, xN = 0, πN > 0, πB = 0.

So, (x, π) is a strictly complementary solution for r+ αh1 + (1− α)h2 with the same
partition. It follows from Lemma 3.1 that the optimal partition remains the same
throughout [r, r + αh1 + (1− α)h2].

In the special case that h1 = (∆b, 0) and h2 = (0,∆c), Theorem 3.3 on optimal
partition convexity can be strengthened to the following decoupling principle.

Corollary 3.4. The optimal partition does not change in [r, r + (∆b,∆c)] if
and only if it does not change in [r, r + (∆b, 0)] ∪ [r, r + (0,∆c)].

Proof. If the optimal partition does not change in [r, r+ (∆b,∆c)], the following
primal-dual system has a solution:

B xB = bN + ∆bN , πNB = cB + ∆cB ,
B∗xB > bB + ∆bB , πNN < cN + ∆cN ,
xB > 0, πN > 0.

Let (x′, π′) be a solution, and let (x0, π0) be a strictly complementary solution for
r. Then, (x′, π0) is a strictly complementary solution for r + (∆b, 0), and (x0, π′)
is a strictly complementary solution for r + (0,∆c). These imply that the optimal
partition does not change in [r, r + (∆b, 0)] ∪ [r, r + (0,∆c)].

Conversely, if the optimal partition does not change in [r, r+(∆b, 0)], there exists
x′ to satisfy the primal conditions, and if the optimal partition does not change in
[r, r + (0,∆c)], there exists π′ to satisfy the dual conditions. Since the partitions
are the same, (x′, π′) is a strictly complementary solution for r + (∆b,∆c), so the
partition is the same throughout [r, r + (∆b,∆c)].

Let the optimal partition be compatible with h (and h with it) if τ(h) > 0. Define
the set of compatible directions: H = {h : τ(h) > 0}. Then, we have the following
analogy to the basis compatibility convexity theorem (see [4]).

Theorem 3.5 (partition compatibility). The following properties hold for H and
τ .

(1) H is a nonempty convex cone.

(2) τ is quasi-concave on H; i.e., τ(αh1 + (1 − α)h2) ≥ min{τ(h1), τ(h2} for
h1, h2 ∈ H and α ∈ [0, 1].

(3) H satisfies the decoupling principle; i.e., (δb, δc) ∈ H if and only if (δb, 0) ∈ H
and (0, δc) ∈ H.

Proof. (1) Suppose h1, h2 ∈ H and define θ∗ = min{τ(h1), τ(h2)} > 0. Then, for
θ ∈ (0, θ∗),∃(xk, πk) to satisfy the strictly complementary primal-dual conditions:

B xkB = bN + θδbkN , πkNB = cB + θδckB ,

B∗xkB > bB + θδbkB , πkNN < cN + θδckN ,

xkB > 0, πkN > 0

for k = 1, 2. Define (x, π) = 1
2 (x1, π1) + 1

2 (x2, π2), then multiply the above by 1
2 and
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sum to obtain the following:

B xB = bN + 1
2θδbN , πNB = cB + 1

2θδcB ,

B∗xB > bB + 1
2θδbB , πNN < cN + 1

2θδcN ,

xB > 0, πN > 0.

Define θ′ = 1
2θ and θ′∗ = 1

2θ
∗, and we have the desired result: the optimal

partition for r+θ′(h1 +h2) is the same as the optimal partition for r, so h1 +h2 ∈ H.
To show that H is nonempty, let h = (b, c), so r + θh = (1 + θ)r. Then, by rescaling
(x′ = x/(1+θ) and π′ = π/(1+θ)), the strictly complementary solution has the same
partition for all θ ≥ 0.

(2) Let θ∗ ≡ min{τ(h1), τ(h2} > 0 and (x, π) = α(x1, π1) + (1 − α)(x2, π2). For
θ ∈ (0, θ∗), multiply the first system (k = 1) by α, the second (k = 2) by 1− α, and
sum to prove that (x, π) is a strictly complementary solution for the partition:

B xB = bN + θδbN , πNB = cB + θδcB ,

B∗xB > bB + θδbB , πNN < cN + θδcN ,

xB > 0, πN > 0.

Thus, τ(αh1 + (1− α)h2) ≥ sup{θ : θ < θ∗} = θ∗.
(3) Let h = (δb, δc) ∈ H. Then, ∃θ∗ > 0 such that for θ ∈ [0, θ∗), the primal-

dual conditions have a strictly complementary solution, say, (x, π) (with the same
partition). Let (x0, π0) be a strictly complementary solution for r. Then, since these
have the same partition, (x, π0) is a strictly complementary solution for r+θ(δb, 0) and
(x0, π) is a strictly complementary solution for r+ θ(0, δc). Conversely, if (x, π0) is a
strictly complementary solution for r+θ(δb, 0) and (x0, π) is a strictly complementary
solution for r+ θ(0, δc), both having the partition defined by B, it follows that (x, π)
is a strictly complementary solution for r + θ(δb, δc).

Now suppose that h is an admissible direction, but the optimal partition changes:
ri(P(r+ θh)×D(r+ θh)) = ∅ ∀ θ > 0. The following theorem shows the fundamental
relationship the new partition has with the differential linear programs that comprise
Mills’s differential Lagrangian [11] when A does not change. (Mills’s theorem was
extended [15, 8] to apply to any linear program, rather than the special case of a
game.) Further, this theorem applies generally, even if the optimal partition does not
change. The new result is found in part (3), and the proofs [1, 10] of parts (1) and
(2) do not extend. (They are included here for self-containment.)

Theorem 3.6 (optimal partition perturbation). Suppose (x0, π0) is a strictly
complementary solution for r and (δb, δc) is an admissible direction. Define the dif-
ferential linear programs:

δP : min{(δc)x : x ∈ P ∗(r)}, δD : max{π(δb) : π ∈ D∗(r)}.
Let x∗ and π∗ be respective strictly complementary solutions. There exists θ∗ > 0 such
that the following are true for θ ∈ (0, θ∗).

(1) The optimal partition for r + θ(δb, 0) is the same as the optimal partition for
δD, and z(r + θ(δb, 0)) = z(r) + θπ∗N (δbN ).

(2) The optimal partition for r + θ(0, δc) is the same as the optimal partition for
δP , and z(r + θ(0, δc)) = z(r) + θ(δcB)x∗B.

(3) The optimal partition for r + θ(δb, δc) is determined by σ(x∗) from δP and
σ(π∗) from δD. Further, z(r+θ(δb, δc)) = z(r)+θ(δcB x

∗
B+π∗N δbN )+θ2(δcBB

+δbN ),
where B+ is any generalized inverse of B.
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Proof. (1) The following proof is from Jansen, Roos, and Terlaky [10]. The dual
of δD is min{cξ : BξB + NξN ≥ δbN , ξN ≥ 0}. Since δD has an optimal solution,
there is a strictly complementary optimum, say, (ξ, π∗). Consider x = x0 + θξ. Since
x0
B > 0, there exists θ′ > 0 for which xB > 0 for θ ∈ [0, θ′). Further, xN = θξN ≥ 0,

so x ≥ 0, and we have [B N ]x = Bx0
B + θ(BξB + NξN ) ≥ bN + θδbN . Further,

[B∗ N∗]x = B∗x0
B + θ(B∗ξB + N∗ξN ). Since B∗x0

B > bB , there exists θ′′ > 0 such
that [B∗ N∗]x > bB + θδbB for θ ∈ [0, θ′′). Let θ∗ = min{θ′, θ′′} > 0. So far, we have
that (x, π∗) satisfies the primal-dual conditions ∀ θ ∈ [0, θ∗):

B x0
B + θ(B ξB +N ξN ) ≥ bN + θδbN , π∗NB = cB ,

B∗x0
B + θ(B∗ξB +N∗ξN ) > bB + θδbB , π∗NN ≤ cN ,

x0
B + θξB > 0, θξN ≥ 0, π∗N ≥ 0.

We now prove that (x, π∗) is a strictly complementary solution for r + θ(δb, 0),
where θ > 0. Suppose Bi•xB + Ni•xN = bi + θδbi. Since Bi•xB = bi, we must have
Bi•ξB + Ni•ξN = δbi. This implies π∗i > 0 since (ξ, π∗) is strictly complementary
for δD and its dual, so σ(π∗) =∼σ(s′). Also, since (ξ, π∗) is strictly complementary,
σ(d∗) =∼ σ(ξN )∩ ∼ σ(x0

B) =∼ (σ(ξN ) ∪ σ(x0
B)) =∼ σ(x′). Thus, we have proven

(x′, π∗) is a strictly complementary solution for r + θ(δb, 0), with the same optimal
partition as D, for all θ ∈ (0, θ∗). Further, z(r + θ(δb, 0)) = cx′ = cx+ θcξ. We have
cx = z(r) and cξ = π∗(δb) (from duality), so z(r + θ(δb, 0)) = z(r) + θπ∗(δb). Since
πB = 0 ∀ π ∈ D∗(r), we conclude z(r + θ(δb, 0)) = z(r) + θπ∗N (δbN ). The proof of
(2) is similar by constructing π = π0 + θξ′, where ξ′ is the vector of variables for the
dual of δP : max{ξ′b : ξ′B ≥ 0, ξ′NB + ξ′BB

∗ ≤ δcB}.
We now prove (3). From (1), there exists θ′ > 0 such that the optimal partition

does not change throughout (r, r + θ′(δb, 0)), and the set of active columns is σ(x∗).
(Note from the proof of (1) that the set of active rows does not change.) From
(2), there exists θ′′ > 0 such that the optimal partition does not change throughout
(r, r + θ′′(0, δc)), and the set of active rows is σ(π∗). (By analogy, the proof of (2)
shows that the set of active columns does not change.) Let θ∗ = min{θ′, θ′′} > 0.
Then, the optimal partition does not change throughout (r, r + θ∗(δb, δc)), and its
active sets are the rows in σ(π∗) and the columns in σ(x∗).

(Note: We cannot use the solutions in (1) and (2) directly because (x, π) need
not be complementary, in which case it is not a solution for r + θh. This proof can
be viewed as first moving to r + θ(δb, 0), where θ < θ∗ and the optimal partition
is defined by σ(x∗) and σ(π), then changing c by θδc to move to r + θh, where the
optimal partition is defined by σ(x∗) and σ(π∗). Equivalently, we can move first to
r + θ(0, δc), with optimal partition defined by σ(x) and σ(π∗), then move to r + θh
to obtain the same result. This argument is similar to the one used by Roos [13] for
a different result.)

Finally, to show that z(r + θh) has the asserted quadratic form, we shall use
the defining properties of generalized inverses. Let B correspond to the optimal
partition throughout (r, r + θ∗h). Then, xB(θ) = B+(bN + θδbN ) + (I −B+B)v(θ),
where B+ is any generalized inverse of B, and v(θ) is any vector in R|σ(x)|. The
defining property of B+ is that BB+B = B, and a fundamental property is that
the equation has a solution if and only if BB+(bN + θδbN ) = bN + θδbN . Since this
applies to θ = 0, we must have BB+bN = bN , which then implies we must also have
BB+δbN = δbN . Similarly, the dual equations are πN (θ)B = cB + θδcB , so we must
have πN (θ) = (cB + θδcB)B+ + u(θ)(I − BB+), where u(θ) is any vector in R|σ(π)|.
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Then,

z(r + θh) = (cB + θδcB)[B+(bN + θδbN ) + (I −B+B)v(θ)]

= cBB
+bN + θ(δcBB

+bN + cBB
+δbN ) + θ2(δcBB

+δbN ),

where the terms with v(θ) are zero because cB + θδcB = (cB + θδcB)B+B, so

(cB + θδcB)(I −B+B)v(θ) = (cB + θδcB)B+B(I −B+B)v(θ)
= (cB + θδcB)B+(B −BB+B)v(θ)
= 0.

(The last equation follows from B = BB+B.)
Example. min x1 + 3x2 + 2x3 : x ≥ 0, x1 + x2 ≥ 1, x2 + x3 ≥ 1.
A strictly complementary optimal solution is x = (1

2 ,
1
2 ,

1
2 ) and π = (1, 2), so the

optimal partition has σ(x) = {1, 2, 3} and σ(π) = {1, 2}, which gives the optimality
regions:

P ∗(r) = {x : x ≥ 0, x1 + x2 = 1, x2 + x3 = 1} = {(1− x2, x2, 1− x2) : 0 ≤ x2 ≤ 1},
D∗(r) = {π : π ≥ 0, π1 = 1, π1 + π2 = 3, π2 = 2} = {(1, 2)}.

For δb = (−1, 0) and δc = (−1, 0, 0), the two differential linear programs and their
duals are as follows:

δP : min{−x1 : x ∈ P ∗(r)}, max{ξ′1 + ξ′2 : ξ′1 ≤ −1, ξ′1 + ξ′2 ≤ 0, ξ′2 ≤ 0},
δD : max{−π1 : π ∈ D∗(r)}, min{ξ1 + 3ξ2 + 2ξ3 : ξ1 + ξ2 ≥ −1, ξ2 + ξ3 ≥ 0}.

A strictly complementary solution for δP and its dual is x∗ = (1, 0, 1) and
ξ′ = (−1, 0), so the optimal partition has σ(x∗) = {1, 3}. A strictly complemen-
tary solution for δD and its dual is π∗ = (1, 2) and ξ = (−2, 1,−1), so its optimal
partition has σ(π∗) = {1, 2}. As given in Theorem 3.6 on optimal partition perturba-
tion, σ(x) = σ(x∗) from δP , and σ(π) = σ(π∗) from δD for the optimal partition in
(r, r + θh). Let us verify this.

The perturbed linear program is the following primal-dual pair:

min (1− θ)x1 + 3x2 + 2x3 : x ≥ 0, max π1(1− θ) + π2 : π ≥ 0,
x1 + x2 ≥ 1− θ, x2 + x3 ≥ 1, π1 ≤ 1− θ, π1 + π2 ≤ 3,

π2 ≤ 2.

For θ ∈ (0, 1) a strictly complementary optimal solution is x = (1− θ, 0, 1) (so s = 0)
and π = (1− θ, 2) (so d = (0, θ, 0)). Indeed, σ(x) = {1, 3} and σ(π) = {1, 2).

4. Relation to basic compatibility. Now we develop a range theory for the
optimal partition analogous to the range of basic compatibility [4]. Here the optimal
partition can change initially but must then remain invariant. Let Υ(h) denote the
greatest value of θ for which the optimal partition does not change throughout (r, r+
θh) for h ∈ H. Note that the line segment is open, so the optimal partition need not
be the same at the endpoints. In particular, the partition might have to change at r
(i.e., τ(h) = 0); otherwise, Υ(h) = τ(h). The optimal partition perturbation theorem
(Theorem 3.6) tells us that Υ(h) > 0 when h is admissible, in which case z(r + θh)
has constant functional form for θ ∈ (0,Υ(h)). When h is decoupled (i.e., δb = 0 or
δc = 0), (0,Υ(h)) is a linearity interval of z(r + θh)− z(r).
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The following lemma says that this bounds each basic range of compatibility,
which establishes the optimal partition range theorem (Theorem 4.2).

Lemma 4.1. Suppose h is an admissible direction for which B is a compatible
basis with range ρ = ρ(B;h). Then, the optimal partition does not change throughout
(r, r + ρh).

Proof. From the optimal partition perturbation theorem (Theorem 3.6), there
exists θ > 0 such that the optimal partition does not change in (r, r + θh). Let θ∗

be the supremum value of θ for which this is true. If θ∗ ≥ ρ, we are done, so suppose
θ∗ < ρ. Let (x0, π0) be any strictly complementary solution for r+ 1

2θ
∗h, so that σ(x0)

and σ(π0) determine the optimal partition throughout (r, r + θ∗h). We shall reach
a contradiction by constructing (x′, π′) that is optimal for r + θh, where θ∗ < θ < ρ,
and σ(x′) = σ(x0), σ(s′) = σ(s0), σ(π′) = σ(π0), and σ(d′) = σ(d0).

Define α = (ρ−θ)/ρ, so 1−α = θ/ρ and α ∈ (0, 1). We shall form a convex combi-
nation of the strictly complementary solution and the basic solution response values,
which we shall prove is feasible and has the same support sets as the strictly comple-
mentary solution. Suppose the basic solution for r, (x, π), changes by (∆x,∆π), for
r + ρh. Then, define the following convex combination:

x = αx0 + (1− α)(x+ ∆x) and π = απ0 + (1− α)(π + ∆π).

Clearly, (x, π) ≥ 0. Further, we have ∆xB = ρB−1δbN and ∆xN = 0, so the primal
equations are given by

B xB +N xN = B[αx0
B + (1− α)(xB + ρB−1δbN )] + αNx0

N
= α[Bx0

B +Nx0
N ] + (1− α)[BxB + ρδbN ]

≥ αbN + (1− α)bN + θδbN
= bN + θδbN ,

B∗xB +N ∗xN = B∗[αx0
B + (1− α)(xB + ρB−1δbN )] + αN ∗x0

N
= α[B∗x0

B +N ∗x0
N ] + (1− α)B∗[xB + ∆xB]

≥ αbB + (1− α)(bB + ρδbB)

= bB + θδbB.

Thus, Ax ≥ b + θδb, which proves x is feasible in the primal. Similarly, ∆πN =
ρδcBB−1 and ∆πB = 0, so the dual equations are given by

πNB + πBB∗ = [απ0
N + (1− α)(πN + ρδcBB−1)]B + απ0

BB∗
= α[π0

NB + π0
BB∗] + (1− α)[πNB + ρδcB]

≤ αcB + (1− α)(cB + ρδcB)

= cB + θδcB,

πNN + πBN ∗ = [απ0
N + (1− α)(πN + ρδcBB−1)]N + απ0

BN ∗
= α[π0

NN + π0
BN ∗] + (1− α)[πN + ∆πN ]N

≤ αcN + (1− α)(cN + ρδcN )

= cN + θcN .
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Thus, πA ≤ c+ θδc, which proves π is feasible in the dual.

We have proven that (x, π) satisfies the primal-dual conditions for r+θh. We now
prove its support sets are the same as those of (x0, π0). Let βj denote the jth row of
B−1. For a nonbasic activity (j), xj = αx0

j , so j ∈ σ(x) if and only if j ∈ σ(x0). For

a basic activity (j), xj = αx0
j + (1− α)(xj + ρβjδbN ). For j ∈ σ(x0), we have xj > 0

because xj + ρβjδbN ≥ 0, so σ(x0) ⊆ σ(x). Now suppose j ∈ σ(x), so

0 < xj = αx0
j + (1− α)xj + θβjδbN .

We shall prove that x0
j = 0 leads to a contradiction. Upon so doing, we will have

proven σ(x) ⊆ σ(x0), thus proving σ(x) = σ(x0).

The contradiction comes from the meaning of the optimal partition: every optimal
solution, say, x∗(λ), for r + λh (λ ∈ (0, θ∗)), must have x∗j (λ) = 0∀j ∈ σ(x0). One
such optimal solution is the basic one: xj + λβjδbN = 0. Since this must hold for
all λ ∈ (0, θ∗), we must have xj = 0 and βjδbN = 0, so we reach the contradiction:
xj = 0. Hence, σ(x) = σ(x0). The remaining support set equalities follow in a similar
manner.

The opposite inequality does not hold. The optimal partition can be invariant
on (r, r + θ∗h), but the optimal bases at r may have a range far less than θ∗. For
example, consider the following linear program:1

min x2 : (x1, x2) ≥ 0, 1 ≤ x1 + x2 ≤ 4, −1 ≤ x1 − x2 ≤ 2, θ ≤ x2 ≤ 2.

For θ ∈ [0, 2], the strictly complementary solution is (3
2 , θ), and the optimal bases

correspond to two extreme points, starting with (1, 0) and (2, 0) at θ = 0. No matter
which compatible basis is used, ρ∗(h) = 1, stopped by the turning point at x2 = 1
when θ = 1. Thus, the optimal partition does not change throughout [r, r + 2h], but
there is no basis that is optimal at r and at r + θh for θ > 1.

Theorem 4.2 (optimal partition range). Υ(h) ≥ ρ∗(h).

Proof. This is immediate from Lemma 4.1.

Theorem 4.2 says that the range of the perturbation for which the (possibly new)
partition remains the same is at least as great as the maximum of the ranges of basic
compatibility, taken over all optimal bases. Thus, the associated interval for which
z(r+ θh)− z(r) has constant functional form in θ is determined by when the optimal
partition changes, which could be strictly greater than the basic spectrum. This
generalizes the linear case (where h is decoupled).

Using the previous example, there are three optimal bases, as follows, with com-
patibility conditions following the semicolons:

B1 = [A•1 A•2] : x1 = (0, 1, 0), π1 = (1, 2); δb1 − δb2 ≥ 0, δc1 − δc2 + δc3 ≥ 0.

B2 = [A•1 A•3] : x2 = (1, 0, 1), π2 = (1, 2); δc1 − δc2 + δc3 ≤ 0.

B3 = [A•2 A•3] : x3 = (0, 1, 0), π3 = (1, 2); −δb1 + δb2 ≥ 0, δc1 − δc2 + δc3 ≥ 0.

For δb = (−1, 0) and δc = (−1, 0, 0), only B2 is compatible, and its range of compat-
ibility is ρ(B2;h) = ρ∗(h) = 1. Thus, the basic compatibility theorem of [4] tells us
that z(r + θh) − z(r) has constant functional form if we decrease b1 and c1, both at

1The author thanks Tamás Terlaky for pointing this out and Kees Roos for the example.
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Purchase Generate
PCL POL PUR GCL GOL GUR

COST 18 15 20 .8 .6 .4 = min
BCL 1 −1 ≥ 0 balance coal
BOL 1 −1 ≥ 0 balance oil
BUR 1 −1 ≥ 0 balance uranium
LNU −1 ≥ −10 limit nuclear generation
DEL .33 .3 .4 ≥ 10 demand electricity

Fig. 1. Electricity generation example.

unit rate. In particular, we have the following quadratic function for θ ∈ [0, 1]:

z(r + θh)− z(r) = (cB + θδcB)[B2]−1(bN + θδbN )− cB[B2]−1bN

= [1− θ, 2]

 1− θ

1

 − 3

= −2θ + θ2.

The interior point approach gave us the same result, but in a different manner.
From one of the main results of the basic compatibility theory [4], we have the

following.
Corollary 4.3. h is admissible if and only if Υ(h) > 0.
Proof. By definition, Υ(h) > 0→h ∈ H, and the converse follows from Theorem

4.2 and H = {h : ρ∗(h) > 0} [4].
This corollary says that the set of admissible directions equals the set of directions

for which the optimal partition is invariant on the associated open line segment.
We now consider another example [4] to help understand economic interpretations,
introduce the optimal partition transition graph, and illustrate a form of activity
analysis built on how the optimal partition changes rather than on how optimal bases
change.

There are three fuels from which to generate electricity: coal, oil, and uranium.
Define six activities, as follows:

PCL: purchase coal, GCL: generate electricity from coal,
POL: purchase oil, GOL: generate electricity from oil,
PUR: purchase uranium, GUR: generate electricity from uranium.
Figure 1 shows the linear program. The objective is to minimize cost, shown as

the first row, while meeting the required electricity demand, shown as the last row.
Rows BCL, BOL, and BUR balance the associated fuels: what is purchased must be
at least as great as what is used for generation. Row LNU limits the generation from
uranium: GUR ≤ 10.

Generation from uranium is the least costly (per unit of electricity generated,
including the cost of uranium), so its level is as high as possible, limited to 10 units,
which generates 4 units of electricity. The other 6 units are generated from oil, and
none is generated from coal. Thus, the levels of PCL and GCL are zero in every
optimal solution; however, PCL is in one optimal basis (compatible with increasing
the right-hand side) and GCL is in another (compatible with decreasing the right-hand
side).

Figure 2 shows the active submatrix, where the optimal partition has σ(x) =
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σ(x) : POL PUR GOL GUR σ(π) σ(d) : PCL GCL

B =

 1 −1
1 −1

−1
.3 .4


BCL

BOL

BUR

LNU

DEL

N =


1 −1

.33


Fig. 2. Optimal partition for the electricity generation example.

{POL, PUR,GOL,GUR} (activities to generate electricity from oil and uranium) and
σ(π) equal to all rows (B∗ and N∗ are null).

For bBCL > 0, we increase the right-hand side of the coal balance row, which
corresponds to a stockpile requirement. The theory of basic compatibility says that
the coal purchase activity (PCL) needs to be in the basis to provide the appropriate
response: buy coal. As bBCL < 0, we are providing free coal, making the cost of
electricity generation consist of only the operation and maintenance cost. This is $.80
per unit of coal, which is $2.42 per unit of electricity ($.80÷ .33). Thus, the generation
activity (GCL) needs to be in the basis to provide the appropriate response: displace
oil-fired generation with coal-fired generation. The displacement continues until all
oil-fired generation is displaced, which occurs at bBCL = −18.18. A view of these is
with the basis transition graph, shown in Figure 3, that is a part of the theory of basic
compatibility, which we now extend.

Let δb = −e1 (i.e., decrease the right-hand side of row BCL). An interior point
approach first considers the differential linear program:

max{−π1 : π ∈ D∗(r)} = −min{π1 : π = (p, 15, 20, .4, 52), 16.36 ≤ p ≤ 18} = −16.36.

This gives us the new optimal partition for r − θe1 with θ sufficiently small. (Our
goal is to obtain the greatest value of θ, which defines Υ(−e1).)

The new optimal partition adds activity GCL to the set of active columns, so the
following equations must hold as θ is increased:

BxB =


−1

1 −1
1 −1

−1
.3 .4 .33



xPOL
xPUR
xGOL
xGUR
xGCL

 =


−θ

0
0

−10
10

 .
This gives the following primal conditions that limit θ:

Υ(−e1) = max{ θ : x ≥ 0,
−xGCL = −θ

xPOL − xGOL = 0
xPUR − xGUR = 0

−xGUR =−10
.33xGCL + .3xGOL + .4xGUR = 10 }.

This reduces to Υ(−e1) = max{θ : .33θ ≤ 6} = 18.18. While this equals the range
we obtained from the basis-driven approach, the reasoning is different. At bBCL =
−18.18, the optimal partition changes again to deactivate oil-fired generation—i.e.,
exclude activities GOL and POL from the set of active columns. (POL must remain
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prepare prepare prepare
for to to
coal displace displace
surplus uranium oil
←− ←− ←−

b1: −30.3 −18.18 0
↙ ↘ ↙ ↘ ↙ ↘

Basis: GCL GCL GCL ——— PCL
POL POL POL POL
PUR PUR PUR PUR
LNU LNU ——— GOL GOL
BCL ——— GUR GUR GUR

−→ −→ −→
prepare prepare prepare
to to to
generate generate purchase
from from oil coal
uranium

Fig. 3. Basis transition graph.

deactivate deactivate activate deactivate
PUR, GUR POL, GOL GCL PCL
to stop to stop to begin to stop
nuclear oil-fired coal-fired coal
generation generation generation purchases
(displaced) (displaced) (displace oil) (not req.)
←− ←− ←− ←−

b1: −30.3 −18.18 0
σ(x): PCL

POL POL POL
PUR PUR PUR PUR

GCL GCL GCL
GOL GOL GOL

GUR GUR GUR GUR
σ(s): BCL

−→ −→ −→ −→
activate activate deactivate activate
PUR, GUR POL, GOL GCL PCL
to begin to begin to stop to begin
nuclear oil-fired coal-fired coal
generation generation generation purchases
(displace (displace (displaced) (required)

coal) coal)

Fig. 4. Optimal partition transition graph.

basic in the theory of basic compatibility, even though its level is zero in every op-
timal solution, in order to have the correct price of oil, πBOL.) Analogous to basic
compatibility, the optimal partition changes due to an event that makes something
change status: from inactive to active, or vice versa.

Whereas Figure 3 shows the basis transition graph that was introduced in [4] for
varying the amount of coal, Figure 4 introduces a partition transition graph. Notice
that in the basis transition graph, events occur at the threshold, choosing the event
that is compatible with the particular variation (left or right transition). By con-
trast, in the optimal partition transition graph, events occur just on one side of each
threshold. At b1 = 0, it is after θ > 0 that coal purchases begin (i.e., activity PCL
is activated by entering σ(x)). Similarly, it is after b1 < 0 that coal-fired generation
begins (i.e., activity GCL is activated). As we continue to move to the left, the op-
timal partition remains invariant on the open interval, (−18.18, 0). At the threshold,
all of the oil is displaced by coal, so the optimal partition changes at r − 18.18e1. It
is just before this change that the event occurs: deactivate POL and GOL. Then, the
optimal partition is invariant on the half-open interval: θ ∈ [18.18, 30.3) =⇒ σ(x) =
{PUR, GCL, GUR} for r − θe1.

This view of events that activities are activated or deactivated just before or after
the threshold where the optimal partition changes complements the basic view that
describes which basis is a compatible one in terms of events that prepare for the
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movement away from the threshold. Of course, phrases like “just before” and “just
after” are not mathematical, but the idea is to gain insight from the solution, and
this distinction in the two kinds of transition graphs does provide an added vantage
point, based on the underlying events.

5. Summary. Here is a summary of the main points:

• The new optimal partition is obtained by solving two differential linear pro-
grams, one over the primal optimality region, the other over the dual. The
new set of active columns equals that of the primal differential linear pro-
gram; the new set of active rows equals that of the dual differential linear
program.
• The interval for which the objective value has constant functional form, ob-

tained from the range of the (possibly new) optimal partition, contains the
interval obtained from the range of compatible bases. Further, this contain-
ment can be strict.
• The optimal partition transition graph, which shows threshold events when

the optimal partition changes, provides another visualization of the underly-
ing economics.
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Abstract. We present a dual-scaling interior-point algorithm and show how it exploits the
structure and sparsity of some large-scale problems. We solve the positive semidefinite relaxation of
combinatorial and quadratic optimization problems subject to boolean constraints. We report the
first computational results of interior-point algorithms for approximating maximum cut semidefinite
programs with dimension up to 3,000.

Key words. semidefinite programming, dual potential reduction algorithm, maximum cut
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1. Introduction. Recently, there were several theoretical results on the effec-
tiveness of approximating combinatorial and nonconvex quadratic optimization prob-
lems by using semidefinite programming (see, e.g., Goemans and Williamson [11],
Nesterov [24], and Ye [33]). These results raise the hope that some hard optimiza-
tion problems can be tackled by solving large-scale semidefinite relaxation programs.
The positive semidefinite relaxation was considered early on by Lovász [18] and Shor
[29], and the field received further contributions from many other researchers (e.g.,
see Lovász and Shrijver [19], Alizadeh [2], Sherali and Adams [28], and references
therein).

The approximate solution to the quadratic optimization problem is obtained by
solving a semidefinite relaxation, i.e., a semidefinite program (SDP) of the form

minimize C •X
(SDP)

subject to Ai •X = bi, i = 1, . . . ,m,
X � 0.

(1)

Here, the given matrices C,Ai ∈ Sn, the set of n-dimensional symmetric matrices;
vector b ∈ Rm; and unknownX ∈ Sn. Furthermore, the Ai’s are linearly independent,
meaning that

∑m
i=1 yiAi = 0 implies y1 = · · · = ym = 0; C • X = trCTX =∑

jk CjkXjk; and X � 0 means that X is positive semidefinite.
In this paper, one additional assumption will be made: the constraint matrices

have a rank-1 form, Ai = aia
T
i , ai ∈ Rn. This structure arises in many large-scale

problems and results in considerable simplifications.

∗Received by the editors September 26, 1997; accepted for publication (in revised form) September
18, 1998; published electronically February 10, 2000. This work is partially supported by NSF grants
DMI-9522507 and DMS-9703490.

http://www.siam.org/journals/siopt/10-2/32800.html
†Applied Mathematics and Computational Sciences, The University of Iowa, Iowa City, IA 52242

(benson@mcs.anl.gov). This author is currently visiting the Computational Optimization Lab, De-
partment of Management Sciences, The University of Iowa, Iowa City, IA 52242.
‡Department of Management Sciences, The University of Iowa, Iowa City, IA 52242

(yyye@dollar.biz.uiowa.edu).
§School of Mechanical Engineering, Huazhong University of Science and Technology, Wuhan,

Hubei, China (xzhang@dollar.biz.uiowa.edu).

443



444 STEVEN J. BENSON, YINYU YE, AND XIONG ZHANG

The dual of (SDP) can be written as

maximize bT y
(DSDP)

subject to
m∑
i=1

yiAi + S = C, S � 0,
(2)

where yi, i = 1, . . . ,m, are scalar variables.
We have the following well-known duality theorem [25].
Theorem 1 (strong duality). Provided that (SDP) and (DSDP) are both fea-

sible and there is a strictly interior point to either (SDP) or (DSDP), there is no
duality gap.

Thus, if both (SDP) and (DSDP) are well behaved or a primal and dual optimal
solution pair (X∗) and (y∗, S∗) exists, then C •X∗ = bT y∗.

A well-behaved pair of semidefinite programs can be solved in polynomial time.
There are actually several interior-point polynomial algorithms. One is the primal-
scaling algorithm (Nesterov and Nemirovskii [25], Alizadeh [2], Vandenberghe and
Boyd [31], and Ye [34]), which is the analogue of the primal path-following and po-
tential reduction algorithm for linear programming. This algorithm uses only X to
generate the iterate direction. In other words,(

Xk+1

Sk+1

)
= Fp

(
Xk
)
,

where Fp is the primal algorithm iterative mapping.
Another is the dual-scaling algorithm (Vandenberghe and Boyd [31], Anstreicher

and Fampa [4], and Ye [34]), which is the analogue of the dual path-following and
potential reduction algorithm for linear programming. The dual-scaling algorithm
uses only S to generate the new iterate:(

Xk+1

Sk+1

)
= Fd

(
Sk
)
,

where Fd is the dual algorithm iterative mapping.
The third is the primal-dual scaling algorithm, which uses both X and S to

generate the new iterate (see Todd [30] and references therein):(
Xk+1

Sk+1

)
= Fpd

(
Xk, Sk

)
,

where Fpd is the primal-dual algorithm iterative mapping.
All these algorithms generate primal and dual iterates simultaneously and pos-

sess O(
√
n ln(1/ε)) iteration complexity to yield the duality gap accuracy ε. Other

scaling algorithms have been proposed in the past. For example, a semidefinite pro-
gram equivalent to Dikin’s affine-scaling algorithm could be very fast. However, this
algorithm may not even converge. Muramatsu [22] and Muramatsu and Vanderbei
[23] showed an example in which these affine scaling algorithms will not converge to
an optimal answer.

There are also quite a few computational results and implementations of these
interior algorithms; see Anstreicher and Fampa [4], Alizadeh, Haeberly, and Overton
[3], Fujie and Kojima [9], Fujisawa, Kojima, and Nakata [8], Helmberg et al. [13],
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Karisch, Rendl, and Clausen [14], Vandenberghe and Boyd [31], Wolkowicz and Zhao
[32], and Zhao et al. [35], [36]. To the best of our knowledge, the largest problem
that could be solved was at n = 900 from their reports. (After the initial version of
this paper was submitted, one more implementation came out: Fujisawa et al. [10]
reported that they could solve a maximum cut semidefinite program with n = 1, 250
using a powerful workstation.)

The practical winner in solving semidefinite programs was Helmberg and Rendl
[12], an implementation of a non-interior-point algorithm called the bundle method.
They reported the solutions of a set of dual semidefinite programs with n up to
3, 000. The bundle method enables them to take advantage of the sparsity structure
of these problems. The (minor) weakness of their method is that the method does not
simultaneously solve the primal problem, it cannot guarantee or verify the optimality
accuracy at its termination, and it is not a polynomial time algorithm.

Therefore, an open question is how to exploit the sparsity structure by polynomial
interior-point algorithms so that they can solve large-scale problems in practice. In
this paper we try to answer this question. We show that many large-scale semidefi-
nite programs that have arisen from combinatorial and quadratic optimization have
features that make the dual-scaling interior-point algorithm the most suitable choice:

(1) The computational cost of each iteration in the dual algorithm is less than the
cost of a primal-dual iteration. Although primal-dual algorithms may possess
superlinear convergence, the approximation problems under consideration re-
quire less accuracy than some other applications. Therefore, the superlinear
convergence exhibited by primal-dual algorithms may not be utilized in our
applications. The dual-scaling algorithm has been shown to perform equally
well when only a lower precision answer is required; see, e.g., Adler et al. [1]
and Vandenberghe and Boyd [31].

(2) In most combinatorial applications we need only a lower bound for the optimal
objective value of (SDP). Solving (DSDP) alone would be sufficient to provide
such a lower bound. Thus, we may not need any X at all. Even if an
optimal primal solution is necessary, our dual-scaling algorithm can generate
an optimal X at the termination of the algorithm with little additional cost.

(3) For large-scale problems, S tends to be very sparse and structured since it is
the linear combination of C and the Ai’s. This sparsity allows considerable
savings in both memory and computation time. The primal matrix, X, may
be much less sparse and have a structure unknown beforehand. Consequently,
primal and primal-dual algorithms may not fully exploit the sparseness and
structure of the data.

These problems include the semidefinite relaxations of the graph-partition prob-
lem, the box-constrained quadratic optimization problem, the 0–1 integer set covering
problem, and other problems. We will use the maximum cut problem to illustrate
our points later, where we report our computational result, using a PC, on solving
the maximum cut semidefinite relaxations of the Helmberg and Rendl set of graph
problems for n up to 3, 000.

2. Dual-scaling algorithm. The dual-scaling algorithm, which is a modifica-
tion of the dual-scaling linear programming algorithm, reduces the Tanabe–Todd–Ye
primal-dual potential function

Ψ(X,S) = ρ ln(X • S)− ln detX − ln detS.
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The first term decreases the duality gap, while the second and third terms keep X and
S in the interior of the positive semidefinite matrix cone. When ρ > n, the infimum
of the potential function occurs at an optimal solution. Also note that, using the
arithmetic-geometric mean inequality, we have (see, e.g., [34])

n ln(X • S)− ln detX − ln detS ≥ n lnn.

The algorithm, along with other semidefinite programming algorithms, is described
in Ye [34], and we shall use notation defined there.

Let operator A(X) : Sn → Rm be defined as

A(X) =


A1 •X
A2 •X

...
Am •X

 .

Since A(X)T y =
∑m
i=1 yi(Ai•X) = (

∑m
i=1 yiAi)•X, the adjoint operator AT : Rm →

Sn is

AT (y) =
m∑
i=1

yiAi.

Let z̄ = C •X for some feasible X and consider the dual potential function

ψ(y, z̄) = ρ ln
(
z̄ − bT y)− ln detS.

Its gradient is

∇ψ(y, z̄) = − ρ

z̄ − bT y b+A(S−1
)
.(3)

To estimate the reduction in the potential function from a current iterate (yk, z̄k)
to the next, we will use a lemma from linear programming that can be found in [34]
and is essentially due to Karmarkar [15].

Lemma 1. Let X ∈ Sn and ‖X − I‖∞ < 1. Then

ln det(X) ≥ tr(X − I)− ‖X − I‖
2(1− ‖X − I‖∞)

,

where I denotes the identity matrix, ‖ · ‖ denotes the Frobenius norm,

‖A‖∞ = max
i=1,...,n

{|λi(A)|} ≤ ‖A‖,
and λi(A) is the ith eigenvalue of A ∈ Sn.

Proof. We have 0 < λi := λi(X) < 2 for all i = 1, . . . , n, since ‖X − I‖∞ < 1.
Moreover,

lnλi = ln(1 + λi − 1)

= (λi − 1)− (λi − 1)2

2
+

(λi − 1)3

3
− (λi − 1)4

4
+ · · ·

≥ (λi − 1)− (λi − 1)2

2
(1 + |λi − 1|+ |λi − 1|2 + · · · )

= (λi − 1)− (λi − 1)2

2(1− |λi − 1|) ≥ (λi − 1)− (λi − 1)2

2(1− ‖X − I‖∞)
.
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Summing the inequality over i, we have the desired result.

For any given y and S = C − AT (y) such that S � 0 and ‖(Sk)−.5(AT (y −
yk))(Sk)−.5‖ < 1, using the above lemma, the concavity of the first term in the
potential function, and the fact that(
Sk
)−.5

S
(
Sk
)−.5 − I =

(
Sk
)−.5(

S − Sk)(Sk)−.5 = −(Sk)−.5 (AT (y − yk)) (Sk)−.5,
we establish an overestimator for the potential reduction:

ψ
(
y, z̄k

)− ψ(yk, z̄k)
= ρ ln

(
z̄k − bT y)− ρ ln

(
z̄k − bT yk)− ln det

((
Sk
)−.5

S
(
Sk
)−.5)

≤ ρ ln
(
z̄k − bT y)− ρ ln

(
z̄k − bT yk)− tr

((
Sk
)−.5

S
(
Sk
)−.5 − I)

+

∥∥(Sk)−.5 (AT (y − yk)) (Sk)−.5∥∥
2
(
1− ∥∥(Sk)−.5 (AT (y − yk)) (Sk)−.5∥∥∞)

= ρ ln
(
z̄k − bT y)− ρ ln

(
z̄k − bT yk)+A((Sk)−1)T (

y − yk)
+

∥∥(Sk)−.5 (AT (y − yk)) (Sk)−.5∥∥
2
(
1− ∥∥(Sk)−.5 (AT (y − yk)) (Sk)−.5∥∥∞)

≤ ∇ψ(yk, z̄k)T (y − yk)+

∥∥(Sk)−.5 (AT (y − yk)) (Sk)−.5∥∥
2
(
1− ∥∥(Sk)−.5 (AT (y − yk)) (Sk)−.5∥∥∞) .

(4)

Therefore, beginning with a strictly feasible dual point (yk, Sk) and upper bound
z̄k, each iteration solves the following problem:

minimize ∇ψT (yk, z̄k)(y − yk)
subject to ‖(Sk)−.5

(AT (y − yk)
)

(Sk)−.5‖ ≤ α,(5)

where α is a positive constant less than 1. For simplicity, in what follows we let

∆k = z̄k − bT yk.

The first order Karusch–Kuhn–Tucker conditions state that the minimum point,
yk+1, of this convex problem satisfies

Mk
(
yk+1 − yk)+ β∇ψ(yk, z̄k)

= Mk
(
yk+1 − yk)+ β

(
− ρ

z̄k − bT yk b+A((Sk)−1))
= 0

(6)

for a positive value of β, where

Mk =


A1

(
Sk
)−1 • (Sk)−1

A1 · · · A1

(
Sk
)−1 • (Sk)−1

Am
...

. . .
...

Am
(
Sk
)−1 • (Sk)−1

A1 · · · Am
(
Sk
)−1 • (Sk)−1

Am
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and

A((Sk)−1)
=


A1 •

(
Sk
)−1

...

Am •
(
Sk
)−1

 .

The matrix Mk is a Gram matrix and is positive definite when Sk � 0 and the Ai’s
are linearly independent. In this paper, it will sometimes be referred to as M .

Using the ellipsoidal constraint, the minimal solution, yk+1, of (5) is given by

yk+1 − yk = βd
(
z̄k
)
y
,(7)

where

d
(
z̄k
)
y

= −(Mk
)−1∇ψ(yk, z̄k),

β =
α√

−∇ψT (yk, z̄k)d(z̄k)
y

.(8)

Unlike linear programming, positive semidefinite programming requires a sig-
nificant amount of time to compute the system of equations that determines the
step direction. For arbitrary symmetric matrices Ai, Monteiro and Zanjácomo [20]
demonstrated an efficient implementation of several primal-dual step directions. The
Alizadeh–Heaberly–Overton direction [3] can be computed in 5nm3 + n2m2 +
O(max{m,n}3) operations. The direction used in [13], [16], and [21] uses 2nm3 +
n2m2+O(max{m,n}3) operations, and the direction used in [26] uses nm3+n2m2/2+
O(max{m,n}3) operations. The complexity of computing the matrix is a full order
of magnitude higher than any other step of the algorithm. Fujisawa, Kojima, and
Nakata [8] explored another technique for computing primal-dual step directions that
exploit the sparsity of the data matrices. However, it is our belief that only the dual-
scaling algorithm can fully exploit the structure and sparsity of many problems, as
explained below.

Generally, Mk
ij = Ai(S

k)−1 • (Sk)−1Aj . When Ai = aia
T
i , the Gram matrix can

be rewritten in the form

Mk =


(
aT1
(
Sk
)−1

a1

)2 · · · (
aT1
(
Sk
)−1

am
)2

...
. . .

...(
aTm
(
Sk
)−1

a1

)2 · · · (
aTm
(
Sk
)−1

am
)2
 and(9)

A((Sk)−1)
=


aT1
(
Sk
)−1

a1

...

aTm
(
Sk
)−1

am

 .

This matrix can be computed very quickly without computing, or saving, (Sk)−1.
Instead, Sk can be factored, and then we can use the following algorithm.

Algorithm M. To compute Mk and A((Sk)−1), factor Sk = Lk(Lk)T and do
the following:
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For i = 1 : m;

Solve Lkwi = ai;

A((Sk)−1)i = wTi wi and Mk
ii = (A((Sk)−1)i)

2;

For j = 1 : i− 1; Mk
ij = (wTi wj)

2; end;

end.

Solving each of the m systems of equations uses n2 + O(n) floating point op-
erations. Since there are m(m + 1)/2 vector multiplications, Algorithm M uses
nm2 +n2m+O(nm) operations after factoring Sk. Note that these operations can be
significantly reduced if Sk is structured and sparse. In applications like the maximum
cut problem, discussed in section 3, the matrix Sk is indeed very sparse, whereas its
inverse is usually dense, so working with Sk is faster than working with its inverse.
Using matrices of the form Ai = aia

T
i also reduces the complexity of primal-dual algo-

rithms by a factor of n, but even the quickest direction to compute takes about twice
as long as our dual-scaling direction. Furthermore, they all need to handle dense X.

Algorithm M needs to store all vectors w1, . . . , wm, and they are generally dense.
To save storage and exploit the sparsity of ai, . . . , am, an alternative algorithm is
as follows.

Algorithm M′. To compute Mk and A((Sk)−1), factor Sk = Lk(Lk)T and do
the following:

For i = 1 : m;

Solve Skwi = ai;

A((Sk)−1)i = wTi ai and Mk
ii = (A((Sk)−1)i)

2;

For j = i+ 1 : m; Mk
ij = (wTi aj)

2; end;

end.

Algorithm M′ does not need to store wj but uses one more back-solve for wi.

To find a feasible primal point X, we solve the least squares problem

minimize
∥∥(Sk).5X(Sk).5 − ∆k

ρ I
∥∥

subject to A(X) = b.
(10)

This problem looks for a matrix X(z̄k) near the central path. Larger values of ρ
generally give a lower objective value but provide a solution matrix that is not positive
definite more frequently. The answer to (10) is a by-product of computing (8), given
explicitly by

X
(
z̄k
)

=
∆k

ρ

(
Sk
)−1

(
AT (d(z̄k)

y

)
+ Sk

) (
Sk
)−1

.(11)

Creating the primal matrix may be costly. However, the evaluation of the primal
objective value C •X(z̄k) requires drastically less work:

C •X(z̄k) = bT yk +X
(
z̄k
) • Sk

= bT yk + tr

(
∆k

ρ

(
Sk
)−1

(
AT (d(z̄k)

y

)
+ Sk

) (
Sk
)−1

Sk
)

= bT yk +
∆k

ρ
tr
((
Sk
)−1AT (d(z̄k)

y

)
+ I
)

= bT yk +
∆k

ρ

(
d
(
z̄k
)T
y
A((Sk)−1)

+ n
)
.
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Since the vectors A((Sk)−1) and d(z̄k)y were previously found in calculating the dual
step direction, the cost of computing a primal objective value is the cost of a vector
dot product! The matrix X(z̄k) never gets computed during the iterative process,
saving time and memory. On the other hand, primal-dual methods require far more
resources to compute the primal variables X.

Defining

P
(
z̄k
)

=
ρ

∆k

(
Sk
).5
X
(
z̄k
)(
Sk
).5 − I,(12)

we have the following lemma.

Lemma 2. Let µk = ∆k

n = z̄k−bT yk
n , µ = X(z̄k)•Sk

n = C•X(z̄k)−bT yk
n , ρ ≥ n+

√
n,

and α < 1. If

‖P (z̄k)‖ < min

(
α

√
n

n+ α2
, 1− α

)
,(13)

then the following three inequalities hold:

(1) X(z̄k) � 0;
(2) ‖(Sk).5X(z̄k)(Sk).5 − µI‖ ≤ αµ;
(3) µ ≤ (1− .5α/√n)µk.

Proof. The proofs are by contradiction. If the first inequality is false, then
(Sk).5X(z̄k)(Sk).5 has at least one nonpositive eigenvalue, which by (12) implies that
‖P (z̄k)‖ ≥ 1.

If the second does not hold, then

∥∥P (z̄k)∥∥2
=
∥∥∥ ρ

nµk
(
Sk
).5
X
(
z̄k
)(
Sk
).5 − I∥∥∥2

=
∥∥∥ ρ

nµk
(
Sk
).5
X
(
z̄k
)(
Sk
).5 − ρµ

nµk
I +

ρµ

nµk
I − I

∥∥∥2

=
∥∥∥ ρ

nµk
(
Sk
).5
X
(
z̄k
)(
Sk
).5 − ρµ

nµk
I
∥∥∥2

+
∥∥∥ ρµ
nµk

I − I
∥∥∥2

>

(
ρµ

nµk

)2

α2 +

(
ρµ

nµk
− 1

)2

n

≥ α2

(
n

n+ α2

)
,

where the last inequality is true because the quadratic term has a minimum at ρµ
nµk

=
n

n+α2 .

If the third inequality does not hold, then

ρµ

nµk
>

(
1 +

1√
n

)(
1− .5α√

n

)
≥ 1,
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which leads to

‖P (z̄k)‖2 ≥
(
ρµ

nµk
− 1

)2

n

≥
((

1 +
1√
n

)(
1− α

2
√
n

)
− 1

)2

n

=

(
1− α

2
− α

2
√
n

)2

≥ (1− α)2.

Focusing on the expression P (z̄k), it can be rewritten as

P
(
z̄k
)

=
ρ

∆k

(
Sk
).5(∆k

ρ

(
Sk
)−1

(
AT (d(z̄k)

y

)
+ Sk

) (
Sk
)−1
)(

Sk
).5 − I

=
(
Sk
)−.5AT (d(z̄k)

y

) (
Sk
)−.5

=
(
Sk
)−.5AT (yk+1 − yk

β

)(
Sk
)−.5

,

which by (7) and (8) makes

∇ψT (yk, z̄k)d(z̄k)
y

= −∥∥P (z̄k)∥∥2
(14)

and

∇ψT (yk, z̄k)(yk+1 − yk) = −α∥∥P (z̄k)∥∥.(15)

Updating the dual variables according to

yk+1 = yk + βd(z̄)y = yk +
α

‖P (z̄k+1)‖d(z̄)y and Sk+1 = C −AT (yk+1
)

(16)

ensures the positive definiteness of Sk+1 when α < 1, which implies that they are
feasible. Using (15) and (4), the reduction in the potential function satisfies the
inequality

ψ
(
yk+1, z̄k

)− ψ(yk, z̄k) ≤ −α∥∥P (z̄k)∥∥+
α2

2(1− α)
.(17)

The theoretical algorithm can be stated as follows.
Dual algorithm. Given an upper bound z̄0 and a dual point (y0, S0) such

that S0 = C −AT y0 � 0, set k = 0, ρ > n+
√
n, α ∈ (0, 1), and do the following:

while z̄k − bT yk ≥ ε do
begin
1. Compute A((Sk)−1) and the Gram matrix Mk (9) using Algorithm M or M′.
2. Solve (8) for the dual step direction d(z̄k)y.
3. Calculate ‖P (z̄k)‖ using (14).
4. If (13) is true, then Xk+1 = X(z̄k), z̄k+1 = C •Xk+1, and (yk+1, Sk+1) =

(yk, Sk);
else yk+1 = yk + α

‖P (z̄k)‖d(z̄k+1)y, Sk+1 = C − AT (yk+1), Xk+1 = Xk, and

z̄k+1 = z̄k.
endif
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5. k := k + 1.
end
We can derive the following potential reduction theorem based on Lemma 2.
Theorem 2.

Ψ
(
Xk+1, Sk+1

) ≤ Ψ
(
Xk, Sk

)− δ,
where δ > 1/50 for a suitable α.

Proof.

Ψ
(
Xk+1,Sk+1

)−Ψ
(
Xk, Sk

)
=
(
Ψ
(
Xk+1, Sk+1

)−Ψ
(
Xk+1, Sk

))
+
(
Ψ(Xk+1, Sk)−Ψ(Xk, Sk)

)
.

In each iteration, one of the differences is zero. If ‖P (z̄k)‖ does not satisfy (13), the
dual variables get updated and (17) shows sufficient improvement in the potential
function when α = 0.4.

On the other hand, if the primal matrix gets updated, then using Lemma 1 and
the first two parts of Lemma 2,

n ln
(
Xk+1 • Sk)− ln det

(
Xk+1

)− ln det
(
Sk
)

= n ln
(
Xk+1 • Sk)− ln det

(
Xk+1Sk

)
= n ln

(
Xk+1 • Sk/µ)− ln det

(
Xk+1Sk/µ

)
= n lnn− ln det

(
(Sk).5Xk+1(Sk).5/µ

)
≤ n lnn+

‖(Sk).5Xk+1(Sk).5/µ− I‖
2 (1− ‖(Sk).5Xk+1(Sk).5/µ− I‖∞)

≤ n lnn+
α2

2(1− α)

≤ n ln
(
Xk • Sk)− ln det

(
Xk
)− ln det

(
Sk
)

+
α2

2(1− α)
.

Additionally, by the third part of Lemma 2,

√
n
(
ln
(
Xk+1 • Sk)− ln

(
Xk • Sk)) =

√
n ln

µ

µk
≤ −α

2
.

Adding the two inequalities gives

Ψ
(
Xk+1, Sk

) ≤ Ψ
(
Xk, Sk

)− α

2
+

α2

2(1− α)
.

By choosing α = 0.4 again, we have the desired result.
This theorem leads to the following corollary.
Corollary 1. Let ρ ≥ n+

√
n and Ψ(X0, S0) ≤ (ρ− n) ln(X0 • S0). Then, the

algorithm terminates in at most O((ρ− n) ln(X0 • S0/ε)) iterations.
Proof. In O((ρ− n) ln(X0 • S0/ε)) iterations,

Ψ
(
Xk, Sk

) ≤ (ρ− n) ln(ε).

Also,

(ρ− n) ln
(
C •Xk − bT yk)=(ρ− n) ln

(
Xk • Sk)≤Ψ

(
Xk, Sk

)− n lnn ≤ Ψ
(
Xk, Sk

)
.
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Combining the two inequalities,

C •Xk − bT yk = Xk • Sk < ε.

Again, from (11) we see that the algorithm can generate an Xk as a by-product.
However, it is not needed in generating the iterate direction, and it is only explicitly
used for proving convergence and complexity.

The computation cost in each iteration of the algorithm can be summarized as
follows. First, updating S or S+AT (d(z̄k)) uses matrix additions and mn2 operations,
and factoring it uses O(n3) operations. Second, creating the Gram matrix uses nm2 +
2n2m + O(nm) operations, and factoring and solving the system of equations uses
O(m3) operations. Finally, dot products for z̄k+1 and ‖P (z̄k)‖ and the calculation of
yk+1 use only O(m) operations. These give the total O(m3 +nm2 +n2m+n3) floating
point operations. Note that the procedure uses only the Cholesky factorization.

In contrast, each iteration of primal-dual methods requires several additional
computations. First, the various Schur complement matrices used to compute the
step directions cost significantly more to compute than the matrices used in this
dual-scaling algorithm. Second, primal-dual algorithms must compute a primal step
direction. This step direction involves the product of three matrices, which can be
very costly. Third, the primal-dual algorithms do use line searches in both the primal
and dual problems. Such a search requires additional dense matrix factorizations.

3. Maximum cut problem. The maximum cut problem asks to partition the
vertices of a graph into two sets that maximize the sum of the weighted edges connect-
ing vertices in one set with vertices in the other. The positive semidefinite relaxation
of the maximum cut problem can be expressed as (see, e.g., [11], [27])

minimize C •X
(MAX-CUT)

subject to diag(X) = e,

X � 0.

(18)

The operator diag(·) takes the diagonal of a matrix and makes it a vector. In other
words, Ai = eie

T
i , i = 1, . . . , n, where ei is the vector with 1 for the ith component

and 0 for all others.
The dual program can be expressed as

maximize eT y
(DMAX)

subject to Diag(y) + S = C, S � 0,
(19)

The operator Diag(·) forms a diagonal matrix from a vector.
Many examples of the maximum cut problem have a very sparse matrix C. Since

S is a linear combination of C and a diagonal matrix, it possesses the same sparse
structure of C that remains constant for all iterations. This sparsity can be exploited
by reordering S to reduce fill-in during the Cholesky factorization. A good reordering
will drastically speed up the factorization and the many forward and back substitu-
tions required to compute the Gram matrices.

Applying the dual-scaling algorithm to this relaxation,

∇ψ(yk, z̄k) = − ρ

∆k
e+ diag

((
Sk
)−1)
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and

Mk =
(
Sk
)−1 ◦ (Sk)−1

,(20)

where ◦ represents the Hadamard product and ∆k = z̄k − eT yk. That is, Mk
ij =

((Sk)−1
ij )2. When the graph represented by C is connected, Mk is generally dense—

even when C is sparse.
The direction d(z̄k)y of (8) comprises two parts,

dy1 =
(
Mk
)−1

e,(21)

dy2 =
(
Mk
)−1

diag
((
Sk
)−1)

,(22)

so that

d
(
z̄k
)
y

=
ρ

∆k
dy1 − dy2.(23)

Since the dual direction depends upon the upper bound z̄k, splitting the direction
into these two parts allows the algorithm to take advantage of a possibly improved
upper bound.

To determine the stepsize and measure the improvement in the potential function,
we again compute

∥∥P (z̄k)∥∥ =

√
−∇ψT (yk, z̄k)T d(z̄k)

y
.(24)

If ‖P (z̄k)‖ is sufficiently small, Lemma 2 guarantees an improved primal solution,
X(z̄k) with C •X(z̄k) < z̄k, where from (11),

X
(
z̄k
)

=
∆k

ρ

(
Sk
)−1

(
Diag

(
d
(
z̄k
)
y

)
+ Sk

) (
Sk
)−1

.

Frequently, an improved primal objective value z̄ can be found for even larger values
of ‖P (z̄k)‖. We may first compute

z̄ := C •X(z̄k) = eT yk +
∆k

ρ

(
diag

((
Sk
)−1)T

d
(
z̄k
)
y

+ n
)
.(25)

If z̄ < z̄k, then we go on to check if X(z̄k) � 0. But from the above expression,
X(z̄k) � 0 if and only if (

Diag
(
d
(
z̄k
)
y

)
+ Sk

)
� 0.(26)

To check if Diag(d(z̄k)y)+Sk � 0, we use the Cholesky factorization and simply check
if its pivots are all positive. We stop the factorization process as soon as we encounter
a negative or zero pivot and conclude that the matrix is not positive definite. Note
that Diag(d(z̄k)y) + Sk has the same sparse structure as Sk or C, allowing it to be
stored in the same data structure. If Diag(d(z̄k)y) + Sk � 0, we set z̄k+1 = z̄ < z̄k.
Otherwise, z̄k+1 = z̄k.
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An improved upper bound z̄k+1 results in a smaller ∆k := z̄k+1 − eT yk and will
modify the dual step direction calculated in (23), which is why the step direction was
divided into two parts. Finally, the dual variables will be updated by

yk+1 = yk +
α

‖P (z̄k+1)‖d
(
z̄k+1

)
y

and Sk+1 = C −Diag
(
yk+1

)
.

If α < 1, S(α) = C−Diag(yk+ α
‖P (z̄k+1)‖d(z̄k+1)y) � 0. Larger values of α increase

the stepsize, which can speed up the convergence of the algorithm. Larger stepsizes,
however, can also step outside the cone of positive semidefinite matrices. If a larger
step is used, a Cholesky factorization can check the positive definiteness of S(α). Note
that this factorization is needed in the next iteration anyway. Since the matrix S(α)
is sparse and well ordered, an unsuccessful attempt to increase the stepsize costs very
little. In general, these factorizations cost far less than a factorization of the dense
Mk, but allow large stepsizes to significantly reduce the number of iterations required
to achieve the desired accuracy.

We now state the specialized dual-scaling algorithm for solving the maximum cut
semidefinite program.

Dual algorithm. Reorder C to reduce fill-in during Cholesky factorization.
Set z̄0 = C • I and choose y0 such that S0 = C − Diag(y0) � 0. Set k = 0, α = .99,
and do the following:

while z̄k−eT yk
|eT yk|+1

≥ ε do

begin
1. Compute diag((Sk)−1) and the matrix Mk (20) using Algorithm M or M′.
2. Solve (21), (22), and (23) for the dual step direction.
3. Use (25) to compute a new upper bound z̄.
4. If z̄ < z̄k and (Diag(d(z̄k)y) + Sk) � 0,

then let z̄k+1 = z̄ and recompute d(z̄k+1)y using (23);
else let z̄k+1 = z̄k. endif

5. Compute ‖P (z̄k+1)‖ using (24).
6. Select β ≥ α/‖P (z̄k+1)‖, so that yk+1 = yk + βd(z̄k+1)y and Sk+1 = C −

Diag(yk+1) � 0.
7. k := k + 1.

end

4. Computational results. We implemented the dual-scaling algorithm in
ANSI C and ran the program on a PC with 233 MHz, 64 MB RAM, and 256 K
cache memory. (The code and its user guide are available for public download at
http://dollar.biz.uiowa.edu/col/.)

To accelerate convergence of the algorithm, the implementation used more aggres-
sive stepsizes. It used values of α equal to .99, 1.5, 3, and 6. Initially, we set α = 3.
When the value of α was successful for three consecutive iterates, we tried the next
larger value. If we stepped out of the feasible region, we tried the next smaller value
of α. We found that larger stepsizes were frequently used, and this strategy yields a
significant improvement in the total number of iterations.

In addition, we initialized the value of ρ to be 5n. Larger values of ρ more
aggressively seek the optimal solution, but are also more likely to yield infeasible
points. After a couple of iterates, ρ was dynamically selected using the following
criteria:

ρ = 1.6n ∗
√

(rgapk−1 / rgapk),
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where rgapk−1 and rgapk are the relative duality gaps at the previous and current
iteration

rgapk :=
z̄k − bT yk
1 + |bT yk| .

We let the initial point

X0 = I and y0
i = Cii −

∑
j 6=i
|Cij | − 1, i = 1, . . . , n,

which by Gerschgorin’s theorem guarantees S0 � 0 (see Atkinson [5]). This value
generally provides a reasonable starting point. We have used the minimum degree
ordering algorithm to reorder C.

We have stopped the iteration process when the relative duality gap

rgapk =
z̄k − bT yk
1 + |bT yk| ≤ 10−6.

Most combinatorial applications ask for a reasonable bound to be found very quickly.
Therefore, the precision required in the semidefinite program is far less than that
required by other applications. In addition, the original maximum cut problem has
only simple, binary variables. For these problems, we believe that a precision of 10−4

is sufficient, so we have recorded the number of iterations and seconds needed to
compute that level of precision.

Our experiments used a machine-independent graph generator, called rudy, cre-
ated by G. Rinaldi. We tested the maximum cut semidefinite program on the G set of
graphs used by Helmberg and Rendl [12]. This set of problems becomes a standard test
set for graph optimization. These maximum cut problems range in size from n = 800
to n = 3, 000. Many of these problems, like G1–G10, G22–G31, and G43–G47 have
a randomly created structure. Problems G11–G13, G32–G34, and G48–G50 come
from a two-dimensional toroidal grid, while the others represent planar type graphs.
(Helmberg and Rendl [12] actually solved G53–G54 semidefinite programs for another
graph problem, the ϑ-function [18], instead of the maximum cut problem.)

Table 1
Seconds used for the three most expensive computations.

Name Sparsity of Factor S Compute M Factor M
Schol (sec.) (sec.) (sec.)

G1 73.6% 1.412 12.856 1.983
G11 4.2% 0.010 1.272 1.863
G14 14.3% 0.140 3.105 1.863
G22 47.8% 11.076 129.917 32.046
G32 1.6% 0.030 9.864 30.744
G35 11.8% 1.352 41.113 30.764

Table 1 shows the cost of key steps of the algorithm for six different problems.
It shows the seconds required to factor S, create M , and factor M . The sparsity
statistic in the second column gives the percentage of nonzero entries in the factor
after reordering.

This table shows that when S is sparse, the factorization of M dominates the
computation time. Since M is generally dense, regardless of the sparsity of S, its
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(a) Sparsity pattern before reordering.
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(b) Cholesky factor before reordering.
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(c) Sparsity pattern after reordering.
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(d) Cholesky factor after reordering.

Fig. 1. Sparsity patterns and Cholesky factors of G14.

computation time is constant for problems of equal size. For more dense problems,
the creation of M dominates the computation time. This is not surprising since it
uses 3n3 floating point operations, while the Cholesky factorization uses a sixth of
that amount. Most large-scale applications, however, will contain a certain sparse
structure, and the table shows how this dual-scaling algorithm exploits that structure
to save computation time.

The table also emphasizes the importance of a good ordering of the matrix in the
beginning of the algorithm. The reordering of matrices has been studied for years [6],
but to illustrate its importance, we include a few figures. Figure 1 shows the structure
of S and its Cholesky factor in the 800× 800 example G14.

The objective matrix G14 has about 1.58% nonzero entries. Figure 1(a) shows the
sparsity structure of the matrix before the minimum degree ordering and Figure 1(c)
presents the structure after the minimum degree ordering. The dual solution S has
the same sparse structure. Figures 1(b) and 1(d) show the sparsity patterns of the
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Table 2
Performance on solving the G-set semidefinite programs.

rgap = 10−4 rgap = 10−6

Name Dim Spars Pobj Dobj Rgap Iter Time Iter Time

G1 800 6.12% −4.833276e+04 −4.833279e+04 5.452359e−07 20 616.08 24 741.15

G2 800 6.12% −4.835767e+04 −4.835772e+04 9.502824e−07 19 592.69 23 719.25

G3 800 6.12% −4.833732e+04 −4.833733e+04 3.401351e−07 19 589.56 24 746.54

G4 800 6.12% −4.844576e+04 −4.844581e+04 9.824817e−07 19 595.43 23 723.28

G5 800 6.12% −4.839953e+04 −4.839955e+04 3.552550e−07 19 594.71 24 752.24

G6 800 6.12% −1.062463e+04 −1.062464e+04 8.541375e−07 21 646.12 25 769.41

G7 800 6.12% −9.957042e+03 −9.957051e+03 8.420776e−07 21 654.40 25 779.28

G8 800 6.12% −1.002773e+04 −1.002773e+04 9.678249e−07 21 655.63 24 780.46

G9 800 6.12% −1.011492e+04 −1.011493e+04 7.775437e−07 21 654.09 25 778.95

G10 800 6.12% −9.940246e+03 −9.940253e+03 7.465415e−07 20 620.63 24 742.82

G11 800 0.63% −2.516658e+03 −2.516659e+03 3.719002e−07 18 64.40 23 82.05

G12 800 0.63% −2.495497e+03 −2.495498e+03 5.198500e−07 19 71.03 24 89.50

G13 800 0.63% −2.588544e+03 −2.588546e+03 9.570427e−07 20 76.70 24 91.88

G14 800 1.59% −1.276625e+04 −1.276627e+04 9.986387e−07 29 166.43 33 189.11

G15 800 1.58% −1.268623e+04 −1.268623e+04 3.450954e−07 33 188.68 39 222.87

G16 800 1.59% −1.270007e+04 −1.270007e+04 4.674935e−07 27 154.31 31 177.01

G17 800 1.58% −1.268530e+04 −1.268531e+04 4.548353e−07 26 149.60 30 172.44

G18 800 1.59% −4.664038e+03 −4.664040e+03 4.708559e−07 47 276.82 51 299.92

G19 800 1.58% −4.328040e+03 −4.328042e+03 3.345754e−07 33 193.66 38 221.98

G20 800 1.59% −4.445567e+03 −4.445570e+03 7.261350e−07 33 193.80 37 216.54

G21 800 1.58% −4.417133e+03 −4.417136e+03 8.094406e−07 38 223.30 42 246.10

G22 2000 1.05% −5.654376e+04 −5.654378e+04 3.957778e−07 23 8215.71 28 9997.62

G23 2000 1.05% −5.658202e+04 −5.658204e+04 3.910436e−07 23 8146.30 28 9920.25

G24 2000 1.05% −5.656340e+04 −5.656342e+04 4.981024e−07 23 8323.22 27 9759.06

G25 2000 1.05% −5.657696e+04 −5.657698e+04 3.876964e−07 23 8306.01 28 10106.27

G26 2000 1.05% −5.653145e+04 −5.653148e+04 5.027876e−07 23 8323.72 27 9756.52

G27 2000 1.05% −1.656663e+04 −1.656664e+04 6.729729e−07 25 8851.74 29 10268.68

G28 2000 1.05% −1.640315e+04 −1.640316e+04 7.335225e−07 25 8862.04 29 10278.55

G29 2000 1.05% −1.683555e+04 −1.683556e+04 6.531697e−07 25 9034.53 29 10483.11

G30 2000 1.05% −1.686152e+04 −1.686153e+04 6.413532e−07 26 9386.62 30 10843.05

G31 2000 1.05% −1.646672e+04 −1.646673e+04 6.898466e−07 25 9047.75 29 10493.99

G32 2000 0.25% −6.270553e+03 −6.270559e+03 9.633737e−07 23 1070.39 27 1255.70

G33 2000 0.25% −6.177246e+03 −6.177250e+03 6.333926e−07 25 1175.24 29 1362.61

G34 2000 0.25% −6.186747e+03 −6.186750e+03 4.510949e−07 24 1182.73 28 1381.23

G35 2000 0.64% −3.205895e+04 −3.205896e+04 3.752328e−07 46 5167.17 51 5716.93

G36 2000 0.64% −3.202383e+04 −3.202386e+04 9.011525e−07 38 4381.39 42 4841.52

G37 2000 0.64% −3.207448e+04 −3.207449e+04 3.820329e−07 42 4836.22 47 5400.13

G38 2000 0.64% −3.205987e+04 −3.205990e+04 8.761401e−07 47 5392.57 52 5952.48

G39 2000 0.64% −1.151058e+04 −1.151059e+04 7.376637e−07 59 6615.01 63 7056.50

G40 2000 0.64% −1.145915e+04 −1.145916e+04 3.728182e−07 52 6123.85 57 6703.57

G41 2000 0.64% −1.146087e+04 −1.146087e+04 4.158517e−07 58 6629.09 63 7194.15

G42 2000 0.64% −1.178500e+04 −1.178501e+04 7.308258e−07 45 5049.62 49 5495.55

G43 1000 2.10% −2.812887e+04 −2.812889e+04 7.416858e−07 18 767.17 22 939.50

G44 1000 2.10% −2.811152e+04 −2.811154e+04 7.511560e−07 18 770.22 22 939.07

G45 1000 2.10% −2.809911e+04 −2.809913e+04 4.530243e−07 21 900.51 25 1075.49

G46 1000 2.10% −2.811972e+04 −2.811973e+04 3.978937e−07 18 782.46 23 999.66

G47 1000 2.10% −2.814662e+04 −2.814664e+04 7.609519e−07 18 751.57 22 920.39

G48 3000 0.17% −2.399999e+04 −2.400000e+04 3.699426e−07 14 2878.85 19 3861.30

G49 3000 0.17% −2.399999e+04 −2.400000e+04 3.718535e−07 14 2873.69 19 3826.62

G50 3000 0.17% −2.395268e+04 −2.395269e+04 3.543263e−07 14 2389.73 19 3192.86

G51 1000 1.28% −1.602501e+04 −1.602502e+04 7.759416e−07 29 341.45 33 388.06

G52 1000 1.28% −1.603854e+04 −1.603856e+04 7.427919e−07 36 441.94 41 489.28

G53 1000 1.28% −1.603886e+04 −1.603887e+04 8.122974e−07 26 306.85 30 353.86

G54 1000 1.28% −1.602476e+04 −1.602478e+04 7.421491e−07 29 340.43 33 387.51
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Cholesky factors before and after the minimum degree ordering. The Cholesky factor
of the unordered matrix is very dense. Comparing the running times shows that the
reordering matrix would reduce the running time approximately by a factor of 4.

Table 2 shows the performance of the code on solving the G-set maximum cut
semidefinite programs for stopping tolerances of rgap ≤ 10−4 and rgap ≤ 10−6.
PriObj, DualObj, and rgap are the primal and dual objective values and the rel-
ative duality gap at termination. Also shown is the dimension and the percentage of
nonzero entries in the objective matrix, as well as the time (in seconds) and number
of iterations required by the program.

Most of the previous numerical tests [7], [17], [32], [35], [36] were conducted on
smaller problem data sets where the dimension n was only a few hundred or less, so
that no available computation result could be compared to ours. After our results
were reported, a study of using a primal-dual algorithm for solving relative larger
problems, including the maximum cut problem, was conducted by Fujisawa et al. [10].
They tested solving sparse maximum cut semidefinite programs with dimension up to
1,250. On a sparse problem with dimension of 1,000, they required 63,130 seconds; on
a problem of dimension 1,250, they used 111,615 seconds. Their computations were
performed on a DEC AlphaServer 8,400 with a processing speed of 437 MHz and
8 GB memory, which is far superior to the PC machine used in our test.

As we mentioned, Helmberg and Rendl [12] used a spectral bundle method to solve
the same set of G1–G42 maximum cut problems. Their computations were performed
on an UltraSPARC station with 64 MB memory. One advantage of the spectral bun-
dle method is that it uses considerably less memory since it does not create or store
a matrix as large as M . On problems with a randomly created structure, the bundle
method appears slightly faster than ours. In these problems, the Cholesky factor of
the slack matrix is relatively dense, despite the sparsity of the objective matrix. For
the toroidal and planar graphs (such as G14), the dual matrix has a much better
structure. In these problems, a minimum degree ordering kept the Cholesky factor
sparse and the back and forward substitutions quick. In problems with a more struc-
tured objective matrix, the dual semidefinite programming algorithm outperformed
the bundle method.

Finally, our implementation of the dual-scaling algorithm appears to be the first
algorithm to converge to an optimal point in polynomial time, to use the charac-
teristics inherent in many large-scale problems to its advantage, and to verify the
optimality by solving both the primal and dual problems simultaneously. Its success
with even relatively dense examples shows that the algorithm is generally efficient,
while the improved performance on more sparse examples shows how it exploits the
structure of most large-scale problems.
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valuable comments and suggestions on improving the presentation of the paper.
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Abstract. Recently, a number of primal-dual interior-point methods for semidefinite program-
ming have been developed. To reduce the number of floating point operations, each iteration of these
methods typically performs block Gaussian elimination with block pivots that are close to singular
near the optimal solution. As a result, these methods often exhibit complex numerical properties in
practice.

We consider numerical issues related to some of these methods. Our error analysis indicates
that these methods could be numerically stable if certain coefficient matrices associated with the
iterations are well-conditioned, but are unstable otherwise. With this result, we explain why one
particular method, the one introduced by Alizadeh, Haeberly, and Overton is in general more stable
than others. We also explain why the so-called least squares variation, introduced for some of these
methods, does not yield more numerical accuracy in general. Finally, we present results from our
numerical experiments to support our analysis.
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1. Introduction. The semidefinite programming problem (SDP) is the following
convex optimization problem:

minX∈Sn C •X
subject to Ak •X = bk, k = 1, . . . ,m,

X � 0,
(1.1a)

where Sn is the vector space of real symmetric n by n matrices; A • B is an inner
product satisfying

A •B def
= tr(ATB) =

n∑
i,j=1

AijBij for A,B ∈ Rn×n ;

C ∈ Sn; and Ak ∈ Sn for k = 1, . . . ,m. By X � 0 we mean that X is positive
semidefinite. The dual problem to (1.1a) is of the form

maxy∈Rm,Z∈Sn bT y
subject to

∑m
k=1 ykAk + Z = C,

Z � 0,
(1.1b)

where b = (b1, . . . , bm)T ∈ Rm. The dual problem is itself an SDP.
The SDP arises in many areas of science and engineering and includes the linear

programming problem (LP) as a special case (see Vandenberghe and Boyd [30]). The
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recent book by Boyd et al. [7] and survey articles by Alizadeh [2], Lewis and Over-
ton [18], and Vandenberghe and Boyd [30] contain many applications to system and
control theory, combinatorial optimization, and eigenvalue optimization.

Let svec be an isometry identifying Sn with Rn(n+1)/2, so thatK•L = (svec(K))
T ·

svec(L) for all K, L ∈ Sn; and let smat be the inverse of svec. The optimality con-
ditions for problem (1.1) are

A svec(X) = b,(1.2a)

smat
(AT y)+ Z = C,(1.2b)

X Z = 0,(1.2c)

where X and Z � 0; A = (svec(A1), . . . , svec(Am))
T

; and y = (y1, . . . , ym)
T

.
Throughout this paper, we assume that rank (A) = m and that equations (1.2) have
a unique solution (X∗, Z∗, y∗) such that X∗ and Z∗ � 0. Hence, (X∗, Z∗, y∗) is a
feasible solution to (1.1) that further satisfies the complementarity condition (1.2c).

1.1. Interior-point methods for the SDP. Interior-point methods for the
SDP were originally proposed by Alizadeh [1] and Nesterov and Nemirovskii [25].
Most of the interior-point methods for SDP are path-following methods, meaning
that they generate a sequence of iterates approximating the so-called central path and
converging to the primal and dual solutions. For SDP, the points on the central path
satisfy (1.2a) and (1.2b) and the following condition relaxed from (1.2c):

XZ − µI = 0.(1.3)

It is well known that under certain conditions the solution to (1.2a), (1.2b),
and (1.3) is unique and converges to the optimal solution of (1.1) as µ goes to
0 (see Nesterov and Todd [26]). However, directly applying Newton’s method to
(1.2a), (1.2b), and (1.3) usually results in nonsymmetric search directions (see Helm-
berg et al. [15], and Kojima, Shindoh, and Hara [17]). Several methods have been
introduced in the literature to ensure a symmetric search direction. For example,
Zhang [34] defines a symmetrization operator

HP (M)
def
=

1

2

(
P M P−1 +

(
P M P−1

)T)
for any given nonsingular matrix P , and shows that (1.3) is equivalent to

HP (X Z)− µ I = 0(1.4)

for symmetric X and Z. Applying Newton’s method to (1.2a), (1.2b), and (1.4) results
in a family of symmetric search directions parameterized by P , usually referred to as
the Monteiro–Zhang (MZ) family.

The MZ family includes a number of important symmetric search directions that
were introduced earlier. The AHO method introduced by Alizadeh, Haeberly, and
Overton [5] is based on a direction that corresponds to P = I. Taking PT P =
X−1 and PT P = Z results in the two directions suggested by Monteiro [20]. These
directions are also equivalent to two special directions of the family of directions
introduced by Kojima, Shindoh, and Hara [17]; and the direction corresponding to
PT P = Z was also suggested by Helmberg et al. [15]. We refer to methods based on
these two directions as the HKM methods to reflect the history of their discovery.1

1They are called the H.K.M. directions in [29].
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The NT method, suggested by Nesterov and Todd [26, 27], corresponds to a search
direction defined by any P that satisfies

PT P = R−1
(
R Z RT

) 1
2 R−T ,(1.5)

where R ∈ Rn×n is any matrix such that RT R = X. Another family of symmetric
search directions has been introduced recently by Monteiro and Tsuchiya [22].

Polynomial complexity has been established for primal-dual path-following al-
gorithms based on any direction in these three families. See Kojima, Shindoh, and
Hara [17], Monteiro [20, 21], Monteiro and Tsuchiya [22, 23], Monteiro and Zhang [24],
and Zhang [34].

1.2. Computational issues. Since we are primarily concerned with computa-
tional issues in this paper, from now on we will not make clear distinctions between
interior-point methods and their search directions.

The reason interior-point methods attract so much attention is because they have
remarkable computational promise. Alizadeh, Haeberly, and Overton [5] and Todd,
Toh, and Tütüncü [29] implemented and compared the AHO method, the NT method,
and the HKM method corresponding to PT P = Z. A number of SDP solvers are
now available in the public domain (see Alizadeh et al. [3], Borchers [6], and Fujisawa,
Kojima, and Nakata [12]).

These implementations reveal a number of computational issues for SDP that
are surprisingly complex. It is observed that for these interior-point methods, some
implementations were capable of yielding solutions in relatively good agreement with
the true optimal solution, whereas others, being slightly different but mathematically
equivalent in exact arithmetic, yielded very limited accuracy in the computed solution
and sometimes even failed to converge. It is also observed that the AHO method of [5]
appeared to be the most accurate among the methods tested [5, 29].

The search directions of these methods are usually solved via a Schur complement
equation obtained from block Gaussian elimination (see section 2.1). The Schur com-
plement is nonsymmetric for the AHO method. Todd, Toh, and Tütüncü [29] showed
that for a subfamily of search directions in the MZ family, the Schur complement is
symmetric positive definite, and the Schur complement equation can be expressed as
the normal equation of a linear least squares (LS) problem and thus can be solved
instead as an LS problem. Monteiro and Zhang [24] gave a parameterization of this
subfamily. Throughout this paper we refer to this subfamily as the TTT family. It
includes the two HKM directions and the NT direction. Zhang [34] also discussed the
LS approach for some members of the TTT family. Although their numerical results
indicated that the two approaches seemed to be comparable in terms of accuracy,
Todd, Toh, and Tütüncü [29] argued that the LS approach could perform much bet-
ter than the Schur complement approach in certain cases since the condition number
of the coefficient matrix involved in the LS problem is the square root of that of the
Schur complement.

Computational issues have been discussed earlier for other interior-point meth-
ods in optimization. For example, Ponceleón [28] analyzed linear systems arising
from barrier methods for quadratic programming. Forsgren, Gill, and Shinnerl [11]
analyzed linear systems arising from interior methods for constrained optimization.
S. Wright [33, 32] analyzed interior-point methods for LP and linear complementar-
ity problems. M. Wright [31] analyzed ill-conditioning and computational error in
interior-point methods for nonlinear programming [31].
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1.3. Main results. We analyze the accuracy of the AHO method and methods
based on directions in the TTT family in finite precision arithmetic. We explain why
some implementations of these methods are more accurate than others and why the
LS approach in general does not perform better than the Schur complement approach.
Most importantly, we show that, with the Schur complement approach, methods based
on the AHO direction and the TTT family of directions can be numerically stable if
certain coefficient matrices associated with the search direction are well-conditioned
but are unstable otherwise. We present results from our numerical experiments that
support this analysis.

Our error analysis is on the accuracy in the computed search direction for one
step of the interior-point methods at a point (X,Z, y) that is “close” to the optimal
solution of (1.1). We do not discuss the iteration complexity of these methods in finite
precision. S. Wright [33, 32] took a somewhat similar approach in his finite precision
analysis of interior-point methods for LP and linear complementarity problems.

This paper is organized as follows. In section 2 we discuss the Schur complement
equation and the parameterization of the TTT family. In section 3 we discuss the
AHO method and analyze it in finite precision. In section 4 we discuss methods of the
TTT family, relate them to the NT and HKM methods, and analyze them in finite
precision. In section 5 we present results from our numerical experiments that support
our analysis. Finally, in section 6 we discuss some extensions and future work.

1.4. Notation and conventions. Throughout this paper, the symmetrized
Kronecker product of G and K is a square matrix of order n(n + 1)/2; its action
on svec(H), where H ∈ Sn, is given by

(G⊗s K) svec(H)
def
=

1

2
svec

(
K H GT +G H KT

)
.(1.6)

The appendices in [5] and [29] contain some frequently used properties of the sym-
metrized Kronecker products in the context of SDP. They include

G⊗s K = K ⊗s G , (G⊗s K)
T

= GT ⊗s KT , and (G⊗s G)
−1

= G−1 ⊗s G−1,

(G⊗s K) (H ⊗s H) = (GH)⊗s (KH) , and (H ⊗s H) (G⊗s K) = (H G)⊗s (HK) .

We will need the following vector from time to time:

e
def
= svec

 1 · · · 1
...

. . .
...

1 · · · 1

 ∈ Rn(n+1)/2 .

A flop is a floating point operation α ◦ β, where α and β are floating point
numbers and ◦ is one of +,−,×, and ÷. In our error analysis, we take the usual
model of arithmetic:

fl(α ◦ β) = (α ◦ β) (1 + ξ) ,(1.7)

where fl(α ◦ β) is the floating point result of the operation ◦ and |ξ| ≤ ε, with ε
being the machine precision. For simplicity, we ignore the possibility of overflow and
underflow.

The norm used is the 2-norm. Let α and β be numbers. We write α = O(β) if
|α| ≤ c |β| for some positive constant c that is “moderate” and independent of β. We
say that a matrix or a vector is O(α) if its norm is O(α). In such cases, the constant
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hidden in O(α) usually is a moderate multiple (such as 10 or 100) of a low-degree
polynomial in the matrix dimensions. We write α = Ω(β) if α = O(β) and β = O(α).

For any matrix X, |X| is the matrix with entries (|X|)ij = |Xij |, and |X| ≤ |Y |
means that |Xij | ≤ |Yij | holds for all i and j. σmax(X) and σmin(X) are the largest
and smallest singular values of X, respectively, and κ (X) = σmax(X)/σmin(X) ≥ 1
is its condition number. For any symmetric matrix X, λmax(X) and λmin(X) are
its largest and smallest eigenvalues, respectively. When we say a matrix is positive
definite, we implicitly assume that it is symmetric.

2. The Schur complement and the TTT family. Primal-dual methods are
Newton-like methods applied to optimality equations (1.2). At a given point (X,Z, y),
where X and Z are positive definite, the search direction (dX, dZ, dy) satisfies

A svec(dX) = rp,(2.1a)

AT dy + svec(dZ) = rd ,(2.1b)

where rp = b−Asvec(X) and rd = svec
(
C − Z − smat

(AT · y)).
For the MZ family, equation (1.4) is linearized to give

HP (dX Z +X dZ) = µI −HP (X Z) .(2.1c)

2.1. The Schur complement. To solve for the search direction (dX, dZ, dy), we
write equations (1.1) in a single 3×3 block equation (cf. Todd, Toh, and Tütüncü [29]
and Zhang [34]):

J dX = R , J =

 E F 0
0 I AT
A 0 0

 , dX =

 svec(dX)
svec(dZ)

dy

 , R =

 rc
rd
rp

 ,(2.2)

where I is the identity matrix of appropriate dimension and

E =
(
P−T Z

)⊗s P , F = (P X)⊗s P−T , and rc = svec (µI −HP (X Z)) .

A straightforward way to compute the search direction dX is to solve (2.2) as a
dense linear system of equations. However, this approach is too expensive for large
SDPs. To compute dX more efficiently by taking advantage of the block structure
in (2.2), we perform a block LU factorization on (2.2) to get I 0 0

0 I 0
A E−1 −A E−1 F I

 E F 0
0 I AT
0 0 M

 dX = R ,(2.3)

where

M = A E−1 F AT

is the Schur complement. Todd, Toh, and Tütüncü [29] showed that E is nonsingular
under the assumption that both X and Z are positive definite. Applying forward
block substitution to (2.3) gives E F 0

0 I AT
0 0 M

 svec(dX)
svec(dZ)

dy

 =

 rc
rd

rp +A E−1 (F rd − rc)

 ,(2.4)
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and applying block backward substitution to (2.4) gives (cf. Zhang [34])

M dy = rp +A E−1 (F rd − rc) ,(2.5a)

dZ = smat
(
rd −AT dy

)
,(2.5b)

dX = smat
(E−1 (rc −F svec(dZ))

)
.(2.5c)

Following the literature, we now briefly discuss how to solve (2.5) efficiently, under
the assumption that P is a general matrix and no information about its possible
relation to (X,Z, y) is known. The matrix-vector products F u for u = rd and u =
svec(dZ) on the right-hand sides of (2.5) are

F u =
1

2
svec

(
(P X) smat(u) P−1 + P−T smat(u) (P X)

T
)
.(2.6)

Note that E−1 appears in M and on the right-hand sides of (2.5). Since E is an
n(n + 1)/2 by n(n + 1)/2 matrix, explicitly computing E−1 can be very expensive.
However, the expressions E−1 (F rd − rc) and E−1 (rc −F svec(dZ)) in (2.5) can be
computed through two linear systems of equations of the form

E u = v(2.7a)

with right-hand sides v = F rd− rc and v = rc−F svec(dZ), respectively. The Schur
complement matrixM can be computed in a similar way: we first explicitly compute
the n(n+ 1)/2 by m matrix F AT , and then compute E−1 F AT by solving m linear
systems of equations of the form (2.7a). To solve (2.7a), we first rewrite it in matrix
form as

P U Z P−1 + P−T Z U PT = 2 V,(2.7b)

where U = smat(u) and V = smat(v) (see (1.6) and (2.2)). By setting

Ũ = P U PT and Z̃ = P−T Z P−1,

we can rewrite (2.7b) as

Ũ Z̃ + Z̃ Ũ = 2 V.

This last equation is a Lyapunov equation with a positive definite coefficient matrix
Z̃. Hence the solution Ũ can be efficiently computed via the eigendecomposition of
Z̃ (see sections 3 and 4) and U can be computed from Ũ as U = P−1 Ũ P−T . Most
of the work in solving (2.5) is in the formation and factorization of M.

For the AHO method in section 3 and the methods in the MZ family in section 4,
additional information about P and its relation to the current iterate (X,Z, y) is
known. We will discuss more efficient ways to get the solutions to (2.5) for these
methods in sections 3 and 4, respectively.

2.2. The TTT family. The Schur complement matrix M is not symmetric in
general. Todd, Toh, and Tütüncü [29] considered the family of search directions for
which E−1F is symmetric, and Monteiro and Zhang [24] provided a parameterization
of this family. We refer to it as the TTT family. Let

X = RT R and Z = HT H(2.8)
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be decompositions of X and Z, respectively. They can be computed via the Cholesky
factorizations or the eigendecompositions of X and Z. Let

R HT = W Σ V T(2.9)

be the SVD of RHT . Assume that RHT has k distinct singular values σ1 < · · · < σk
and that W and V are chosen such that Σ = diag (σ1I1, . . . , σkIk) is a block diagonal
matrix with distinct diagonal blocks.

According to Monteiro and Zhang [24], E−1F is symmetric if and only if there
exists a nonsingular block diagonal matrixB = diag(B1, . . . , Bk), where the dimension
of Bj is that of Ij for j = 1, . . . , k, such that

P = S B H̃ , where S ∈ Rn×n is orthogonal and H̃ = V T H,(2.10a)

= S B̃ R̃−T , where R̃ = WT R and B̃ = BΣ.(2.10b)

Equation (2.10b) is equivalent to (2.10a) because (2.9) implies

R̃ H̃T = Σ .(2.11)

Note that the orthogonal matrix S in (2.10) leaves the search direction (2.2) invariant.
Furthermore, with some basic linear algebra, it is easy to show that the block diagonal
matrix B can always be made diagonal with a proper choice of the singular vector
matrices of RHT in (2.9).

The two HKM search directions [15, 17, 20] defined by PT P = X−1 and PT P =
Z are members in the TTT family with B = Σ−1 and B = I, respectively; and the
NT direction [26, 27] (see (1.5)) is a member in the TTT family with B = Σ−

1
2 . Let

P satisfy (2.10a). Then it is straightforward to verify that

HP (X Z) = S Σ2 ST .(2.12)

The matrix M is positive definite and (2.2) has a unique solution for any member of
the TTT family [29].

3. Analysis of the AHO method.

3.1. The AHO method. The AHO method of [5] is a special case of (2.2) with
P = I:

J dX = R, where J =

 E F 0
0 I AT
A 0 0

 and R =

 rc
rd
rp

 ,(3.1)

with E = Z ⊗s I, F = X ⊗s I, and rc = svec

(
µI − X Z + Z X

2

)
.

The matrix-vector product (2.6) is

F u =
1

2
svec (X smat(u) + smat(u) X) .

Hence F u can be computed with just one matrix-matrix product, which costs about
2n3 flops (see Golub and Van Loan [13, Chap. 1]). The matrix form of (2.7) is simply

U Z + Z U = 2 V,(3.2)
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which is already a Lyapunov equation. To solve this equation, eigendecompose Z
to get Z = QΛQT , where Q ∈ Rn×n is orthogonal and Λ = diag(λ1, . . . , λn) � 0
is diagonal. In practice, this computation requires about 9n3 flops or fewer (see
Demmel [10, Chap. 5] and Golub and Van Loan [13, Chap. 8]). The solution to (3.2)
is

U = Q Ū QT , where Ū =

(
2V̄ij

λi + λj

)
with V̄ = QT V Q.(3.3)

The cost for computing V̄ from V is about 3n3 flops, taking into account symmetry
in V̄ ; the cost for computing Ū from V̄ is about n2 flops; and the cost for computing
U from Ū is about 3n3 flops.

There are m+2 equations of the form (3.2) in (2.5), all of which can be solved via
the same eigendecomposition of Z. The total cost for eigendecomposing Z and solving
these equations is about 6mn3 flops. Adding up the costs for computing F AT and
computingM from E−1 F AT , the total cost for computingM is about m2n2 +8mn3

flops. If we assume that Gaussian elimination with partial pivoting, which is usually
stable and costs about 2/3 m3 flops, is used to factorize M, then the total cost for
solving (2.5) is about 2/3 m3 +m2n2 + 8mn3 flops. Algorithm 3.1 describes the AHO
method.

Algorithm 3.1. AHO METHOD.

1. Choose 0 ≤ σ < 1 and determine (dX, dZ, dy) from (3.1), using µ = X•Z
n σ.

2. Choose steplengths α and β and update the iterates by

(X,Z, y)← (X + α dX,Z + β dZ, y + β dy) .

The steplength rule is given by choosing a parameter τ ∈ (0, 1) and defining, via
the matrices R and H in factorizations (2.8),

α =


1 if λmin

(
R−T dX R−1

) ≥ 0,

min

(
1,− τ

λmin

(
R−T dX R−1

)) otherwise;
(3.4a)

β =


1 if λmin

(
H−T dZ H−1

) ≥ 0,

min

(
1,− τ

λmin

(
H−T dZ H−1

)) otherwise.
(3.4b)

The computation of α and β involves the computation of the factorizations (2.8) and
the eigenvalues of R−T dX R−1 and H−T dZ H−1. The total cost for this computation
is about 24n3 or less (see Golub and Van Loan [13, Chap. 8]). Hence Algorithm 3.1
costs about 2/3 m3 +m2n2 + 8mn3 flops per step for m� 1.

3.2. Preliminary analysis. To prepare for our analysis of the AHO method in
finite precision, in this section we analyze the round-off errors in the solution to (3.2).
Assume that the eigendecomposition of Z is computed as

Z = Q̂ Λ̂ Q̂T +O (ε‖Z‖) ,(3.5)

where Q̂ is a nearly orthogonal matrix satisfying equation Q̂T Q̂ = I + O(ε), and

Λ̂ = diag(λ̂1, . . . , λ̂n) is a diagonal matrix. Then there exists an exactly orthogonal

matrix Q† such that Q̂ = Q† +O (ε) (see Chandrasekaran and Ipsen [8]). Hence

Z = Q† Λ̂
(
Q†
)T

+O (ε‖Z‖) def
= Z† +O (ε‖Z‖) .(3.6)
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Note that Z† = Q†Λ̂
(
Q†
)T

is an exact eigendecomposition. We further let

E† = Z† ⊗s I = E +O (ε · ‖Z‖) and M† = A (E†)−1 F AT .(3.7)

Lemma 3.1 is the basis of our error analysis in section 3.3. We leave its proof to the
appendix.

Lemma 3.1. Assume (2.7a) for E = Z ⊗s I is solved as in (3.3). Then

fl
(E−1 v

)
= svec (fl (U)) = (I + ∆2) · (E†)−1

(I + ∆3) v,(3.8)

where ∆2 = O(ε) and ∆3 = O(ε) are n(n+1)/2 by n(n+1)/2 perturbation matrices.
It is important to note that the matrix E† does not depend on v. For different

right-hand sides v, the corresponding numerical solutions in (3.8) will in general have
different perturbation matrices ∆2 and ∆3, but always the same E†.

3.3. Error analysis for the AHO method. In our analysis, we will need some
standard results in perturbation theory and error analysis in matrix analysis. Let A
be a matrix and x be a vector. Then the round-off errors in the matrix-vector product
Ax satisfy (see Higham [16, Chap. 3])

fl (A x) = (A+ δA) x, where |δA| ≤ O(ε)|A| .(3.9)

A linear system of equations Ax = b is solved backward stably if the computed solution
x̂ satisfies (A+ δA) x̂ = b for δA = O (ε‖A‖). We make the following assumptions.

Assumption 3.1. The matrices Ak have been scaled so that ‖A‖ = Ω(1).
Assumption 3.2. σmin(J ) is much larger than ε‖J ‖.
Assumption 3.3. The Schur complement M is explicitly computed and (2.5a) is

then solved by a backward stable method.
Assumption 3.4. The current iterate (X,Z, y) is near (X∗, Z∗, y∗) and

‖b‖ ≤ O (‖A‖ ‖X‖) and ‖C‖ ≤ O (‖Z‖+ ‖A‖ ‖y‖) .

We note that Assumption 3.2 implies both primal and dual nondegeneracy and
strict complementarity. See [5, 14].

In Algorithm 3.1, dX is computed using (2.5). Round-off errors are in general
made at every step of the computation. Let

X =

 svec(X)
svec(Z)

y

 , d̂X =

 svec(d̂X)

svec(d̂Z)

d̂y

 , and R̂ =

 r̂c
r̂d
r̂p

 .

The computation of R involves a number of simple matrix-matrix and matrix-vector
products as well as matrix and vector additions. By standard error analysis (see
Golub and Van Loan [13, Chap. 2]) and Assumption 3.4, we have

R̂ = R+

 O (ε‖X‖ ‖Z‖)
O (ε · ‖Z‖+ ε‖A‖ ‖y‖)

O (ε‖A‖ ‖X‖)

 = R+O (ε‖J ‖ ‖X‖) .(3.10)

Theorem 3.2 below is the main result of this section. It puts round-off errors in
solving (2.5) into a backward error in J .
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Theorem 3.2. The computed solution (d̂X, d̂Z, d̂y) to (3.1) by procedure (2.5)
satisfies

(J + δJ ) d̂X = R̂ ,(3.11)

where R̂ satisfies (3.10) and δJ is an (n(n+ 1) +m) by (n(n+ 1) +m) perturbation
matrix satisfying

δJ = O (ε‖J ‖) +O
(
ε (1 + ‖A‖)2

(‖E‖+ ‖F‖) ‖ (E†)−1 ‖
)
.(3.12)

Proof. We first consider round-off errors on the right-hand side of (2.4). Since
F r̂d is a matrix-vector product, by (3.9) we have

fl (F r̂d) = (F + δ1F) r̂d, where δ1F = O (ε‖F‖) .
By our model of arithmetic (1.7), every component in fl (F r̂d)−r̂c is computed to high
relative accuracy. So there exists an n(n+ 1)/2 by n(n+ 1)/2 diagonal perturbation
matrix ∆4 = O(ε) such that

fl (F r̂d − r̂c) = (I + ∆4) ((F + δ1F) r̂d − r̂c) .
According to (3.8), there exist n(n + 1)/2 by n(n + 1)/2 perturbation matrices ∆5

and ∆6 such that

fl
(E−1 (F r̂d − r̂c)

)
= (I + ∆6)

(E†)−1
(I + ∆5) fl (F r̂d − r̂c)

= (I + ∆6)
(E†)−1

(I + ∆5) (I + ∆4) ((F + δ1F) r̂d − r̂c) .
Putting this together, we can write

fl
(
r̂p +A E−1 (F r̂d − r̂c)

)
= (I + ∆7)

(
r̂p + fl

(A E−1 (F r̂d − r̂c)
))

= (I + ∆7)
(
r̂p + (A+ δ1A) fl

(E−1 (F r̂d − r̂c)
))

= (I + ∆7)
(
r̂p + (A+ δ1A) (I + ∆6)

(E†)−1
(I + ∆8) ((F + δ1F) r̂d − r̂c)

)
,(3.13)

where ∆7 = O(ε) ∈ Rm×m is a diagonal perturbation matrix, δ1A = O(ε‖A‖) is an
m by n(n+ 1)/2 perturbation matrix, and ∆8 = (I + ∆5) (I + ∆4)− I = O(ε).

Similar to (3.13), the (i, j) entry of the computed Schur complement M can be
written as

svec (Ai + δi,jAi)
T

(I + ∆i,j)
(E†)−1 (

I + ∆̄i,j

)
(F + δi,jF) svec(Aj)

= svec (Ai)
T (E†)−1 F svec (Aj) +O

(
ε‖A‖2 ‖ (E†)−1 ‖ ‖F‖

)
=
(M†)

i,j
+O

(
ε‖A‖2 ‖ (E†)−1 ‖ ‖F‖

)
.

In other words, the computed M can be written as M† + O(ε‖A‖2 ‖(E†)−1‖ ‖F‖).
By Assumption 3.3, the backward errors committed during the solution of (2.5a) are
bounded by O(ε · ‖M‖), which is also bounded by O(ε‖A‖2 ‖(E†)−1‖ ‖F‖). Putting
all these errors together, we have(M† + δM†) d̂y = fl

(
r̂p +A E−1 (F r̂d − r̂c)

)
,(3.14)
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where δM† = O
(
ε‖A‖2 ‖ (E†)−1 ‖ ‖F‖

)
.

With similar analysis, the round-off errors in (2.5b) and (2.5c) can be written as

d̂Z = smat
(

(I + ∆9)
(
r̂d − (A+ δ2A)

T
d̂y
))

,

d̂X = smat
(

(I + ∆11)
(E†)−1

(I + ∆10)
(
r̂c − (F + δ2F) svec

(
d̂Z
)))

.

We now rewrite these equations in a form similar to (2.4) to get E† + δE† F + δ2F 0

0 (I + ∆9)
−1

(A+ δ2A)
T

0 0 M† + δM†

 d̂X =

 r̂c
r̂d

fl
(
r̂p +A E−1 (F r̂d − r̂c)

)
 ,

(3.15)

where (see (3.7))

δE† = (I + ∆10I)
−1 · E† (I + ∆11I)

−1 − E† = O (ε‖Z‖) .

With (3.13), we rewrite (3.15) in a form similar to (2.3): I 0 0
0 I 0

L3,1 L3,2 (I + ∆7)
−1

  E† + δE† F + δ2F 0

0 (I + ∆9)
−1

(A+ δ2A)
T

0 0 M† + δM†

 d̂X

=

 r̂c
r̂d
r̂p

 ,(3.16)

where

L3,1 = (A+ δ1A) (I + ∆6)
(E†)−1

(I + ∆8) = A (E†)−1
+O

(
ε‖A‖ ‖ (E†)−1 ‖

)
,

L3,2 = −L3,1 (F + δ1F) = −A (E†)−1 F +O
(
ε‖A‖ ‖ (E†)−1 ‖ ‖F‖

)
.

Comparing (3.16) with (3.11), we see that the backward error matrix δJ satisfies

δJ =

 I 0 0
0 I 0

L3,1 L3,2 (I + ∆7)
−1

  E† + δE† F + δ2F 0

0 (I + ∆9)
−1

(A+ δ2A)
T

0 0 M† + δM†

− J
=

 E
† + δE† − E δ2F 0

0 (I + ∆9)
−1 − I δ2AT

L3,1 E† −A L3,1

(
F − F (I + ∆9)

−1
)

(I + ∆7)
−1 M† + L3,2 AT


+

 0 0 0
0 0 0

L3,1δE† L3,1

(
δ2F − δ1F (I + ∆9)

−1
)

(I + ∆7)
−1

δM† + L3,2δ2AT

 ,

which is bounded by (3.12).
The first term in (3.12), which includes backward errors in the first two block rows

of J , is a small perturbation to J , but the second term, which includes backward
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errors in the last block row, could be very large. To interpret Theorem 3.2, we need
the following result from standard perturbation theory (see, for example, Demmel [10,
Chap. 2]): ∥∥∥d̂X − dX∥∥∥

‖dX‖ ≤ κ (J )

1− κ (J )
‖δJ ‖
‖J ‖

‖δJ ‖
‖J ‖ +

∥∥∥R̂ − R∥∥∥
‖R‖

.(3.17)

Since Algorithm 3.1 is an iterative method, it usually is not necessary for dX to be
computed very accurately for the method to make progress. However, if the round-off
errors in J are so large that ‖δJ ‖ = Ω (σmin(J )), then the right-hand side of (3.17)
becomes at least Ω(1) or even undefined, implying that the computed search direction

d̂X could be completely different from dX , making it unlikely that Algorithm 3.1 will
make any further progress. It follows that Algorithm 3.1 could stop making further
progress if ‖δJ ‖ = Ω (σmin(J )), or

ε (1 + ‖A‖)2
(‖E‖+ ‖F‖) ‖ (E†)−1 ‖ = Ω (σmin(J )) ,

which simplifies to

λmin(Z)

‖Z‖+ ‖X‖ =
λmin(Z)

‖E‖+ ‖F‖ = O (ε · κ(J )) ,(3.18)

where we have used the fact that ‖J ‖ = O(1) and that

λmin(Z) = λmin(Z†) +O(ε · ‖Z‖) =
∥∥∥(E†)−1

∥∥∥−1

+O(ε‖Z‖).

The optimal solution Z∗ is in general singular (see (1.2)). Hence one can only ex-
pect Algorithm 3.1 to converge to a numerical solution (X,Z, y) which satisfies (3.18).
This is not a severe restriction on numerical accuracy if J is well-conditioned. How-
ever, if J is ill-conditioned, then (3.18) indicates that Algorithm 3.1 could stop making
progress well before some eigenvalues of Z become sufficiently small, making it nu-
merically unstable. Since (3.10) indicates that the right-hand side of (2.2) is always
computed very accurately, the backward errors in J appear to be the only source of
potential numerical instability in Algorithm 3.1.

We have only analyzed Algorithm 3.1 in section 3.3. Mehrotra’s predictor-corrector
(PC) rule [19] is a very powerful technique to accelerate convergence and has been
extended to Algorithm 3.1 by Alizadeh, Haeberly, and Overton [5]. The PC rule
requires the solution of two linear systems of equations with the same coefficient ma-
trix J in (2.2). Repeating the arguments in section 3.3, it is easy to see that the
PC rule might stop making progress as soon as it reaches an iterate (X,Z, y) that
satisfies (3.18), and hence it could be numerically unstable if J is ill-conditioned.

The potential numerical instability of Algorithm 3.1 is due to the block LU fac-
torization procedure discussed in section 2.1. As our numerical results in section 5.3
indicate, this instability is not present if the search direction is computed by solving
equation (2.2) as a dense linear system of equations. Similar observations were also
made by Alizadeh, Haeberly, and Overton [4].

Finally, we caution that the above analysis merely identifies situations in which
Algorithm 3.1 could be numerically unstable. It does not assert instability in these
situations nor does it guarantee progress of Algorithm 3.1 in other situations. Despite
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this weakness, it is clear that this analysis does provide important new insight into
understanding the numerical stability of Algorithm 3.1 in finite precision arithmetic.
In section 5 we will present results from our numerical experiments that support the
analysis in section 3.3.

3.4. Error analysis for a variation of the AHO method. Several math-
ematically equivalent formulas are possible for computing the search direction. For
example, the expression Frd − rc in (2.5a) can be written equivalently as

F rd − rc = svec
(
X
(
C − smat(AT y)

)
+
(
C − smat(AT y)

)
X − 2µI

)
.(3.19)

However, Alizadeh, Haeberly, and Overton [5] observed numerical instability leading
to significant loss of primal feasibility near the exact solution with (3.19). Todd, Toh,
and Tütüncü [29] also observed that some mathematically equivalent formulas for
computing the search direction appear to be much less numerically stable than others
in the case of the NT method.

In the following, we briefly explain why (3.19) leads to instability. In finite preci-
sion computation, define

η = fl
(
svec

(
X
(
C − smat(AT y)

)
+
(
C − smat(AT y)

)
X − 2 µ I

))−(F r̂d − r̂c) .

Equation (3.13) becomes

fl
(
r̂p +AE−1 (F r̂d − r̂c)

)
= (I + ∆7)

(
r̂p + (A+ δ1A) (I + ∆6)

(E†)−1
(I + ∆8) (F r̂d − r̂c + η)

)
= (I + ∆7) (r̂p + L3,1η + L3,1 (F r̂d − r̂c)) ,(3.20)

where

L3,1 = (A+ δ1A) (I + ∆6)
(E†)−1

(I + ∆8) .

Equation (3.15) is still valid in this case, except that fl
(
r̂p +A E−1 (F r̂d − r̂c)

)
now satisfies (3.20) instead of (3.13). Hence (3.19) amounts to a replacement of
mathematically equivalent but numerically different right-hand sides in the middle of
a block Gaussian elimination procedure. When (3.19) is used, (3.16) becomes I 0 0

0 I 0

L3,1 −L3,1 F (I + ∆7)
−1

 E† + δE† F + δ2F 0

0 (I + ∆9)
−1

(A+ δ2A)
T

0 0 M† + δM†

 d̂X

=

 r̂c
r̂d

r̂p + L3,1 η

 .

On the other hand, similar to (3.10), we have

‖η‖ = O (ε · ‖J ‖ ‖X‖)(3.21a)

and hence

L3,1 η = O
(
ε · ‖A‖ ‖ (E†)−1 ‖ ‖J ‖ ‖X‖

)
.(3.21b)
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As before, the backward errors in the coefficient matrix of the equation above
are bounded by (3.12). However, the round-off errors on the right-hand side could
become huge as the iterates converge. For example, assume that the current iterate
(X,Z, y) is sufficiently close to (X∗, Z∗, y∗) so that

λmin(Z) ≤ O (√ε · ‖X‖) and ‖R‖ ≤ O (√ε · ‖J ‖ ‖X‖) .
It follows from (3.21) that there might be no significant digits at all in the right-hand
side vector r̂p+L3,1 η, and ‖r̂p+L3,1 η‖ could be significantly larger than ‖r̂c‖ and ‖r̂d‖.
Hence the computed search direction could be completely in error. It follows that the
AHO method with (3.19) could stop making progress when ‖R‖ = O (

√
ε‖J ‖ ‖X‖),

even if J is well-conditioned.
Similar analysis holds for the NT method. As we will show in section 4, the

NT method, when implemented according to a similar block Gaussian elimination
procedure, is reasonably accurate in general. On the other hand, if mathematically
equivalent but numerically different formulas are used to replace computed quantities
during the computation, as is done for the AHO method in (3.20), then the resulting
method could be highly unstable. The same argument holds for all other methods in
the TTT family as well.

4. Analysis of the TTT methods.

4.1. The TTT methods. A search direction in the TTT family is a search
direction defined by (2.2) with P satisfying one of the two mathematically equivalent
equations in (2.10). We assume that a proper choice of the singular vector matrices
of RHT in (2.9) has been made so that B is a diagonal matrix. Arrange the singular
values as 0 < σ1 ≤ σ2 ≤ · · · ≤ σn and let

B = diag(β1, . . . , βn) and B̃ = B Σ = diag (β1 σ1, . . . , βn σn) .(4.1)

We will base our development on the assumption that P is chosen using expres-
sion (2.10a). It follows from (2.2) and (2.12) that

E =
(
S B−1 H̃

)
⊗s
(
S B H̃

)
and F =

(
S B H̃ X

)
⊗s
(
S B−1 H̃−T

)
.(4.2a)

With (2.10b) and (2.11), these expressions can be rewritten as

E =
(
S B−1 Σ R̃−T

)
⊗s
(
S B Σ R̃−T

)
and F =

(
S B̃ R̃

)
⊗s
(
S B̃−1 R̃

)
.(4.2b)

Similarly, (2.2), (2.10), and (2.12) imply that

rc = svec
(
µ I − SHB

(
H̃ X H̃T

)
ST
)

= svec
(
S smat (r̃c) S

T
)
,(4.3)

where

r̃c
def
= svec

(
µ I − Σ2

)
.

With (4.2b), the matrix-vector product (2.6) can be written as

F u =
1

2
svec

(
S
(
B̃ R̃ smat(u) R̃T B̃−1 + B̃−1 R̃ smat(u) R̃T B̃

)
ST
)

=
1

2
svec

(
S
(
DF �

(
R̃ smat(u) R̃T

))
ST
)
,(4.4)
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where X � Y = (Xi,jYi,j) is the Hadamard product and

DF =

(
βi σi
βj σj

+
βj σj
βi σi

)
=

(
β2
i σ

2
i + β2

j σ
2
j

βi βj σi σj

)
.

We now solve (2.7). With (4.2b), the left-hand side of (2.7b) can be rewritten as

S
(
B−1Σ R̃−TU R̃−1ΣB +BΣ R̃−TU R̃−1ΣB−1

)
ST

= S

((
βj σi σj
βi

+
βi σi σj
βj

)
·
(
R̃−TU R̃−1

)
ij

)
ST .

Hence the solution to (2.7) is

E−1v = 2svec
(
R̃T
(
DE �

(
ST smat(v)S

))
R̃
)
, DE =

(
βiβj

σiσj
(
β2
i + β2

j

)) .
(4.5)
With (4.4) and (4.5), we can rewrite the Schur complement matrix M as

M =
(
svec(Ai)

T E−1 F svec(Aj)
)

= 2
(
svec(Ai)

T svec
(
R̃T

(
DE �

(
ST smat (F svec(Aj)) S

))
R̃
))

=
(
svec(Ai)

T svec
(
R̃T

(
DE �

(
ST
(
S
(
DF �

(
R̃ Aj R̃

T
))

ST
)
S
)
R̃
)))

=
(
svec(Ai)

T svec
(
R̃T

(
(DE �DF )�

(
R̃ Aj R̃

T
))

R̃
))

=
((
R̃ Ai R̃

T
)
•
(

(DE �DF )�
(
R̃ Aj R̃

T
)))

= Ã DM ÃT ,(4.6)

where Ã = (svec(R̃ A1 R̃T ), . . . , svec(R̃ Am R̃T ))T and DM is an n(n + 1)/2 by
n(n+ 1)/2 diagonal matrix that satisfies

DM e = svec (DE �DF ) = svec

(
β2
i σ

2
i + β2

j σ
2
j

σ2
i σ

2
j

(
β2
i + β2

j

))
for the vector e in section 1.4. Note that the matrix DM is the only part in M that
is affected by B. For any choice of B, the entries of the matrix DE �DF are always
bounded. In fact,

1

σ2
i + σ2

j

≤ β2
i σ

2
i + β2

j σ
2
j

σ2
i σ

2
j

(
β2
i + β2

j

) ≤ 1

σ2
i

+
1

σ2
j

.(4.7)

Now we use (4.4) and (4.5) to simplify the right-hand side of (2.5). By (4.3) and (4.5),

E−1 rc = 2 svec
(
R̃T

(
DE �

(
ST
(
µ I − S Σ2 ST

)
S
))

R̃
)

= svec
(
R̃T (DE � smat (r̃c)) R̃

)
.

Combining this relation with (4.4) and (4.5), and with some algebra similar to that
used to obtain (4.6),

E−1 (F rd − rc)
= svec

(
R̃T

(
(DE �DF )�

(
R̃ smat(rd) R̃

T
)
−DE � smat (r̃c)

)
R̃
)
.(4.8)
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However, for numerical stability reasons we will compute E−1 (rc −F svec(dZ)) dif-
ferently. With (4.2a), the left-hand side of (2.7b) can be rewritten as

S
(
B−1 H̃ U H̃T B +B H̃ U H̃T B−1

)
ST = S

((
βj
βi

+
βi
βj

)
·
(
H̃ U H̃T

)
ij

)
ST .

Hence the solution to (2.7) can also be written as

E−1 v = 2 svec
(
H̃−1

(
D̄E �

(
ST smat(v)S

))
H̃−T

)
where D̄E =

(
βi βj

β2
i + β2

j

)
.

Combined with (4.3) and (4.4), and after some algebra, we obtain

E−1 (rc −F svec(dZ))

= svec
(
H̃−1

(
D̄E � smat (r̃c)−

(
D̄E �DF

)� (R̃ dZ R̃T
))

H̃−T
)
.(4.9)

As we have seen throughout section 4.1, due to relation (2.11), E , F , andM can
be expressed in several different but mathematically equivalent ways, each of which
may lead to a different numerical solution to (2.5). We have chosen to solve (2.5) via
the SVD (2.9) so as to keep the symmetry of M explicit and to avoid the explicit

inversion of H̃ and R̃ everywhere except in (4.9); this allows us to derive a relatively
favorable error analysis. Our approach is somewhat different from those of Monteiro
and Zhang [24] and Todd, Toh, and Tütüncü [29]. Algorithm 4.1 below is a more
formal description of the method described in this section. We will postpone some
details on how to compute expressions in (4.8) and (4.9) to section 4.3. We will also
discuss a new choice of B in section 5.1.

Algorithm 4.1. TTT METHODS.

1. Choose a matrix B in (2.10a).
2. Choose 0 ≤ σ < 1 and determine (dX, dZ, dy) from (2.5a), (2.5b), (4.6), (4.8),

and (4.9), using

µ =
X • Z
n

σ =
tr
(
Σ2
)

n
σ.

3. Choose steplengths α and β using (3.4) and update the iterates by

(X,Z, y)← (X + α dX,Z + β dZ, y + β dy) .

The main cost of Algorithm 4.1 is in the computation and factorization of M.
To compute Ã in (4.6), we need to explicitly compute the matrices R̃ Ai R̃

T for i =
1, . . . ,m, which costs about 3mn3 flops (see section 4.3). Since M is symmetric,

computing M from Ã costs about 1/2 m2n2 flops. The Cholesky factorization of
M costs about 1/3 m3 flops. Adding it all up, we see that Algorithm 4.1 costs
about 1/3 m3 + 1/2 m2n2 + 3mn3 flops per step, roughly half of the per-step cost of
Algorithm 3.1. Like Algorithm 3.1, the PC rule can also be extended to Algorithm 4.1
(see Monteiro and Zhang [24] and Todd, Toh, and Tütüncü [29]).

4.2. Variations of the TTT methods. Todd, Toh, and Tütüncü [29] showed
that the Schur complement equation (2.5a) can be expressed as the normal equation
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of a linear least squares problem. In fact, let D̃ be an n(n + 1)/2 by n(n + 1)/2
diagonal matrix that satisfies

D̃ e = svec

 2 βi βj√(
β2
i σ

2
i + β2

j σ
2
j

) (
β2
i + β2

j

)


for the vector e in section 1.4. With (4.5) and some algebra similar to that used to

obtain (4.6), we can write AE−1 = ÃD 1
2

M D̃. Let Xr ∈ Sn be a symmetric matrix
such that

Ã D 1
2

M svec(Xr) = rp .(4.10)

Then the Schur complement equation (2.5a) can be rewritten as(
Ã D 1

2

M
)
·
(
Ã D 1

2

M
)T
· dy =

(
Ã D 1

2

M
)
·
(
svec(Xr) + D̃ (F rd − rc)

)
,

which is the normal equation for the LS problem

min
dy

∥∥∥∥(Ã D 1
2

M
)T

dy −
(
svec(Xr) + D̃ (F rd − rc)

)∥∥∥∥ .(4.11)

Hence dy is the solution to the LS problem (4.11) and can be computed by standard
methods for solving LS problems, which are both efficient and backward stable (see,
for example, Golub and Van Loan [13, Chap. 5]).

Similar to Algorithm 4.1, the main cost of the LS approach is in explicitly com-

puting and factorizing the coefficient matrix ÃD 1
2

M. As in Algorithm 4.1, the cost for

computing ÃD 1
2

M is about 3mn3 flops. If the least squares problem (4.11) is solved by

computing the QR factorization of ÃD 1
2

M, then the cost of this factorization is about
m2n2 − 2/3 m3 flops. Hence the total per-step cost of the least squares approach is
about m2n2 + 3mn3 − 2/3 m3 flops, roughly twice the per-step cost of Algorithm 4.1
if n� m� n2.

Since reliable methods for computing the SVD are only available for dense matri-
ces, a potential drawback with Algorithm 4.1 is that the SVD computation in (2.9)
could be very inefficient if matrices R and H were highly sparse or structured. Sim-
ilar problems arise even if this SVD is replaced by an eigendecomposition of RZ RT

(see [24]). Zhang [34] pointed out that in the special case B = I (or PT P = Z), (2.5)
can be solved without the SVD:

M dy = rp +A ((
X ⊗s Z−1

)
rd − svec

(
µ Z−1 −X)) ,

dZ = smat
(
rd −AT dy

)
,

dX = µ Z−1 −X − (X ⊗s Z−1
)

svec(dZ) .

See Zhang [34] for details.

4.3. Preliminary analysis. To motivate our error analysis of Algorithm 4.1,
in section 4.3 we examine (2.1c) in exact arithmetic. Since

P dX
(
Z P−1

)
= S B H̃ dX H̃T B−1 ST and (P X) dZ P−1 = S B̃ R̃ dZ R̃T B̃−1 ST ,
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and since rc = svec
(
µ I − S Σ2 ST

)
, (2.1c) simplifies to

HB

(
H̃ dX H̃T

)
+ H

B̃

(
R̃ dZ R̃T

)
= µI − Σ2.

With (4.1), this can be further written as

1

2

((
βi
βj

+
βj
βi

)
·
(
H̃ dX H̃T

)
i,j

)
+

1

2

((
βi σi
βj σj

+
βj σj
βi σi

)
·
(
R̃ dZ R̃T

)
i,j

)
= µI−Σ2.

(4.12)
As we discussed at the end of section 2, the two HKM search directions [15, 17, 20]
defined by PT P = X−1 and PT P = Z correspond to the choices βi = 1/σi and
βi = 1, respectively, and the NT direction [26, 27] corresponds to the choice βi =
1/
√
σi. In general, however, the βi’s can be any positive numbers for the TTT family,

making the ratios involving βi’s potentially huge. In addition, the matrices H̃ and R̃
themselves could be badly scaled as well. To see this, assume for the moment that X
and Z commute so that we can write their eigendecompositions as X = QΛX Q

T and
Z = QΛZ Q

T , where Q is an orthogonal matrix and both ΛX and ΛZ are positive
diagonal matrices. Equation (2.8) implies that there exist orthogonal matrices WX

and WZ such that

R = WX Λ
1
2

X QT and H = WZ Λ
1
2

Z Q
T , or R HT = WX (ΛX ΛZ)

1
2 WT

Z .

By the definitions of the SVD in (2.9) and matrices R̃ and H̃ in (2.10), we get

R̃ = WT
X R = Λ

1
2

X QT and H̃ = WT
Z H = Λ

1
2

Z Q
T .

In other words, if X and Z commute, then R̃ and H̃ are row-scaled by their singular
values. For X and Z that are close to the optimal solution (X∗, Z∗), some of these
singular values will be very small. In practice, X and Z do not commute but become
closer to commuting as they converge to (X∗, Z∗), making R̃ and H̃ potentially badly

scaled. To fully understand the scaling problem in (4.12), we rewrite R̃ and H̃ in
scaled forms as

R̃ = Ψ R̄ and H̃ = Φ H̄ ,(4.13)

where Ψ = diag(ψ1, . . . , ψn) and Φ = diag(φ1, . . . , φn) are chosen so that rows of R̄
and H̄ all have 2-norm 1. Some of the φi’s and ψi’s could be very small, especially
when the iterates are close to the optimal solution. Equation (4.12) now becomes

1

2

((
βi
βj

+
βj
βi

)
φi φj

(
H̄ dX H̄T

)
i,j

)
+

1

2
·
((

βi σi
βj σj

+
βj σj
βi σi

)
ψi ψj

(
R̄ dZ R̄T

)
i,j

)
= µI − Σ2.(4.14)

We note that the ratios involving βi’s could be huge, while some of the factors involving
φi’s and ψi’s could be very small. Consequently, among the n(n+1)/2 scalar equations
in (4.14), some might have huge coefficients whereas others might only have small ones.
This bad scaling could cause the matrix J in (2.2) to be arbitrarily ill-conditioned,
even when J with the choice P = I is well-conditioned. In exact arithmetic analysis,
this bad scaling problem can be avoided by dividing the (i, j) entry in the matrix
equation by (

βi
βj

+
βj
βi

)
φi φj +

(
βi σi
βj σj

+
βj σj
βi σi

)
ψi ψj .
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The situation is more complex, however, in finite arithmetic analysis. See section 4.4.

We now discuss the round-off errors in the following operations required in Algo-
rithm 4.1:

D (U ⊗s U) svec(A) = svec
(
D � (U AUT )) ,

(U ⊗s U)
−1

svec(A) = svec
(
U−1AU−T

)
,

where A and D ∈ Sn, and where D is an n(n+1)/2 by n(n+1)/2 diagonal matrix such
that D e = svec(D). We summarize their computations in Algorithms 4.2 and 4.3 and
their error analysis in Lemma 4.1. We leave the proof of Lemma 4.1 to the appendix.

Algorithm 4.2. Computing V = D (U ⊗s U) svec(A).

1. Compute the matrix-matrix product U A.
2. Compute the (i, j) and (j, i) entries of U AUT as the sum

∑
k=1 (fl(U A))ik Ujk.

3. Compute fl
(
D � fl

(
U AUT

))
.

Algorithm 4.3. Computing W = (U ⊗s U)
−1

svec(A).

1. Factorize U with an efficient and backward stable method such as QR fac-
torization.

2. Let A = (a1, . . . , an). Compute U−1A by solving n linear systems of equa-
tions U vi = ai.

3. Let fl
(
U−1A

)
= (ṽ1, . . . , ṽn)T . Compute U−1AU−T by solving n linear

systems of equations w̃Ti U
T = ṽTi and symmetrizing (w̃1, . . . , w̃n).

Algorithm 4.3 is not very efficient since it does not take advantage of the symmetry
in U−1AU−T . This extra cost can be avoided with a more involved algorithm and
is small compared to other costs in Algorithm 4.1. To achieve good accuracy in
computing (4.9) for Algorithm 4.1, we rewrite it using (4.13) as

E−1 (rc −Fsvec(dZ))

= svec
(
H̄−1Φ−1

(
D̄E � smat (r̃c)−

(
D̄E �DF

)� (R̃ dZ R̃T))Φ−1H̄−T
)
,(4.15)

and compute (4.15) using Algorithm 4.3 with U = H̄.

Lemma 4.1. Let V̂ and Ŵ be the computed counterparts of V and W in Algo-
rithms 4.2 and 4.3, respectively, and assume that κ(U) is much smaller than 1/

√
ε in

Algorithm 4.3. Then there exist n(n + 1)/2 by n(n + 1)/2 matrices Θ1 and Θ2 such
that

V̂ = D (U ⊗s U + Θ1) svec(A) and (U ⊗s U + Θ2) · Ŵ = svec(A),

where |Θ1| ≤ O(ε) (|U | ⊗s |U |) and ‖Θ2‖ ≤ O
(
ε · ‖U‖2).

4.4. Error analysis for the TTT methods. The error analysis for the TTT
methods is much more complicated than that for the AHO method, due to the poten-
tially bad scaling of the complementarity equation (2.1c) for the TTT methods. To
shorten the presentation, we will summarize some pieces of analysis into lemmas and
a theorem and leave some of their proofs to the appendix.

We begin by examining the round-off errors in the decompositions (2.8) and the
SVD (2.9). Assume that they are computed backward stably as

R̂T R̂ = X+O(ε‖X‖) , ĤT Ĥ = Z+O(ε‖Z‖), and R̂ ĤT = Ŵ Σ̂ V̂ T+O
(
ε‖R̂‖ ‖Ĥ‖

)
,
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where Ŵ and V̂ are nearly orthogonal matrices satisfying ŴT Ŵ = I + O(ε) and

V̂ T V̂ = I +O(ε), respectively, and Σ̂ = diag (σ̂1, . . . , σ̂n). Let R̃ and H̃ be computed
as

fl(R̃) = ŴT R̂+O(ε‖R̃‖) and fl(H̃) = V̂ T Ĥ +O(ε‖H̃‖).

We define

X† def
=
(
fl(R̃)

)T
fl(R̃) = X+O(ε‖X‖) and Z† def

=
(
fl(H̃)

)T
fl(H̃) = Z+O(ε‖Z‖).

To make the notation less cluttered, in the remainder of this section, we will drop the
symbol fl in fl(R̃) and fl(H̃) and replace them by R̃ and H̃, respectively. Combining
the above equations, we get

X† = R̃T R̃, Z† = H̃T H̃, and R̃ H̃T = Σ̂ +O
(
ε‖R̃‖ ‖H̃‖

)
def
= Σ̂ + E.(4.16)

In our analysis, we will think of the search direction defined by (2.2) as a direction
defined at the point (X†, Z†, y), instead of (X,Z, y). These two points are identical in
exact arithmetic and differ slightly in finite precision. However, this minor difference
will make our analysis much simpler. Since the round-off error matrix E in (4.16) is
in general nonzero, the expressions in (2.10) for P and the expressions in (4.2) for E
and F , while mathematically equivalent in exact arithmetic, are inconsistent in finite
precision arithmetic. As in section 4.1, we base our analysis on the assumption that
P is chosen using (2.10a): P = S B H̃. We also set S = I since it is never involved
in any computation (see section 4.1). Under this choice of P , the search direction
defined by (2.2) at the point (X†, Z†, y) satisfies (cf. (4.2a))

J dX = R, where J =

 E F 0
0 I AT
A 0 0

 and R =

 rc
rd
rp

 ,(4.17)

with E = (B−1 H̃) ⊗s (B H̃) , F = (B H̃ X†) ⊗s (B−1 H̃−T ), rp = b − A svec(X†),
rc = svec(µ I −HB(H̃ X† H̃T )), and rd = svec(C − Z† − smat(AT y)).

We could try to write the round-off errors during the computation of the search
direction as perturbations to (4.17), in a form similar to (3.11). However, the coeffi-
cient matrix J in (4.17) is in general badly scaled and hence ill-conditioned. To make
our error analysis more meaningful, we need to rescale the rows of J to make it as
balanced as round-off errors in E and F permit, and then examine the error bounds
in the rescaled version of (4.17). Rescaling is a technique often used in error analysis
for linear systems solutions to reveal the effective condition number. For discussions
of this technique and related literature, see Demmel [10, Chap. 2] and Golub and Van
Loan [13, Chap. 3].

In this section, in addition to Assumptions 3.1–3.3, we make the following as-
sumptions.

Assumption 4.1. The error matrix E in (4.16) satisfies ‖E‖ ≤ minni=1 σ̂i/2.

Assumption 4.2. The matrix H̄ defined in (4.13) satisfies κ(H̄)� 1/
√
ε.

We start our analysis by revealing the bad scaling in the matrix J in (4.17).
Rewrite E and F according to (4.13) and (4.16),
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E =
((
B−1 Φ

)⊗s (B Φ)
) (
H̄ ⊗s H̄

)
,

F =

(
B
(

Σ̂ + E
)T

R̃

)
⊗s
(
B−1

(
Σ̂ + E

)−1

R̃

)
=

((
B Σ̂

)(
I + E Σ̂−1

)T
R̃

)
⊗s
((

B Σ̂
)−1 (

I + E Σ̂−1
)−1

R̃

)
.

Since the matrix I + E Σ̂−1 is in general dense and has 2-norm Ω(1) (see (4.16) and
Assumption 4.1), we can choose the diagonal scaling matrices for E and F to be

SE def
=
(
B−1 Φ

)⊗s (B Φ) and SF def
= (φ+ ψ)2

(
B Σ̂

)
⊗s
(
B Σ̂

)−1

,

respectively, where φ = maxni=1 φi = Ω(‖H̃‖) and ψ = maxni=1 ψi = Ω(‖R̃‖). The
scaled E matrix S−1

E E = H̄ ⊗s H̄ is well row-scaled due to (4.13) and has 2-norm
Ω(1). The scaled F matrix S−1

F F has 2-norm O(1), but could still be badly row-
scaled for some E. We have chosen the factor (φ + ψ)2 instead of ψ2 in front of SF
to make our analysis simpler. To see the diagonal entries of SE and SF more clearly,
we apply SE and SF to the vector e in section 1.4:

SE e =
1

2
·svec

((
βi
βj

+
βj
βi

)
φi φj

)
and SF e =

(φ+ ψ)2

2
·svec

(
βi σ̂i
βj σ̂j

+
βj σ̂j
βi σ̂i

)
.

Comparing with (4.14), which is the complementarity equation in exact arithmetic,
we see that the scaling factors for E in finite precision arithmetic are similar to those
for E in exact arithmetic. On the other hand, some of the ψi’s can be much smaller
than φ+ψ, so the scaling factors for F in finite precision arithmetic can be drastically
larger than those for F in exact arithmetic, potentially causing JS to be ill-conditioned
even when J with the choice P = I is well-conditioned. This ill-conditioning of JS is
largely caused by some of the ψi’s becoming very small near the optimal solution. The
HKM search directions and the NT direction all share this problem (see section 5).
On the other hand, we observed from numerical experiments that this ill-conditioning
problem does not become worse even when one makes J arbitarily ill-conditioned
with very bad choices of B.

We now rescale J in (4.17) with SE and SF to get

JS dX = RS , where JS =

 S−1 E S−1 F 0
0 I AT
A 0 0

 and RS =

 S−1 rc
rd
rp

 ,

with S = SE + SF . Let R̂S be the vector R̂ with r̂c replaced by S−1 r̂c. Scale (3.11)
to get

(JS + δJS) d̂X = R̂S .(4.18)

We point out that S is introduced as part of our error analysis to reveal the effective
condition number for the linear system of equations (4.17), and is not part of Algo-
rithm 4.1. Backward error bounds of the form (3.11) would be too pessimistic since
κ(J ) can diverge to ∞ very quickly.

We now consider round-off errors in R. Although numerically R is evaluated
at the point (X,Z, y), instead of (X†, Z†, y), the difference between them is minor.
Equation (3.10) still holds for rd and rp:

r̂d = rd +O (ε · ‖Z‖+ ε · ‖A‖ ‖y‖) and r̂p = rp +O (ε · ‖A‖ ‖X‖) .(4.19)
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Since the round-off errors in r̂c are more complicated, we summarize the results here
and leave the analysis to the appendix.

Lemma 4.2. In Algorithm 4.1, we have∥∥S−1 (r̂c − rc)
∥∥ = O

(
ε‖R̃‖ ‖H̃‖

)
for the HKM direction PT P = Z and the NT direction, and∥∥S−1 (r̂c − rc)

∥∥ = O
(
εκ
(

Σ̂
)
‖R̃‖ ‖H̃‖

)
in general. In all cases,

‖R̂S −RS‖ = O
(
ε · κ

(
Σ̂
)
‖X‖

)
.(4.20)

The factor κ(Σ̂) disappears for the HKM direction PT P = Z and the NT direc-
tion. Since Algorithm 4.1 usually generates iterates that are not far away from the
central path, the factor κ(Σ̂) is in general not very large in practice.

We now analyze the round-off errors in computing the right-hand sides of (2.5).
To this end, define

E† =
(
B Σ̂ R̃−T

)
⊗s
(
B−1 Σ̂ R̃−T

)
, F† =

(
B Σ̂ R̃

)
⊗s
(
B−1 Σ̂−1 R̃

)
,(4.21)

and M† = A (E†)−1 F†AT .
Although E† = E , F† = F , and M =M† in exact arithmetic, these relations do

not in general hold in finite arithmetic. Let

D̂F =

(
β2
i σ̂

2
i + β2

j σ̂
2
j

βi βj σ̂i σ̂j

)
, D̂E =

(
βi βj

σ̂i σ̂j
(
β2
i + β2

j

)) , and D̂M = D̂F � D̂E ,

and define diagonal matrices D̂E , D̂F , and D̂M such that

D̂F e = svec
(
D̂F
)
, D̂E e = svec

(
D̂E
)
, and D̂M e = svec

(
D̂M

)
.

Lemma 4.3. There exist perturbation matrices

δ1A = O(ε‖A‖) , |Θ1| ≤ O(ε)
(∣∣∣R̃T ∣∣∣⊗s ∣∣∣R̃T ∣∣∣) D̂E , ∣∣δ1F†∣∣ ≤ O(ε)D̂F

(∣∣∣R̃∣∣∣⊗s ∣∣∣R̃∣∣∣)
and diagonal perturbation matrix ∆1 = O(ε), all of appropriate dimensions, such that

fl
(
r̂p +A (E†)−1 (F† r̂d − r̂c))

= (I + ∆1)
(
r̂p + (A+ δ1A)

((E†)−1
+ Θ1

) ((F† + δ1F†
)
r̂d − r̂c

))
.(4.22)

Proof. The matrix-vector product fl
(F† rd) has the form in Algorithm 4.2 with

D = D̂F and U = R̃. According to Lemma 4.1, the round-off errors satisfy

fl
(F† r̂d) =

(F† + δ1F†
)
r̂d, where

∣∣δ1F†∣∣ ≤ O(ε) · D̂F ·
(∣∣∣R̃∣∣∣⊗s ∣∣∣R̃∣∣∣) .
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As in section 3.3, there exists an n(n + 1)/2 by n(n + 1)/2 diagonal perturbation
matrix ∆0 = O(ε) such that

fl
(F† r̂d − r̂c) = (I + ∆0)

((F† + δ1F†
)
r̂d − r̂c

)
.

The application of
(E†)−1

to F† r̂d− r̂c in (4.8) can be performed by applying (R̃T ⊗s
R̃T ) D̂E to fl

(F† r̂d − r̂c). Similar to Lemma 4.1, the round-off errors satisfy

fl
((E†)−1 (F†r̂d − r̂c)) =

((E†)−1
+ Θ0

)
fl
(F†r̂d − r̂c) ,

|Θ0| ≤ O(ε)
(∣∣∣R̃T ∣∣∣⊗s ∣∣∣R̃T ∣∣∣) D̂E ,

=
((E†)−1

+ Θ1

) ((F† + δ1F†
)
r̂d − r̂c

)
,

where Θ1
def
= (

(E†)−1
+ Θ0)(I + ∆0)− (E†)−1

satisfies |Θ1| ≤ O(ε)(|R̃T | ⊗s |R̃T |)D̂E .
With these relations, we can write

fl
(
r̂p +A (E†)−1 (F† r̂d − r̂c)) = (I + ∆1)

(
r̂p + (A+ δ1A) fl

((E†)−1 (F† r̂d − r̂c))) ,
which is (4.22).

The round-off errors in solving (2.5c) are analyzed by Lemma 4.4 below. We leave
its proof to the appendix.

Lemma 4.4. The round-off errors in solving (2.5c) satisfy(M† + δM†) d̂y = fl
(
r̂p +A E−1 (F r̂d − r̂c)

)
,

where δM† = O(ε · ‖A‖2 ‖X†‖ ‖ (Z†)−1 ‖).
A remarkable feature of Lemma 4.4 is that the upper bound on δM† does not

depend on B. Hence the Schur complement equation is solved to the same accuracy
no matter how badly the complementarity equation (2.1c) is scaled (see (4.14)). As
in section 3.3, the round-off errors in (2.5b) satisfy

d̂Z = smat
(

(I + ∆3)
(
r̂d − (A+ δ2A)

T
d̂y
))

,

where δ1A = O(ε‖A‖) and ∆2 = O(ε) are perturbation matrices, with ∆2 being
diagonal.

Now we consider the round-off errors in solving (2.5c) using (4.15). Similar
to (4.22),

fl
(
r̂c −F† svec

(
d̂Z
))

= (I + ∆4)
(
r̂c −

(F† + δ2F†
)

svec
(
d̂Z
))

,

where ∆4 = O(ε) ∈ Rm×m is diagonal and |δ2F†| ≤ O(ε) · D̂F · (|R̃| ⊗s |R̃|). By
Assumption 4.2 and Lemma 4.1, we write the round-off errors in the solution of (2.5c)
as(
B−1 Φ⊗s B Φ

) (
H̄ ⊗s H̄ + Θ2

)
d̂X = (I + ∆4)

(
r̂c −

(F† + δ2F†
)

svec
(
d̂Z
))

,

where ‖Θ2‖ = O
(
ε‖H̄‖2) = O(ε). Since ∆4 is a diagonal matrix, this last equation

becomes

(E + δE) d̂X = r̂c −
(F† + δ2F†

)
svec

(
d̂Z
)
,(4.23)
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where

δE def
= (I + ∆4)

−1 (
B−1Φ⊗s BΦ

) (
H̄ ⊗s H̄ + Θ2

)− E =
(
B−1 Φ⊗s BΦ

)
Θ3,

with

Θ3
def
= (I + ∆4)

−1 (
H̄ ⊗s H̄ + Θ2

)− H̄ ⊗s H̄ = O(ε).

Putting Lemma 4.4 and all these relations together, we get an equation similar to (2.4): E + δE F† + δ2F† 0

0 (I + ∆3)
−1

(A+ δ2A)
T

0 0 M† + δM†

 d̂X =

 r̂c
r̂d

fl
(
r̂p +A (E†)−1 (F† r̂d − r̂c))

 ,

Combining this with (4.22), we obtain an equation similar to (2.3) and (3.16): I 0 0
0 I 0

L3,1 L3,2 (I + ∆2)
−1

 E + δE F† + δ2F† 0

0 (I + ∆3)
−1

(A+ δ2A)
T

0 0 M† + δM†

 d̂X =

 r̂c
r̂d
r̂p

 ,

where L3,1 = (A+ δ1A)(
(E†)−1

+ Θ1) and L3,2 = −L3,1(F† + δ1F†).
Scaling the first row by S−1, we arrive at (4.18) with the backward error matrix

δJS satisfying

δJS =

 S−1 0 0
0 I 0

L3,1 L3,2 (I + ∆2)
−1

  E + δE F† + δ2F† 0

0 (I + ∆3)
−1

(A+ δ2A)
T

0 0 M† + δM†

− JS
=

 S−1 δE S−1
(F† −F + δ2F†

)
0

0 (I + ∆3)
−1 − I δ2AT

L3,1 E − A L3,1

(
F† −F† (I + ∆3)

−1
)

(I + ∆2)
−1 M† + L3,2 AT


+

 0 0 0
0 0 0

L3,1δE L3,1

(
δ2F† − δ1F† (I + ∆3)

−1
)

(I + ∆2)
−1
δM† + L3,2δ2AT

 .

(4.24)
Theorem 4.5 below is the main result of this section. We leave its proof to the
appendix.

Theorem 4.5. Define ρ = (‖X†‖ + ‖Z†‖)(‖ (X†)−1 ‖ + ‖ (Z†)−1 ‖). Then the

numerical solution d̂X computed via Algorithm 4.1 satisfies (4.18) with

δJS =


O (ερ) for HKM direction PT P = Z and NT direction;

O
(
ε
√
ρ
(
κ
(

Σ̂
)

+
√
ρ
))

in general.

The round-off errors on the right-hand side of (4.18) satisfy Lemma 4.2.

As we argued after Lemma 4.2, the factor κ(Σ̂) is usually not very large in practice.
For the sake of argument in what follows, we assume that it is less than

√
ρ. Now the

bound in Theorem 4.5 looks like (3.12). With arguments similar to those in section 3.3,
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we conclude that Algorithm 4.1 could stop making further progress as soon as it
reached an iterate (X,Z, y) that satisfies

min (λmin(Z), λmin(X))

max (‖Z‖, ‖X‖) = O (εκ (JS)) ,(4.25)

and Algorithm 4.1 could be numerically unstable if JS were ill-conditioned. As with
the AHO method, by repeating the arguments in section 4.4, it is easy to see that
the PC rule applied to Algorithm 4.1 could also be numerically unstable if JS were
ill-conditioned.

If κ(Σ̂)� 1, then the error bound in (4.20) on the scaled right-hand side of (2.2)

will be large. We can eliminate the factor κ(Σ̂) in the error bound by choosing a
scaling matrix S with larger diagonal entries, thereby making JS potentially worse
scaled and therefore worse conditioned.

At first sight, (4.25) seems to suggest that the TTT methods could be as accurate
as the AHO method. However, our numerical results in section 5.3 show that the
matrix JS for the HKM methods and NT method is in general much worse conditioned
than the matrix J for the AHO method, indicating that these methods are in general
less accurate. In section 5.1 we discuss a choice of B that appears to make JS better
conditioned than other choices.

The above analysis was on Algorithm 4.1 only. Since the NT method [26, 27]
as implemented in [29] is not identical to Algorithm 4.1, our results do not directly
apply to it. However, the difference between these variations does not appear to be
fundamental. It is very likely that the NT method in [26, 27, 29] suffers from the
same numerical instability problems Algorithm 4.1 faces. The same argument holds
for the HKM direction PT P = X−1.

While the HKM direction B = I can be computed without the SVD, the matrix
Z−1 is still needed in the formation ofM (see section 4.2). Hence we would expect the
upper bound on the round-off errors in solving (2.5c) for this direction to be at least
comparable with that in Lemma 4.4. Consequently, we could expect this variation to
be numerically unstable if JS is ill-conditioned.

Finally, we note that unlike the AHO method, the potential numerical instability
of Algorithm 4.1 in general remains even if the search direction is computed by solving
(2.2) as a dense linear system of equations (see section 5.3).

4.5. Error analysis for the LS variation of the TTT methods. Now we
discuss the round-off errors for the LS variation of the TTT methods discussed in sec-
tion 4.2. In addition to Assumptions 3.1–4.1, we further assume the following.

Assumption 4.3. Problem (4.11) is solved via a backward stable method.
As in section 4.1, we will think of the search direction defined by (2.2) as a

direction defined at the point (X†, Z†, y) in (4.16), instead of the point (X,Z, y).
Hence the search direction satisfies (4.17).

Let R be computed as before and let X̂r be the computed version of Xr in (4.10).
Define E†, F†, and M† as in (4.21) and let the coefficient matrix and the right-hand

side vector of the LS problem (4.11) be computed as fl(ÃD 1
2

M) and fl(svec(X̂r) +

D̃ (F rd − rc)), respectively. With analysis similar to that in (4.22), we write

fl
(
svec(X̂r) + D̃ (F rd − rc)

)
= (I + ∆2)

(
svec(X̂r) + (I + ∆1) D̃ ((F† + δ1F†

)
r̂d − r̂c

))
,(4.26)
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where ∆1 and ∆2 are diagonal perturbation matrices and δ1F† is a perturbation to
F†. Furthermore, with an analysis similar to that in the proof of Lemma 4.4, we can
write

fl
(
ÃD 1

2

M
)

= ÃD 1
2

M + δM 1
2 , where δM 1

2 = O
(
‖A‖ ‖R̃‖ ‖H̃−1‖

)
.(4.27)

By standard error analysis (see Higham [16, Chap. 19]), the computed solution d̂y is
the exact solution to a slightly perturbed LS problem

min
dy

∥∥∥∥(fl
(
Ã D 1

2

M
)

+ Θ
)T

dy − fl
(
svec(X̂r) + D̃ (F rd − rc)

)∥∥∥∥ ,
where the m by n(n + 1)/2 matrix Θ = O(ε · ‖fl(Ã D 1

2

M)‖) is a perturbation to

fl(ÃD 1
2

M). Stating this result in an equivalent way, d̂y is the exact solution to the
normal equation of this perturbed LS problem:(

fl
(
Ã D 1

2

M
)

+ Θ
) (

fl
(
Ã D 1

2

M
)

+ Θ
)T

d̂y

=
(
fl
(
Ã D 1

2

M
)

+ Θ
)
· fl
(
svec(X̂r) + D̃ (F rd − rc)

)
.

In light of (4.27), this equation can be rewritten in the form of Lemma 4.4 as(M† + δM†) d̂y =
(
fl
(
Ã D 1

2

M
)

+ Θ
)

fl
(
svec(X̂r) + D̃ (F rd − rc)

)
,

where δM† def
=
(
ÃD 1

2

M + δM 1
2 + Θ

) (
ÃD 1

2

M + δM 1
2 + Θ

)T
−M†

= ÃD 1
2

M
(
δM 1

2 + Θ
)T

+
(
δM 1

2 + Θ
) (
ÃD 1

2

M + δM 1
2 + Θ

)T
= O

(
ε ‖A‖2 ∥∥X†∥∥ ∥∥∥(Z†)−1

∥∥∥) .
Comparing with Lemma 4.4, the error bounds for δM† in both cases are identical.
Although in the LS approach δM† has a special form, it does not seem to make
‖δM†‖ smaller.

Assume that (2.5b) and (2.5c) in the least squares approach are solved as in
Algorithm 4.1. We get an equation similar to (2.4), E + δE F† + δ2F† 0

0 (I + ∆3)
−1

(A+ δ2A)
T

0 0 M† + δM†

 d̂X =

 r̂c
r̂d

fl
(
svec(X̂r) + D̃ (F rd − rc)

)
 ,

which can be combined with (4.26) to give an equation similar to (2.3): I 0 0
0 I 0
L3,1 L3,2 I

  E + δE F† + δ2F† 0

0 (I + ∆3)
−1

(A+ δ2A)
T

0 0 M† + δM†

 d̂X =

 r̂c
r̂d
r̃p

 ,

where

L3,1 =
(
fl
(
ÃD 1

2

M
)

+ Θ
)

(I + ∆2) (I + ∆1) D̃, L3,2 = −L3,1

(F† + δ1F†
)
,
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and r̃p = (fl(Ã D 1
2

M)+Θ) (I + ∆2) svec(X̂r). As in section 4.1, we can now scale the
above equation by S and bound the round-off errors in both JS and RS . Since the
upper bounds for δM† are the same in both cases, the upper bound on the backward
errors in the (3, 3) block of JS for the LS problem will be about the same as that of J
for Algorithm 4.1, regardless of how small the backward errors in other blocks of JS
might be. The upper bound for δM† is roughly the upper bound in Theorem 4.5 if we

assume that κ(Σ̂) = O(
√
ρ) and that ‖ (X†)−1 ‖ = Ω(‖ (Z†)−1 ‖). Hence it appears

that the LS approach in general is no more accurate than Algorithm 4.1.

5. Numerical experiments. In this section we first discuss a new choice of
search direction in the TTT family. We then discuss how to measure the amount of
accuracy in a numerical solution to problem (1.1). Finally, we present results from
our numerical experiments that support our analysis for the AHO method and the
TTT methods.

5.1. A new search direction in the TTT family. Our error analysis of the
TTT methods indicates that one factor that potentially limits the amount of accuracy
in the numerical solution is the scaled condition number κ(JS) (see (4.25)). To achieve
maximum accuracy in the numerical solution, we would like to find a direction in the
TTT family that minimizes κ(JS).

However, such a direction appears to be very hard to find. Instead, we note that
the source of potential bad scaling in (4.14) is the ill-conditioning of the matrix P
in (2.10a). This motivates us to choose a direction in the TTT family that minimizes
κ(P ). As in section 2.2, write B = diag(B1, . . . , Bk), where the dimension of Bj is

the multiplicity of the singular value σj of RHT . Partition the matrix H̃ in (2.10a)

accordingly as H̃ = (H̃1, . . . , H̃k)T . The following result of Demmel suggests a par-
ticular choice of B that is at most a factor of

√
k away from optimal.

Lemma 5.1 (see Demmel [9]). Define B̄ = diag
(
B̄1, . . . , B̄k

)
, where B̄j is chosen

so that B̄j H̃
T
j is row orthonormal, i.e., B̄j H̃

T
j H̃j B̄

T
j = Ij for j = 1, . . . , k. Then

κ
(
B̄ H̃

)
≤
√
k min

{
κ
(
B H̃

)
| where B = diag(B1, . . . , Bk)

}
.

We compared the TTT method with B = B̄ to the AHO method and other
TTT methods in our numerical experiments. In our implementation, we ignored the
possibility of multiple singular values in RHT and instead scaled H̃ as in (4.13) and
chose B̄ = Φ−1. This choice of B̄ corresponds to the matrix B̄ in Lemma 5.1 with
k = n.

5.2. Measuring accuracy in a numerical solution. Some recent numerical
studies of interior-point methods on SDPs measured the amount of accuracy in a
numerical solution by computing ‖rp‖, ‖rd‖ and tr(X Z), the duality gap. However,
since the matrix X Z need not be symmetric, a small duality gap does not neces-
sarily imply a small ‖X Z‖. In this paper, we measure the accuracy in (X,Z, y) by
computing the residual

R̃ =

 svec (X Z + Z X) /2
svec

(
Z + smat

(AT y)− C)
b−A svec(X)

 .

To relate R̃ to the amount of accuracy in (X,Z, y), we note that X∗ Z∗ = 0 and hence
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X Z + Z X = X Z + Z X −X∗ Z∗ − Z∗ X∗
= (X −X∗) Z +X∗ (Z − Z∗) + (Z − Z∗) X + Z∗ (X −X∗) .

Since the left-hand side is symmetric, we symmetrize the right-hand side to get

X Z + Z X

= (X −X∗) Z + Z∗

2
+
Z + Z∗

2
(X −X∗) +

X +X∗

2
(Z − Z∗) + (Z − Z∗) X +X∗

2
.

This, and the fact that (X∗, Z∗, y∗) is the exact solution to (1.2), imply

(J + J ∗) (X − X ∗) = 2 R̃,

where

X =

 svec(X)
svec(Z)

y

 , X ∗ =

 svec(X∗)
svec(Z∗)

y∗

 ,

and

J =

 Z ⊗s I X ⊗s I 0
0 I AT
A 0 0

 , J ∗ =

 Z∗ ⊗s I X∗ ⊗s I 0
0 I AT
A 0 0

 .

Note that J is the coefficient matrix in (3.1). Writing this equation in the form
of (3.17) and assuming that (X,Z) is sufficiently close to (X∗, Z∗), we get

‖X − X ∗‖
‖X‖ ≤ κ (J + J ∗)

2
∥∥∥R̃∥∥∥

‖J + J ∗‖ ‖X‖ ≈ κ (J ) ·

∥∥∥R̃∥∥∥
‖J ‖ ‖X‖ .(5.1)

We call the ratio after κ (J ) in the last expression the normalized residual. We expect
a stable numerical method to reduce the normalized residual to the order of machine
precision, independent of how big κ (J ) might be. The above equation suggests that
the smaller the normalized residual, the more accurate the numerical solution. The
quantity κ (J ) appears to play the role of the condition number for the SDP. However,
for an SDP with a very large condition number, a small normalized residual does not
necessarily imply a small error in the optimal solution.

5.3. Numerical results. We have implemented the AHO method and the TTT
methods in Matlab and have performed a number of numerical experiments. We
summarize some of the numerical results below. The computations were done on
an Ultra Sparc Station in double precision (ε ≈ 2×10−16). We tested the following
methods:

• the AHO method;
• the NT method by choosing B = Σ−

1
2 in Algorithm 4.1;

• the HKM method with PT P = Z, without the SVD, as discussed in sec-
tion 4.2;
• the method discussed in section 5.1. We will call it the New method.

The NT method in our experiments is not identical to the NT method in [26, 27, 29].
However, as we argued at the end of section 4.4, we expect both variations to suffer
from similar numerical instability problems.
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For comparison, we also implemented the above four methods by solving the
corresponding equation (2.2) with a backward stable dense linear equation solver,
with proper rescaling whenever necessary. In all cases, we set the initial guess to
be X = Z = I and y = 0. We chose σ = 0.25 and τ = 0.98, and switched to the
Mehrotra predictor-corrector versions as soon as2

‖rp‖
‖A‖ ‖X‖F +

‖rd‖
‖Z‖F + ‖A‖ ‖y‖ ≤ 10−4.

For any given r, m, and n with r(r + 1)/2 ≤ m ≤ rn− r(r − 1)/2, we chose the
following two types of test problems:

• Type-I SDPs. We generate the following quantities randomly:
— an n by n orthogonal matrix Q∗; the m by n(n + 1)/2 matrix A =

(svec(A1), . . . , svec(Am))
T

, and the m-vector y∗.
— positive diagonal matrices Λ∗1 and Λ∗2 with dimensions r by r and (n−r)

by (n− r), respectively.
We then define the SDP by setting

X∗ = Q∗ diag(Λ∗1, 0) (Q∗)T , Z∗ = Q∗ diag(0,Λ∗2) (Q∗)T , b = A svec (X∗)

and C = Z∗ + AT y∗. It is straightforward to verify that (X∗, Z∗, y∗) is a
solution to (1.2). Type-I SDPs tend to be well-conditioned.
• Type-II SDPs. We generate the symmetric matrices A1, . . . , Am as

Ak = Q∗
(
Uk LTk
Lk Vk

)
(Q∗)T ,

where Uk ∈ Sr and Vk ∈ Sn−r are random symmetric matrices, and Lk is
an (n − r) by r matrix such that ‖Lk‖ ≈ 10−4 � ‖Ak‖ = Ω(1). The rest
of the SDP is generated as in Type I. With the analysis given in Alizadeh,
Haeberly, and Overton [5], it can be shown that Type-II SDPs generally are
ill-conditioned.

Our analysis in section 4.4 indicates that the amount of accuracy in the numerical
solution computed by the TTT methods is related to κ(JS). But our choice of S sug-
gested in section 4.4 may not be optimal. In the numerical experiments we computed
the effective condition number as κe(J ) = κ(DJ ), where D is a diagonal matrix
chosen so that the rows of DJ all have 2-norm 1. Since J is an (m + n(n + 1)) by
(m + n(n + 1)) matrix, by Lemma 5.1, κe (J ) is at most a factor of

√
m+ n(n+ 1)

away from the optimal diagonal scaling. Since we were mainly concerned with nu-
merical stability, we stopped executing a method only when further reduction in the
normalized residual did not appear possible. Only the smallest normalized residual
and the number of iterations to achieve it are reported.

Tables 5.1–5.4 summarize our results. The effective condition numbers reported
in these tables are κ(J ) for the AHO method and κe (J ) for the others.

Table 5.1 shows that for the Type-I SDPs tested, the AHO method was able to
reduce the normalized residual to close to ε, and its corresponding κ (J ) was modest.
On the other hand, the NT method could only reduce the normalized residual to
about 10−10, and its corresponding κe (J ) was much larger. The HKM and New
methods were more accurate than the NT method, but less accurate than the AHO

2Here we followed the suggestion from a technical report version of [5].
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Table 5.1
Type-I SDPs, with block LU factorization.

Nos. of iterations

(r, n,m) AHO NT HKM New

(3, 10, 9) 13 19 28 15

(6, 20, 24) 12 18 26 16

Normalized residuals

(r, n,m) AHO NT HKM New

(3, 10, 9) 7.2×10−16 1.5×10−10 3.3×10−13 4.8×10−14

(6, 20, 24) 5.1×10−15 1.9×10−10 9.9×10−12 2.3×10−14

Effective condition numbers

(r, n,m) AHO NT HKM New

(3, 10, 9) 1.5×102 3.5×108 4.5×105 1.1×105

(6, 20, 24) 5.7×103 1.7×109 1.9×108 3.6×104

Table 5.2
Type-I SDPs, without block LU factorization.

Nos. of iterations

(r, n,m) AHO NT HKM New

(3, 10, 9) 14 19 23 18

(6, 20, 24) 13 18 20 19

Normalized residuals

(r, n,m) AHO NT HKM New

(3, 10, 9) 9.3×10−17 1.2×10−10 3.2×10−11 5.0×10−16

(6, 20, 24) 1.7×10−16 1.9×10−10 4.4×10−12 1.2×10−16

Effective condition numbers

(r, n,m) AHO NT HKM New

(3, 10, 9) 1.5×102 1.8×108 4.8×106 5.1×102

(6, 20, 24) 5.7×103 4.2×109 5.3×106 5.7×103

method. Among the three TTT methods, the New method had the smallest κe (J )
and took the least number of iterations.

We also solved the problems in Table 5.1 using these four methods by solving (2.2)
as a dense linear system. The results are summarized in Table 5.2. Due to the effects of
finite precision arithmetic, the iterates generated without block LU factorization are in
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Table 5.3
Type-II SDPs, with block LU factorization.

Nos. of iterations

(r, n,m) AHO NT HKM New

(3, 10, 9) 11 16 16 15

(6, 20, 24) 11 14 18 26

Normalized residuals

(r, n,m) AHO NT HKM New

(3, 10, 9) 2.3×10−9 1.5×10−8 3.6×10−8 4.8×10−8

(6, 20, 24) 1.6×10−10 1.3×10−8 1.1×10−11 1.8×10−8

Effective condition numbers

(r, n,m) AHO NT HKM New

(3, 10, 9) 3.6×1010 2.2×1012 7.0×1011 7.8×1011

(6, 20, 24) 2.5×1011 8.9×1011 3.2×1012 5.3×1011

Table 5.4
Type-II SDPs, without block LU factorization.

Nos. of iterations

(r, n,m) AHO NT HKM New

(3, 10, 9) 19 23 35 24

(6, 20, 24) 18 22 21 27

Normalized residuals

(r, n,m) AHO NT HKM New

(3, 10, 9) 6.5×10−17 1.4×10−10 1.6×10−12 3.7×10−16

(6, 20, 24) 1.1×10−16 3.3×10−11 9.4×10−12 1.3×10−16

Effective condition numbers

(r, n,m) AHO NT HKM New

(3, 10, 9) 4.3×1011 4.7×1013 1.9×1011 4.4×1011

(6, 20, 24) 3.7×1011 3.5×1013 4.2×1011 3.4×1011

general different than those with block LU. Curiously, this difference sometimes leads
to significant differences in κe (J ) for all the methods tested except AHO. Perhaps
this is an indication that κe (J ) is highly sensitive to where the current iterate is.
The NT method and the HKM method still failed to reduce the normalized residual
to full machine precision. Since the normalized residuals were still quite small, it is
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unlikely that this failure is due to nonconvergence of these methods. This suggests
that the numerical instability problem with these two methods is inherent and there
might be no way to overcome this problem for these two methods.

Table 5.3 shows that for the Type-II SDPs tested, every one of these methods
failed to reduce the normalized residual to O(ε), and the corresponding κ (J ) or
κe (J ) was very large for all methods. Table 5.3 supports our conclusion that the
AHO method and the TTT methods could be numerically unstable if the J matrices
have large effective condition numbers.

As in Table 5.2, we also solved the problems in Table 5.3 using these four methods
by solving (2.2) as dense linear systems of equations. We summarize the results in
Table 5.4. As in Table 5.2, both the AHO and the New methods were able to reduce
the normalized residual to full machine precision, but the NT and the HKM methods
still failed to do so.

6. Conclusions and future work. In this paper, we analyzed the AHO method
and the TTT family of methods in finite precision. Our results indicate that the AHO
method and the TTT methods could be numerically stable if an effective condition
number associated with the coefficient matrix in (2.2) is small, but unstable otherwise.
We also discussed a number of other computational issues related to these methods.

Our numerical experiments indicate that the reason the AHO method appears to
be more accurate than the TTT methods is that the condition number for the AHO
method is smaller. Further study is needed to better understand this phenomenon. A
related issue is how to choose a direction in the TTT family to achieve best convergence
and maximum numerical accuracy.

Appendix A. Proofs of some technical results in sections 3 and 4.
Proof of Lemma 3.1. In (3.9), if the matrix A is close to an orthogonal matrix,

A = A† +O(ε), where A† is exactly orthogonal, then (3.9) can be rewritten as

fl (A x) = A† ((I + ∆) x) =
(
I + ∆̄

)
(A† x),(A.1)

where ∆ = (A†)−1 (A + δA) − I = O(ε) and ∆̄ = (A + δA) (A†)−1 − I = O(ε).
Since

‖smat(v)‖F =
∥∥∥Q† smat(v)

(
Q†
)T∥∥∥

F
=
∥∥∥(Q†)T smat(v) Q†

∥∥∥
F

for all v ∈ Sn, it follows that

v → svec
(
Q† smat(v)

(
Q†
)T)

and v → svec
((
Q†
)T

smat(v) Q†
)

are orthogonal linear transformations on Rn(n+1)/2. With (3.5), the matrix V̄ in (3.3)

is computed as fl(V̄ ) = fl(Q̂T V Q̂). This can be viewed as a matrix-vector product
with a nearly orthogonal matrix. Similar to (A.1), there exists an n(n + 1)/2 by
n(n+ 1)/2 perturbation matrix ∆1 = O(ε) such that

fl
(
V̄
)

=
(
Q†
)T

smat ((I + ∆1) v) Q†.(A.2)

The matrix Ū in (3.3) is computed from fl
(
V̄
)

and Λ̂ as

fl
(
Ū
)

=

(
fl

(
2
(
fl
(
V̄
))
i,j

λ̂i + λ̂j

))
.
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By our model of arithmetic (1.7), every entry in Ū is computed to full relative accuracy

from fl
(
V̄
)

and Λ̂. In other words, fl
(
Ū
)

satisfies the equation

fl
(
Ū
)

Λ̂ + Λ̂ fl
(
Ū
)

= 2 fl
(
V̄
)

+ δV̄ ,(A.3)

where the perturbation matrix δV̄ ∈ Sn satisfies∣∣∣(δV̄ )i,j∣∣∣ ≤ O(ε) ·
∣∣∣(fl (V̄ ))i,j∣∣∣ = O(ε‖v‖).

Furthermore, the solution to (3.2) is computed from fl(Ū) as fl(U) = fl(Q̂ fl(Ū) Q̂T ).
Similar to (A.1) and (A.2), fl (U) satisfies

fl (U) = smat
(

(I + ∆2) · svec
(
Q† fl

(
Ū
) (

Q†
)T))

,(A.4)

where ∆2 = O(ε) is an n(n+ 1)/2 by n(n+ 1)/2 perturbation matrix.
To put all this together, we note that relations (3.6), (A.2), and (A.3) imply

smat
(
E† svec

(
Q† fl

(
Ū
) (

Q†
)T))

=

(
Q†fl

(
Ū
) (
Q†
)T)

Z† + Z†
(
Q†fl

(
Ū
) (

Q†
)T)

2

=

(
Q†
(
fl
(
Ū
)

Λ̂ + Λ̂fl
(
Ū
)) (

Q†
)T)

2

= Q† fl
(
V̄
) (

Q†
)T

+
Q† fl

(
δV̄
) (

Q†
)T

2

= smat ((I + ∆1) v) +
Q† fl

(
δV̄
) (

Q†
)T

2

= smat ((I + ∆3) v) , where ∆3
def
= ∆1 +

svec
(
Q† δV̄

(
Q†
)T)

vT

2 ‖v‖22
.

According to (A.2) and (A.3), we have ∆3 = O(ε) for all nonzero vectors v. Hence

svec
(
Q† fl

(
Ū
) (

Q†
)T)

=
(E†)−1

((I + ∆3) v) .

Combining this with (A.4) yields the equation in Lemma 3.1.
For Lemma 4.1 we need some notation. The Kronecker product of two n × n

matrices G and K is G⊗K = (gij K). By [29], there exists an n(n+ 1)/2 by n2 row
orthogonal matrix Q such that

G⊗s K =
1

2
Q (G⊗K +K ⊗G)QT for all G and K ∈ Rn×n.(A.5)

Let vec(G) be the n2-dimensional vector obtained by stacking all the columns of G.
Then

Q QT = I and svec(H) = Q vec(H) and QT Q vec(H) = vec(H)(A.6)



SEMIDEFINITE PROGRAMMING IN FINITE PRECISION 495

for all H ∈ Sn. Let P be the permutation such that P vec(G) = vec(GT ) for
G ∈ Rn×n. It is easy to verify that

P = PT , P (A⊗A) P = A⊗A, and P vec(H) = vec(H)(A.7)

for all H ∈ Sn. We also need the following result concerning round-off errors in a dot
product (see Higham [16, Chap. 3]):

fl
(
xT y

)
= xT (y + δy), where |δy| ≤ O(ε)|y|.(A.8)

Proof of Lemma 4.1. Let A = (a1, . . . , an). According to (3.9), the ith column of
U A is computed as (U + δiU) ai, where |δiU | ≤ O(ε)|U |. Hence

fl (U A) = ((U + δ1U) a1, . . . , (U + δnU) an) .

By Algorithm 4.2 and (A.8), both the (i, j) and (j, i) entries of U AUT are computed
as(

fl
(
U AUT

))
ij

=
∑
k=1

(fl(U A))ik (Ujk + δijUjk) , where |δijUjk| ≤ O(ε) |Ujk| .

Now we use the above round-off error quantities to define a linear transformation

Θ svec
(
Ā
) def

= svec

(∑
k=1

((U + δ1U) ā1, . . . , (U + δnU) ān)ik (Ujk + δijUjk)

)
− svec

(
U Ā UT

)
(A.9)

for any Ā = (ā1, . . . , ān) ∈ Sn. The n(n + 1)/2 by n(n + 1)/2 matrix Θ is defined
by (A.9) and satisfies

fl ((U ⊗s U) svec (A)) = (U ⊗s U + Θ) svec (A) .

To bound Θ, we choose Ā ≥ 0 and rewrite (A.9) as

Θ svec
(
Ā
)

= svec

(∑
k=1

((U + δ1U) ā1, . . . , (U + δnU) ān)ik δijUjk

+
∑
k=1

(δ1U ā1, · · · , δnU ān)ik Ujk

)
.

Taking absolute value entrywise, and using the upper bounds on the round-off error
quantities,

∣∣Θ svec
(
Ā
)∣∣ ≤ O(ε) · svec

(∑
k=1

(|U | ā1, . . . , |U | ān)ik |Ujk|
)

= O(ε) (|U | ⊗s |U |) svec
(
Ā
)
.

Since the last relation holds for all Ā ≥ 0, we conclude that |Θ| ≤ O(ε) · (|U | ⊗s |U |).
The last step of Algorithm 4.2 is to apply D to fl ((U ⊗s U) svec (A)). By our

model of arithmetic (1.7), there exists a diagonal perturbation matrix ∆1 such that

V̂ = fl (D fl ((U ⊗s U) svec (A))) = D (I + ∆1) fl ((U ⊗s U) svec (A))

= D ((U ⊗s U + Θ1) svec (A)) ,
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where Θ1
def
= (I + ∆1) (U ⊗s U + Θ)− (U ⊗s U) satisfies |Θ1| ≤ O(ε) · (|U | ⊗s |U |).

To prove the remaining part of Lemma 4.1, define and partition

V̂ = fl
(
U−1A

)
= (v̂1, . . . , v̂n) =

 ṽT1
...
ṽTn

 and Ŵ = fl
(
fl
(
U−1A

)
U−T

)
=

 w̃T1
...
w̃Tn

 .

It follows from Algorithm 4.3 that there exist round-off error matrices δiU with
‖δiU‖ = O (ε‖U‖) such that (U + δiU) v̂i = ai, and δ̄iU with ‖δ̄iU‖ = O (ε‖U‖)
such that w̃Ti (U + δ̄iU) = ṽTi for all i. Putting all these relations together and
simplifying, we get

(U ⊗ U + ∆2) vec
(
Ŵ
)

= vec(A), where ‖∆2‖ = O
(
ε · ‖U‖2) ∈ Rn2×n2

.(A.10)

To convert this equation into the form in Lemma 4.1, we apply (I + P)/2 to it and
simplify to get

(U ⊗ U)
(I + P) vec

(
Ŵ
)

2
= vec(A)− I + P

2
∆2 vec

(
Ŵ
)
,(A.11)

where we have used (A.7) and the fact that A ∈ Sn. By definition and by rela-
tion (A.6),

(I + P) vec
(
Ŵ
)

2
= vec

(
Ŵ + ŴT

2

)
= QT svec

(
Ŵ + ŴT

2

)
.

Applying Q to (A.11), and simplifying the resulting equation with this relation
and (A.5) and (A.6),

(U ⊗s U) svec

(
Ŵ + ŴT

2

)
= svec(A)−Q I + P

2
∆2 vec

(
Ŵ
)
,

which can be further rewritten as

((U ⊗s U) + ∆3) svec

(
Ŵ + ŴT

2

)
= svec(A),

where

∆3
def
=

Q I + P
2

∆2 vec
(
Ŵ
)
· svec

(
Ŵ + ŴT

2

)T
∥∥∥∥∥svec

(
Ŵ + ŴT

2

)∥∥∥∥∥
2 .

To derive an upper bound on ∆3, we define W ∗ = U−1AU−T ∈ Sn. By as-
sumption in Lemma 4.1, κ(U) � 1/

√
ε. It follows that κ (U ⊗s U) � 1/ε. Since

the backward error in (A.10) is of the order O
(
ε · ‖U‖2), it follows from standard

perturbation theory (cf. (3.17) and see Demmel [10, Chap. 2]) that∥∥∥vec
(
Ŵ
)
− vec (W ∗)

∥∥∥∥∥∥vec
(
Ŵ
)∥∥∥ � O(1).
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Consequently,∥∥∥∥∥svec

(
Ŵ + ŴT

2

)∥∥∥∥∥ =

∥∥∥∥∥∥∥svec

Ŵ +

(
Ŵ −W ∗

)T
−
(
Ŵ −W ∗

)
2


∥∥∥∥∥∥∥

≥
∥∥∥vec

(
Ŵ
)∥∥∥−

∥∥∥∥∥∥∥vec


(
Ŵ −W ∗

)T
−
(
Ŵ −W ∗

)
2


∥∥∥∥∥∥∥

= Ω
(∥∥∥vec

(
Ŵ
)∥∥∥) .

Plugging this into the definition of ∆3, we have

‖∆3‖ = O (‖∆2‖) = O
(
ε · ‖U‖2) .

To complete the proof, we note that Ŵ in Lemma 4.1 is obtained by symmetriz-
ing Ŵ in finite precision. By our model of arithmetic (1.7), there exists a diagonal
perturbation matrix ∆4 = O(ε) such that

Ŵ = (I + ∆4) svec

(
Ŵ + ŴT

2

)
.

Hence Ŵ satisfies the equation in Lemma 4.1 with

Θ2
def
= ((U ⊗s U) + ∆3) (I + ∆4)

−1 − U ⊗s U = O
(
ε‖U‖2) .

Proof of Lemma 4.2. According to Algorithm 4.1 and (4.16),

µ = σ
X† • Z†

n
= σ

(
R̃ H̃T

)
•
(
R̃ H̃T

)
n

= σ

(
Σ̂ + E

)T (
Σ̂ + E

)
n

,

fl(µ) = fl

σ tr
(

Σ̂2
)

n

 = µ+ σ

tr

(
Σ̂2 −

(
Σ̂ + E

)T (
Σ̂ + E

))
n

+O
(
ε · ‖Σ̂‖2

)
= µ+O

(
ε‖Σ̂‖ ‖R̃‖ ‖H̃‖

)
,

where we have used Assumption 4.1. With fl(µ), rc in (4.3) can be computed as

smat (r̂c) = fl
(
fl(µ) I − Σ̂2

)
= µ I − Σ̂2 + Ec,

where both r̂c and Ec are diagonal matrices, with |Ec| ≤ O(ε · ‖Σ̂‖ ‖R̃‖ ‖H̃‖) I. It
now follows from (4.16) and (4.17) that

smat (rc) = µ I −HB

(
H̃ R̃T R̃ H̃T

)
= µ I −HB

((
Σ̂ + E

)T (
Σ̂ + E

))
= B

(
µ I − Σ̂2

)
B−1 −HB

(
ET Σ̂ + Σ̂E + ET E

)
= smat (r̂c)− Ec −HB

(
ET Σ̂ + Σ̂E + ET E

)
= smat (r̂c)−HB

(
Ẽc

)
, where Ẽc

def
= Ec + ET Σ̂ + Σ̂ E + ET E.
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It follows from Assumption 4.1 and the upper bound onEc that Ẽc = O(ε‖Σ̂‖ ‖R̃‖ ‖H̃‖).
Thus,∥∥S−1 (r̂c − rc)

∥∥ =
∥∥∥smat

(
S−1 svec

(
HB

(
Ẽc

)))∥∥∥
F

=

∥∥∥∥∥∥∥∥
 2

(
HB

(
Ẽc

))
ij(

βi
βj

+
βj
βi

)
φi φj + (φ+ ψ)2

(
βi σ̂i
βj σ̂j

+
βj σ̂j
βi σ̂i

)

∥∥∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥∥∥


βi
βj

+
βj
βi

βi σ̂i
βj σ̂j

+
βj σ̂j
βi σ̂i

O
(
ε · ‖Σ̂‖ ‖R̃‖ ‖H̃‖

)
(φ+ ψ)2


∥∥∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
 σ̂i σ̂j (β2

i + β2
j

)
β2
i σ̂

2
i + β2

j σ̂
2
j

·
O
(
ε‖Σ̂‖ ‖R̃‖ ‖H̃‖

)
(φ+ ψ)2

∥∥∥∥∥∥
F

.(A.12)

The HKM search direction [15, 17, 20] PT P = Z and the NT direction [26, 27]

correspond to B = I and B = Σ̂−
1
2 , respectively. Since (φ + ψ)2 = O(‖Σ̂‖), the

expression on the right-hand side of (A.12) is bounded by O(ε · ‖R̃‖ ‖H̃‖) for these
two choices of B. In general, we use (4.7) to bound the right-hand side of (A.12) by∥∥∥∥∥∥

(σ̂2
i + σ̂2

j

)
σ̂i σ̂j

O
(
ε‖Σ̂‖ ‖R̃‖ ‖H̃‖

)
(φ+ ψ)2

∥∥∥∥∥∥
F

= O
(
εκ
(

Σ̂
)
‖R̃‖ ‖H̃‖

)
.

Equation (4.20) follows from this relation and (4.19).

Proof of Lemma 4.4. We first consider the round-off errors in computing Ã in (4.6).
It follows from Lemma 4.1 that∣∣∣fl(Ã)− Ã∣∣∣ ≤ O(ε)

(
svec

(∣∣∣R̃∣∣∣ |A1|
∣∣∣R̃∣∣∣T) , . . . , svec

(∣∣∣R̃∣∣∣ |Am| ∣∣∣R̃∣∣∣T))T
= O(ε) · |A|

(∣∣∣R̃∣∣∣⊗s ∣∣∣R̃∣∣∣)T .
Hence the round-off errors in the computed Schur complementM in (4.6) are bounded
by

O(ε) |A|
(∣∣∣R̃∣∣∣⊗s ∣∣∣R̃∣∣∣)T D̂M · (∣∣∣R̃∣∣∣⊗s ∣∣∣R̃∣∣∣) · |A|T

= O(ε)

((∣∣∣R̃∣∣∣ |Ai| ∣∣∣R̃∣∣∣T)(( β2
i σ̂

2
i + β2

j σ̂
2
j

σ̂2
i σ̂

2
j

(
β2
i + β2

j

))� (∣∣∣R̃∣∣∣ |Aj | ∣∣∣R̃∣∣∣T)))

≤ O(ε)

((∣∣∣R̃∣∣∣ |Ai| ∣∣∣R̃∣∣∣T)(( 1

σ̂2
j

+
1

σ̂2
i

)
�
(∣∣∣R̃∣∣∣ |Aj | ∣∣∣R̃∣∣∣T)))

= O(ε)

((∣∣∣R̃∣∣∣ |Ai| ∣∣∣R̃∣∣∣T Σ̂−1

)
•
(∣∣∣R̃∣∣∣ |Aj | ∣∣∣R̃∣∣∣T Σ̂−1

))
+ O(ε)

((
Σ̂−1

∣∣∣R̃∣∣∣ |Ai| ∣∣∣R̃∣∣∣T) • (Σ̂−1
∣∣∣R̃∣∣∣ |Aj | ∣∣∣R̃∣∣∣T)) ,
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where we have used (4.7). By Assumption 4.1, we have

Σ̂−1
∣∣∣R̃∣∣∣ =

∣∣∣(I + Σ̂−1 E
)
H̃−T

∣∣∣ = Ω
(∥∥∥H̃−1

∥∥∥) .
With this estimate, the round-off errors in the computed Schur complement can now
be bounded by

O

(
ε ‖A‖2

∥∥∥R̃∥∥∥2 ∥∥∥Σ̂−1 R̃
∥∥∥2
)

= O

(
ε ‖A‖2

∥∥∥R̃∥∥∥2 ∥∥∥H̃−1
∥∥∥2
)

= O
(
ε ‖A‖2 ∥∥X†∥∥ ∥∥∥(Z†)−1

∥∥∥) .
In other words, the computedM can be written asM†+O(ε‖A‖2 ‖X†‖ ‖ (Z†)−1 ‖).
In addition, it is clear from this analysis that∥∥M†∥∥ ≤ ‖A‖2 ∥∥X†∥∥ ∥∥∥(Z†)−1

∥∥∥ .
By Assumption 3.3, the backward errors committed by the backward solver to solve
(2.5c) after M is computed are bounded by O

(
ε‖M†‖). Putting all these errors

together, we arrive at Lemma 4.4.
Proof of Theorem 4.5. It is obvious that terms in the second row of δJS in (4.24)

are bounded by (ε · (1 + ‖A‖)). In the following we will derive upper bounds on the
terms in the second and third rows that do not depend on B.

We first consider the third row of δJS . With arguments similar to those in the
proof of Lemma 4.4, we can bound all the terms in the (3, 3) and (3, 2) blocks of δJS
by O(ε‖A‖2 ‖X†‖ ‖ (Z†)−1 ‖) and O(ε‖A‖ ‖X†‖ ‖ (Z†)−1 ‖), respectively. To bound
the round-off errors in the (3, 1) block, rewrite

L3,1 E − A+ L3,1 δE = (A+ δ1A)
((E†)−1

+ Θ1

)
E − A+ L3,1 δE

= A
((E†)−1 E − I

)
+AΘ1 E + δ1A

((E†)−1
+ Θ1

)
E + L3,1 δE .(A.13)

By definitions (4.16), (4.17), and (4.21), we have(E†)−1 E =
((
B Σ̂ R̃−T

)
⊗s
(
B−1 Σ̂ R̃−T

))−1 ((
B−1 H̃

)
⊗s
(
B H̃

))
=
((
B ⊗s B−1

) (
Σ̂⊗s Σ̂

)(
R̃−T ⊗s R̃−T

))−1 ((
B−1 ⊗s B

) · (H̃ ⊗s H̃))
=
(
R̃T ⊗s R̃T

)(
Σ̂−1 ⊗s Σ̂−1

)(
H̃ ⊗s H̃

)
=
(

Σ̂−1 R̃T H̃
)
⊗s
(

Σ̂−1 R̃T H̃
)

=

(
Σ̂−1

(
Σ̂ + E

)T)
⊗s
(

Σ̂−1
(

Σ̂ + E
)T)

= I +
(

Σ̂−1 ET
)
⊗s
(

Σ̂−1
(

Σ̂ + E
)T)

+ I ⊗s
(

Σ̂−1 ET
)
.

By Assumption 4.1 and with the last expression, we bound the first term in (A.13) as∥∥∥A ((E†)−1 E − I
)∥∥∥ ≤ O (‖A‖ ∥∥∥Σ̂−1

∥∥∥ ‖E‖) = O
(
ε‖A‖ ‖R̃‖ ‖H̃‖

∥∥∥Σ̂−1
∥∥∥)

≤ O
(
ε‖A‖

(
‖X†‖ ‖ (X†)−1 ‖ ‖Z†‖ ‖ (Z†)−1 ‖

) 1
2

)
.
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By definition (4.17) and Lemma 4.1, all the other terms in (A.13) are bounded by

O (ε) |A| ·
(∣∣∣R̃∣∣∣T ⊗s ∣∣∣R̃∣∣∣T) (B Σ̂⊗s B−1 Σ̂

)−1 ((
B−1 ⊗s B

) |Θ|)
= O (ε) · |A|

(∣∣∣Σ̂−1 R̃
∣∣∣T ⊗s ∣∣∣Σ̂−1 R̃

∣∣∣T) |Θ| for some Θ = Ω
(
‖H̃‖2

)
.

As in Lemma 4.4, this bound can be simplified to O(ε‖A‖ ‖Z†‖ ‖ (Z†)−1 ‖). Adding
it all up, the terms in the third row of δJS are bounded by

O
(
ε (1 + ‖A‖)2 (‖X†‖+ ‖Z†‖) (‖ (X†)−1 ‖+ ‖ (Z†)−1 ‖

))
= O

(
ε
(‖X†‖+ ‖Z†‖) (‖ (X†)−1 ‖+ ‖ (Z†)−1 ‖

))
.(A.14)

Now we consider the terms in the first row of δJS . A bound on δE is given
in (4.23). Since

S = SE + SF ≥ SE =
(
B−1 Φ⊗s B Φ

)
,

it follows from (4.23) that the term in the (1, 1) block of δJS satisfies∥∥S−1 δE∥∥ =
∥∥S−1 SS Θ3

∥∥ ≤ ‖Θ3‖ = O(ε).

For the (1, 2) block, we use definitions (4.16), (4.17), and (4.21) to get

F† −F =
(
B Σ̂ R̃

)
⊗s
(
B−1 Σ̂−1 R̃

)
−
(
B H̃ X†

)
⊗s
(
B−1 H̃−T

)
=
(
B Σ̂ R̃

)
⊗s
(
B−1 Σ̂−1

(
Σ̂ + E

)
H̃−T

)
−
(
B
(

Σ̂ + E
)T

R̃

)
⊗s
(
B−1 H̃−T

)
=
(
B Σ̂ R̃

)
⊗s
(
B−1 Σ̂−1 E H̃−T

)
−
(
B ET R̃

)
⊗s
(
B−1 H̃−T

)
.(A.15)

Since S ≥ SF = (φ+ ψ)2
(
B Σ̂

)
⊗s
(
B Σ̂

)−1

, we can scale and bound the first term

in (A.15) as ∥∥∥S−1
(
B Σ̂ R̃

)
⊗s
(
B−1 Σ̂−1 E H̃−T

)∥∥∥ ≤ ‖R̃‖F ‖E‖F ‖H̃−T ‖F
(φ+ ψ)2

≤ O
(
ε
(‖X†‖+ ‖Z†‖) 1

2

(
‖ (X†)−1 ‖+ ‖ (Z†)−1 ‖

) 1
2

)
,

where we have used (4.16) and the fact that φ = Ω(‖H̃‖) and ψ = Ω(‖R̃‖). We also
chose to write the bound in a form similar to (A.14). For the second term in (A.15),
we have∥∥∥S−1

(
BET R̃

)
⊗s
(
B−1 H̃−T

)∥∥∥ ≤ ∥∥S−1
F
(
B ⊗s B−1

)∥∥ ‖E‖F ‖R̃‖F ‖H̃−T ‖F .
(A.16)
To see the diagonal entries of S−1

F
(
B ⊗s B−1

)
more clearly, we apply it to the vector

e in section 1.4:

S−1
F
(
B ⊗s B−1

)
e =

1

(φ+ ψ)2
svec


βi
βj

+
βj
βi

βi σ̂i
βj σ̂j

+
βj σ̂j
βi σ̂i

 .
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Similar to (A.12), the entries in the last matrix are bounded by 1/(φ + ψ)2 for the

HKM search direction PT P = Z and the NT direction, and by κ
(

Σ̂
)
/(φ + ψ)2 in

general. Combining this with (4.16) and (A.16), we obtain a bound on the second
term in (A.15) similar to that on the first term,∥∥∥S−1

(
BET R̃

)
⊗s
(
B−1 H̃−T

)∥∥∥
≤ O

(
ε · κ

(
Σ̂
) (‖X†‖+ ‖Z†‖) 1

2

(
‖ (X†)−1 ‖+ ‖ (Z†)−1 ‖

) 1
2

)
.

The last term of δJS to be bounded is S−1δ2F†. It follows from Lemma 4.1 that∣∣δ2F†
∣∣ ≤ O(ε)

(
B Σ̂

∣∣∣R̃∣∣∣)⊗s (B−1 Σ̂−1
∣∣∣R̃∣∣∣) = O(ε)SF

(∣∣∣R̃∣∣∣⊗s ∣∣∣R̃∣∣∣) .
Hence an analysis similar to the above yields

∥∥S−1δ2F†
∥∥ = O(ε). Adding up bounds

for all three rows of δJS , we arrive at the equation in Theorem 4.5.
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Abstract. A class of optimal shape design problems is considered where a part of the boundary
of the domain represents the free parameter. The variable domain is parametrized by a class of
functions in such a way that the optimal design problem results in an optimal control problem on
a fixed domain. The functions for the parametrization of the domain are used as controls, and the
corresponding states are then given by the solution of an elliptic boundary value problem on a fixed
domain.

Discretizing this control problem normally leads to a large-scale optimization problem, where
the corresponding solution methods are characterized by the requirement of solving many boundary
value problems. In spite of this interesting numerical challenge, until now little work has been done to
derive more efficient algorithms by taking advantage of the specific structure of this kind of problem.

In this report, Newton’s method in function space is derived, resulting in an efficient algorithm for
the discretized optimization problems. By using the specific structure of these optimal shape design
problems, an efficient implementation of the numerical algorithm is introduced. The properties of
this algorithm are compared with those of the gradient method using illustrative numerical examples.

Key words. Newton’s method, optimal shape design, optimal control

AMS subject classifications. 65K10, 49K20, 49M15, 49M05
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1. Introduction. Shape optimization is described by finding the geometry of a
structure that is optimal in the sense of a given minimized cost function with respect
to certain constraints. The study of this subject is located at the interface of four
distinct fields: optimal control, partial differential equations, numerical analysis, and
optimization. Many-faceted problems naturally arise in engineering applications with
the goal of designing a specific structure in an optimal sense, or alternatively, of
understanding and determining the shape of a given structure. Typical applications
are the design of a nozzle [32], a thermal diffuser [13], [14], an airfoil boundary [33], or
various beams and plates [22], [36], [37] with respect to specific optimality conditions.

Several methods, e.g., the speed method [37], the boundary element method [32],
and the fictitious domain method [21], have been developed for such problems in the
past. The computation of the solution is a time-consuming task for all of them because
discretizing normally leads to a large-scale optimization problem, which requires the
subsequent solution of many boundary value problems.

In spite of this interesting numerical challenge, the approaches for solving optimal
shape design problems mostly deal with optimization methods based only on the first
order information of the cost function; see, for example, Pironneau and Vossinis [33]
and the above-mentioned citations. It is a well-known fact that first order optimization
schemes require only a small number of operations in each iteration, while retaining
the disadvantage of a slow local convergence rate. Contrary to this, optimization
methods exploiting second order information of the cost function, such as Newton’s
method, converge with a fast convergence rate by accepting an increased number of
operations per iteration.
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In recent years, much research has been done to analyze the advantage and dis-
advantage of using second order information for constructing efficient algorithms for
large-scale problems. In this context, the analysis and numerical results of the multi-
disciplinary design (see, for example, [17], [30], [38]) and the various experiences of
automatic differentiation [20] to compute the derivatives have to be mentioned. In-
teresting results have also been achieved by using quasi-Newton methods for solving
these kinds of large-scale problems [24], [25], [27]. One key to constructing efficient
methods for such problems is always the exploitation of the specific structure of the
problems under consideration. The aim of this paper is to analyze a specific class of
optimal shape design problems and to construct a more efficient second order method
for these large-scale problems by taking advantage of the problem-inherent structure.

We consider a class of optimal shape design problems, where the feasible domains
are described by

Ω̃ =
{
x̃ = (x̃1, x̃2)T ∈ R2 | x̃2 ∈ I := (0, 1) ∧ x̃1 ∈ (0, u(x̃2))

}
.(1.1)

These domains are parametrized by a function u ∈ Uad , where

Uad =
{
u ∈ C0,1(I) | 0 < β1 ≤ u(x2) ≤ β2 a.e.

}
(1.2)

is a suitable subset of the Banach space U = C0,1(I). This space restriction reflects
further constraints on the physical model and is necessary to guarantee the existence of
a solution. Moreover, the given twice Fréchet-differentiable cost function J̃ depends on
a function ỹ, which is defined by the solution of a second order elliptic boundary value
problem on Ω̃. Since the boundary value problem is solved with the finite element
method, the weak formulation in terms of a variational equation on the moving domain
is used from the beginning. The boundaries of the domains are divided into the moving
boundary part

Γ̃M =
{

(x̃1, x̃2)T ∈ R2 | x̃1 = u(x̃2) ∀x̃2 ∈ I
}

and the fixed boundary part Γ̃F with ∂Ω̃ = Γ̃M ∪ Γ̃F and Γ̃M ∩ Γ̃F = ∅. Based on
this definition, the space of the state is defined by

Ṽ =
{
φ ∈ H1(Ω̃)|γ0φ|Γ̃0

= 0
}
,

where the trace map γ0 ∈ L(H1(Ω̃),H 1
2 (∂Ω̃)) of order zero is further omitted if the

meaning is obvious. Assuming that Γ̃0 is a closed subset of ∂Ω̃, it can be inferred
that the space Ṽ is a closed subspace of H1(Ω̃), and therefore also a Hilbert space.
Evidently, the limiting case Γ̃0 = ∅ reduces to Ṽ = H1(Ω̃), while the limiting case
Γ̃0 = ∂Ω̃ reduces to Ṽ = H1

0(Ω̃).
Thus, the optimal shape design problem is defined by

min
u∈Uad

J̃(u, ỹ, z̃),(1.3)

with the equality constraint

ã(ỹ, η̃) = l̃(η̃) ∀η̃ ∈ Ṽ := Ṽ(Ω̃),

where ã(·, ·) : Ṽ × Ṽ → R denotes the continuous Ṽ-elliptic bilinear form

ã(ỹ, η̃) =
∑
|i|,|j|≤1

〈
ãijD̃

iỹ, D̃j η̃
〉
L2(Ω̃)

+
〈
b̃ỹ, η̃

〉
L2(Γ1)

(1.4)
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and the linear functional l̃(·) : Ṽ → R is given by

l̃(η̃) =
∑
|i|≤1

〈
f̃i, D̃

iη̃
〉
L2(Ω̃)

+
〈
f̃ , η̃
〉
L2(Γ1)

.(1.5)

It will be assumed that this bilinear form ã is always Ṽ-elliptic and continuous but
not necessarily symmetric. In most situations, the function z̃ ∈ Z̃, Z̃ Hilbert space,
has to be introduced to describe a desired state of the function ỹ, or for handling
inhomogeneous Dirichlet boundary conditions. Although the explicit statement of
the dependency on z̃ is not standard, it is included in our presentation in order to get
a clear arrangement. Particular emphasis is placed on the fact that the considered
class of problems deals with cost functions that can be defined on a part of or on
the entire domain, as well as on a part of or on the entire boundary of the domain.
Several examples of cost functions are discussed in [22]. In addition, almost all el-
liptic boundary value problems of the second order are included, in particular, the
cases of homogeneous and inhomogeneous Dirichlet, homogeneous and inhomogeneous
Neumann, Robin’s, and mixed problems.

The optimal shape design problems under consideration occur, for instance, if a
nozzle is designed [32], where the control u determines the shape of the symmetric
structure. In this case, the flow through the nozzle is defined by a boundary value
problem, and the cost function is given in such a way that a certain flow distribution
has to be satisfied on the domain or on a boundary part.

Another application with a parabolic boundary value problem is illustrated by
Banks and Kojima [3], [4] and Banks, Kojima, and Winfree [5], where the thermal
tomography problem is stated in the optimal shape design context to estimate struc-
tural flows in materials, which could arise, e.g., from corrosion or cracks. This leads
to a nondestructive evaluation method that is appropriate for assessing the structural
integrity of structures. In particular, defects of fiber-reinforced composite materials,
recently proposed in space structures studies, are determined, although they may not
be detectable by visual inspection [5].

The algorithm presented in this paper is based on the mapping method as de-
scribed by Begis and Glowinski [9] and Pironneau [32]. This method has the advantage
that the theory presented also covers a class of optimal control problems, where the
coefficients of the variational equation are influenced by the control. However, second
order algorithms can be constructed analogously for other kinds of methods, leading
to a similar structure of the algorithm.

As sketched in Figure 1, this mapping method transforms the problem defined
on the moving domain Ω̃ to a problem defined on a fixed one Ω. For instance, the
transformation

T−1 :
Ω̃ −→ Ω,

(x̃1, x̃2)T −→ (x1, x2)T =
(

x̃1

u(x̃2) , x̃2

)T(1.6)

can be used to map the moving domain to the fixed reference domain Ω = (0, 1)× I.
In the following section we will describe in detail how such a transformation

converts the original optimal shape design problem into a distributed optimal control
problem

min
u∈Uad

J
(
u, y, z(u)

)
,(1.7)
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Fig. 1. Transformation of the domain.

where the transformed state y ∈ V, V := V(Ω) Hilbert space, is defined by the solution
of a more complicated and nonsymmetric variational equation on the fixed domain Ω
depending nonlinearly on the control u ∈ Uad :

a(u; y, η) = l(u; η) ∀η ∈ V.(1.8)

This is contrary to fictitious domain methods, where a simplified variational equa-
tion has to be solved by using a nondifferentiable optimization method, which prevents
or complicates the use of high-order optimization schemes. For instance, Haslinger,
Hoffmann, and Koc̆vara [21] derived a fictitious domain method for a specific class of
optimal shape design problems in the finite dimensional setting that is only differen-
tiable if higher order finite elements are used for the implementation.

In general, there exist different ways for solving the constraint minimization prob-
lem (1.7). The all-at-once (AAO) method [30] considers the control and the state as
independent variables coupled by the state equation (1.8). Then the derived optimal
control problem can be interpreted as a constrained minimization problem, where
the variational equation represents one equality constraint. Various algorithms are
developed for this kind of minimization problem in the field of optimization which are
characterized by the fact that each evaluation of the cost function and its derivative
does not require the solution of the current state equation. One disadvantage of this
approach is the enlargement of the variable space from Uad to Uad ×V [27], [35]. This
leads to the fact that the control, the state, and the adjoint correspond to each other
only at the solution point. For Newton’s method these functions correspond to each
other in each iteration, i.e., yi = S(ui) and pi = T (ui) for i = 1, 2, . . . .

Another method, which Lewis [30] called the multidisciplinary feasible (MDF)
formulation, is used in this paper, where the state y is treated as being dependent on
the control u in order to avoid the enlargement of the variable space. Under weak
assumptions the existence of a solution operator S, with y = S(u), will be proven in
section 3, leading to the minimization problem

min
u∈Uad

J
(
u, S(u), z(u)

)
.

To handle the possible ill-posedness of the problems, a Tikhonov regularization term
(see, e.g., [6], [8]) is added to the original cost function if necessary. Thus, the cost
function is written as

min
u∈Uad

F (u)(1.9)
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with

F (u) := J
(
u, S(u), z(u)

)
+
ε

2
‖u− uT ‖2T , ε ∈ R,

and as a function uT . The minimization problem is further simplified by supposing
initially the nonactivity of the constraint u ∈ Uad ; i.e, the problem (1.9) can be
treated as an unconstrained minimization problem. This simplification is justified if
the solution u∗ is supposed to be an interior point of Uad and if the starting point
is near the solution, which is guaranteed if a nested iteration is used [28], [29]. The
methods discussed here under the nonactivity assumption can be generalized to handle
further constraints without difficulties, for instance, by using projections for simple
constraints.

In the last section a comparison of the gradient method with and without Armijo
line search to Newton’s method shows the local superiority of the derived second order
method that takes advantage of the specific structure of this kind of problem. Cer-
tainly, these considerations are restricted to the local behavior of this method. For
an assertion on the global convergence properties, a further globalization technique,
e.g., trust region or line search, has to be added to Newton’s method. Since each
step of Newton’s method requires much computing time on a fine grid, we suggest a
combination of nested iteration and a simple line search method. Due to our construc-
tion procedure of Newton’s method in the infinite dimensional setting, we are in the
convenient situation of being able to compare the discretized iterates with the infinite
ones. A modified mesh independence principle for this specific class of problem is
presented in [29].

Besides the advantage of the mesh independence principle for predicting the con-
vergence of the computable method on the basis of the analyzed infinite dimensional
convergence, there is a further important point for practical implementation. The
mesh independence lays the theoretical foundation for the justification of refinement
strategies and helps to design this refinement process (see, e.g., [2]). Since the focus
is on the infinite dimensional solution, a fine discretization scheme has to be chosen,
so that the discrete solution approximates the infinite dimensional one appropriately.
However, a fine discretization also means that the finite problem consists of many vari-
ables, and therefore an increased amount of work per iteration has to be expected.

Thus, for simplicity we start with a projective gradient method on a coarse mesh
by using a line search algorithm with backtracking. We carry out iterations corre-
sponding to a certain stopping criterion and use this solution approximation, which
is interpolated to the finer mesh, as a new starting point for Newton’s method on
this mesh. This local or global refinement process continues until the finest mesh
is reached. The numerical computations, presented in [28] and in the last section,
underline the efficiency of the described procedure.

In [28] a detailed discussion of the comparison of different methods, including
quasi-Newton methods, is given for this kind of problems. It is shown that the SR1-
and the BFGS-update is far more efficient for this class of problems than the PSB-
or DFP-update. However, since in general it is not guaranteed that the Hessian is
positive definite, the BFGS-update failed for some test problems. Moreover, fewer
convergence assertions compared to the other updates are proven for the SR1-update.
One main advantage of this report is given by the detailed analysis of the structure
of this class of problem, which could also be exploited for the additive structured
updates [16].

At this point a few comments have to be made on the research on optimal shape
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design of Goto and Fujii [18], [19]. They state Newton’s method for some specific
problems and present corresponding numerical results. Contrary to our approach,
normal variations are used for deriving the derivatives. Their reports also show some
shortcomings in the theory, as well as in the numerical implementation. The exis-
tence of their derivatives is not proven in the Fréchet sense, which is necessary for
the convergence theory of Newton’s method in function spaces. Therefore, no com-
mon convergence result of Newton’s method can be applied. Even if the derivatives
exist in the Fréchet sense, then the question of how to choose adequate spaces has to
be answered. For this reason, the discretization used in these papers is not justified
by a statement concerning the convergence of the computed solution to the infinite
dimensional one. They also take no advantage of the problem-inherent structure
for the numerical implementation. In addition, their numerical comparison between
Newton’s and the gradient method is not informative, since the control function is
discretized with only four nodes and some implementational details are missing. Fi-
nally, they report numerical difficulties with examples where the Hessian is indefinite
at the beginning. This kind of problem never occurred for the algorithm we present.

The tilde indicates a function, boundary, etc., on the moving domain Ω̃ and it will
be omitted if the symbols are defined analogously on the fixed region Ω. Furthermore,
C and c, with all possible accents and indices, always represent generic constants.

2. Transformation of the problem. In this section, the transformation of the
optimal shape design problem into an optimal control problem is analyzed in detail for
any transformation T = T (u) that is completely determined by a function u ∈ Uad .
This transformation is illustrated by the frequently used transformation mentioned in
the introduction.

The general variational equation

ã(ỹ, η̃) = l̃(η̃) ∀η̃ ∈ Ṽ
on the moving domain Ω̃ is investigated, where the not necessarily symmetric bilinear
form ã(·, ·) and the linear functional l̃(·) are given by (1.4) and (1.5).

The transformation T−1 : Ω̃ → Ω of the domain is assumed to be continuous
everywhere, as well as bijective and differentiable almost everywhere. Then the gen-
eralized substitution rule of Rudin [34, Theorem 7.26, p. 153] can be applied to the
variational equation. Corresponding to our convention, the functions without tilde
are evaluated at x = T−1(x̃). The symbol T |Γ1

denotes the restriction of T to Γ1,
and J denotes the Jacobian of the transformation. Thus, the variational equation is
transformed into

ã(y, η) = l̃(η) ∀η ∈ V,
with

ã(y, η) =
∑
|i|,|j|≤1

〈
aij |det JT |D̃iy, D̃jη

〉
L2(Ω)

+
〈
b|det JT |Γ1

|y, η〉L2(Γ1)

and

l̃(η) =
∑
|i|≤1

〈
fi|det JT |, D̃iη

〉
L2(Ω)

+
〈
f |det JT |Γ1

|, η〉L2(Γ1)
.

Until now, the compact notation D̃i with the multi-index i has been used for
the different derivatives with respect to x̃. However, for the transformation of this
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derivative operator it will be advantageous to use the partial derivative notation ∂η
∂x̃µ

with µ = 1, 2. Evaluating the Jacobian of the transformation

JT−1(x) = J̃T−1(T (x)) = J̃T−1(x̃) =

(
∂x1

∂x̃1

∂x1

∂x̃2

∂x2

∂x̃1

∂x2

∂x̃2

)
,

the chain rule

∂η

∂x̃µ
=

2∑
ν=1

∂η

∂xν

∂xν
∂x̃µ

for µ = 1, 2

can be written shortly as

∇̃η =

(
∂η

∂x̃1
,
∂η

∂x̃2

)T
= JTT−1∇η.(2.1)

Hence, two cases have to be distinguished as far as the derivative operator D̃i

is concerned. For i = (0, 0) the simple equality D̃i = Di holds, while otherwise
D̃i is given as a linear combination of D(1,0) and D(0,1). Either way, by a suitable
redefinition of the coefficient functions aij , fi, b, and f , a structure can be derived
that is similar to the original variational equation.

Assuming that the transformation T = T (u) is completely determined by a func-
tion u ∈ Uad , we finally obtain a variational equation

a(u; y, η) = l(u; η) ∀η ∈ V,

with

a(u; y, η) =
∑
|i|,|j|≤1

〈
aij(u)Diy,Djη

〉
L2(Ω)

+ 〈b(u)y, η〉L2(Γ1)

and

l(u; η) =
∑
|i|≤1

〈
fi(u), Djη

〉
L2(Ω)

+ 〈f(u), η〉L2(Γ1).

This problem is described on the fixed domain Ω, where the coefficient functions now
depend nonlinearly on the parameter function u ∈ Uad .

This transformation process is illustrated by the specific transformation (1.6),
where the definition (1.2) of Uad implies that the control u is in the space of bounded
variations. Therefore, Lebesgue’s differentiation theorem [7, Theorem 8, p. 85] yields
that the function u is differentiable almost everywhere and that its derivative is
bounded almost everywhere, too. Thus, the transformation T−1 satisfies the as-
sumptions for applying the substitution rule.

For simplicity we consider the general bilinear form

ã(ỹ, η̃) =

∫
Ω̃

(∇̃ỹ)T Ã∇̃η̃ + ãT ∇̃ỹη̃ + b̃ỹη̃ dx̃+

∫
Γ̃1

c̃ỹη̃ dΓ̃1(2.2)

on the moving domain Ω̃ with the matrix Ã ∈ R2×2, the vector ã ∈ R2, and the
functions b̃, c̃ ∈ R. Since the transformation of the linear functional l̃(η̃) and the cost
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function J̃(ỹ, z̃) is done analogously, the considerations are restricted to the bilinear
form (2.2).

Taking advantage of the transformation described above and the equality (2.1),
the following reformulation of the bilinear form (2.2) is obtained:

ã(ỹ, η̃) =

∫
Ω

(∇y)T
(|det JT |JT−1ÃJTT−1

)∇η +
(|det JT |JT−1 ã

)T∇yη
+
(|det JT |b̃

)
yη dx+

∫
Γ1

(|det JT |Γ1
|c̃)yη dΓ1

=:

∫
Ω

(∇y)TA(u)∇η + a(u)T∇yη + b(u)yη dx+

∫
Γ1

c(u)yη dΓ1

=: a(u; y, η).(2.3)

The matrix A(u), the vector a(u), and the remaining function b(u), as well as c(u),
have to be evaluated for each boundary value problem by simple multiplications if the
terms det JT , det JT |Γ1

, and JT−1 are explicitly known.

To illustrate this transformation a specific test example is considered, which is
used for the numerical experiences afterwards. Initially, the optimal shape design
problem is given by

min
u∈Uad

∫
Ω̃

(ŷ − ẑ)2 dx̃,

with ẑ = sin
(

2πx̃1

u

)
sin (2πx̃2), Ω defined by (1.1), and the equality constraint stated

by a boundary value problem with inhomogeneous Dirichlet boundary conditions:

−∆ŷ + ŷ = (8π2 + 1) sin(2πx̃1) sin(2πx̃2) in Ω̃,

ŷ = g̃D := sin(2πx̃1) sin(2πx̃2) on ∂Ω̃.

This example is constructed in such a way that ŷ∗ = sin(2πx̃1) sin(2πx̃2) is the solution
of the state corresponding to the optimal domain with u∗ ≡ 1. For stating the weak
formulation of the inhomogeneous Dirichlet problem, the splitting ŷ = ỹ + g̃D has to
be introduced leading to the modified optimal shape design problem

min
u∈Uad

∫
Ω̃

(ỹ − z̃)2dx̃

with z̃ = ẑ − g̃D and the corresponding variational equation

ã(ỹ, η̃) = l̃(η̃) ∀η̃ ∈ H1
0(Ω̃),

where the bilinear form is defined by

ã(ỹ, η̃) =

∫
Ω̃

∇ỹ∇η̃ + ỹη̃ dx̃

and the linear function is given by

l̃(η̃) =

∫
Ω̃

(8π2 + 1) sin(2πx̃1) sin(2πx̃2)η − ã(g̃D, η̃).
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Now, the general transformation (2.3) can be used by setting Ã = I, ã = 0, b̃ = 1, and
c̃ = 0. For the specific transformation (1.6), the following formulas can be computed:

det JT = u,

det JT |Γ1
=



0 ∀x ∈ {(0, x2) ∈ R2 | x2 ∈ I},
u ∀x ∈ {(x1, 0) ∈ R2 | x1 ∈ [0, 1]}

∪{(x1, |I|) ∈ R2 | x1 ∈ [0, 1]},√
1 + u′(x2)2 ∀x ∈ {(1, x2) ∈ R2 | x2 ∈ (0, |I|)},

J |T−1 =

(
1
u −x1u

′
u

0 1

)
.

This leads to the nonsymmetric transformed bilinear form

a(u; y, η) =

∫
Ω

(∇y)T
(|det JT |JT−1JTT−1

)∇η + (|det JT |JT−10)
T ∇yη

+ (|det JT |) yη dx+

∫
Γ1

(
|det JT |Γ1

|0
)
yη dΓ1

=

∫
Ω

(
1

u
+
x12u′2

u

)
D(1,0)yD(1,0)η − x1u

′D(0,1)yD(1,0)η

− x1u
′D(1,0)yD(0,1)η + uD(0,1)yD(0,1)η + uyη dx.(2.4)

It is easily verified that the entire transformed optimal shape design problem is given
by the nonlinear problem

min
u∈U

∫
Ω

(y − z)2u dx

under the constraint of

a(u; y, η) = l(u; η) ∀η ∈ V := H1
0(Ω),

with the bilinear form (2.4) and the linear functional

l(u; η) =

∫
Ω

(
8π2 + 1

)
u sin(2uπx1) sin(2πx2)η dx− a(u; gD(u), η

)
.

This problem is now defined on the fixed domain Ω, where the coefficient functions
depend nonlinearly on the parameter function u ∈ Uad .

Finally, the question arises of what kind of connection holds between the solutions
ỹ and y and between the spaces that are described on the domains Ω̃ and Ω.

Theorem 2.1. Let T : Ω → Ω̃ be continuous everywhere. Furthermore, let the
transformation be bijective, as well as differentiable almost everywhere, such that its
derivative is also bounded almost everywhere.

Then the norms ‖ · ‖H1(Ω̃) and ‖ · ‖H1(Ω), as well as ‖ · ‖H1/2(∂Ω̃) and ‖ · ‖H1/2(∂Ω),

are equivalent. In addition, the bilinear form ã is continuous and Ṽ-elliptic if and
only if the bilinear form a is continuous and V-elliptic.
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Proof. The proof of this theorem is similar to that of the transformation theo-
rem proven by Adams [1, Theorem 3.35] for a C1 transformation and by Wloka [39,
Theorem 4.1] for a C0,1 transformation.

3. Newton’s method in function space. Based on Taylor’s formula, New-
ton’s method minimizes a quadratic model of the cost function F in each current
point u. This is done by solving the linear equation

F ′′(u)(w)(v) = −F ′(u)(v) ∀v ∈ U(3.1)

and correcting the initial approximation by u+ = u+ w.
In the optimal control problems under consideration, the cost function F (u) is

implicitly defined by the state that is given as the solution of a variational equation.
Thus, to state Newton’s method, the dependent state, with respect to the control u,
must first be analyzed in the context of Fréchet differentiability.

In addition to the variational equation (1.8) that determines the state, the adjoint
variational equation

a(u; η, p) = l(u; η) ∀η ∈ V(3.2)

is also considered with the same bilinear form a(u; ·, ·), which is not assumed to be
symmetric. For the sake of simplicity, the arbitrary linear functional on the right-hand
side of the adjoint equation is also denoted by l(u; ·) in the first part of this section.
Afterwards, it is chosen in a convenient way differing from the right-hand side of the
state equation.

Throughout this section, the following assumptions are made.
(A1) Ω ⊂ R2 is Lipschitz continuous.
(A2) a(u; ·.·) is a V-elliptic bilinear form for all u ∈ Uad .
(A3) f(u) ∈ V ′, aij(u) ∈ L∞(Ω), b(u) ∈ L∞(Γ1).
The trace inequalities (see, e.g., [39, Theorem 6.1]) yield

‖y‖H1(Ω) ≥ C1‖γ0y‖H 1
2 (∂Ω)

≥ C2‖γ0y‖L2(∂Ω) ≥ C3‖γ0y‖
(H 1

2 (∂Ω))′
,

and therefore,

‖y‖V ≥ C1‖γ0y‖H 1
2 (∂Ω)

≥ C2‖γ0y‖L2(∂Ω) ≥ C3‖γ0y‖
(H 1

2 (∂Ω))′
.(3.3)

Hence, by using the Cauchy–Schwarz inequality, the continuity of the bilinear
form a(u; ·, ·) is obtained as a simple consequence of (A3):

|a(u; y, η)|
≤

∑
|i|,|j|≤1

‖aij(u)‖L∞(Ω)〈Diy,Djη〉L2(Ω) + ‖b(u)‖L∞(Γ1)〈y, η〉L2(Γ1)

≤
∑
|i|,|j|≤1

‖aij(u)‖L∞(Ω)‖Diy‖L2(Ω)‖Djη‖L2(Ω) + ‖b(u)‖L∞(Γ1)‖y‖L2(Γ1)‖η‖L2(Γ1)

≤ c‖y‖V‖η‖V .
In the second part of this section, some more assumptions are needed, which are

ordered by strength. For example, (A7) implies the assumptions (A3) and (A4)–(A6).
(A4) f , aij , and b are once continuously Fréchet differentiable in u.
(A5) The first Fréchet derivatives of f , aij , and b are Lipschitz continuous.
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(A6) f , aij , and b are twice continuously Fréchet differentiable in u.
(A7) The second Fréchet derivatives of f , aij , and b are Lipschitz continuous in u.
The first theorem characterizes the dependence on the control of the state and

the adjoint by proving that y and p can be written as an operator of u.
Theorem 3.1. Let (A1)–(A3) be satisfied. For each f(u) ∈ V ′, there exists a

unique solution y ∈ V and a unique solution p ∈ V of the two variational equations

a(u; y, η) = l(u; η) ∀η ∈ V,
a(u; η, p) = l(u; η) ∀η ∈ V.

Thus, there also exist unique solution operators S : Uad → V with y = S(u) and
T : Uad → V with p = T (u).

Proof. To use the Lax–Milgram lemma, it remains to be verified that l(u; ·) is a
continuous linear functional. However, this is a simple implication of

|l(u; η)| ≤ |〈f(u), η〉V′×V |
≤ ‖f(u)‖V′‖η‖V
≤ c‖η‖V .

Therefore, the Lax–Milgram lemma can be applied, resulting in the existence of a
unique y and a unique p for every u ∈ Uad , given by the solutions of the different
variational problems. Hence, unique solution operators S with y = S(u) and T with
p = T (u), respectively, exist.

The existence of the solution operators is not sufficient to state Newton’s method.
In addition, it is necessary to prove their Fréchet differentiability. This will be done
in the following theorem, by comparing each variational equation with another one,
whose unique solution is expected to be the derivative. Attention should be drawn to
the fact that both variational equations consist of the same bilinear form, and thus,
the only difference is due to the linear functional on the right-hand side. Furthermore,
it should be noted that the V-ellipticity of the bilinear form is essential for the proof
of this theorem.

Theorem 3.2. Let (A1)–(A4) be satisfied. Then the solution operators S : Uad →
V and T : Uad → V are Fréchet differentiable with S′(u), T ′(u) ∈ L(U ,V). Moreover,
ŷv := S′(u)(v) and p̂v := T ′(u)(v) are the unique solutions of the variational problems

a(u; ŷv, η) = lu(u; η)(v)− au(u;S(u), η)(v) ∀η ∈ V,(3.4)

a(u; η, p̂v) = lu(u; η)(v)− au(u; η, T (u))(v) ∀η ∈ V,(3.5)

with

au(u; y, η)(v) =
∑
|i|,|j|≤1

〈a′ij(u)(v)Diy,Djη〉L2(Ω) + 〈b′(u)(v)y, η〉L2(Γ1)

and

lu(u; η)(v) = 〈f ′(u)(v), η〉V′×V .
The proof is given in the appendix.
To state Newton’s method, the cost function F is assumed to be twice con-

tinuously Fréchet differentiable in u. In order to prove this, the Lipschitz continuity
of the solution operators S′(·) and T ′(·) will be necessary.
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Lemma 3.3. If (A1)–(A5) are satisfied, then S′(·) : Uad → V and T ′(·) : Uad → V
are Lipschitz continuous.

Proof. This assertion can be proven analogously to the proof of Theorem 3.2.
It should be noted that, if (A6) is supposed to be true, the assumption (A5) is

implicitly valid. In other words, the assumptions of Lemma 3.3 are satisfied if the
coefficient functions are twice Fréchet differentiable, which must be assumed anyway
to state Newton’s method.

3.1. First derivative of the cost function. After these theoretical investiga-
tions the first Fréchet derivative of the cost function can be derived. Under suitable
assumptions, the first Fréchet derivative

F (u) = J(u, S(u), z(u)) +
ε

2
‖u− uT ‖2T

is given by

F ′(u)(v) = Ju
(
u, S(u), z(u)

)
(v) + Jy

(
u, S(u), z(u)

)(
S′(u)(v)

)
+ Jz

(
u, S(u), z(u)

)(
z′(u)(v)

)
+ ε〈u− uT , v〉T .(3.6)

Unfortunately, the function v implicitly influences z′(u)(v) and S′(u)(v). In com-
mon applications the first term is explicitly given, while S′(u)(v) is the solution of a
variational equation. Since this implicit formulation is not convenient for the construc-
tion of our algorithm, the first two derivatives of the cost functions are equivalently
reformulated. This is done by using the adjoint equation with the linear functional
l(u; η) := Jy(u, S(u), z(u))(η), η ∈ V. For stating the following theorems some modi-
fied versions of the assumptions (A3)–(A5) are needed.

(B3) J : Uad×V×Z → R is once Fréchet differentiable with Jy(u, S(u), z(u)) ∈ V ′.
(B4) J : Uad×V×Z → R is twice Fréchet differentiable and Jyu(u, S(u), z(u))(v) ∈

V ′ for all v ∈ U , Jyy(u, S(u), z(u)) ∈ (V × V)′, as well as Jyz(u, S(u), z(u)) ∈
(V × Z)′, are continuous with respect to u.

(B5) J : Uad × V × Z → R is twice continuously Fréchet differentiable and
Jyu(u, S(u), z(u))(v) ∈ V ′ for all v ∈ U , Jyy(u, S(u), z(u)) ∈ (V × V)′,
Jyz(u, S(u), z(u)) ∈ (V × Z)′ are Lipschitz continuous with respect to all
components.

Attention should be drawn to the fact that, from now on, the assumptions (A1)–
(A7) correspond only to the state equation. To apply the results of the previous section
to the adjoint, the modified assumptions (B3)–(B5) must additionally be satisfied.

Theorem 3.4. Let (A1)–(A3) and (B3) be satisfied. Then there exists a unique
solution p ∈ V of the adjoint equation

a(u; η, p) = Jy(u, S(u), z(u))(η) ∀η ∈ V(3.7)

and a unique solution operator T : Uad → V with p = T (u). Moreover, if (A4) is
valid and the function z ∈ Z is Fréchet differentiable, then the cost function F is also
Fréchet differentiable and F ′(u) ∈ L(U ,R) is defined by

F ′(u)(v) = Ju(u, S(u), z(u))(v) + Jz(u, S(u), z(u)) (z′(u)(v))

+ lu(u;T (u))(v)− au(u;S(u), T (u))(v) + ε〈u− uT , v〉T .(3.8)

Proof. The existence and uniqueness of the solution operators S(u) and T (u) are
given by Theorem 3.1.
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Since (A1)–(A4) are satisfied, Theorem 3.2 yields the existence of ŷv = S′(u)(v)
as the solution of

a
(
u; ŷv, η

)
= lu(u; η)(v)− au(u; y, η)(v) ∀η ∈ V.

By setting η = ŷv in the adjoint variational equation (3.7) and η = p in the
previous equation, the equality of both left-hand sides is obtained. Hence, the two
right-hand sides evaluated at the distinct points are also equal:

Jy
(
u, S(u), z(u)

)(
S′(u)(v)

)
= lu(u; p)(v)− au(u; y, p)(v).

This completes the proof by substituting the last equality into the first derivative
(3.6) of the cost function.

Before stating the second derivative of the cost function, the auxiliary bilinear
operators H1(u; ·, ·) : V × U → R and HT (·, ·) : U × U → R are introduced:

H1(u; p, v) := lu(u; p)(v)− au
(
u;S(u), p

)
(v),

HT (u− uT , v) := ε〈u− uT , v〉T .

A notation analogous to the bilinear form a(u; ·, ·) is used for the auxiliary opera-
tor H1(u; ·, ·). The functions that H1 depends on linearly are separated by a comma,
and the nonlinear dependency of u is indicated by a semicolon.

Thus, the first derivative is rewritten as

F ′(u)(v) = Ju
(
u, S(u), z(u)

)
(v) + Jz

(
u, S(u), z(u)

)(
z′(u)(v)

)
+ H1

(
u;T (u), v

)
+HT (u− uT , v).(3.9)

To sum up, the right-hand side of Newton’s equation is computed in three steps.
First the variational equations (1.8) and (3.7) are solved to obtain the state and the
adjoint of the control problem. The first derivative of the cost function can then be
evaluated. Since the state is needed to evaluate the linear functional of the adjoint
variational equation, and since both solutions are required for the computation of the
right-hand term of Newton’s equation, these steps have to be done sequentially. To
summarize, these steps are listed in Algorithm 3.5.

Algorithm 3.5 (first derivative in function spaces).
1. Compute the state y = S(u) as the solution of

a(u; y, η) = l(u; η) ∀η ∈ V.

2. Compute the adjoint p = T (u) as the solution of

a(u; η, p) = Jy(u, y, z(u))(η) ∀η ∈ V.

3. Compute the negative first derivative as

−F ′(u)(v) = −Ju
(
u, y, z(u)

)
(v)− Jz

(
u, y, z(u)

)(
z′(u)(v)

)
− H1(u; p, v)−HT (u− uT , v).

3.2. Second derivative of the cost function. Instead of differentiating the
original formula (3.6), the second derivative of the cost function is derived in the next
theorem from the adjoint equation (3.7) of Theorem 3.4.
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Theorem 3.6. Let (A1)–(A4), (B3)–(B4) be satisfied and the function z ∈ Z
be once Fréchet differentiable. The derivative p̂ := p̂w := T ′(u)(w) of the adjoint
p = T (u) is then given by the solution of the variational problem

a(u; η, p̂) = Jyu
(
u, S(u), z(u)

)
(η)(w) + Jyy

(
u, S(u), z(u)

)
(η)
(
S′(u)(w)

)
+ Jyz

(
u, S(u), z(u)

)
(η)
(
z′(u)(w)

)− au(u; η, T (u)
)
(w) ∀η ∈ V.(3.10)

If, in addition, even (A6) is valid and the function z ∈ Z is twice Fréchet dif-
ferentiable, then the cost function F is also twice Fréchet differentiable and F ′′(u) ∈
L(U ,L(U ,R)) is defined by

F ′′(u)(v)(w) = Juu
(
u, S(u), z(u)

)
(v)(w)

+ Juy
(
u, S(u), z(u)

)
(v)
(
S′(u)(w)

)
+ Juz

(
u, S(u), z(u)

)
(v)
(
z′(u)(w)

)
+ Jzu

(
u, S(u), z(u)

)(
z′(u)(v)

)
(w)

+ Jzy
(
u, S(u), z(u)

)(
z′(u)(v)

)(
S′(u)(w)

)
+ Jzz

(
u, S(u), z(u)

)(
z′(u)(v)

)(
z′(u)(w)

)
+ Jz

(
u, S(u), z(u)

)(
z′′(u)(v)(w)

)
− au

(
u;S′(u)(w), T (u)

)
(v)− au

(
u;S(u), T ′(u)(w)

)
(v)

− auu
(
u;S(u), T (u)

)
(v)(w)

+ lu
(
u;T ′(u)(w)

)
(v) + luu

(
u;T (u)

)
(v)(w) + ε〈v, w〉T ,(3.11)

with

auu(u; y, p)(v)(w) =
∑
|i|,|j|≤1

〈
a′′ij(u)(v)(w)Diy,Djp

〉
L2(Ω)

+
〈
b′′(u)(v)(w)y, p

〉
L2(Γ1)

and

luu(u; p)(v)(w) =
〈
f ′′(u)(v)(w), p

〉
V′×V .

Proof. Since the assumptions (A1)–(A4) are valid, Theorem 3.2 yields the exis-
tence of a unique state derivative ŷ := S′(u)(w) in the new direction w. Recalling the
definition of the bilinear operator H1(u; ·, ·) from the last subsection, ŷ is given as the
solution of

a
(
u; ŷv, η

)
= H1(u; η, w) ∀η ∈ V.(3.12)

Moreover, the corresponding modified assumptions (B3) and (B4) for the linear
functional of the adjoint are satisfied. Therefore, Theorem 3.2 can be applied to show
that p̂ = T ′(u)(w) is the unique solution of the variational equation (3.10).

Hence, all operators in (3.11) are well defined and it remains to prove that the
equality holds. To show this, the first derivative is considered in the representation
(3.8) of the last theorem. Based on the given assumptions, this formula can simply
be differentiated to prove the desired assertion.

At this point it should be emphasized that due to the use of the adjoint equation
no derivative of the solution operator S(u) is needed for the first derivative of the cost
function. Moreover, the last theorem shows how to compute the second derivative
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of the cost function without explicitly computing the second derivative of a solution
operator.

To simplify the formulation of the algorithm, three more bilinear operators
H2(u; ·, ·) : V × U → R, H3(u; ·, ·) : V × V → R, and H4(u; ·, ·) : U × U → R are
introduced by the following definitions:

H2(u; η, w) := Jyu
(
u, S(u), z(u)

)
(η)(w)

+ Jyz
(
u, S(u), z(u)

)
(η)
(
z′(u)(w)

)− au(u; η, T (u)
)
(w),

H3(u; η, ŷ) := Jyy
(
u, S(u), z(u)

)
(η) (ŷ) ,

H4(u; v, w) := Juu
(
u, S(u), z(u)

)
(v)(w)

+ Juz
(
u, S(u), z(u)

)
(v)
(
z′(u)(w)

)
+ Jzu

(
u, S(u), z(u)

)(
z′(u)(v)

)
(w)

+ Jzz
(
u, S(u), z(u)

)(
z′(u)(v)

)(
z′(u)(w)

)
+ Jz

(
u, S(u), z(u)

)(
z′′(u)(v)(w)

)
− auu

(
u;S(u), T (u)

)
(v)(w) + luu

(
u;T (u)

)
(v)(w).

First, the variational equation (3.10) of the adjoint derivative p̂ = T ′(u)(w) is rewrit-
ten as

a(u; η, p̂) = H2(u; η, w) +H3(u; η, ŷ) ∀η ∈ V.(3.13)

Moreover, the second Fréchet derivative of the cost function (3.11) can be written in
the shortened form

F ′′(u)(v)(w) = H1(u; p̂, v) +H4(u; v, w) +HT (v, w)

+ Juy
(
u, S(u), z(u)

)
(v)
(
S′(u)(w)

)
+ Jzy

(
u, S(u), z(u)

)(
z′(u)(v)

)(
S′(u)(w)

)
− au

(
u;S′(u)(w), T (u)

)
(v).(3.14)

Looking at this formulation, one recognizes that H2(u; ŷ, v) is equal to the last
three lines of (3.14) if the second partial derivatives in different directions of the
functional J are interchangeable. This can be done if the assumptions of the next
theorem are satisfied.

Theorem 3.7. Let (A1)–(A6), (B3)–(B5) be satisfied and z(u) ∈ Z be twice
continuously Fréchet differentiable. Then the following assertions hold.

1. All partial derivatives of the functional J up to the second order and all the
operators au, auu, lu, luu, F ′, and F ′′ are continuous with respect to u.

2. The following equalities are true:

Juy(u, y, z)(v)(ŷ) = Jyu(u, y, z)(ŷ)(v) ∀v ∈ U , ŷ ∈ V,
Juz(u, y, z)(v)(ẑ) = Jzu(u, y, z)(ẑ)(v) ∀v ∈ U , ẑ ∈ Z,
Jyz(u; y, z)(ŷ)(ẑ) = Jzy(u; y, z)(ẑ)(ŷ) ∀ŷ ∈ V, ẑ ∈ Z,
auu(u; ·, ·)(v)(w) = auu(u; ·, ·)(w)(v) ∀v, w ∈ U ,
luu(u; ·, ·)(v)(w) = luu(u; ·, ·)(w)(v) ∀v, w ∈ U ,

F ′′(u)(v)(w) = F ′′(u)(w)(v) ∀v, w ∈ U .



518 MANFRED LAUMEN

3. If in addition the second derivatives of the coefficient functions are Lipschitz
continuous (i.e., (A7) holds) and z′′(u), as well as all partial derivatives of J ,
are Lipschitz continuous, too, then the operators S′(·), T ′(·), and the second
derivative of the cost function are also Lipschitz continuous.

Proof. Since this can be shown easily with Lemma 3.3, the proof is omitted
here.

The second part of the last theorem lists the required assumptions for yielding a
symmetric F ′′(u). In comparison to Theorem 3.6, which states the second derivative
of the cost function, only (B5) and the continuity assumption of z′′(u), as well as of
all partial derivatives of J , are added for this symmetry result. But these are very
weak assumptions, since either way the functions have to be assumed to be Lipschitz
continuous to obtain the q-quadratic convergence rate.

Finally, supposing that all the mentioned assumptions of Theorem 3.7 are fulfilled,
the second derivative of the cost function (3.14) further reduces to

F ′′(u)(v)(w) = H1(u; p̂, v) +H2(u; ŷ, v) +H4(u; v, w) +HT (v, w),(3.15)

and the computation of the second derivative can be summarized in a short descrip-
tion.

As in Algorithm 3.5 used to compute the negative first derivative of the cost
function, the derivatives of the state (3.12) and of the adjoint (3.13) have to be
computed as the solutions of variational equations with the same bilinear form. This
must be done before the left-hand term of Newton’s equation can be evaluated. So
once again, these steps have to be done sequentially.

Algorithm 3.8 (second derivative in function space).
1. Compute the derivative of the state ŷ = S′(u)(w) as the solution of

a(u; ŷ, η) = H1(u; η, w) ∀η ∈ V.
2. Compute the derivative of the adjoint p̂ = T ′(u)(w) as the solution of

a(u; η, p̂) = H2(u; η, w) +H3(u; η, ŷ) ∀η ∈ V.
3. Compute the second derivative of the cost function in the direction w as

F ′′(u)(v)(w) = H1(u; p̂, v) +H2(u; ŷ, v) +H4(u; v, w) +HT (v, w).

The auxiliary operators introduced above not only make a shortened notation
possible, but they also lead to advantageous implementational aspects. In Newton’s
method the operator H1(u; ·, ·) appears not only in the computation of the right-hand
term (see Algorithm 3.5), but also as the linear functional H1(u; ·, w) in the compu-
tation of the state derivative (3.12), and directly in the computation of the second
derivative as H1(u; p̂, v). Analogously, H2(u; ·, w) is a part of the linear functional for
the adjoint derivative (3.13), and it is also directly used as H2(u; ŷ, v) for the com-
putation of the second derivative. In addition, in each iteration of a linear iterative
solver, the auxiliary operators have to be evaluated in different directions. In the
following, the discretization of the algorithm leads to sparse matrices H1, H2, H3, H4,
and HT , which make efficient storage possible. Thus, the handling of the auxiliary
operators results in the multiplication of various sparse stored matrices with different
vectors.

After all these theoretical investigations, the theorem of Newton’s q-quadratic
convergence rate is adapted for the problems under consideration.



NEWTON’S METHOD FOR OPTIMAL SHAPE DESIGN PROBLEMS 519

Theorem 3.9. Let (A1)–(A7), (B3)–(B5) be satisfied. Let z(u) ∈ Z be twice
continuously Fréchet differentiable in an open neighborhood U of the solution u∗, and
z′′(u), as well as all partial derivatives of J , be Lipschitz continuous, too. Further-
more, assume that the existence of F ′′(u∗)−1 ∈ L(L(U ,R),U) and of the solution u∗
in the interior of Uad are guaranteed.

Then there exists a δ > 0, such that the iterative sequence {un} generated by (3.1)
converges to the solution u∗ for every initial value u0 with ‖u0−u∗‖U ≤ δ. Moreover,
there is a suitable constant C depending on U and on the existing Lipschitz constant
L of the second derivative of the cost function, such that

‖un − u∗‖U ≤ C‖un−1 − u∗‖2U .(3.16)

Proof. The theorem is stated in such a way that all the assumptions required
for the last theorem are fulfilled. Hence, Newton’s method is well defined, F ′′(u)
is Lipschitz continuous with a constant L, and the desired assertion is derived as
an application of the general theorem of Newton’s q-quadratic convergence rate [40,
p. 208].

4. Discretization of Newton’s method. The derived infinite dimensional
Newton’s method is discretized by using the finite element method. This discretiza-
tion procedure inheres the advantage that the behavior of the discretized and the
infinite dimensional iterates can be compared. Besides theoretical aspects, this would
also lead to an attractive way to speed up the numerical algorithm by using a kind of
nested iteration. We also proved a modified mesh independence behavior of Newton’s
method for these optimal shape design problems; however, since these aspects would
be beyond the scope of this paper it will be published separately [29].

Using the finite element method with arbitrary element functions for the dis-
cretization means the replacement of the infinite dimensional spaces V and U by the
finite dimensional subspaces VN and UM . The finite element method is used for the
solution of the different variational equations in Ω ⊂ R2, as well as for the calculation
of Newton’s equation in I ⊂ R. To keep matters simple, a triangulation is always
used for the state discretization and all explanations are based on simple linear spline
basis functions. However, other kinds of partitions and element functions would not
change anything essentially in the theory and could be done in a similar way.

So let {φτ}Nτ=1 := {φτ (x1, x2)}Nτ=1, φτ ∈ VN , be two-dimensional spline basis
functions, which are used to solve the distinct variational equations. Then, the func-
tions defined on Ω ⊂ R2 are given by the following linear combinations of the basis
functions:

two-dimensional test function, ηN (x1, x2) =
N∑
τ=1

ηNτ φτ (x1, x2),

state function, yN (x1, x2) =

N∑
µ=1

yNµ φµ(x1, x2),

adjoint function, pN (x1, x2) =
N∑
ν=1

pNν φν(x1, x2),

derivative of the state function, ŷN (x1, x2) =
N∑
µ̂=1

ŷNµ̂ φµ̂(x1, x2),
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derivative of the adjoint function, p̂N (x1, x2) =
N∑
ν̂=1

p̂Nν̂ φν̂(x1, x2).

In addition, the discretization of the functions u, v, and w ∈ U , resulting from the
transformed moving part ΓM of the boundary, is needed. Therefore, let {ψk}Mk=1 :=
{ψk(x2)}Mk=1, ψk ∈ UM , be the one-dimensional spline basis functions that lead to the
following discretization of the one-dimensional functions mentioned above:

one-dimensional test function, vM (x2) =

M∑
i=1

vMi ψi(x2),

step function, wM (x2) =

M∑
j=1

wMj ψj(x2),

domain function, uM (x2) =

M∑
k=1

uMk ψk(x2).

In practice, the dimension M will always be chosen to be equal to 2−l
√
N−2−l+1,

l ∈ N0. Moreover, the elements will be defined in such a way that the overlapping
parts of the supports of the one-dimensional and two-dimensional element functions,
with respect to the x2 component, is minimized. This lays the foundation for the
sparsity pattern of the discretization matrices.

Throughout this report, the arguments (x1, x2) and (x2) will be omitted for better
readability of the equations. Nevertheless, the fact that the functions u, v, w, and ψ are
defined on the one-dimensional interval I, depending only on x2, is emphasized. Aside
from that, a vector consisting of the N or M basis coefficients is always denoted with
an arrow on top of the same letter as the coefficient, for example, ~yN = (yN1 , . . . , y

N
N )T .

With this notation, the infinite dimensional Newton’s equation (3.1) is rewritten
as the finite dimensional equation

F ′′N
(
uM
)(
vM
)(
wM

)
= −F ′N

(
uM
)(
vM
) ∀vM ∈ UM ,

which is equivalent to

M∑
j=1

wMj F
′′
N

(
uM
)
(ψi)(ψj) = −F ′N (uM )(ψi) ∀i = 1, . . . ,M.

If the Hessian matrix H ∈ RM×M and the vector d ∈ RM are denoted by

H =
[
F ′′N
(
uM
)
(ψi)(ψj)

]M
i,j=1

and

d =
[− F ′N(uM)(ψi)]Mi=1

,

then the discretized Newton’s method is written in the following form.
Algorithm 4.1 (discretized Newton’s method).
0. Given ~uM ∈ RM .
1. Compute ~wM as the solution of

H ~wM = d.
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2. Set ~uM+ = ~uM + ~wM .
Thus, the optimal shape design problem reduces to solving a sequence of linear

systems. Discretizing and explicitly computing the Hessian matrix results in an ex-
pensive numerical method. Alternatively, an iterative method can be used to solve
these linear subproblems. The symmetry of the Hessian matrix H in a region around
the solution point is a trivial conclusion of Theorem 3.7. However, since F is highly
nonlinear, it is not ensured that the Hessian matrix is positive definite. This case is
also underlined by the observed numerical difficulties for using the BFGS-update in
some examples. For this reason, the well-known CG method that requires a symmetric
positive definite matrix does not work.

To overcome this drawback, the special Krylov subspace method SYMMLQ from
Paige and Saunders [23], [31], which deals with an indefinite matrix, is used for the
implementation. Similar to the CG method, SYMMLQ needs only the result of a
matrix-vector multiplication H ~wM , instead of the matrix H explicitly, and further
takes advantage of the matrix symmetry. Hence, it only remains to show how to
compute the right-hand side vector d and the matrix-vector multiplication H ~wM with
an arbitrary vector ~wM . The required algorithms will be the discretized versions of
Algorithm 3.5 for computing d and of Algorithm 3.8 for computing the matrix-vector
multiplication. Hence, the negative discretized first derivative of the cost function can
be computed by Algorithm 4.2, which follows.

To understand this algorithm, some auxiliary matrices resulting from the dis-
cretization of the various operators introduced in the previous section must be ex-
plained. First, the two-dimensional stiffness matrix A ∈ RN×N of the elliptic varia-
tional equations, given by

A = [a(u;φµ, φτ )]Nµ,τ=1,

consists of the typical sparse structure that is worked out in every standard finite ele-
ment book. Corresponding to the symmetry property of the underlying bilinear form
the stiffness matrix is also symmetric or nonsymmetric. Various sparse storing tech-
niques have been developed for this kind of matrix to minimize the required amount
of storage. To exploit this sparsity pattern, the linear system has to be solved by an
iterative method, for instance, by Krylov subspace methods with preconditioning.

Algorithm 4.2 (computation of Newton’s right-hand-side vector).
1. Compute the state yN as the solution of

A~yN = ly

with

ly =
[
l
(
uM ;φτ

)]N
τ=1

.

2. Compute the adjoint pN as the solution of

AT ~pN = lp

with

lp =
[
Jy
(
uM ; yN , z

(
uM
))

(φτ )
]N
τ=1

.

3. Compute the right-hand side vector of Newton’s equation

d =
[− Ju(uM , yN , z(uM))(ψi)− Jz(uM , yN , z(uM))(z′(uM)(ψi))]Mi=1

− H1~p
N −HT

(
~uM − ~uMT

)
.
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φν ψi−1

ψi

ψi+1

Fig. 2. Triangulation of the two-dimensional domain Ω with the corresponding one-dimensional
finite element functions.

In addition, the auxiliary matrix H1 ∈ RM×N , and the matrices H2 ∈ RM×N ,
H3 ∈ RN×N , H4 ∈ RM×M , and HT ∈ RM×M used later, also result from the
discretization of the corresponding operators that were introduced in the previous
section:

H1 :=
[
H1

(
uM ;φν , ψi

)]
i = 1,...,M
ν = 1,...,N

,

H2 :=
[
H2

(
uM ;φτ , ψj

)]
j = 1,...,M
τ = 1,...,N

,

H3 :=
[
H3

(
uM ;φτ , φµ̂

)]
τ = 1,...,N
µ̂ = 1,...,N

,

H4 :=
[
H4

(
uM ;ψi, ψj

)]
i = 1,...,M
j = 1,...,M

,

HT :=
[
HT
(
ψi, ψj

)]
i = 1,...,M
j = 1,...,M

.

Computing these auxiliary matrices every time they occur will increase the com-
puting time, so that the algorithm slows down enormously. Therefore, it must be
decided if it is acceptable to store these matrices explicitly at each nonlinear itera-
tion. Since the two-dimensional stiffness matrix A, as well as the symmetric matrix
H3, result from the integration of two two-dimensional element functions, their spar-
sity patterns consist of the same structure. The same arguments hold for the matrices
H4 and HT resulting from two one-dimensional finite element functions. Both con-
sist of the same tridiagonal sparsity pattern as the usual symmetric one-dimensional
stiffness matrix, and the matrix HT is also always symmetric. In addition to this
special structure, these matrices are only defined in RM×M , where M , resulting from
the one-dimensional discretization, will usually be less than or equal to

√
N .

The remaining matrices H1 and H2, which are based on one one-dimensional
function and one two-dimensional basis function, also consist of a specific sparse
structure. On the left-hand side of Figure 2, a regular triangulation of the domain
Ω is given with an arbitrary two-dimensional finite element function φν , where its
support Sφν := {(x1, x2) | φν(x1, x2) ≥ 0} is hatched. On the right-hand side,

the one-dimensional element functions, where M =
√
N , are sketched. The node

(xν1 , x
ν
2) ∈ Ω is uniquely defined by φν(xν1 , x

ν
2) = 1, and the one-dimensional node

xi2 ∈ I is determined by ψi(x
i
2) = 1.

It is easy to see that the entries of the matrices H1 and H2, with respect to φν , are
always zero, unless xν2 is equal to xi2 or to one of its direct neighbors, xi−1

2 and xi+1
2 .
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Consequently, using the discretization given by M =
√
N , for each of the N two-

dimensional functions φν , at most three nonzero entries have to be stored. If the one-
dimensional grid is coarser than the two-dimensional one, i.e., if M = 2−l

√
N−2−l+1,

l > 0, it is easily verified that only two entries have to be stored for every φν .
To summarize, each of these latter matrices can be stored in an N × 3, possibly

an N × 2, matrix, if a pointer indicates where the one-dimensional neighbors of a
two-dimensional node, with respect to the x2 component, are stored. This pointer is
implemented in a convenient way to evaluate matrix-vector multiplications with the
transpose of the matrix, as well as with the matrix itself. Both kinds of multiplications
are necessary to compute the right-hand side of Newton’s equation and to compute
the matrix-vector multiplication in each iteration of the linear solver SYMMLQ.

To sum up, at most 2(3N) + 5
√
N − 3 numbers have to be stored for H1, H2, H4,

and HT , and two stiffness matrix storages, one for H3 and one for the stiffness matrix
A, are needed. Under these circumstances it is reasonable to store the auxiliary
matrices.

Finally, the discretized version of Algorithm 3.8 for computing the matrix-vector
multiplication for SYMMLQ completes the discretization. Once again, it should be
emphasized that these steps must be done sequentially, and each computation of
a variational equation in the infinite dimensional setting results in solving a linear
system with the same stiffness matrices A and AT , respectively.

Algorithm 4.3 (Hessian matrix multiplied by a vector ~wM).
1. Compute the derivative of the state ŷN as the solution of

A~̂y
N

= lŷ

with

lŷ = HT
1 ~w

M .

2. Compute the derivative of the adjoint p̂N as the solution of

AT ~̂p
N

= lp̂

with

lp̂ = HT
2 ~w

M +H4
~̂y
N
.

3. Compute the Hessian matrix multiplied by a vector ~wM as

H ~wM = H1
~̂p
N

+H2
~̂y
N

+H4 ~w
M +HT ~wM .

At this point, attention should be drawn to the fact that the work for computing
one matrix-vector multiplication H ~wM is essentially determined by the operations
required to solve two linear systems, one for the derivative of the state and the other
one for the derivative of the adjoint.

5. Numerical results. In this section a comprehensive comparison will illus-
trate the superiority of Newton’s method over first order numerical methods. The
linear iteration for solving each linearized optimal control problem has been realized
by the algorithm SYMMLQ with the stopping criterion

‖H ~wM − d‖2 ≤ tolsymmlq = 10−9.
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Fig. 3. Initial and optimal states.

Since for our example the variational equations consist of a symmetric bilinear form,
the CG method with a hierarchical and a diagonal preconditioner is implemented to
accelerate the expected convergence rate. This iterative method terminates if the
L2(Ω) norm of the residual is less than or equal to the constant tolcg = 10−11.
These stopping criterions for the subproblems are rather small in order to exclude the
influence of these errors on the observed convergence rate. However, the algorithm
could be accelerated enormously by taking advantage of the inexact Newton’s method
concept [15].

For all numerical experiments, the Tikhonov regularization term is implemented
with uT ≡ 0 and ε = 10−4. The nonlinear iteration is stopped if the norm of the
gradient F ′N is less than 10−8. Furthermore, to compare the different methods, the
discretization parameters are chosen to be M = 65 and N = 652. All presented
computations are done on a SUNSparcstation 20 in double precision FORTRAN.

We tested our codes with several different examples and various parameter selec-
tions. Since it is impossible to present all of them within the limitations of this report,
we restrict ourselves to the example of section 2. In this paper we are only interested
in the local convergence behavior in order to support the presented theory. There-
fore, globalization aspects are omitted by starting close to the solution (u0 ≡ 1.1,
y0 = sin(2u0πx1) sin(2πx2)). For clarity, the function y0 and z ≡ y∗ are drawn in
Figure 3.
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Table 1
Gradient method without any line search technique.

It Time
∥∥wM∥∥ FN

(
uMi

) ∥∥F ′N(uMi )∥∥ ∥∥uMi − u∗∥∥
0 7.87 0.000E + 00 0.411E − 01 0.167E − 01 0.100E + 00

100 718.68 0.124E − 03 0.137E − 03 0.120E − 03 0.252E − 01

500 3326.47 0.206E − 04 0.557E − 04 0.187E − 04 0.581E − 02

1000 6349.57 0.370E − 05 0.517E − 04 0.336E − 05 0.104E − 02

1500 9233.63 0.690E − 06 0.516E − 04 0.626E − 06 0.520E − 03

2000 11989.68 0.130E − 06 0.516E − 04 0.117E − 06 0.546E − 03

2500 14623.33 0.244E − 07 0.516E − 04 0.220E − 07 0.556E − 03

2737 15825.93 0.110E − 07 0.516E − 04 0.997E − 08 0.557E − 03

Table 2
Gradient method.

It Time
∥∥wM∥∥ FN

(
uMi

) ∥∥F ′N(uMi )∥∥ ∥∥uMi − u∗∥∥
0 7.87 0.000E + 00 0.411E − 01 0.167E − 01 0.100E + 00

50 1146.71 0.385E − 03 0.548E − 04 0.386E − 04 0.492E − 02

100 2205.26 0.582E − 04 0.517E − 04 0.496E − 05 0.816E − 03

150 3216.18 0.751E − 05 0.516E − 04 0.664E − 06 0.525E − 03

200 4167.96 0.101E − 05 0.516E − 04 0.932E − 07 0.551E − 03

250 5071.99 0.282E − 06 0.516E − 04 0.297E − 07 0.557E − 03

265 5333.37 0.892E − 07 0.516E − 04 0.844E − 08 0.558E − 03

Although the differentiation of the expressions seems to be rather time consuming,
the derivatives could be derived within an appropriate time frame by using symbolic
differentiation, supplied by standard software. In addition, the implementation of
these functions can be simplified by splitting up the computation into many subprob-
lems, as explained by Chenais [11] and Chenais, Rousselet, and Benedict [12].

For this example, the convergence behavior of the gradient method without any
line search techniques is illustrated in Table 1. The first column gives the number of
the nonlinear iterations. Then, the accumulative time, measured in seconds, for all
the previous iterations are specified. Right next to it, the L2(I) norm of the step, the
value of the cost function, the L2(Ω) norm of the gradient, and the L2(I) norm of the
control error ui−u∗ are tabulated. Note that ui is the finite ith iteration, whereas u∗
is the solution of the infinite dimensional problem without regularization. On account
of this, the q-quadratic convergence rate of these values cannot be expected.

This method apparently converges very slowly to the local solution. For example,
after the thousandth iteration, the distance ui − u∗ is still greater than 10−3. This
behavior has to be expected since this method is known to converge slowly but with
fewer operations per iteration. In this example, each iteration is done within 5 to 8
seconds, and more than 6350 seconds are needed to reduce the error of the control
under the bound 10−3.

Table 2 documents the convergence of the implemented gradient method with the
Armijo rule [26] for the specific parameters σ = .1 and ς = .5, which have been selected
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Table 3
Newton’s method.

It It/Sym Time
∥∥wM∥∥ FN

(
uMi

) ∥∥F ′N(uMi )∥∥ ∥∥uMi − u∗∥∥
0 0 9.98 0.000E + 00 0.411E − 01 0.167E − 01 0.100E + 00

1 101 394.59 0.988E − 01 0.759E − 04 0.245E − 03 0.659E − 02

2 70 653.61 0.543E − 02 0.518E − 04 0.620E − 05 0.149E − 02

3 51 840.44 0.110E − 02 0.516E − 04 0.865E − 06 0.623E − 03

4 42 995.69 0.163E − 03 0.516E − 04 0.202E − 06 0.565E − 03

5 36 1130.51 0.257E − 04 0.516E − 04 0.599E − 07 0.559E − 03

6 32 1250.86 0.480E − 05 0.516E − 04 0.230E − 07 0.559E − 03

7 25 1346.70 0.104E − 05 0.516E − 04 0.102E − 07 0.559E − 03

8 25 1442.44 0.349E − 06 0.516E − 04 0.513E − 08 0.559E − 03

by numerical experiences. The tabulated results for this method are superior to the
latter one. Already after the hundredth iteration, the difference ui − u∗ is less than
10−3 with the same cost function value that is achieved by the method without line
search technique after the thousandth iteration. Since each cost function evaluation
for the line search rule needs the solution of a further variational equation to obtain
the state with respect to the current control, an increased number of operations is
required for this method. However, although 16 to 31 seconds are needed for each
iteration, the method is far more efficient. Thus, only about a third of the time is
required for a similar reduction of the control error in the hundredth iteration.

The improved performance is due to a globalization effect. The first iterations of
the gradient method yield good descent directions such that the control error in the
50th iteration remains far under the bound 10−2. However, 265 iterations are further
necessary to satisfy the stopping criterion with respect to the gradient.

Finally, Table 3 presents the iterates of Newton’s method. The second column
is added here to present the required iterations of the SYMMLQ algorithm. After
the eighth iteration, the stopping criterion is fulfilled, the control error does not
change after the fifth iteration, and the optimal value of the control value is already
achieved after the third iteration. This fast convergence rate has to be put in the
perspective of the increased computing time per iteration. However, Newton’s method
only needs 840 seconds to remain under the 10−3 bound for the control error in the
third iteration. This is more than 7 times faster than the gradient method without
line search technique and 2.5 times faster than the method with Armijo rule.

This comparison is based only on the control error. The ratio of the performances
of the distinct methods is even improved if we look at the gradient. Newton’s method
requires 1442 seconds to satisfy the stopping criterion, and therefore it is about 11
times faster than the gradient method without line search technique and more than
3.5 times faster than the globalized gradient method.

The discretization error apparently influences the convergence rate. Thus, al-
though the q-quadratic convergence rate of Newton’s method in the infinite dimen-
sional setting cannot be directly observed, the fast reduction of the gradient norm and
the cost function within the first two iterations points to such a convergence property.
After the second iteration, the convergence rate is dominated by the large discretiza-
tion error. Nevertheless, Newton’s method is apparently superior to the others.
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Analyzing the profile of each method shows that Newton’s method requires almost
all time for solving the linear systems of the variational equations with the CG method.
In contrast to this, the gradient method spends as much time solving the variational
equation with the CG method as it does evaluating the various functions. Therefore,
using smaller stopping criteria for the subproblems will further increase the gap of
efficiency between these methods.

For numerical results on nested iteration for this class of problems, we refer to
the mesh independence analysis [29] and present only some results of a rudimentary
implementation. Four levels, M = 9, 17, 33, 65, with N = M2, are used, where each
approximation is transferred to the finer grid by linear interpolation (see Table 4).
The regularization parameter is decreased with respect to the different levels in order
to handle the ill-posedness of the problem.

To illustrate the applicability of the derived algorithm, the starting approximation
is chosen to be u0 = 1.8, which is far away from the solution u∗. Thus, a further
constraint u ≥ β1 with β1 = 0.3 has to be added, since otherwise the control would
become negative, which makes no sense for the domain. For simplicity, the projected
gradient method with the projected Armijo rule [10] is implemented on the coarse
grid. Other kinds of unconstrained minimization algorithms could also be used for
this task. However, since an appropriate approximation is computed on the coarse grid
within a few seconds, the efficiency of the entire method is not essentially influenced.
The stopping criteria are kept on the coarse grid for getting a good approximation
without consuming too much computing time.

After these iterations on the coarse grid, the approximation is interpolated to the
finer grid to carry out five Newton iterations. Then, the approximation is interpolated
to the next finer grid and once again improved by five Newton iterations. This process
proceeds until the finest grid with M = 65 is reached in order to compare the results
with the tables of the presented methods without nested iteration.

Although the starting point is now further away from the solution, this nested
iteration method is only about 140 seconds slower than Newton’s method with the
starting point u0 = 1.1. The final value FN (uMi ) = 0.516E − 04 is reached already
after 529 seconds while Newton’s method requires more than 840 seconds. It can
also be observed that the control error at each level is unchanged at the last few
iterations. Therefore, the refinement strategy could even be improved by using a
modified stopping criterion at each level. However, even this rudimentary nested
iteration and globalization technique illustrate the efficiency of the presented method.

To sum up, it can be concluded from the computational experiments that it is
possible to derive more efficient numerical methods for optimal shape design problems
than the often-used gradient method. The key to constructing such attractive methods
is to exploit the problem-specific structure and to take advantage of second order
information about the cost function.

Appendix A. Proof of Theorem 3.2. The difference between the state and
the adjoint variational equations is caused by the interchanged position of the bilinear
form. Since this bilinear form enters the proof only in the Cauchy–Schwarz inequality,
both assertions are similarly proven. For this reason, we restrict ourselves to the
proof of the state assertion, which is divided into four parts. First, Theorem 3.1 is
used to prove the existence and uniqueness of the solution ŷv. Then the Lipschitz
continuity of the operator S, the inequality of the Fréchet differentiability definition,
and afterwards, the linearity and continuity of the Fréchet derivative are proven.

1. For aij(u) ∈ L∞(Ω) and b(u) ∈ L∞(Γ1) we have seen above that the bilinear



528 MANFRED LAUMEN

Table 4
Nested iteration of Newton’s method (u ≥ 0.3, u0 = 1.8).

It TimeΣ

∥∥wM∥∥ FN
(
uMi

) ∥∥F ′N(uMi )∥∥ ∥∥uMi − u∗∥∥
M = 9, ε = 10−1 (Projected gradient method)

0 0.11 0.000E + 00 0.956E + 00 0.605E − 01 0.800E + 00

10 1.67 0.207E + 00 0.293E + 00 0.135E + 00 0.274E + 00

20 3.06 0.279E − 02 0.542E − 01 0.433E − 02 0.267E − 01

30 4.32 0.475E − 04 0.541E − 01 0.656E − 04 0.284E − 01

40 5.52 0.363E − 05 0.541E − 01 0.552E − 05 0.285E − 01

50 6.71 0.751E − 07 0.541E − 01 0.107E − 06 0.285E − 01

60 8.53 0.235E − 08 0.541E − 01 0.295E − 07 0.285E − 01

62 8.83 0.473E − 08 0.541E − 01 0.919E − 08 0.285E − 01

M = 17, ε = 10−2 (Newton’s method)

0 9.54 0.000E + 00 0.706E − 02 0.102E − 01 0.285E − 01

1 12.01 0.260E − 01 0.540E − 02 0.105E − 02 0.473E − 02

2 14.47 0.215E − 02 0.539E − 02 0.635E − 04 0.554E − 02

3 16.81 0.113E − 03 0.539E − 02 0.261E − 04 0.549E − 02

4 18.91 0.272E − 04 0.539E − 02 0.123E − 04 0.548E − 02

5 20.90 0.832E − 05 0.539E − 02 0.611E − 05 0.547E − 02

M = 33, ε = 10−3 (Newton’s method)

0 22.28 0.000E + 00 0.563E − 03 0.752E − 03 0.547E − 02

1 46.85 0.392E − 02 0.526E − 03 0.281E − 04 0.181E − 02

2 69.28 0.330E − 03 0.526E − 03 0.738E − 05 0.168E − 02

3 88.88 0.515E − 04 0.526E − 03 0.364E − 05 0.168E − 02

4 107.75 0.137E − 04 0.526E − 03 0.213E − 05 0.168E − 02

5 125.19 0.499E − 05 0.526E − 03 0.133E − 05 0.168E − 02

M = 65, ε = 10−4 (Newton’s method)

0 134.56 0.000E + 00 0.538E − 04 0.820E − 04 0.168E − 02

1 360.82 0.114E − 02 0.517E − 04 0.409E − 05 0.693E − 03

2 528.86 0.342E − 03 0.516E − 04 0.114E − 05 0.547E − 03

3 678.52 0.625E − 04 0.516E − 04 0.463E − 06 0.564E − 03

4 827.88 0.269E − 04 0.516E − 04 0.229E − 06 0.557E − 03

5 945.28 0.929E − 05 0.516E − 04 0.128E − 06 0.559E − 03

6 1058.88 0.433E − 05 0.516E − 04 0.795E − 07 0.558E − 03

7 1165.30 0.173E − 05 0.516E − 04 0.530E − 07 0.559E − 03

8 1261.01 0.816E − 06 0.516E − 04 0.370E − 07 0.558E − 03

9 1353.00 0.390E − 06 0.516E − 04 0.266E − 07 0.559E − 03

10 1430.53 0.210E − 06 0.516E − 04 0.196E − 07 0.559E − 03

11 1501.06 0.128E − 06 0.516E − 04 0.146E − 07 0.559E − 03

12 1546.82 0.827E − 07 0.516E − 04 0.111E − 07 0.559E − 03

13 1581.78 0.571E − 07 0.516E − 04 0.844E − 08 0.559E − 03
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form is continuous. The linearity of

lu(u; η)(v)− au(u; y, η)(v)

with respect to η is easily proven, and the continuity follows since

|lu(u; η)(v)− au(u; y, η)(v)|
≤

∑
|i|,|j|≤1

‖a′ij(u)(v)‖L∞(Ω)‖Diy‖L2(Ω)‖Djη‖L2(Ω)

+ ‖b′(u)(v)‖L∞(Γ1)‖y‖L2(Γ1)‖η‖L2(Γ1) + ‖f ′(u)(v)‖V′‖η‖V
≤ c‖η‖V .

The assumptions of Theorem 3.1 are now satisfied. Hence, there exists a
unique solution ŷv of the variational equation (3.4).

2. Here the Lipschitz continuity of the operator S is proven. Let y = S(u) be
the solution of the state equation

a(u; y, η) = l(u; η) ∀η ∈ V,(A.1)

and for any u+ v ∈ Uad , let the function ȳ = S(u+ v) be the solution of the
perturbed variational equation

a(u+ v; ȳ, η) = l(u+ v; η) ∀η ∈ V,(A.2)

where existence and uniqueness follow from the previous theorem. The state
equation (A.1) can be subtracted from the previous one, yielding

a(u+ v; ȳ, η)− a(u; y, η) = l(u+ v; η)− l(u; η) ∀η ∈ V.

Using the linearity of the bilinear form and subtracting the term a(u+v; y, η)
from both sides, the last equality is written as

a(u+ v; ȳ − y, η) = a(u; y, η)− a(u+ v; y, η) + l(u+ v; η)− l(u; η) ∀η ∈ V.

Since the coefficient functions are Fréchet differentiable, they are also Lip-
schitz continuous. Hence, the boundedness for a given y is obtained from

|a(u+v; ȳ − y, η)|
≤ |

∑
|i|,|j|≤1

〈(aij(u)− aij(u+ v))Diy,Djη〉L2(Ω)|

+ |〈(b(u)− b(u+ v))y, η〉L2(Γ1)|
+ |〈f(u)− f(u+ v), η〉V′×V |
≤

∑
|i|,|j|≤1

‖aij(u)− aij(u+ v)‖L∞(Ω)‖Diy‖L2(Ω)‖Djη‖L2(Ω)

+ ‖b(u)− b(u+ v)‖L∞(Γ1)‖y‖L2(Γ1)‖η‖L2(Γ1)

+ ‖f(u)− f(u+ v)‖V′‖η‖V
≤ c1‖v‖U‖η‖V .
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Using again the Lipschitz continuity of the coefficient functions leads to the
inequality

|a(u; ȳ − y, η)| ≤ |a(u; ȳ − y, η)− a(u+ v; ȳ − y, η)|+ |a(u+ v; ȳ − y, η)|
≤ c2‖v‖U‖ȳ − y‖V‖η‖V + c1‖v‖U‖η‖V .

This holds for every η ∈ V, especially for η = ȳ − y, and therefore, the
V-ellipticity

ce‖ȳ − y‖2V ≤ a(u; ȳ − y, ȳ − y)

≤ c2‖v‖U‖ȳ − y‖2V + c1‖v‖U‖ȳ − y‖V
implies

(ce − c2‖v‖U )‖ȳ − y‖V ≤ c1‖v‖U .
For sufficiently small ‖v‖U we finally obtain

‖S(u+ v)− S(u)‖V = ‖ȳ − y‖V
≤ c1
ce − c2‖v‖U ‖v‖U

≤ c‖v‖U .
3. Similarly to the part above, the Fréchet differentiability will now be proven.

Subtracting the variational equation (3.4) of the expected Fréchet derivative
and the variational equation (A.1) of the state equation from the perturbed
equation (A.2) yields

a
(
u; ȳ − y − ŷv, η) = −a(u+ v; ȳ, η) + a(u; ȳ, η) + au(u; y, η)(v)

+ l(u+ v; η)− l(u; η)− lu(u; η)(v) ∀η ∈ V.
Making use of the Fréchet differentiability of the coefficient functions and of
the Lipschitz continuity of their derivatives, as well as the Lipschitz continuity
of the operator S, we get∣∣a(u;ȳ − y − ŷv, η)∣∣

≤ |a(u+ v; ȳ, η)− a(u; ȳ, η)− au(u; ȳ, η)(v)|
+ |au(u; ȳ, η)(v)− au(u; y, η)(v)|+ |l(u+ v; η)− l(u; η)− lu(u; η)(v)|
≤

∑
|i|,|j|≤1

〈(aij(u+ v)− aij(u)− a′ij(u)(v))Diȳ, Djη〉L2(Ω)

+ |〈(b(u+ v)− b(u)− b′(u)(v))ȳ, η〉L2(Γ1)|

+

∣∣∣∣∣ ∑
|i|,|j|≤1

〈a′ij(u)(v)Di(ȳ − y), Djη〉L2(Ω)

∣∣∣∣∣
+ |〈b′(u)(v)(ȳ − y), η〉L2(Γ1)|
+ |〈(f(u+ v)− f(u)− f ′(u)(v)), η〉V′×V |
≤

∑
|i|,|j|≤1

‖aij(u+ v)− aij(u)− a′ij(u)(v)‖L∞(Ω)‖Diȳ‖L2(Ω)‖Djη‖L2(Ω)

+ ‖b(u+ v)− b(u)− b′(u)(v)‖L∞(Γ1)‖ȳ‖L2(Γ1)‖η‖L2(Γ1)

+
∑
|i|,|j|≤1

‖a′ij(u)(v)‖L∞(Ω)‖Di(ȳ − y)‖L2(Ω)‖Djη‖L2(Ω)
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+ ‖b′(u)(v)‖L∞(Γ1)‖ȳ − y‖L2(Γ1)‖η‖L2(Γ1)

+ ‖f(u+ v)− f(u)− f ′(u)(v)‖V′‖η‖V
≤ α̃(‖v‖U )‖v‖U‖η‖V .

Here α̃(r)→ 0 as r → 0. Due to the V-ellipticity,

ce‖ȳ − y − ŷv‖2V ≤ a
(
u; ȳ − y − ŷv, ȳ − y − ŷv)

≤ α̃(‖v‖U )‖v‖U‖ȳ − y − ŷv‖V
is obtained, and therefore

‖S(u+ v)− S(u)− S′(u)(v)‖V = ‖ȳ − y − ŷv‖V
≤ α(‖v‖U )‖v‖U ,

with α(r)→ 0 as r → 0, finishes the proof.
4. The continuity of ŷv = S′(u)(v) with respect to v is derived by

‖ŷv‖V ≤ ‖ȳ − y − ŷv‖V + ‖y − ȳ‖V
≤ c‖v‖U .

Let ŷvk = S′(u)(vk), k = 1, 2, be the solution of the variational equation (3.4)
with respect to vk. Multiplying each variational equation by ck and using the
linearity properties of a, au, l, and lu, the equations can be added together,
resulting in

a
(
u; c1ŷ

v
1 + c2ŷ

v
2 , η
)

= lu(u; η)(c1v1 + c2v2)− au(u; y, η)(c1v1 + c2v2) ∀η∈V.

Since S′(u)(c1v1 + c2v2) is the unique solution of this variational equation,
the linearity of the operator is obtained by

S′(u)(c1v1 + c2v2) = c1ŷ
v
1 + c2ŷ

v
2

= c1S
′(u)(v1) + c2S

′(u)(v2).
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Abstract. We discuss some properties of the distance to infeasibility of a conic linear system
Ax = b, x ∈ C, where C is a closed convex cone.

Some interesting connections between the distance to infeasibility and the solution of certain
optimization problems are established. Such connections provide insight into the estimation of the
distance to infeasibility and the explicit computation of infeasible perturbations of a given system.
We also investigate the properties of the distance to infeasibility assuming that the perturbations
are restricted to have a particular structure. Finally, we extend most of our results to more general
conic systems Ax− b ∈ CY , x ∈ CX , where CX and CY are closed, convex cones.

Key words. condition numbers, singular values, conic systems, convex programming, distance
to infeasibility
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1. Introduction. The distance to infeasibility of a conic linear system, as in-
troduced by Renegar, plays an interesting role in the study of interior-point methods
(see [2, 5, 6]).

Given finite-dimensional Hilbert spaces X,Y, a linear operator A : X → Y, a
vector b ∈ Y, and a closed convex cone C ⊆ X consider the conic system

Ax = b,
(1.1)

x ∈ C.

We call the pair (A, b) the data of the conic system (1.1).
The Euclidean norms on X and Y induce a norm on the data by defining the

norm of (A, b) as the operator norm of
[
A b

]
: X × R→ Y, i.e.,

‖(A, b)‖ := ‖ [ A b
] ‖ = max{‖Ax+ tb‖ : ‖x‖2 + t2 ≤ 1}.

The distance to infeasibility of the conic system (1.1) is defined as the smallest
perturbation of the data that yields an infeasible system, that is,

dist((A, b), I) := inf{‖(∆A,∆b)‖ : (A+ ∆A, b+ ∆b) ∈ I},

where

I := {(A, b) : the system (1.1) is infeasible}.

An interesting problem is, How can one compute or estimate dist((A, b), I) for
a given instance (A, b)? Or even more ambitiously, how can one describe the set of
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infeasible instances that are near a given feasible instance? This paper addresses these
two questions.

Sometimes instead of I it will be convenient to work with the following slightly
larger set of instances, which can essentially be identified with I:

Ī := {(A, b) : there exists ∆b arbitrarily small s.t. (A, b+ ∆b) ∈ I}.
We shall refer to Ī as the set of essentially infeasible data instances.

To provide motivation and intuition, in section 2 we present some insight into the
geometry underlying some of our central results, illustrating how certain facts about
matrix perturbation theory concerning singular values extend naturally to the more
general context of conic systems.

In section 3 we concentrate on a particular type of perturbation (rank-one) of a
given instance. We show that the smallest essentially infeasible perturbation of this
type can be characterized as the solution of a certain convex optimization problem;
in particular, our results here provide a new, simpler proof of a particularly useful
characterization of dist((A, b), I) given by Renegar (see Theorem 3.5 in [6]).

We also present a description of the set of essentially infeasible rank-one pertur-
bations about a given feasible instance that are of minimal size in a certain sense.

Some work has already been done in order to give estimates for dist((A, b), I).
In [3] the authors describe several optimization problems whose optimal values pro-
vide bounds for dist((A, b), I). Our work has a different nature as we focus more on
characterizing infeasible perturbations rather than just estimating dist((A, b), I).

In section 4 we deal with perturbations with restricted structure. Some of the
results presented in section 3 for general perturbations are extended to the case in
which only certain columns and/or rows of the matrix A are allowed to be perturbed.

Finally, in section 5 we discuss more general conic systems: Ax−b ∈ CY , x ∈ CX ,
where CX and CY are closed, convex cones in X and Y, respectively. By introducing
slack variables, this context can be seen as a special case of the structured perturba-
tions studied in section 4. We also present a description of the set of minimal-size,
essentially infeasible rank-one perturbations that are near a given feasible instance.

Several of our results use dual cones. Let us recall this notion here: Given a convex
cone C in a Hilbert space X, its dual cone is defined as

C∗ := {x ∈ X : 〈x, y〉 ≥ 0 for all y ∈ C}.
We conclude this introduction with a discussion about homogeneous systems.

Such systems will be our focus of attention.
Consider a homogeneous conic system, that is, assume b = 0:

Ax = 0,
(1.2)

x ∈ C.
Notice that given an infeasible perturbation of (1.2):

(A+ ∆A)x = ∆b,
(1.3)

x ∈ C,
the system (1.3) remains infeasible if we scale ∆b by any arbitrarily small positive
number. Hence (1.3) is infeasible for some ∆b if and only if (A + ∆A, 0) ∈ Ī, i.e., if
essentially we only need to perturb A to obtain infeasible instances. In particular,

dist((A, 0), I) = inf{‖∆A‖ : (A+ ∆A, 0) ∈ Ī}.(1.4)
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For a homogeneous system (1.2) define dist(A, I) := dist((A, 0), I).
Throughout our development we will assume that dist((A, b), I) > 0 and that

we work with homogeneous systems. Via a homogenization procedure Proposition 1.1
below shows that with regard to infeasible perturbations of (1.1), we can focus on
homogeneous systems without loss of generality.

Given a nonhomogeneous system

Ax = b,
(1.5)

x ∈ C,
consider the corresponding homogenized version

Ax− tb = 0,
(1.6)

(x, t) ∈ C × R+,

whose data, variable space, and cone of constraints are, respectively,
([

A −b ], 0) ,
X × R, and C × R+. In the new (larger) data space, let I ′ and Ī ′ denote the sets of
infeasible and essentially infeasible instances, respectively.

Proposition 1.1. (A, b) ∈ Ī if and only if (
[
A −b ], 0) ∈ Ī ′. In particular,

dist((A, b), I) = dist(
[
A −b ], I ′);

i.e., the distance to infeasibility of the systems (1.5) and (1.6) is the same.
Proof. Suppose (

[
A −b ], 0) ∈ Ī ′. Let ∆b be such that the following system is

infeasible:

Ax− tb = ∆b,

(x, t) ∈ C × R+.

It then easily follows that

Ax = b+ ∆b,

x ∈ C,
is infeasible. Since ∆b can be chosen arbitrarily small, (A, b) ∈ Ī.

For the converse assume
([

A −b ] , 0) /∈ Ī ′. If b = 0, then it trivially follows
that (A, b) /∈ Ī, so let us assume b 6= 0. Notice that

Y = {Ax− tb : (x, t) ∈ C × R+}
because

([
A −b ], 0) /∈ Ī ′. Therefore, since Y is finite-dimensional,

0 ∈ int{Ax− tb : (x, t) ∈ C × R+, ‖(x, t)‖ ≤ 1};
i.e., there exists ε > 0 such that

v ∈ {Ax− tb : (x, t) ∈ C × R+, ‖(x, t)‖ ≤ 1}
for all ‖v‖ ≤ ε.

We claim that the system

Ax = b+ ∆b,

x ∈ C,
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is feasible for any ∆b such that ‖∆b‖ ≤ ε, which consequently implies that (A, b) /∈ Ī.
To prove the claim assume ∆b satisfies ‖∆b‖ ≤ ε. For i = 1, 2 let (xi, ti) ∈ C×R+

with ‖(xi, ti)‖ ≤ 1 such that

Ax1 − t1b = ∆b and Ax2 − t2b =
ε

‖b‖b.

Let λ = 1−t1
t2+ ε

‖b‖
; notice that λ is well defined and nonnegative because 0 ≤ t1, t2 ≤ 1,

and ε, ‖b‖ > 0. Furthermore,

A(x1 + λx2) = b+ ∆b,

with x1 + λx2 ∈ C.
The second part follows by applying (1.4) to

([
A −b ], 0) and the fact that

‖(A, b)− (A′, b′)‖ = ‖ [ A−A′ b− b′ ] ‖ = ‖ [ A−A′ b′ − b ] ‖
= ‖ ([ A −b ], 0)− ([ A′ −b′ ], 0) ‖.

2. Geometry of infeasible perturbations. When C = X and dim(X) ≥
dim(Y ), the distance to infeasibility of the conic system

Ax = 0,

x ∈ C,
corresponds to the distance from A to the set of rank-deficient matrices. By relying
on the singular value decomposition (see [4, 8]), it is easy to see that the distance to
infeasibility is equal to the smallest singular value of A, which can be written as

inf{‖β‖ :6 ∃x s.t. Ax = β, ‖x‖ ≤ 1}.
In general, Renegar’s characterization (see Corollary 3.6 of this paper) of the

distance to infeasibility states that

dist(A, I) = inf{‖β‖ :6 ∃x s.t. Ax = β, ‖x‖ ≤ 1, x ∈ C},
and notice how dist(A, I) naturally extends the smallest singular value of A.

Now suppose we are interested in perturbing A so that A becomes rank-deficient.
Moreover, suppose we choose a nonzero vector β ∈ Y and we want to perturb A to
A+ ∆A so that

β /∈ {(A+ ∆A)x : x ∈ X}.
We can, again using the singular value decomposition, easily construct such a pertur-
bation by taking

∆A = − 1

‖αβ‖2 βα
T
β ,

where αβ is the minimum-norm solution to the equation system

Aα = β.

It is easy to see that this is the smallest rank-one perturbation of the form βγT that
yields a rank-deficient system.
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We prove (see Propositions 3.1 and 3.2) that a very natural extension holds for
conic systems: If αβ is the minimum-norm solution to

Aα = β, α ∈ C,
then letting ∆A = − 1

‖αβ‖2βα
T
β we have

β /∈ {(A+ ∆A)x : x ∈ C}.
This is also the smallest rank-one perturbation of the form βγT that makes Ax =
0, x ∈ C, essentially infeasible (see Proposition 3.2).

The norm of the rank-one perturbation 1
‖αβ‖2βα

T
β is exactly the length of the

segment in the direction β contained in

{Ax : ‖x‖ ≤ 1, x ∈ C},
and the distance to infeasibility dist(A, I) is precisely the length of the shortest such
segment.

3. Rank-one perturbations. We study the conic linear system

Ax = 0,
(3.1)

x ∈ C,
where C is a closed convex cone.

We have the following goal in this section: Given a nonzero vector β ∈ Y, char-
acterize the rank-one perturbations to A of the form βγT , γ ∈ X, that lead to an
essentially infeasible system

(A− βγT )x = 0,

x ∈ C.
The following program is crucial in our development:

(Pβ) min ‖α‖,
Aα = β,

α ∈ C.

Notice that if dist(A, I) > 0, then for every given β ∈ Y the system

Ax = β,

x ∈ C,
has a solution; this is immediate if ‖β‖ < dist(A, I) and hence by scaling for all β ∈ Y .

Therefore, dist(A, I) > 0 implies that the program (Pβ) has a solution αβ . More-
over, it is easy to see that the solution is unique. We can use this αβ to construct an
essentially infeasible rank-one perturbation of the desired form βγT .

Proposition 3.1. Assume β 6= 0 is given, and let αβ denote the solution to
(Pβ). For all ε > 0, the system(

A− 1

‖αβ‖2 βα
T
β

)
x = εβ,

(3.2)
x ∈ C,
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is infeasible.
Proof. Suppose x0 ∈ C solves (3.2). Then

Ax0 =

(
ε+

αTβ x0

‖αβ‖2
)
β.

Since

Aαβ = β,

we thus have

A(λαβ + x0) =

(
λ+ ε+

αTβ x0

‖αβ‖2
)
β

for any λ > 0. In particular, if λ is large enough so that λ+ ε+
αTβ x0

‖αβ‖2 > 0, we have

Aα̃ = β,

with

α̃ =
1

λ+ ε+
αT
β
x0

‖αβ‖2
(λαβ + x0) ∈ C.

However, for λ large enough,

‖λαβ + x0‖2 − ‖αβ‖2
(
λ+ ε+

αTβ x0

‖αβ‖2
)2

= ‖x0‖2 − ε2‖αβ‖2 −
(αTβ x0)2

‖αβ‖2 − 2εαTβ x0 − 2λε‖αβ‖2 < 0,

so

‖α̃‖ =
‖λαβ + x0‖
λ+ ε+

αT
β
x0

‖αβ‖2
< ‖αβ‖,

which contradicts the optimality of αβ .
Notice that if we replace β by −β, then we conclude that for all ε > 0, the system(

A+
1

‖α−β‖2 βα
T
−β

)
x = −εβ,
x ∈ C,

is also infeasible, where α−β solves

(P−β) min ‖α‖,
Aα = −β,
α ∈ C.

The next proposition tells us that one of these two rank-one perturbations is the
smallest one of the form βγT which yields an essentially infeasible system, and that
it is unique in this regard.
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Proposition 3.2. Assume β 6= 0 is given. Let ᾱ be the larger of αβ and α−β ,
where αβ and α−β are the solutions to (Pβ) and (P−β), respectively. If ‖γ‖ < 1

‖ᾱ‖ ,
then for all δ ∈ Y the system

(A− βγT )x = δ,
(3.3)

x ∈ C,

is feasible. If ‖γ‖ = 1
‖ᾱ‖ and the system (3.3) is infeasible for some δ ∈ Y, then either

γ =
1

‖αβ‖2αβ or γ = − 1

‖α−β‖2α−β .

This proposition will follow as an immediate consequence of the following lemma.
Lemma 3.3. Assume β 6= 0 and let αβ , α−β solve (Pβ) and (P−β), respectively.

If γTαβ < 1 and −γTα−β < 1, then for all δ ∈ Y the system (3.3) is feasible.
Proof. Since dist(A, I) > 0, given any δ ∈ Y there exists x0 ∈ C such that

Ax0 = δ. We consider two separate cases.
Case 1: γTx0 ≥ 0. Then take

x̃ = x0 +
γTx0

1− γTαβ αβ ∈ C.

Case 2: γTx0 < 0. Then take

x̃ = x0 − γTx0

1 + γTα−β
α−β ∈ C.

In either case it is clear that x̃ ∈ C satisfies (A− βγT )x̃ = δ.
Proof of Proposition 3.2. If ‖γ‖ < 1

‖ᾱ‖ , then γTαβ < 1 and −γTα−β < 1, so

the first part follows from Lemma 3.3. For the second part, just observe that if
‖γ‖ = 1

‖ᾱ‖ = min{ 1
‖αβ‖ ,

1
‖α−β‖} and the system (3.3) is infeasible, then we must have

either

γTαβ = 1 whereby γ =
1

‖αβ‖2αβ

or

−γTα−β = 1 whereby γ = − 1

‖α−β‖2α−β .

Otherwise, by Lemma 3.3 the system would be feasible.
A natural question now is, Can we construct an infeasible rank-one perturbation

of the form βγT without knowing αβ exactly? By Proposition 3.2 we know that such
a perturbation must have ‖γ‖ ≥ 1

‖αβ‖ . Basically the same argument used in the proof

of Proposition 3.1 yields Proposition 3.4.
Proposition 3.4. Assume β 6= 0 is given, and let αβ denote the solution to

(Pβ). If γ − 1
‖αβ‖2αβ ∈ C∗, then for any ε > 0 the system

(A− βγT )x = εβ,
(3.4)

x ∈ C,
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is infeasible.
Proof. Suppose x0 ∈ C solves (3.4). Then

Ax0 = (ε+ γTx0)β.

Thus

A(λαβ + x0) = (λ+ ε+ γTx0)β

for any λ > 0. In particular, if λ is large enough so that λ+ ε+ γTx0 > 0, we have

Aα̃ = β,

with

α̃ =
1

λ+ ε+ γTx0
(λαβ + x0) ∈ C.

However, for λ large enough,

‖λαβ + x0‖2 − ‖αβ‖2(λ+ ε+ γTx0)2

= ‖x0‖2 − ε2‖αβ‖2 − 2εγTx0‖αβ‖2 − ‖αβ‖2(γTx0)2

− 2λ‖αβ‖2
(
ε+

(
γ − 1

‖αβ‖2αβ
)T

x0

)
< 0,

so

‖α̃‖ =
‖λαβ + x0‖
λ+ ε+ γTx0

< ‖αβ‖,

which contradicts the optimality of αβ .
One might wonder whether rank-one perturbations say much about dist(A, I).

The following result tells us that if we are interested in dist(A, I), it is enough to
consider just rank-one perturbations.

Proposition 3.5. If the system

(A+ ∆A)x = ∆b,
(3.5)

x ∈ C,
is infeasible, then there exists β ∈ Y, β 6= 0, such that the system(

A− 1

‖αβ‖2 βα
T
β

)
x = 0,

(3.6)
x ∈ C,

is essentially infeasible and has the property that∥∥∥∥ 1

‖αβ‖2 βα
T
β

∥∥∥∥ =
‖β‖
‖αβ‖ ≤ ‖∆A‖,

where αβ solves (Pβ).
Proof. If we scale ∆b by any arbitrarily small positive number, then the system

(3.5) remains infeasible. Hence,

0 ∈ ∂{(A+ ∆A)x : x ∈ C}.
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Since the set S = {(A+∆A)x : x ∈ C} is convex, there exists a supporting hyperplane
to S containing 0; i.e., there exists β ∈ Y, ‖β‖ = 1 such that

βT s ≤ 0 for all s ∈ S.
Let αβ be the solution of (Pβ) for this β. Since αβ ∈ C,

0 ≥ βT (A+ ∆A)αβ = βTβ + βT∆Aαβ = 1 + βT∆Aαβ .

Therefore,

1 ≤ |βT∆Aαβ | ≤ ‖β‖ ‖∆A‖ ‖αβ‖ = ‖∆A‖ ‖αβ‖.
Thus ∥∥∥∥ 1

‖αβ‖2 βα
T
β

∥∥∥∥ =
‖β‖
‖αβ‖ =

1

‖αβ‖ ≤ ‖∆A‖.

Finally, the system (3.6) is essentially infeasible by Proposition 3.1.
As a straightforward consequence we obtain a new, simpler proof of the following

characterization of dist(A, I) originally due to Renegar (see [6]).
Corollary 3.6 (Renegar [6]).

dist(A, I) = ρ(A) := inf{‖β‖ :6 ∃§ s.t. A§ = β, ‖§‖ ≤ ∞, § ∈ C}.
Proof. Given β such that Ax = β, x ∈ C, ‖x‖ ≤ 1 is inconsistent, the solution

αβ to (Pβ) must satisfy ‖αβ‖ > 1. By Proposition 3.1, we can construct an infeasible
perturbation of size arbitrarily close to∥∥∥∥ 1

‖αβ‖2 βα
T
β

∥∥∥∥ =
‖β‖
‖αβ‖ < ‖β‖,

and so it follows that dist(A, I) ≤ ρ(A).
On the other hand, given any arbitrary infeasible perturbation (∆A,∆b), by

Proposition 3.5 there exists β 6= 0 such that if αβ solves (Pβ), then

‖β‖
‖αβ‖ ≤ ‖∆A‖ ≤ ‖(∆A,∆b)‖.

If we take βδ = 1+δ
‖αβ‖β with δ > 0, then the solution αβδ to (Pβδ) has norm 1 + δ, and

therefore

Ax = βδ, x ∈ C, ‖x‖ ≤ 1

is inconsistent, and thus

ρ(A) ≤ ‖βδ‖ = (1 + δ)
‖β‖
‖αβ‖ ≤ (1 + δ)‖(∆A,∆b)‖.

This holds for any δ > 0 and any infeasible perturbation (∆A,∆b), hence ρ(A) ≤
dist(A, I).

The first part of the next proposition states how to construct minimum-size rank-
one infeasible perturbations of (3.1). Pick a u ∈ Y, let ᾱ be the projection of ATu
onto C, and set β = Aᾱ. Then perturb A to A − 1

‖ᾱ‖2βᾱ
T . The second part states

that indeed all minimal rank-one infeasible perturbations of (3.1) are obtained in this
fashion.
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Proposition 3.7.
(a) For any given u ∈ Y let ᾱ be the closest point to ATu in C. Then ᾱ is the

solution of (Pβ) for β = Aᾱ.
(b) For any given β ∈ Y, β 6= 0, let αβ be the solution to (Pβ). Then αβ is the

closest point to ATu in C for some u ∈ Y .
Proof. Recall the following projection fact: For a given vector v ∈ X, ᾱ solves

min{‖α− v‖ : α ∈ C} if and only if
(i) ᾱ ∈ C,
(ii) ᾱ− v ∈ C∗, and
(iii) ᾱT (ᾱ− v) = 0.
On the other hand, the Lagrangian dual of program (Pβ) is

(Dβ) max βTu,

‖ATu+ w‖ ≤ 1,

w ∈ C∗.

Both (Pβ) and (Dβ) involve only closed, convex cones, linear operators, and
norms; and it is easy to prove, say, by Fenchel’s duality theorem (see [7, section 31]),
that strong duality holds and both programs attain their optima.

From duality it follows that ᾱ solves (Pβ) and (ū, w̄) solves (Dβ) if and only if
(i′) ᾱ ∈ C,
(ii′) Aᾱ = β,
(iii′) w̄ ∈ C∗,
(iv′) AT ū+ w̄ = 1

‖ᾱ‖ ᾱ, and

(v′) ᾱT w̄ = 0.
To prove (a), let us assume ᾱ 6= 0 (if ᾱ = 0, then (a) holds trivially). Set

w̄ =
1

‖ᾱ‖ (ᾱ−ATu), ū =
1

‖ᾱ‖u.

From (i)–(iii) it is easy to see that (i′)–(v′) hold, thereby proving (a).
To prove (b), suppose that αβ solves (Pβ) and let (ū, w̄) be a solution to (Dβ).

Now from (i′)–(v′) it is easy to see that (i)–(iii) hold for

ᾱ := αβ , u := ‖ᾱ‖ū, and v := ATu.

4. Perturbations with restricted structure. In many situations the pertur-
bations of interest are not arbitrary perturbations on the data but are restricted to
have a particular structure. For example, certain predefined entries of A (e.g., deter-
mined by some sparsity pattern) may be the only ones allowed to be perturbed (see
[1]).

As an early step towards developing a theory of structured perturbations, in this
section we study the special cases in which only certain rows and/or certain columns
of A are allowed to be perturbed.

Assume first that perturbations can be made only on certain columns of A. That
is, suppose we can split X = X1 × X2, and accordingly we decompose A into two
corresponding blocks A =

[
A1 A2

]
so that our conic system is

[
A1 A2

] [ x1

x2

]
= 0,

(4.1)
x ∈ C,
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where C is a closed convex cone in X.
Suppose that we only allow perturbations of the form

[
A1 + ∆A1 A2

] [ x1

x2

]
= ∆b,

x ∈ C.

In this section we will see how most of the development presented in section 3
can be “split” to fit this context. (This is an interesting phenomenon as the cone C
is not assumed to be the product of two cones in X1 and X2.)

We start with a version of the program (Pβ) in the current context. Given β ∈ Y,
let αβ = (αβ,1, αβ,2) denote the solution of the program

min ‖α1‖,
Aα = β,(4.2)

α ∈ C,

where α = (α1, α2).
Assuming αβ,1 6= 0 we can use αβ to construct a rank-one infeasible perturbation

of (4.1), where we only perturb A1.
Proposition 4.1. Assume β 6= 0 is given, and let αβ denote the solution to

(4.2). If αβ,1 6= 0, then for all ε > 0 the system[
A1 − 1

‖αβ,1‖2βα
T
β,1 A2

] [ x1

x2

]
= εβ,

(4.3)
x ∈ C,

is infeasible.
Proof. Suppose x0 ∈ C solves (4.3). Then

Ax0 =

(
ε+

αTβ,1x0,1

‖αβ,1‖2
)
β.

Since

Aαβ = β,

we thus have

A(λαβ + x0) =

(
λ+ ε+

αTβ,1x0,1

‖αβ,1‖2
)
β

for any λ > 0. In particular, if λ is large enough so that λ+ ε+
αTβ,1x0,1

‖αβ,1‖2 > 0, we obtain

Aα̃ = β,

with

α̃ =
1

λ+ ε+
αT
β,1
x0,1

‖αβ,1‖2
(λαβ + x0) ∈ C.
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However, for λ large enough,

‖α̃1‖ =
‖λαβ,1 + x0,1‖
λ+ ε+

αT
β,1
x0,1

‖αβ,1‖2
< ‖αβ,1‖,

which contradicts the optimality of αβ .
Also letting α−β denote the solution to

min ‖α1‖,
Aα = −β,(4.4)

α ∈ C,

if α−β,1 6= 0, then for all ε > 0 we obtain another infeasible rank-one perturbation:[
A1 + 1

‖α−β,1‖2βα
T
−β,1 A2

] [ x1

x2

]
= −εβ, x ∈ C.

One of these two rank-one perturbations is the smallest essentially infeasible per-
turbation of the form βγT on A1.

Proposition 4.2. Assume β 6= 0 is given. Let ᾱ1 be the larger of αβ,1 and
α−β,1, where αβ and α−β are the solutions to (4.2) and (4.4), respectively, and suppose
ᾱ1 6= 0.

If ‖γ‖ < 1
‖ᾱ1‖ , then for all δ ∈ Y the system

[
A1 − βγT A2

] [ x1

x2

]
= δ, x ∈ C,(4.5)

is feasible. If ‖γ‖ = 1
‖ᾱ1‖ and the system (4.5) is infeasible for some δ ∈ Y, then either

γ = 1
‖αβ,1‖2αβ,1 or γ = − 1

‖α−β,1‖2α−β,1.

The proof of this proposition mimics the proof of Proposition 3.2, and it relies on
the following analogue of Lemma 3.3.

Lemma 4.3. Assume β 6= 0 is given, and let αβ , α−β solve (4.2) and (4.4),
respectively. If γTαβ,1 < 1 and −γTα−β,1 < 1, then for all δ ∈ Y the system (4.5) is
feasible.

Proof. Since dist(A, I) > 0, there exists x0 ∈ C such that Ax0 = δ. We consider
two separate cases.

Case 1: γTx0,1 ≥ 0. Then take

x̃ = x0 +
γTx0,1

1− γTαβ,1αβ ∈ C.

Case 2: γTx0,1 < 0. Then take

x̃ = x0 − γTx0,1

1 + γTα−β,1
α−β ∈ C.

In either case it is clear that x̃ ∈ C satisfies
[
A1 − βγT A2

]
x̃ = δ.

Proof of Proposition 4.2. If ‖γ‖ < 1
‖ᾱ1‖ , then γTαβ,1 < 1 and −γTα−β,1 < 1,

so the first part follows from Lemma 4.3. For the second part, just observe that if
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‖γ‖ = 1
‖ᾱ1‖ = min{ 1

‖αβ,1‖ ,
1

‖α−β,1‖} and the system (3.3) is infeasible, then we must

have either

γTαβ,1 = 1 whereby γ =
1

‖αβ,1‖2αβ,1
or

−γTα−β,1 = 1 whereby γ = − 1

‖α−β,1‖2α−β,1.

Otherwise by Lemma 4.3 the system (4.5) would be feasible.
Remark 4.4. In the statement of Proposition 4.2, if ᾱ1 = 0 (i.e., αβ,1 = α−β,1 =

0), then Lemma 4.3 implies that it is impossible to construct an essentially infeasible
perturbation of the form βγT on A1.

Once again, for the purpose of determining the smallest restricted perturbation
that makes the system (4.1) infeasible, it suffices to look at rank-one perturbations.

Proposition 4.5. If the system[
A1 + ∆A1 A2

] [ x1

x2

]
= ∆b,

(4.6)
x ∈ C,

is infeasible, then there exists β ∈ Y, β 6= 0, such that the system[
A1 − 1

‖αβ,1‖2βα
T
β,1 A2

] [ x1

x2

]
= 0,

(4.7)
x ∈ C,

is essentially infeasible and with the property that∥∥∥∥ 1

‖αβ,1‖2 βα
T
β,1

∥∥∥∥ =
‖β‖
‖αβ,1‖ ≤ ‖∆A1‖,

where αβ solves (4.2).
Proof. If we scale ∆b by any arbitrarily small positive number, then the system

(4.6) remains infeasible. Hence,

0 ∈ ∂{[ A1 + ∆A1 A2

]
x : x ∈ C}.

Since the set S = {[ A1 + ∆A1 A2

]
x : x ∈ C} is convex, there exists a supporting

hyperplane to S containing 0; i.e., there exists β ∈ Y, ‖β‖ = 1 such that

βT s ≤ 0 for all s ∈ S.
Let αβ be the solution of (4.2) for this β. Since αβ ∈ C,

0 ≥ βT [ A1 + ∆A1 A2

]
αβ = βTβ + βT∆Aαβ = 1 + βT∆A1αβ,1.

Therefore

1 ≤ |βT∆A1αβ,1| ≤ ‖β‖ ‖∆A1‖ ‖αβ,1‖ = ‖∆A1‖ ‖αβ,1‖.
Thus αβ,1 6= 0 and∥∥∥∥ 1

‖αβ,1‖2 βα
T
β,1

∥∥∥∥ =
‖β‖
‖αβ,1‖ =

1

‖αβ,1‖ ≤ ‖∆A1‖.
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Finally, the system (4.7) is essentially infeasible by Proposition 4.1.
As a straightforward consequence we obtain the following generalization of Corol-

lary 3.6.
Corollary 4.6.

sdist(A, I) = sρ(A),

where

sdist(A, I) := inf
{‖(∆A1,∆b)‖ :

([
A1 + ∆A1 A2

]
,∆b

) ∈ I}
and

sρ(A) := inf{‖β‖ : Ax = β, x ∈ C, ‖x1‖ ≤ 1 is inconsistent}.
Proof. For any β such that Ax = β, x ∈ C, ‖x1‖ ≤ 1 is inconsistent, the solution

αβ to (4.2) satisfies ‖αβ,1‖ > 1. By Proposition 4.1, we can construct an infeasible
perturbation of size arbitrarily close to∥∥∥∥ 1

‖αβ,1‖2 βα
T
β,1

∥∥∥∥ =
‖β‖
‖αβ,1‖ < ‖β‖;

it follows that sdist(A, I) ≤ sρ(A).
On the other hand, given any arbitrary infeasible perturbation (∆A1,∆b), by

Proposition 4.5 there exists β 6= 0 such that if αβ,1 solves (4.2), then

‖β‖
‖αβ,1‖ ≤ ‖∆A1‖ ≤ ‖(∆A1,∆b)‖.

If we take βδ = 1+δ
‖αβ‖β with δ > 0, then the solution αβδ to (4.2) (with βδ instead of

β) satisfies ‖αβδ,1‖ = 1 + δ, and therefore

Ax = βδ, x ∈ C, ‖x1‖ ≤ 1

is inconsistent, and thus

sρ(A) ≤ ‖βδ‖ = (1 + δ)
‖β‖
‖αβ,1‖ ≤ (1 + δ)‖(∆A1,∆b)‖.

This holds for any δ > 0 and any infeasible perturbation (∆A1,∆b), hence sρ(A) ≤
sdist(A, I).

Now assume that we restrict the perturbations to be only on certain columns and
rows; i.e., suppose we can also split Y = Y1 × Y2 and our linear system is[

A11 A12

A21 A22

] [
x1

x2

]
=

[
0
0

]
,

(4.8)
x ∈ C,

where C is a closed convex cone in X.
Suppose we only allow perturbations of the form[

A11 + ∆A11 A12

A21 A22

] [
x1

x2

]
=

[
∆b1

0

]
,

(4.9)
x ∈ C.
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Given β ∈ Y1, consider the program

min ‖α1‖,[
A11 A12

A21 A22

] [
α1

α2

]
=

[
β
0

]
,(4.10)

α ∈ C.

We can write (4.8), (4.9), and (4.10), respectively, as

[
A11 A12

] [ x1

x2

]
= 0,

x ∈ C′,

[
A11 + ∆A11 A12

] [ x1

x2

]
= ∆b1,

x ∈ C′,
and

min ‖α1‖,[
A11 A12

] [ α1

α2

]
= β,

α ∈ C′,
where

C′ = {x ∈ C : A21x1 +A22x2 = 0}.
Observe that C′ is a closed convex cone, so we can reduce this problem setting to the
one just studied, and therefore analogous results hold.

5. Other conic systems. An interesting application of the approach taken in
section 4 is that perturbations of other kinds of conic problems can be studied as
particular types of structured perturbations.

For example, one could consider the following more general conic linear system:

Ax− b ∈ CY ,(5.1)
x ∈ CX ,

where CX , CY are closed convex cones in X and Y, respectively. (Renegar addresses
the problem written in this form in [6].)

We extend the meaning of dist((A, b), I) to fit this general context; that is, we
extend the definition given in the introduction as follows:

dist((A, b), I) := inf{‖(∆A,∆b)‖ : (A+ ∆A, b+ ∆b) ∈ I},
where

I := {(A, b) : the system (5.1) is infeasible}.
The definition of essentially infeasible instances is also extended in the obvious way.
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Again, by homogenizing if necessary, there is no loss of generality in assuming
b = 0 here. That is, we study the system

Ax ∈ CY ,(5.2)
x ∈ CX ,

denote the corresponding distance to infeasibility by dist(A, I), and assume that
dist(A, I) > 0.

By introducing slack variables, we can write (5.2) as follows:[
A −I ] [ x

z

]
= 0,

(5.3) [
x
z

]
∈ CX × CY .

Therefore, infeasible perturbations of (5.2) correspond to infeasible perturbations
to (5.3), where we only allow the first block (namely, A) to be perturbed; i.e., we
have a particular case of what we discussed in section 4.

We could rewrite the results we discussed in section 4 in this context. For example,
Corollary 4.6 becomes

dist(A, I) = inf{‖β‖ :6 ∃x s.t. Ax− β ∈ CY , x ∈ CX , ‖x‖ ≤ 1}
(which is the way Renegar phrased his characterization of dist(A, I) in [6]).

We can also rewrite program (4.2) as

min ‖α‖,
Aα− β ∈ CY ,(5.4)

α ∈ CX .

The next result is analogous to Proposition 3.7. The first part states how to
construct minimum-size rank-one perturbations of (5.3). Pick a u ∈ C∗Y , and let ᾱ be
the projection of ATu onto CX , let ȳ ∈ CY be such that uT ȳ = 0, and set β = Aᾱ− ȳ.
Then perturb A to A − 1

‖ᾱ‖2βᾱ
T . The second part states that all minimal rank-one

perturbations of (5.3) are indeed obtained in this fashion.
Proposition 5.1.
(a) For any given u ∈ C∗Y let ᾱ be the closest point to ATu in CX , and let ȳ ∈ CY

be such that uT ȳ = 0. Then ᾱ is the solution of (5.4) for β = Aᾱ− ȳ.
(b) For any given β ∈ Y, β 6= 0, let (αβ , yβ) be the solution to (5.4). Then there

is a vector u ∈ C∗Y with the property that αβ is the closest point to ATu in
CX and uT yβ = 0.

Proof. This proof is similar in spirit to that of Proposition 3.7. Recall the pro-
jection fact: For a given vector v ∈ X, ᾱ solves min{‖α − v‖ : α ∈ CX} if and only
if

(i) ᾱ ∈ CX ,
(ii) ᾱ− v ∈ C∗X , and

(iii) ᾱT (ᾱ− v) = 0.
The Lagrangian dual of (5.4) is

max βTu,

‖ATu+ w‖ ≤ 1,
(5.5)

w ∈ C∗X ,
u ∈ C∗Y .
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By Fenchel’s duality theorem (see [7, section 31]), strong duality holds and both
(5.4) and (5.5) attain their optima.

From duality it follows that ᾱ solves (5.4) (with ȳ = Aᾱ − β) and (ū, w̄) solves
(5.5) if and only if

(i′) ᾱ ∈ CX , ȳ ∈ CY ,
(ii′) Aᾱ− ȳ = β,
(iii′) w̄ ∈ C∗X , ū ∈ C∗Y ,
(iv′) AT ū+ w̄ = 1

‖ᾱ‖ ᾱ, and

(v′) ūT ȳ = 0, ᾱT w̄ = 0.
To prove (a), assume ᾱ 6= 0 (if ᾱ = 0, then (a) holds trivially). Set

w̄ =
1

‖ᾱ‖ (ᾱ−ATu), ū =
1

‖ᾱ‖u.

From conditions (i)–(iii) and uT ȳ = 0 it is easy to see that (i′)–(v′) hold, thereby
proving (a).

To prove (b), suppose that αβ solves (5.4) and let yβ = Aαβ − β. Let (ū, w̄) be a
solution to (5.5); now, from (i′)–(v′) it is easy to see that (i)–(iii) hold for

ᾱ := αβ , u := ‖ᾱ‖ū, v := ATu, and ȳ := yβ .
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Abstract. We study the problem of minimizing a sum of p-norms where p is a fixed real
number in the interval [1,∞]. Several practical algorithms have been proposed to solve this problem.
However, none of them has a known polynomial time complexity. In this paper, we transform
the problem into standard conic form. Unlike those in most convex optimization problems, the
cone for the p-norm problem is not self-dual unless p = 2. Nevertheless, we are able to construct
two logarithmically homogeneous self-concordant barrier functions for this problem. The barrier
parameter of the first barrier function does not depend on p. The barrier parameter of the second
barrier function increases with p. Using both barrier functions, we present a primal-dual potential
reduction algorithm to compute an ε-optimal solution in polynomial time that is independent of p.
Computational experiences with a Matlab implementation are also reported.

Key words. shortest network under a given topology, facilities location, Steiner minimum trees,
minimizing a sum of norms, primal-dual potential reduction algorithms, polynomial time algorithms
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1. Introduction. Let c1, c2, . . . , cm ∈ Rd be column vectors in the Euclidean
d-space and A1, A2, . . . , Am ∈ Rn×d be n-by-d matrices each having full column rank.
We want to find a point u ∈ Rn such that the following sum of p-norms, p ≥ 1, is
minimized:

min
m∑
i=1

||ci −ATi u||p
s.t. u ∈ Rn.

(1.1)

We recall that || • ||p is the Hölder or p-norm [14] defined by

||x||p = (|x1|p + · · ·+ |xn|p)1/p.(1.2)

It is clear that u = 0 is an optimal solution to (1.1) when all of the ci are zero.
Therefore, we will assume in the rest of this paper that not all of the ci are zero.
Problem (1.1) is a convex programming problem. Thus, it can be generally solved
in “polynomial time.” In this paper, we present a conic formulation of the problem,
develop a specialized interior point algorithm, and analyze its computational com-
plexity, exploring the special tree structure of the problem. One interesting feature is
that the p-order cone involved in our formulation, unlike those in almost all current
problems solved by interior point algorithms, is not self-dual. This presents certain
difficulties in developing and analyzing the algorithm.
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Problem (1.1) has a long history, dating back to the 17th century, when Fermat
[19] studied the problem of finding the shortest network interconnecting three points
on the Euclidean plane, where a fourth point may be added to minimize the sum
of lengths of the network. The Fermat problem was generalized to the Euclidean
facilities location problem and the Euclidean Steiner minimal tree problem. Those
problems were in turn further generalized to cases where distances are measured using
weighted p-norms.

The facilities location problem is one of locatingN new facilities with respect toM
existing facilities, the locations of which are known. The problem consists of finding
locations of new facilities that will minimize the sum of (nonnegatively) weighted
distances between the new and existing facilities, and between the new facilities. If
there is only one new facility (N = 1), the problem is called a single facility location
(SFL) problem. If there is more than one new facility (N ≥ 2), the problem is called
a multifacility location (MFL) problem.

For the general SFL problem with Euclidean norm, Weiszfeld [33] gave a simple
closed-form iterative algorithm in 1937. This work started a chain of research on this
topic [19, 27, 17, 32, 5, 6, 20]. Miehle [23] was the first to propose an extension of the
Weiszfeld algorithm for the SFL problem to solve MFL problems. Again, a number of
important results were obtained along this line [27, 29, 34, 10, 30]. For more details
on location problems, see the books by Francis, McGinnis, and White [11] and Love,
Morris, and Wesolowsky [21].

Practical algorithms for solving these problems began with the work of Calamai
and Conn [3, 4] and Overton [28], where they proposed projected Newton algorithms
with quadratic rate of convergence. They also generalized the location problems to
one of minimizing a sum of norms. In recent years, several complexity results and
numerically stable algorithms have been obtained for problem (1.1) with p = 2 using
techniques of interior point algorithms. In [35], Xue, Rosen, and Pardalos showed
that the dual of the Euclidean MFL problem is the minimization of a linear function
subject to linear and convex quadratic constraints and that therefore it can be solved
using interior point techniques in polynomial time. More recently, Andersen [1] used
the HAP idea [10] to smooth the objective function by introducing a perturbation
ε > 0 and applied a Newton barrier method to solve the problem. Andersen and
Christiansen [2] and Conn and Overton [7] also proposed a primal-dual method based
on the ε-perturbation and presented impressive computational results.

For p ≥ 1, den Hertog et al. [8, 9] (also see references therein) presented a poly-
nomial time interior point Newton barrier method for solving a closely related prob-
lem, where the objective function is

m∑
i=1

||ci −ATi u||pp,

that is, the sum of the p-powers of p-norms. This objective function is equivalent to
ours only if m = 1. Nesterov and Nemirovskii [25, 24] also addressed the problem
with m = 1. Their constructed barrier function, although different from the one used
in our conic formulation, influenced our study of this problem.

In a recent paper [36], we studied the problem of minimizing a sum of Euclidean
norms. The problem was formulated in standard conic form and a polynomial time
primal-dual potential reduction algorithm was presented. A nice property of the
Euclidean case is that the second-order cone is self-dual. We have taken advantage of
this fact in our work in [36], based on the self-dual theory and primal-dual algorithm
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developed by Nesterov and Todd [26] (see also Kojima, Shindoh, and Hara [18]).
In some applications, the problems are better modeled with p-norms where p 6= 2.

For example, in VLSI design, the 1-norm or Manhattan distance is used. In trans-
portation, several general p-norms are used [21]. Since the p-order cone of the conic
form of (1.1) is not self-dual unless p = 2, a natural question to ask is the following:
Can the techniques used for minimizing a sum of Euclidean norms be generalized to
minimize a sum of p-norms in polynomial time? The goal of this paper is to an-
swer the above question affirmatively. Specifically, we present a primal-dual potential
reduction algorithm that computes an ε-optimal solution in at most

O(
√
md(log(c̄/ε) + log(md)))

iterations, where c̄ = max1≤i≤m ||ci||. Note that this bound is independent of p and

is increased only by a factor
√
d compared to the bound for p = 2 [36].

The rest of this paper is organized as follows. In section 2, the basic problem (1.1)
is transformed into a standard convex programming problem in conic form. In section
3, we develop two logarithmically homogeneous self-concordant barrier functions for
this problem. In section 4, we present a primal-dual potential reduction algorithm
for solving the problem. In section 5, we discuss the computational complexity and
simplifications of the potential reduction algorithm. In section 6, we present appli-
cations to the SFL problem, the MFL problem, and the Steiner minimal tree (SMT)
problem. In section 7, we present some computational examples on SMT problems.
We conclude this paper in section 8.

2. Conic formulation. We will call problem (1.1) the basic problem in the rest
of our paper. This problem can be formulated as the maximization of a linear function
subject to affine and convex cone constraints as follows.

max −
m∑
i=1

ti

s.t. t1 ≥ ||c1 −AT1 u||p,
t2 ≥ ||c2 −AT2 u||p,
...
tm ≥ ||cm −ATmu||p,

(2.1)

where ti ∈ R, i = 1, 2, . . . ,m.
In the rest of this paper, when we represent a large matrix with several small

matrices, we will use a semicolon to represent column concatenation and a comma to
represent row concatenation. This notation also applies to vectors. We will use 0 to
represent a column vector whose elements are all zero, and e the vector of all ones.
We will use R+ to represent the set of nonnegative real numbers.

In this section, we will transform our basic problem (1.1) into a standard convex
programming problem in conic form, where the cone and its associated barrier are
not self-dual unless p = 2. (It is worthwhile to mention that, for p = 1 or p = ∞,
the problem can be reformulated as a linear program or second-order conic program
of md variables; thus, the reformulation becomes self-dual and the symmetric-scaling
algorithm applies.)

Consider the p-order cone, where p ≥ 1,

K =

(t ∈ R+, s ∈ Rd) : tp ≥
d∑
j=1

|sj |p
 .
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Its interior is

intK := {(t ∈ R+, s ∈ Rd) : t > ‖s‖p}.
The dual of K is

K∗ =

(τ ∈ R+, x ∈ Rd) : τ q ≥
d∑
j=1

|xj |q
 ,

where 1
p + 1

q = 1.

Now let

B =


−1
−1
...
−1
0n

 ∈ Rm+n, C =


(0; c1)
(0; c2)

...
(0; cm)

 ∈ Rm+md,

and

AT =



−1 0 · · · 0 0
0 0 · · · 0 AT1
0 −1 · · · 0 0
0 0 · · · 0 AT2

. . .

0 0 · · · −1 0
0 0 · · · 0 ATm


∈ R(m+md)×(m+n).

Then, problem (1.1) or (2.1) can be written in the standard (dual) form

max BT (t1; t2; . . . ; tm;u)

s.t.


(t1; s1)
(t2; s2)

...
(tm; sm)

 = C − AT (t1; t2; . . . ; tm;u),

(ti; si) ∈ K, i = 1, 2, . . . ,m,

(2.2)

where u ∈ Rn and ti ∈ R+, si ∈ Rd, i = 1, 2, . . . ,m.
Let (τ1;x1), (τ2;x2), . . . , (τm;xm) ∈ Rd+1. Then its corresponding primal prob-

lem is

min CT ((τ1;x1); (τ2;x2); . . . ; (τm;xm))
s.t. A((τ1;x1); (τ2;x2); . . . ; (τm;xm)) = B,

(τi;xi) ∈ K∗, i = 1, 2, . . . ,m.
(2.3)

Thus, using S := ((t1; s1); (t2; s2); . . . ; (tm; sm)), Y := (t1; t2; . . . ; tm;u), X :=
((τ1;x1); (τ2;x2); . . . ; (τm;xm)), K := Km := K ×K × · · · ×K, and K∗ := (K∗)m :=
K∗ ×K∗ × · · · ×K∗, we can write the two problems (2.3) and (2.2) as

(P ) min CTX
s.t. AX = B,

X ∈ K∗,
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and

(D) max BTY
s.t. S = C − ATY,

S ∈ K.

This is the pair of problems (P ) and (D) in Nesterov and Nemirovskii [25]. Unlike
those in most optimization problems, K 6= K∗ (unless p = 2) here. Therefore, the
symmetric primal-dual techniques, developed by, e.g., Nesterov and Todd [26], are no
longer applicable. However, we can still use interior point algorithms to compute an
ε-optimal solution of the problem in polynomial time.

3. Barrier functions for p-order cones. The key to solving problems (P )
and (D) is to construct a simple and efficient barrier function for K, when p 6= 2.
This has been an open question. In this section we present two barrier functions and
analyze their barrier parameters. To simplify notation, we will use s and z to denote
vectors in Rd and use sj and zj to denote the jth single component of the vectors
s and z. This notation is different than that used in the previous sections (where si
stood for a vector in Rd) and will be used only in this section.

3.1. Barrier function I. One barrier function is constructed from the following
convex set:

Gp =

{
(s ∈ Rd, z ∈ Rd) : zi ≥ |si|p, i = 1, . . . , d,

d∑
i=1

zi = 1

}
.

A barrier function for this set is

fp(s, z) =
d∑
i=1

(−2 log zi − log(z
2/p
i − s2

i )).

Its barrier parameter is 4 · d (where each term in the summation has parameter 4);
see Nesterov and Nemirovskii [25]. We will also use a special case of this function
(d = 1):

f1,p(si, zi) = (−2 log zi − log(z
2/p
i − s2

i )),

whose barrier parameter is 4.
Consider the conic hull

K(Gp) =
{

(t ∈ R+, s ∈ Rd, z ∈ Rd) : t > 0,
(s
t
,
z

t

)
∈ Gp

}
=

{
(t ∈ R+, s ∈ Rd, z ∈ Rd) : t > 0, tp−1zi ≥ |si|p,

d∑
i=1

zi = t

}
,

which is equivalent to K for (t, s). In what follows, we prove the following theorem.
Theorem 3.1. The function

f̂p(t, s, z) = 25 ·
(
fp

(s
t
,
z

t

)
− 8d log t

)
is a logarithmically homogeneous self-concordant barrier for K(Gp), where the barrier
parameter is 200d.
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Proof. Notice that

f̂p(t, s, z) = 25 ·
(
fp

(s
t
,
z

t

)
− 8d log t

)
=

d∑
i=1

25 ·
(
f1,p

(si
t
,
zi
t

)
− 8 log t

)
.

It is sufficient to prove that

f̂1,p(t ∈ R+, s ∈ R, z ∈ R+) = 25 · (−2 log(z/t)− log((z/t)2/p − (s/t)2)− 8 log t)

= 25 · (−2 log z − log(z2/pt2(p−1)/p − s2)− 4 log t)

is a logarithmically homogeneous self-concordant barrier function with parameter 200.
Our proof follows from Proposition 5.1.4 of Nesterov and Nemirovskii [25]. Note that
we have changed notation again: we have dropped the subscript i in si and zi to
simplify notation in the rest of this proof.

Let us fix o = (t, z, s), t > 0, and tp−1z > |s|p, and let w = (−dt, dz, ds) ∈ R3.

Let us compute the derivatives up to the order 3 of f̂1,p at the point o in the direction
w. For σ = dt/t and some α ∈ R, we have

s+ αds
t− αdt =

s

t
+

α

1− ασ
(
σ
s

t
+
ds
t

)
and

z + αdz
t− αdt =

z

t
+

α

1− ασ
(
σ
z

t
+
dz
t

)
.

Let

φ(α) := f1,p

(
s

t
+ α

(
σ
s

t
+
ds
t

)
,
z

t
+ α

(
σ
z

t
+
dz
t

))
.

Then

φ̂(α) := f̂1,p(o+ αw) = 25 ·
(
φ

(
α

1− ασ
)
− 8 log(1− ασ)− 8 log t

)
.

Therefore, we have

π̂1 := ∇f̂1,p(o)[w] = φ̂′(0) = 25(8σ + π1),

π̂2 := ∇2f̂1,p(o)[w,w] = φ̂′′(0) = 25(8σ2 + 2σπ1 + π2),

π̂3 := ∇3f̂1,p(o)[w,w,w] = φ̂′′′(0) = 25(16σ3 + 6σ2π1 + 6σπ2 + π3),

where

π1 = φ′(0), π2 = φ′′(0), π3 = φ′′′(0).

Since fp is a self-concordant barrier with the barrier parameter 4, we have

π2 ≥ 0, π2
1 ≤ 4π2, and |π3| ≤ 2π

3/2
2 .

Thus, we see

π̂2 ≥ 25(8σ2 − 4|σ|√π2 + π2) ≥ 25 max(4σ2, π2/2) ≥ 0,
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which implies that f̂1,p is a convex function. Now we need to prove that

|π̂3| ≤ 2π̂
3/2
2 .

Note that, if σ ≤ 0, we have

π̂3/25 = 3σ(8σ2 + 2σπ1 + π2)− 8σ3 + 3σπ2 + π3

≤ −8σ3 + π3

≤ 8|σ|3 + 2π
3/2
2

≤ 8

1000
π̂

3/2
2 +

4
√

2

125
π̂

3/2
2

≤ 2

25
π̂

3/2
2 ,

and

−π̂3/25 ≤ −3σ(8σ2 + 2σπ1 + π2)− 3σπ2 − π3

≤ 3

250
π̂

3/2
2 − 3σπ2 + 2π

3/2
2 .

For the latter, consider the following maximum problem for any fixed a ≥ 0:

max −3xy2 + 2y3 : 8x2 + 4xy + y2 = a, x ≤ 0, y ≥ 0.

One can verify that the maximum value is below 8a3/2. Thus,

−3σπ2 + 2π
3/2
2 ≤ 8

125
π̂

3/2
2 ,

which, together with the above inequality, implies that

−π̂3 ≤
(

3

10
+

8

5

)
π̂

3/2
2 ≤ 2π̂

3/2
2 .

Thus, for the case of σ ≤ 0, we have

|π̂3| ≤ 2π̂
3/2
2 .

Now we consider the case when σ > 0:

π̂3/25 = 3σ(8σ2 + 2σπ1 + π2)− 8σ3 + 3σπ2 + π3

≤ 3σ(8σ2 + 2σπ1 + π2) + 3σπ2 + π3

≤ 3

25
σπ̂2 + 3σπ2 + 2π

3/2
2

≤ 3

250
π̂

3/2
2 + 3σπ2 + 2π

3/2
2 .

Consider again the following maximum problem for any fixed a > 0:

max 3xy2 + 2y3 : 8x2 − 4xy + y2 = a, x ≥ 0, y ≥ 0,

where the maximum value is below 8a3/2. Thus,

3σπ2 + 2π
3/2
2 ≤ 8

125
π̂

3/2
2 ,
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which, together with the above inequality, implies that

π̂3 ≤
(

3

10
+

8

5

)
π̂

3/2
2 ≤ 2π̂

3/2
2 .

Also,

−π̂3/25 ≤ 8σ3 − π3

≤ 8|σ|3 + 2π
3/2
2

≤ 8

1000
π̂

3/2
2 +

4
√

2

125
π̂

3/2
2

≤ 2

25
π̂

3/2
2 .

To summarize, we have proved that

|π̂3| ≤ 2π̂
3/2
2 .

Finally, it is easy to verify that the barrier parameter is 200 for f̂1,p. Therefore,

the barrier parameter for f̂p is 200d. This completes the proof of the theorem.

3.2. Barrier function II. In this section, we first consider the set{
z ∈ Rd : zi ≥ 0, i = 1, . . . , d,

d∑
i=1

zpi ≤ 1

}
.

A barrier function for this set is

fp(z) = −4 log

(
1−

d∑
i=1

zpi

)
− 4p2

d∑
i=1

log zi.

It is a convex barrier function. We present its barrier parameter in the following
theorem.

Theorem 3.2. The function fp(z) is a logarithmically self-concordant function

with parameter 4(1 + p2d) in the interior of the set {z ∈ Rd :
∑d
i=1 z

p
i ≤ 1, z ≥ 0}.

Proof. Let z > 0 and δ =
∑d
i=1 z

p
i < 1 be given, and let w ∈ Rd. Let

φ(α) := fp(z + αw).

We compute the derivatives up to the order 3 of fp at the point z in the direction w:

π1/4 := ∇fp(z)[w]/4 = φ′(0)/4

=
p

1− δ
d∑
i=1

wiz
p−1
i − p2

d∑
i=1

wiz
−1
i ,

π2/4 := ∇2fp(z)[w,w]/4 = φ′′(0)/4

=
p2

(1− δ)2

(
d∑
i=1

wiz
p−1
i

)2

+
p(p− 1)

1− δ
d∑
i=1

w2
i z
p−2
i + p2

d∑
i=1

w2
i z
−2
i ,

and

π3/4 := ∇3fp(z)[w,w,w]/4 = φ′′′(0)/4
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=
2p3

(1− δ)3

(
d∑
i=1

wiz
p−1
i

)3

+
2p2(p− 1)

(1− δ)2

(
d∑
i=1

wiz
p−1
i

)(
d∑
i=1

w2
i z
p−2
i

)

+
p2(p− 1)

(1− δ)2

(
d∑
i=1

wiz
p−1
i

)(
d∑
i=1

w2
i z
p−2
i

)
+
p(p− 1)(p− 2)

1− δ
d∑
i=1

w3
i z
p−3
i + p2

d∑
i=1

w3
i z
−3
i .

Now let

φ1 =
p

1− δ
d∑
i=1

wiz
p−1
i , φ2 = p2

d∑
i=1

wiz
−1
i ,

φ3 =

√√√√p(p− 1)

1− δ
d∑
i=1

w2
i z
p−2
i , and φ4 =

√√√√p2

d∑
i=1

w2
i z
−2
i .

Then,

π1/4 = φ1 − φ2,

π2/4 = φ2
1 + φ2

3 + φ2
4 > 0,

and

|π3/4| ≤ |2φ3
1 + 3φ1φ

2
3|+

|p− 2|
p

φ2
3φ4 +

1

p
φ3

4

≤ 2|φ1|(φ2
1 + φ2

3) + |φ1|φ2
3 + φ3(φ2

3 + φ2
4)

≤ π3/2
2 /4 + π

3/2
2 /8 + π

3/2
2 /8

= π
3/2
2 /2;

i.e.,

|π3| ≤ 2π
3/2
2 .

Finally, we need to prove

π2
1 ≤ 4(1 + p2d)π2.

Note that

π2
1 = 16(φ1 − φ2)2.

Thus, if φ1 = 0, then

π2
1 = 16φ2

2 ≤ 16p2dφ2
4 ≤ 4p2dπ2.

Consider φ1 6= 0 and let δ̄ = |φ2|
|φ1| . Then

π2/4 ≥ φ2
1 +

φ2
2

p2d
=

(
1 +

δ̄2

p2d

)
φ2

1.



560 GUOLIANG XUE AND YINYU YE

On the other hand,

π2
1 ≤ 16(1 + δ̄)2φ2

1.

Therefore,

π2
1 ≤

(1 + δ̄)2

1 + δ̄2

p2d

· 4π2

≤ 4(1 + p2d)π2,

where the last inequality holds since

(1 + δ̄)2 ≤ (1 + p2d)

(
1 +

δ̄2

p2d

)
.

Similarly, we can prove the following corollary.
Corollary 3.3. If p ≤ 3, then

fp(z) = −4 log

(
1−

d∑
i=1

zpi

)
− 4

d∑
i=1

log zi

is a convex, logarithmically self-concordant barrier function with parameter 4(1 + d)

in the interior of the set {z ∈ Rd :
∑d
i=1 z

p
i ≤ 1, z ≥ 0}.

We now consider the set

Gp =

{
(s ∈ Rd, z ∈ Rd) : zi ≥ |si|, i = 1, . . . , d,

d∑
i=1

zpi ≤ 1

}
.

A barrier function for this set is

fp(s, z) = −4 log

(
1−

d∑
i=1

zpi

)
− 4p2

d∑
i=1

log zi −
d∑
i=1

log(z2
i − s2

i ).

The barrier parameter of this function is 4(1+p2d)+2d, since the first two summations
have parameter 4(1 + p2d) and the last summation has parameter 2d.

Again consider the conic hull

K(Gp) =
{

(t, s ∈ Rd, z ∈ Rd) : t > 0,
(s
t
,
z

t

)
∈ Gp

}

=

{
(t, s ∈ Rd, z ∈ Rd) : t > 0, zi ≥ |si|,

d∑
i=1

zpi ≤ tp
}
,

which is also equivalent to K for (t, s). Again, similar to Theorem 3.1, we can prove
the following theorem.

Theorem 3.4. The function

f̂p(t, s, z) = θ2 ·
(
fp

(s
t
,
z

t

)
− (8(1 + p2d) + 4d) log t

)
is a logarithmically homogeneous self-concordant barrier for K(Gp), where the barrier
parameter is θ2(8(1 + p2d) + 4d), where θ is a positive constant, say, θ = 5.
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We can simplify the above barrier function further. Note that zi ≥ |si| implies
zi ≥ 0, and the Hessian of − log(z2

i − s2
i ) is

H(zi, si) =
2

z2
i − s2

i

( −1 0
0 1

)
+

4

(z2
i − s2

i )
2

(
z2
i −zisi

−zisi s2
i

)
.

For z2
i > s2

i , we have

H(zi, si)−
(
z−2
i 0
0 0

)
=

2

(z2
i − s2

i )
2

(
z2
i + s2

i − (z2
i−s2i )2

2z2
i

−2zisi

−2zisi z2
i + s2

i

)
.

We can show, from (z2
i − s2

i )
3 > 0, that the two-by-two matrix in the right-hand-side

expression is positive semidefinite. Thus, we have the following corollary, whose proof
is similar to that for Theorem 3.2.

Corollary 3.5. If p ≤ 3, then

fp(s, z) = −4 log

(
1−

d∑
i=1

zpi

)
− 4

d∑
i=1

log(z2
i − s2

i )

is a convex, logarithmically self-concordant barrier function with parameter 4(1 + 2d)

in the interior of the set {(s ∈ Rd, z ∈ Rd) :
∑d
i=1 z

p
i ≤ 1, z ≥ |si|}. The function

f̂p(t, s, z) = 25 ·
(
fp

(s
t
,
z

t

)
− 8(1 + 2d) log t

)

= 100

(
− log

(
tp −

d∑
i=1

zpi

)
−

d∑
i=1

log(z2
i − s2

i )− (2− p+ 2d) log t

)
is a logarithmically homogeneous self-concordant barrier for K(Gp), where the barrier
parameter is 200(1 + 2d).

Symmetrically, we may consider the convex set

Gq =

{
(x ∈ Rd, v ∈ Rd) : vi ≥ |xi|q, i = 1, . . . , d,

d∑
i=1

vi = 1

}
and the conic hull

K(Gq) =
{

(τ, x ∈ Rd, v ∈ Rd) : τ > 0,
(x
τ
,
v

τ

)
∈ Gq

}

=

{
(τ, x ∈ Rd, v ∈ Rd) : τ > 0, vi ≥ |xi|,

d∑
i=1

vqi ≤ τ q
}
,

which is also equivalent to K∗ for (τ, x). A direct application of Corollary 3.5 leads
to the following corollary.

Corollary 3.6. If q ≤ 3, then

fq(x, v) = −4 log

(
1−

d∑
i=1

vqi

)
− 4

d∑
i=1

log(v2
i − x2

i )

is a convex, logarithmically self-concordant barrier function with parameter 4(1 + 2d)

in the interior of the set {(x ∈ Rd, v ∈ Rd) :
∑d
i=1 v

q
i ≤ 1, v ≥ |xi|}. The function

f̂q(τ, x, v) = 25 ·
(
fq

(x
τ
,
v

τ

)
− 8(1 + 2d) log τ

)
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= 100

(
− log

(
τ q −

d∑
i=1

vqi

)
−

d∑
i=1

log(v2
i − x2

i )− (2− q + 2d) log τ

)
is a logarithmically homogeneous self-concordant barrier for K(Gq), where the barrier
parameter is 200(1 + 2d).

3.3. Legendre transformations. Although it has a higher barrier parameter,
barrier function II possesses a structure similar to the barrier function for the second-
order cone, which we will use in the following analyses. Since we can solve both (P )
and (D) using either the barrier function for the p-order cone in (D) or the barrier
function for the q-order cone in (P ), we will make the following conventions in this
paper:

• When p > 3, use the barrier function of the q-order cone in (P ).
• When 1 ≤ p ≤ 3, use the barrier function of the p-order cone in (D).

It follows from Nesterov and Nemirovskii [25] that the Legendre transformation
of the logarithmically homogeneous self-concordant barrier function in Corollary 3.5,

f̂∗p (τ, x ∈ Rd) = sup{−τ · t− xT s− f̂p(t, s, z) : (t, s, z) ∈ K(Gp)},
is a logarithmically homogeneous self-concordant barrier for K∗ with the same pa-
rameter 200(1 + 2d). It seems hard to find an explicit form of f̂∗p (τ, x). Fortunately,
for the interior point algorithm presented in the next section, we do not need such an
explicit formula.

We need only the initial barrier function value at a primal initial point in our
complexity analysis. We will set the initial point τ = 1 and x = 0. Thus, we need to
evaluate

f̂∗p (1, 0) = sup{−t− f̂p(t, s, z) : (t, s, z) ∈ K(Gp)}.
This is a convex optimization problem with an analytical solution

t∗ = 200(1 + 2d), s∗ = 0, z∗j =

(
2

p+ 2d

)1/p

t∗, j = 1, . . . , d.

Thus,

(3.1)

f̂∗p (1, 0) = 200(1 + 2d)(log(200(1 + 2d))− 1) + 100 log
p

p+ 2d
+

200d

p
log

2

p+ 2d
.

It also follows from Nesterov and Nemirovskii [25] that the Legendre transforma-
tion of the logarithmically homogeneous self-concordant barrier function in Corollary
3.6,

f̂∗q (t, s ∈ Rd) = sup{−τ · t− xT s− f̂q(τ, x, v) : (τ, x, v) ∈ K(Gq)},
is a logarithmically homogeneous self-concordant barrier for K with the same param-
eter 200(1 + 2d). It seems hard to find the exact value of f̂∗q (t, s) for s 6= 0. In the

following, we will find an explicit formula for f̂∗q (c, 0) for any c > 0 and prove that

f̂∗q (t, s) ≤ f̂∗q (t− ||s||p, 0) for (t, s) ∈ K.
Note that

f̂∗q (c, 0) = sup{−τc− f̂q(τ, x, v) : (τ, x, v) ∈ K(Gq)}.
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This is a convex optimization problem with an analytical solution

τ∗ = 200(1 + 2d)/c, x∗ = 0, v∗j =

(
2

q + 2d

)1/q

τ∗, j = 1, . . . , d.

Thus,

(3.2)

f̂∗q (c, 0) = 200(1 + 2d)(log(200(1 + 2d)/c)− 1) + 100 log
q

q + 2d
+

200d

q
log

2

q + 2d
.

For any (t, s) ∈ K and (τ, x) ∈ K∗, we have

t ≥ ||s||p, τ ≥ ||x||q.
Since

|sTx| ≤ ||s||p||x||q,
we have

−tτ − sTx ≤ −tτ + ||s||p||x||q
≤ −tτ + ||s||pτ
= −τ(t− ||s||p).

Therefore,

f̂∗q (t, s) ≤ f̂∗q (t− ||s||p, 0).(3.3)

4. A primal-dual potential reduction algorithm. In this section, we will
present a primal-dual potential reduction algorithm for computing ε-optimal solutions
for (P ) and (D) in polynomial time. We will use either dual scaling or primal scaling
depending on the value of p.

4.1. Use dual scaling when p ∈ [1, 3]. When p ∈ [1, 3], we may solve (P )
and (D) using the barrier function for the p-order cone. Let

F ∗p (X ) =
m∑
i=1

f̂∗p (τi, xi) and Fp(S,Z) =
m∑
i=1

f̂p(ti, si, zi ∈ Rd),(4.1)

where

Z := (z1; z2; . . . ; zm).

They are logarithmically homogeneous self-concordant barriers for (P ) and (D), where
the barrier parameter is θ := 200(1 + 2d)m. A primal-dual potential function for the
pair (P ) and (D) is

φρ(X ,S,Z) := ρ log〈X ,S〉+ F ∗p (X ) + Fp(S,Z) + θ,(4.2)

where ρ = θ + γ
√
θ, γ ≥ 1. Note that

〈X ,S〉 = X TS = CTX − BTY,
and from Nesterov and Nemirovskii [25],

φθ(X ,S,Z) ≥ θ log θ.(4.3)
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The main iteration of a potential reduction algorithm starts with a strictly feasible
primal-dual pair X and (Y,S), i.e.,

AX = B, S = C − ATY,
X ∈ intK∗, and S ∈ intK.

It computes a search direction (dX , dY , dS , dZ) by solving a system of linear equations.
After obtaining (dX , dY , dS , dZ), a new, strictly feasible, primal-dual pair X+ and
(Y+,S+) is generated from

X+ = X + αdX , Y+ = Y + βdY , S+ = S + βdS , Z+ = Z + βdZ ,

for some step-sizes α and β, and

φρ(X+,S+,Z+) ≤ φρ(X ,S,Z)− Ω(1).

The search direction (dX , dY , dS , dZ) is determined by the following equations:

AdX = 0, dS = −AT dY (feasibility)(4.4)

and (
dX
0

)
+ F ′′p (S,Z)

(
dS
dZ

)
= − ρ

X TS
( X

0

)
− F ′p(S,Z).(4.5)

The theoretical dual-scaling potential reduction algorithm, with a specific choice
of step-sizes α and β, can be described as follows (see section 4.5.3 of [25]).

Algorithm PDD
Let γ and ∆ be fixed constants such that γ ≥ 1, 0 < ∆ < 1, and γ(γ(1−∆)−∆)

1+γ >
∆2

2(1−∆)2 .

Step 1. Compute the search direction (dX , dY , dS , dZ) using (4.4) and (4.5).

Step 2. Compute λ =

√(
dS
dZ

)T
F ′′p (S,Z)

(
dS
dZ

)
.

If λ > ∆, then

X+ = X (primal step-size α = 0),

S+ = S + 1
1+λdS (dual step-size β = 1

1+λ ),

Y+ = Y + 1
1+λdY ,

Z+ = Z + 1
1+λdZ ,

else

X+ = X + 〈S,X〉
ρ dX (primal step-size α = 〈S,X〉

ρ ),

S+ = S (dual step-size β = 0),

Y+ = Y,

Z+ = Z.

endif
According to Nesterov and Nemirovskii [25], we have the following theorem.
Theorem 4.1. Starting from any strictly feasible primal solution X 0 and strictly

dual feasible solution (Y0;S0), an ε-optimal solution (X ,Y,S) to problem (1.1), can be
obtained by repeated explication of Algorithm PDD for at most O(γ

√
θ log(〈X 0,S0〉/ε)+

φθ(X 0,S0,Z0)− θ log θ) iterations.
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In practice, one usually finds the largest step-sizes ᾱ and β̄ such that

X + ᾱdX ∈ K∗ and S + β̄dS ∈ K,(4.6)

then takes α ∈ [0, ᾱ] and β ∈ [0, β̄] via a line-search to minimize φρ(X+,S+,Z+), or
simply chooses

α = (0.5 ∼ 0.99)ᾱ and β = (0.5 ∼ 0.99)β̄(4.7)

as long as φρ is reduced.

4.2. Use primal scaling when p ∈ [3,∞]. The dual scaling algorithm is good
when p is small (1 ≤ p ≤ 3). For larger values of p, the barrier parameter for the
p-order cone becomes larger. In this case, it is better to use the barrier function of the
q-order cone in (P ), where 1

p + 1
q = 1. It is clear that q ∈ [1, 2] whenever p ∈ [2,∞].

Let

Fq(X ,V) =
m∑
i=1

f̂q(τi, xi, vi ∈ Rd) and F ∗q (S) =
m∑
i=1

f̂∗q (ti, si),(4.8)

where

V := (v1; v2; . . . ; vm).

They are logarithmically homogeneous self-concordant barriers for (P ) and (D), where
the barrier parameter is θ := 200(1 + 2d)m. A primal-dual potential function for the
pair (P ) and (D) is

ψρ(X ,S,V) := ρ log〈X ,S〉+ Fq(X ,V) + F ∗q (S) + θ,(4.9)

where ρ = θ + γ
√
θ, γ ≥ 1. Note that

〈X ,S〉 = X TS = CTX − BTY,
and from Nesterov and Nemirovskii [25]

ψθ(X ,S,V) ≥ θ log θ.(4.10)

The main iteration of a potential reduction algorithm starts with a strictly feasible
primal-dual pair (X ,V) and (Y,S), i.e.,

AX = B, S = C − ATY,
X ∈ intK, and S ∈ intK∗.

It computes a search direction (dX , dY , dS , dV) by solving a system of linear equations.
After obtaining (dX , dY , dS , dV), a new, strictly feasible, primal-dual pair X+ and
(Y+,S+) is generated from

X+ = X + αdX , Y+ = Y + βdY , S+ = S + βdS , V+ = V + αdV

for some step-sizes α and β, and

ψρ(X+,S+,V+) ≤ ψρ(X ,S,V)− Ω(1).

The search direction (dX , dY , dS , dV) is determined by (4.4) and the following
equations: (

dS
0

)
+ F ′′q (X ,V)

(
dX
dV

)
= − ρ

X TS
( S

0

)
− F ′q(X ,V).(4.11)
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The algorithm generates an ε-optimal solution (X ,S,V), i.e.,

〈X ,S〉 ≤ ε,
in a guaranteed O(γ

√
θ log(〈X 0,S0〉/ε) + ψθ(X 0,S0,V0)− θ log θ) iterations.

In practice, one usually finds the largest step-sizes ᾱ and β̄ such that

X + ᾱdX ∈ K and S + β̄dS ∈ K∗,(4.12)

then takes α ∈ [0, ᾱ] and β ∈ [0, β̄] via a line-search to minimize ψρ(X+,S+,V+), or
simply chooses

α = (0.5 ∼ 0.99)ᾱ and β = (0.5 ∼ 0.99)β̄(4.13)

as long as ψρ is reduced.
The theoretical potential reduction algorithm using primal scaling can be de-

scribed as follows.
Algorithm PDP.

Let γ and ∆ be fixed constants such that γ ≥ 1, 0 < ∆ < 1, and γ(γ(1−∆)−∆)
1+γ >

∆2

2(1−∆)2 .

Step 1. Compute the search direction (dX , dY , dS , dV) using (4.4) and (4.11).

Step 2. Compute λ =

√(
dX
dV

)T
F ′′q (X ,V)

(
dX
dV

)
.

If λ > ∆, then

X+ = X + 1
1+λdX (primal step-size α = 1

1+λ ),

V+ = V + 1
1+λdV ,

S+ = S (dual step-size β = 0),

Y+ = Y,

else

X+ = X (primal step-size α = 0),

V+ = V,

S+ = S + 〈S,X〉
ρ dS (dual step-size β = 〈S,X〉

ρ ),

Y+ = Y + 〈S,X〉
ρ dY .

endif
According to Nesterov and Nemirovskii [25], we have the following theorem.
Theorem 4.2. Starting from any strictly feasible primal solution (X 0;V0) and

strictly dual feasible solution (Y0;S0), an ε-optimal solution to problem (1.1) can be ob-
tained by repeated application of Algorithm PDP for at most O(γ

√
θ log(〈X 0,S0〉/ε)+

ψθ(X 0,S0,V2)− θ log θ) iterations.

5. Complexity and implementation. As we have seen, the number of iter-
ations required to compute an ε-optimal solution to problem (2.1) depends on the
initial point (X 0,S0,Z0). In this section, we discuss the initial point selection and
other computational issues for solving problem (2.1) using the algorithms presented
in section 4.

5.1. Initial point for dual scaling. The algorithms discussed in the previous
section all require a pair of strictly primal-dual interior feasible solutions. In the
following, we give one such pair.
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Let

c̄ = max
1≤i≤m

‖ci‖,

and for i = 1, 2, . . . ,m, let

u0 = 0, t0i =
√
‖ci‖2 +m(1 + 2d)c̄2

(
p+ 2d

2

) 1
p

,

s0
i = ci, z0

i =
√
‖ci‖2 +m(1 + 2d)c̄2 e ∈ Rd,

and

τ0
i = 1, x0

i = 0 ∈ Rd.
Then, one can verify that X 0 is an interior feasible solution to (P ) and that S0 and
Y0 form an interior feasible solution to (D). One can also verify that

〈X 0,S0〉 = (X 0)TS0 =

m∑
i=1

t0i τ
0
i =

(
p+ 2d

2

) 1
p

m∑
i=1

√
‖ci‖2 +m(1 + 2d)c̄2

≤
(
p+ 2d

2

) 1
p

c̄m
√

1 +m(1 + 2d),

and the initial value

f̂p(t
0
i , s

0
i , z

0
i ) ≤ 100

(
−(2 + 2d) log t0i − log

p

p+ 2d
− d logm(1 + 2d)c̄2

)
≤ −100(1 + 2d) logm(1 + 2d)c̄2 − 200(1 + d)

p
log

p+ 2d

2
− 100 log

p

p+ 2d
.

From this inequality and (3.1), we have

F ∗p (X 0) + Fp(S0,Z0)

=

m∑
i=1

f̂∗p (1, 0) +
m∑
i=1

f̂p(t
0
i , s

0
i , z

0
i )

≤ θ(log(200(1 + 2d))− 1)− 100(1 + 2d)m logm(1 + 2d)c̄2 +
θ

p
log

2

p+ 2d
.

Thus, from these inequalities,

φθ(X 0,S0,V0)− θ log θ

= θ log〈X 0,S0〉+ F ∗p (X 0) + Fp(S0,Z0) + θ − θ log θ

≤ θ log(c̄m
√

1 +m(1 + 2d))− 100(1 + 2d)m logm(1 + 2d)c̄2

+θ log(200(1 + 2d))− θ log θ

= 100(1 + 2d)m log(1 +m(1 + 2d))− 100(1 + 2d)m logm(1 + 2d)

= 100(1 + 2d)m log

(
1 +

1

m(1 + 2d)

)
≤ 100.

With this initial point, we have the following corollary.
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Corollary 5.1. Let the initial feasible primal solution X 0 and dual feasible
solution (Y0,S0,Z0) be given as above, and let 1 ≤ p ≤ 3. Then, an ε-optimal
solution to problem (2.1) can be obtained by the (dual) potential reduction algorithm
in at most

O
(
γ
√

200(1 + 2d)m (log(c̄/ε) + log(md))
)

iterations, where

c̄ = max
1≤i≤m

‖ci‖.

5.2. Initial point for primal scaling. In this section, we give a pair of strictly
primal-dual interior feasible solutions for the primal scaling algorithm. It is assumed
that p ≥ 2.

Let

c̄ = max
1≤i≤m

‖ci‖,

and for i = 1, 2, . . . ,m, let

u0 = 0, s0
i = ci, t0i = ||ci||p +m(1 + 2d)c̄

and

τ0
i = 1, x0

i = 0 ∈ Rd, v0
i =

(
2

q + 2d

) 1
q

e.

Then, one can verify that X 0 is an interior feasible solution to (P ) and that S0 and
Y0 form an interior feasible solution to (D). One can also verify that

〈X 0,S0〉 = (X 0)TS0 =
m∑
i=1

t0i τ
0
i ≤ mc̄+m2(1 + 2d)c̄,

and the initial value

f̂q(τ
0
i , x

0
i , v

0
i ) = 100

− log

(τ0
i )q −

d∑
j=1

(v0
j )q

− d∑
j=1

log(v0
j )2 − (2− q + 2d) log τ0

i


= 100

(
− log

(
1− 2d

q + 2d

)
− 2d

q
log

2

q + 2d

)
= 100

(
− log

(
q

q + 2d

)
− 2d

q
log

2

q + 2d

)
,

f̂∗i (ti, si) ≤ 200(1 + 2d)

(
log

200(1 + 2d)

m(1 + 2d)c̄
− 1

)
+ 100

(
log

q

q + 2d
+

2d

q
log

2

q + 2d

)
.

Therefore,

f̂q(τi, xi, vi) + f̂∗i (ti, si) ≤ 200(1 + 2d)

(
log

200(1 + 2d)

m(1 + 2d)c̄
− 1

)
.



MINIMIZING A SUM OF p-NORMS 569

From these inequalities, we have

F ∗q (S0) + Fq(X 0,V0)

=

m∑
i=1

f̂∗q (t0i , s
0
i ) +

m∑
i=1

f̂q(τ
0
i , x

0
i , v

0
i )

≤ θ
(

log
200(1 + 2d)

m(1 + 2d)c̄
− 1

)
.

Thus,

ψθ(X 0,S0,V0)− θ log θ

= θ log〈X 0,S0〉+ F ∗q (S0) + Fq(X 0,V0) + θ − θ log θ

≤ θ log(mc̄+m2(1 + 2d)c̄) + θ

(
log

200(1 + 2d)

m(1 + 2d)c̄
− 1

)
+ θ − θ log θ

= θ log

(
1 +

1

m(1 + 2d)

)
≤ 200.

With this initial point, we have the following corollary.
Corollary 5.2. Let the initial feasible primal solution (X 0,V0) and dual feasible

solution (Y0,S0) be given as above, and let 2 ≤ q ≤ 3. Then, an ε-optimal solution
to problem (2.1) can be obtained by the (primal) potential reduction algorithm in at
most

O
(
γ
√

200(1 + 2d)m (log(c̄/ε) + log(md))
)

iterations, where

c̄ = max
1≤i≤m

‖ci‖.

5.3. Search direction. At each step of the potential reduction algorithm, we
need to compute the search direction dX , dS , dY , and dZ by solving a system of linear
equations. In what follows, we will show that this can be further simplified, taking
advantage of the special structure of the problem.

Consider the search direction defined by dual scaling (4.5). For i = 1, . . . ,m, it
can be decomposed as

 dτi
0d
dxi

+


∂2f̂p(ti,si,zi)

∂ti∂ti

∂2f̂p(ti,si,zi)
∂ti∂zi

∂2f̂p(ti,si,zi)
∂ti∂si

∂2f̂p(ti,si,zi)
∂zi∂ti

∂2f̂p(ti,si,zi)
∂zi∂zi

∂2f̂p(ti,si,zi)
∂zi∂si

∂2f̂p(ti,si,zi)
∂si∂ti

∂2f̂p(ti,si,zi)
∂si∂zi

∂2f̂p(ti,si,zi)
∂si∂si


 dti

dzi
dsi



= − ρ

X TS

 τi
0
xi

−


∂f̂p(ti,si,zi)
∂ti

∂f̂p(ti,si,zi)
∂zi

∂f̂p(ti,si,zi)
∂si

 .
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Note that si = ci−ATi u, dsi = −ATi du, τi = 1, and dτi = 0 for i = 1, . . . ,m. The
system can be written as

 0
0
dxi

+


∂2f̂p(ti,si,zi)

∂ti∂ti

∂2f̂p(ti,si,zi)
∂ti∂zi

∂2f̂p(ti,si,zi)
∂ti∂si

∂2f̂p(ti,si,zi)
∂zi∂ti

∂2f̂p(ti,si,zi)
∂zi∂zi

∂2f̂p(ti,si,zi)
∂zi∂si

∂2f̂p(ti,si,zi)
∂si∂ti

∂2f̂p(ti,si,zi)
∂si∂zi

∂2f̂p(ti,si,zi)
∂si∂si


 dti

dzi
−ATi du



= − ρ

X TS

 1
0
xi

−


∂f̂p(ti,si,zi)
∂ti

∂f̂p(ti,si,zi)
∂zi

∂f̂p(ti,si,zi)
∂si

 .

Let

Ji =

 ∂2f̂p(ti,si,zi)
∂ti∂ti

∂2f̂p(ti,si,zi)
∂ti∂zi

∂2f̂p(ti,si,zi)
∂zi∂ti

∂2f̂p(ti,si,zi)
∂zi∂zi

 .

One can easily verify that Ji is positive definite. Therefore, we can compute J−1
i in

at most O(d3) time. From the first two equations, we get

(
dti
dzi

)
= J−1

i

 ∂2f̂p(ti,si,zi)
∂ti∂si

∂2f̂p(ti,si,zi)
∂zi∂si

ATi du −
ρ

X TS
(

1
0

)
−
 ∂f̂p(ti,si,zi)

∂ti

∂f̂p(ti,si,zi)
∂zi

 .
(5.1)

Substituting this into the third equation, we get

dxi +


 ∂2f̂p(ti,si,zi)

∂si∂ti

∂2f̂p(ti,si,zi)
∂si∂zi

T

J−1
i

 ∂2f̂p(ti,si,zi)
∂si∂ti

∂2f̂p(ti,si,zi)
∂si∂zi

− ∂2f̂p(ti, si, zi)

∂si∂si

ATi du

=

 ∂2f̂p(ti,si,zi)
∂si∂ti

∂2f̂p(ti,si,zi)
∂si∂zi

T

J−1
i

 ρ

X TS
(

1
0

)
+

 ∂f̂p(ti,si,zi)
∂ti

∂f̂p(ti,si,zi)
∂zi

− ρ

X TS xi −
∂f̂p(ti, si, zi)

∂si
.

Moreover, since

m∑
i=1

Aixi = 0,
m∑
i=1

Aidxi = 0,
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we have

m∑
i=1

Ai


 ∂2f̂p(ti,si,zi)

∂si∂ti

∂2f̂p(ti,si,zi)
∂si∂zi

T

J−1
i

 ∂2f̂p(ti,si,zi)
∂si∂ti

∂2f̂p(ti,si,zi)
∂si∂zi

− ∂2f̂p(ti, si, zi)

∂si∂si

ATi du
=

m∑
i=1

Ai


 ∂2f̂p(ti,si,zi)

∂si∂ti

∂2f̂p(ti,si,zi)
∂si∂zi

T

J−1
i

×
 ρ

X TS
(

1
0

)
+

 ∂f̂p(ti,si,zi)
∂ti

∂f̂p(ti,si,zi)
∂zi

− ρ

X TS xi −
∂f̂p(ti, si, zi)

∂si

 .

(5.2)

Note that the system for computing du may not have full rank. If that is the case,
any feasible solution is acceptable.

It requires O(m(d3 + nd2 + n2d)) operations to set up the system (5.2) for com-
puting du. Solving the system requires O(n3) operations. Once du is computed,
O(m(d3 +nd2 +n2d)) operations are required to compute dX , dS , and dZ . Therefore,
the number of arithmetic operations in each iteration is bounded by O(n3 + md3 +
md2n + mdn2). The following theorem follows from Corollary 5.1 and the above
analysis.

Theorem 5.3. Let the initial feasible primal solution X 0 and dual feasible solu-
tion (Y0;S0) be given as above. Then, an ε-optimal solution to problem (2.1) can be
obtained by the potential reduction algorithms in at most

O
(
γ
√

200(1 + 2d)m (log(c̄/ε) + logm+ log d)
)

iterations, where

c̄ = max
1≤i≤m

‖ci‖,

and each iteration requires O(n3 +md3 +md2n+mdn2) arithmetic operations.
Note that if both d and γ are constants and the problem is normalized such

that c̄ = 1, i.e., all of ci is within the unit ball in Rd, then the iteration bound is
O(
√
m(log(1/ε) + logm)). We will further discuss this issue in the following applica-

tions.

6. Applications. In this section, we will apply the algorithms presented in the
previous sections to solve the p-norm multifacility location (PMFL) problem and
the p-norm SMT problem under a given topology. We will also take advantage of
the special structures of these special problems and obtain improved computational
complexity results wherever possible.

6.1. The p-norm multifacility location problem. Let a1, a2, . . . , aM be M
points in Rd, the d-dimensional lpspace. Let wji, j = 1, 2, . . . , N , i = 1, 2, . . . ,M , and
vjk, 1 ≤ j < k ≤ N , be given nonnegative numbers. Find a point x = (x1;x2; . . . ;xN ) ∈
RdN that will minimize

fp(x) =

N∑
j=1

M∑
i=1

wji||xj − ai||p +
∑

1≤j<k≤N
vjk||xj − xk||p, p ≥ 1.(6.1)
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This is the so-called PMFL. For ease of notation, we assume that vjj = 0 for j =
1, 2, . . . , N and that vjk = vkj for 1 ≤ k < j ≤ N .

In the PMFL problem, a1, a2, . . . , aM represent the locations of M existing fa-
cilities; x1, x2, . . . , xN represent the locations of N new facilities; and the objective
function fp(x) is the sum of weighted p-norm distances from each new facility to each
existing facility and those between each pair of new facilities. Our goal is to find
optimal locations for the new facilities, i.e., to minimize fp(x).

In problem (6.1), some of the weights wji and vjk may be zero. Let m be the
number of nonzero weights in (6.1). Then the PMFL problem (6.1) is the minimization
of a sum of m p-norms. Without loss of generality, we assume that for each j ∈
{1, 2, . . . , N}, there exists a nonzero wji for some i ∈ {1, 2, . . . ,M} or a nonzero vjk
for some k ∈ {1, 2, . . . , N}.

To transform the PMFL problem (6.1) into an instance of problem (1.1), we simply
do the following. Let u = (x1;x2; . . . ;xN ). It is clear that u ∈ Rn where n = dN .
For each nonzero wji, there is a corresponding term of p-norm ||c(wji)−A(wji)

Tu||p
where c(wji) = wjiai and A(wji)

T is a row of N blocks of d by d matrices whose jth
block is wjiId and whose other blocks are all zero. For each nonzero vjk, there is a
corresponding term of p-norm ||c(vjk) − A(vjk)Tu||p, where c(vjk) = 0, and A(vjk)T

is a row of N blocks of d by d matrices whose jth and kth blocks are −vjkId and
vjkId, respectively, and whose other blocks are all zero.

Now it is clear that we have transformed the PMFL problem (6.1) into an instance
of (2.1), where n = dN , and m is the number of nonzero weights wji and vjk. Note
that the system (5.2) can be set up with O(md2) operations. Therefore, it follows
from Theorem 5.1 that we have Theorem 6.1.

Theorem 6.1. An ε-optimal solution to the PMFL problem (6.1) can be computed
using any of our algorithms in at most

O
(
γ
√

200(1 + 2d)MN (log(c̄/ε) + log(MN) + log d)
)

iterations, where c̄ = max1≤j≤n 1≤i≤m ‖wjiai‖, and each iteration requires O(d3N3+
MNd2) arithmetic operations.

6.2. The p-norm SMT problem. The p-norm SMT problem is given by a
set of points P = {p1, p2, . . . , pN} in the lp-plane and asks for the shortest planar
straight-line graph spanning P . The solution takes the form of a tree, called the
Steiner minimal tree, that includes all the given points, called regular points, along
with some extra vertices, called Steiner points. It is known that there are at most
N − 2 Steiner points and that the degree of each Steiner point is at most 3. See
[13, 22] for details.

Definition 6.2 (see [13, 15, 16]). A full Steiner topology of point set P is a tree
graph whose vertex set contains P and N − 2 Steiner points; the degree of each vertex
in P is exactly 1, and the degree of each Steiner vertex is exactly 3.

Computing a SMT for a given set of N points in the lp-plane is NP-hard [12].
However, the problem of computing the shortest network under a given full Steiner
topology can be solved efficiently. Recently, there have been increased interests in
this latter problem and several algorithms have been proposed [15, 16, 31]. We will
formulate this problem as a special case of problem (1.1).

Let m = 2N − 3, d = 2, n = 2N − 4. Let u ∈ R2N−4 represent the locations of
the N − 2 Steiner points. Without loss of generality, we may order the edges in the
given full Steiner topology in such a way that each of the first N edges connects a
regular point to a Steiner point. For i = 1, 2, . . . , N , ci is pi1 , where i1 is the index of
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Table 1
The coordinates of the 10 regular points.

Index x-coordinate y-coordinate Index x-coordinate y-coordinate
9 2.30946900 9.20821100 14 7.59815200 0.61583600

10 0.57736700 6.48093800 15 8.56812900 3.07917900
11 0.80831400 3.51906200 16 4.75750600 3.75366600
12 1.68591200 1.23167200 17 3.92609700 7.00879800
13 4.11085500 0.82111400 18 7.43649000 7.68328400

Table 2
The tree topology.

Edge-index ea-index eb-index Edge-index ea-index eb-index
1 9 7 10 18 8
2 10 1 11 5 6
3 11 2 12 6 4
4 12 3 13 4 3
5 13 4 14 3 2
6 14 5 15 2 1
7 15 5 16 1 7
8 16 6 17 7 8
9 17 8

the regular point on the ith edge; ATi ∈ R2×n is a row of N −2 2 by 2 block matrices,
where only the i2th block is I2 and the rest are all zero, where i2 is the index of the
Steiner point on the ith edge. For i = N + 1, N + 2, . . . ,m, ci = 0, and ATi ∈ R2×n is
a row of N −2 2 by 2 block matrices, where the i1st block is −I2, the i2nd block is I2,
and the rest of the blocks are all zero, and where i1 and i2 are the indices of the two
Steiner points on the ith edge. It is clear that we have transformed the problem of
computing a shortest network under a full Steiner topology into an instance of (2.1),
where d = 2, n = 2N − 4, and m = 2N − 3. Therefore, it can be solved efficiently
using our interior point algorithm.

Note that we can move the point set P so that its gravitational center is the
origin. Therefore, the lp-norms (as well as the Euclidean norms) of the regular points
are bounded by the largest pairwise (p-norm or Euclidean) distance among the points
in P , which corresponds to the constant c̄ in previous theorems. Furthermore, as
illustrated in [36], the search direction can be computed in O(N) arithmetic operations
using a technique known as Gaussian elimination on leaves of a tree [31]. Therefore,
we have the following theorem.

Theorem 6.3. An ε-optimal solution to the shortest network under a given full
Steiner topology of N regular points in the lp-plane can be computed using our potential

reduction algorithms in at most O(
√
N(log(c̄/ε) + logN)) iterations, where c̄ is the

largest pairwise distance among the regular points and each iteration requires O(N)
arithmetic operations. Therefore, the computation of an ε-optimal solution requires
O(N

√
N(log(c̄/ε) + logN)) arithmetic operations.

The problem of computing the shortest network under a full Steiner topology
was first studied by Hwang [15], Hwang and Weng [16], and Smith [31]. Hwang
[15] presented a linear-time exact algorithm that can output the shortest network
under a given full Steiner topology if there exists a nondegenerate SMT corresponding
to that given topology and that quits otherwise. Hwang and Weng [16] presented
an O(N2)-time graphical algorithm that can output the shortest network under a
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Table 3
Output for p = 1.01 using dual scaling.

Iteration Network-cost Duality-gap dstep-max pstep-max
1 1.9810e+03 1.9863e+03 3.1250e-01 9.7656e-03
2 9.3134e+02 9.3948e+02 3.1250e-01 9.7656e-03
3 4.6604e+02 4.6352e+02 3.1250e-01 7.8125e-02
4 2.6185e+02 2.5141e+02 3.1250e-01 1.9531e-02
5 1.6673e+02 1.5389e+02 3.1250e-01 4.8828e-03
6 1.1164e+02 1.0050e+02 3.1250e-01 1.9531e-02
7 8.2320e+01 7.0048e+01 3.1250e-01 4.8828e-03
8 6.3980e+01 4.8173e+01 3.1250e-01 4.8828e-03
9 5.1500e+01 3.2779e+01 3.1250e-01 4.8828e-03

10 4.3166e+01 2.2726e+01 3.1250e-01 2.4414e-03
11 3.7916e+01 1.5499e+01 3.1250e-01 1.2207e-03
12 3.4452e+01 1.0726e+01 3.1250e-01 6.1035e-04
13 3.2373e+01 6.5718e+00 3.1250e-01 6.1035e-04
14 3.0782e+01 3.5208e+00 3.1250e-01 6.1035e-04
15 2.9691e+01 2.0491e+00 3.1250e-01 3.0518e-04
16 2.9255e+01 1.3093e+00 3.1250e-01 7.6294e-05
17 2.9023e+01 6.9142e-01 3.1250e-01 7.6294e-05
18 2.8824e+01 3.9670e-01 3.1250e-01 3.8147e-05
19 2.8737e+01 2.3084e-01 3.1250e-01 1.9073e-05
20 2.8682e+01 1.4074e-01 3.1250e-01 9.5367e-06
21 2.8649e+01 9.0313e-02 3.1250e-01 4.7684e-06
22 2.8630e+01 5.2046e-02 3.1250e-01 4.7684e-06
23 2.8615e+01 2.7875e-02 3.1250e-01 4.7684e-06
24 2.8605e+01 1.7067e-02 3.1250e-01 2.3842e-06
25 2.8601e+01 1.1235e-02 3.1250e-01 5.9605e-07
26 2.8599e+01 6.6474e-03 3.1250e-01 5.9605e-07
27 2.8597e+01 3.5436e-03 3.1250e-01 5.9605e-07
28 2.8596e+01 2.0801e-03 3.1250e-01 5.9605e-07
29 2.8595e+01 1.3643e-03 3.1250e-01 7.4506e-08
30 2.8594e+01 5.2467e-04 6.2500e-01 7.4506e-08
31 2.8594e+01 2.8420e-04 6.2500e-01 1.8626e-08
32 2.8594e+01 1.5954e-04 6.2500e-01 9.3132e-09
33 2.8594e+01 9.4942e-05 6.2500e-01 4.6566e-09
34 2.8594e+01 4.2928e-05 6.2500e-01 4.6566e-09
35 2.8594e+01 1.6635e-05 6.2500e-01 2.3283e-09
36 2.8594e+01 9.0572e-06 6.2500e-01 5.8208e-10

given full Steiner topology if the shortest network under the given topology is a tree
with maximum vertex degree 3 and that quits otherwise. Xue and Ye [36] proposed
a primal-dual potential reduction algorithm that can always output an ε-optimal
network under a given topology in O(N

√
N(log(c̄/ε) + logN)) operations, where c̄ is

the largest pairwise distance among the given points. It seems hard to generalize the
graphical methods to the p-norm case. Therefore, our generalization of the result of
[36] is important.

7. Computational examples. We have implemented all three versions of our
algorithm using Matlab. Our intention here is to justify the theory developed in this
paper. Therefore, our primary interest is in the number of iterations required by the
algorithms. Our implementation here is very preliminary. Extensive computational
study of the algorithms will be reported in a separate paper. For test problems, we
have taken the 10-regular-points SMT problem from [36]. The coordinates of the
regular points are given in Table 1. The tree topology is given in Table 2, where for
each edge, indices of its two vertices are shown next to the index of the edge.

In our implementation, we used γ = 2m to take long steps instead of using the
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Table 4
Output for p = 1.50 using dual scaling.

Iteration Network-cost Duality-gap dstep-max pstep-max
1 6.3022e+02 6.3501e+02 3.1250e-01 9.7656e-03
2 3.0949e+02 3.0829e+02 3.1250e-01 7.8125e-02
3 2.4246e+02 2.3339e+02 1.5625e-01 9.7656e-03
4 1.4290e+02 1.2897e+02 3.1250e-01 9.7656e-03
5 9.0251e+01 7.7152e+01 3.1250e-01 1.9531e-02

...
23 2.6561e+01 6.2128e-03 3.1250e-01 5.9605e-07
24 2.6559e+01 3.7579e-03 3.1250e-01 2.9802e-07
25 2.6558e+01 2.3707e-03 3.1250e-01 1.4901e-07
26 2.6557e+01 7.8395e-04 6.2500e-01 1.4901e-07
27 2.6557e+01 3.5326e-04 6.2500e-01 3.7253e-08
28 2.6557e+01 1.4104e-04 6.2500e-01 1.8626e-08
29 2.6557e+01 7.4709e-05 6.2500e-01 4.6566e-09
30 2.6557e+01 4.4346e-05 6.2500e-01 2.3283e-09
31 2.6557e+01 1.8446e-05 6.2500e-01 2.3283e-09
32 2.6557e+01 9.9644e-06 3.1250e-01 1.1642e-09

Table 5
Output for p = 2.00 using dual scaling.

Iteration Network-cost Duality-gap dstep-max pstep-max
1 3.5099e+02 3.5513e+02 3.1250e-01 9.7656e-03
2 2.6731e+02 2.6493e+02 1.5625e-01 9.7656e-03
3 2.0753e+02 1.9761e+02 1.5625e-01 9.7656e-03
4 1.1948e+02 1.0726e+02 3.1250e-01 4.8828e-03
5 7.5355e+01 6.1541e+01 3.1250e-01 4.8828e-03

...
28 2.5357e+01 1.2411e-03 3.1250e-01 7.4506e-08
29 2.5357e+01 7.0021e-04 3.1250e-01 7.4506e-08
30 2.5356e+01 3.7630e-04 3.1250e-01 7.4506e-08
31 2.5356e+01 2.2183e-04 3.1250e-01 3.7253e-08
32 2.5356e+01 1.4140e-04 3.1250e-01 9.3132e-09
33 2.5356e+01 7.8081e-05 3.1250e-01 9.3132e-09
34 2.5356e+01 4.8133e-05 3.1250e-01 4.6566e-09
35 2.5356e+01 2.9645e-05 3.1250e-01 2.3283e-09
36 2.5356e+01 1.5629e-05 3.1250e-01 2.3283e-09
37 2.5356e+01 8.3688e-06 3.1250e-01 4.6566e-09

conservative theoretical parameter γ = 1. Also, we used 0.75 times the largest feasible
step-size as the actual step-size rather than using the theoretical step-size or a line-
search. The algorithm stops whenever the absolute duality gap is smaller than 10−5.

To test the flexibility of our algorithm, we have used the values of p = 1.01,
1.5, 2.0, 3.0, and 101 on the 10-point case. Although with a larger parameter, the
algorithm based on barrier function 2 works better in our examples. All five cases
were solved within 30 to 40 iterations. The output of the algorithm is presented in
Tables 3–7. Note that for the last case, we have used the primal scaling algorithm,
where q = 1.01. The second column in the tables shows the cost of the current network
(i.e., the sum of p-norms in the current network). The third column shows the duality
gap, which is an upper bound of the error in the cost of the current network to the
cost of the optimal (shortest) network. The last two columns show the largest dual
and primal feasible step-sizes, β̄ and ᾱ; see the discussion at the end of section 4.

The shortest networks for the cases p = 1.01, 1.50, 3.0, 101 are plotted in Figure 1,
where regular points are labeled by + and Steiner points are labeled by o. The case
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Table 6
Output for p = 3.00 using dual scaling.

Iteration Network-cost Duality-gap dstep-max pstep-max
1 3.0811e+02 3.1301e+02 1.5625e-01 1.9531e-02
2 2.3295e+02 2.3135e+02 1.5625e-01 9.7656e-03
3 1.7991e+02 1.7375e+02 1.5625e-01 4.8828e-03
4 1.4208e+02 1.3316e+02 1.5625e-01 2.4414e-03
5 8.4541e+01 7.0951e+01 3.1250e-01 4.8828e-03

...
24 2.3930e+01 5.6315e-03 3.1250e-01 5.9605e-07
25 2.3928e+01 2.9602e-03 3.1250e-01 5.9605e-07
26 2.3927e+01 1.6010e-03 3.1250e-01 5.9605e-07
27 2.3927e+01 1.0595e-03 3.1250e-01 3.7253e-08
28 2.3926e+01 4.9997e-04 6.2500e-01 3.7253e-08
29 2.3926e+01 2.0940e-04 1.2500e+00 1.8626e-08
30 2.3926e+01 6.3721e-05 2.5000e+00 9.3132e-09
31 2.3926e+01 2.7372e-05 2.5000e+00 2.3283e-09
32 2.3926e+01 1.2168e-05 1.2500e+00 1.1642e-09
33 2.3926e+01 5.4989e-06 6.2500e-01 5.8208e-10

Table 7
Output for p = 101 (q = 1.01) using primal scaling.

Iteration Network-cost Duality-gap dstep-max pstep-max
1 9.8742e+01 9.4987e+01 4.8828e-03 6.2500e-01
2 6.9168e+01 5.7033e+01 2.4414e-03 1.2500e+00
3 3.9986e+01 2.4935e+01 2.4414e-03 1.2500e+00
4 2.7451e+01 1.0022e+01 1.2207e-03 6.2500e-01
5 2.5071e+01 6.3698e+00 3.0518e-04 3.1250e-01

...
23 2.1182e+01 1.3274e-04 9.3132e-09 3.1250e-01
24 2.1182e+01 5.1656e-05 9.3132e-09 3.1250e-01
25 2.1182e+01 2.6681e-05 9.3132e-09 1.5625e-01
26 2.1183e+01 2.7794e-04 1.4901e-07 1.5625e-01
27 2.1183e+01 1.6209e-04 9.3132e-09 5.0000e+00
28 2.1182e+01 9.0529e-05 4.6566e-09 1.2500e+00
29 2.1182e+01 5.8100e-05 2.3283e-09 2.5000e+00
30 2.1182e+01 2.7823e-05 2.3283e-09 1.2500e+00
31 2.1182e+01 1.3559e-05 1.1642e-09 6.2500e-01
32 2.1182e+01 6.2516e-06 5.8208e-10 6.2500e-01

p = 2.0 is similar but we choose not to illustrate it here to save space. It is interesting
to see the slight change in the network when p is changed from 1.01 to 1.5 and
eventually to 101.

8. Conclusions. In this paper, we have transformed the problem of minimizing
a sum of p-norms into a standard convex programming problem in conic forms. Unlike
those in most convex optimization problems, the cone for this problem is not self-dual.
We have constructed two barrier functions and studied its associated parameters. Us-
ing these barrier functions, we have presented a polynomial time primal-dual potential
reduction algorithm for solving this problem. In particular, the number of iterations
required to produce an ε-optimal solution is at most O(

√
md(log(c̄/ε) + log(md))).

As applications, we have shown that computing an ε-optimal solution of the short-
est p-norm network under a tree topology interconnecting N regular points on the
lp-plane requires only O(N1.5(log(c̄/ε) + logN)) arithmetic operations, where c̄ is the
largest pairwise lp-distance among the given point set. Our implementation is only
preliminary. Computational issues of our algorithm are under investigation and will
be reported in another paper.
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(a) The shortest network for p =
1.01.
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(b) The shortest network for p =
1.50.
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(c) The shortest network for p =
3.00.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

9

10

11

12
13

14

15

16

17

18

1

2

3

4

5

6

7

8

(d) The shortest network for p =
101.

Fig. 1. Shortest networks for different values of p.
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Abstract. Necessary and sufficient conditions are obtained for the Lipschitzian stability of local
solutions to finite-dimensional parameterized optimization problems in a very general setting. Prop-
erties of prox-regularity of the essential objective function and positive definiteness of its coderivative
Hessian are the keys to these results. A previous characterization of tilt stability arises as a special
case.
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1. Introduction. In theory, any problem of optimization in n real variables can
be represented as a problem of minimizing, over the entire space Rn, a function f with
values in R = [−∞,∞]. Points x that should not be candidates in the minimization
can effectively be excluded by setting f = ∞. Such a representation is especially
useful in getting to the heart of theoretical issues in parametric optimization, because
it allows problem parameters to be viewed as just additional variables on which f
depends.

Our aim is to try to understand, in this abstract setting and on the most fun-
damental level of variational analysis, the circumstances in which locally optimal
solutions behave in a “stable” manner with respect to shifts in parameter values. The
model we adopt is that of a family of minimization problems in x ∈ Rn parameterized
by u ∈ Rd, as specified by a function f : Rn × Rd → R. Within the family we single
out a problem

P minimize f(x, ū) over x ∈ Rn,
and compare it to perturbed versions that come from shifting the associated parameter
vector ū to some nearby vector u. For technical reasons, we further consider, along
with such basic perturbations, tilt perturbations that correspond to adding a small
linear term to the objective. Thus, we regard P as imbedded in the larger family of
problems

P(u, v) minimize f(x, u)− 〈v, x〉 over x ∈ Rn,
with both u ∈ Rd and v ∈ Rn parameters, so that P = P(ū, v̄) for v̄ = 0. In the
developments that follow, however, v̄ might just as well be any vector, so we refer to
the unperturbed problem around which we work as P(ū, v̄) rather than P.
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Throughout, we assume that f is lower semicontinuous (lsc) and proper, i.e., not
identically ∞ and nowhere taking on −∞. The set of feasible solutions to P(u, v)
consists then, by definition, of the points x such that f(u, x) is finite. We denote
by x̄ a feasible solution to P(ū, v̄) and investigate it in terms of the functions mδ :
Rd × Rn → R and mappings Mδ : Rd × Rn →→ Rn (set-valued) that are defined for
δ > 0 by

mδ(u, v) = inf
|x−x̄|≤δ

{
f(x, u)− 〈v, x〉},

Mδ(u, v) = argmin|x−x̄|≤δ
{
f(x, u)− 〈v, x〉}.(1.1)

Here Mδ(u, v) could consist of a single-point x, in which case Mδ is single-valued at
(u, v), but it might contain many points or be empty. By convention, argmin = ∅
when the expression being minimized can be only ∞; that ensures having Mδ(u, v)
be empty when P(u, v) has no feasible solutions x satisfying |x − x̄| ≤ δ, i.e., when
mδ(u, v) =∞. Aside from that case, Mδ(u, v) is nonempty and mδ(u, v) is finite.

In such notation, to say that x̄ is a locally optimal solution to P(ū, v̄) is to say that
x̄ ∈ Mδ(ū, v̄) for some δ > 0 (sufficiently small). The stability properties of locally
optimal solutions that we target for study revolve around x̄ being the only point of
Mδ(ū, v̄) and having this single-valuedness of the mapping Mδ at (ū, v̄) persist in a
Lipschitzian manner with respect to certain parameter shifts away from (ū, v̄).

Definition 1.1 (solution stability). A point x̄ is a stable locally optimal solution
to P(ū, v̄) (in the basic sense, i.e., relative to the specified parameterization in u
only) if there is a δ > 0 such that, on some neighborhood U of ū, the mapping
u 7→ Mδ(u, v̄) is single-valued and Lipschitz continuous with Mδ(ū, v̄) = x̄, and the
function u 7→ mδ(u, v̄) is likewise Lipschitz continuous on U .

It is a tilt stable locally optimal solution if these properties hold with respect to v
instead of u, i.e., for the mapping v 7→ Mδ(ū, v) and the function v 7→ mδ(ū, v) on
some neighborhood V of v̄. It is a fully stable locally optimal solution if these properties
hold with respect to (u, v) for the full mapping (u, v) 7→Mδ(u, v) and function (u, v) 7→
mδ(u, v) on some neighborhood U × V of (ū, v̄).

Full stability implies both (basic) stability and tilt stability but in general may
differ from those properties. With x and u in R and (x̄, ū) = (0, 0), for instance, the
case of f(x, u) = (x − u)4 exhibits stability without full stability, whereas f(x, u) =
(x− u1/3)2 has tilt stability without full stability.

Note that in the definition of tilt stability it would not really be necessary to say
anything about mδ, since the formula for this function in (1.1) implies that mδ(ū, v)
is finite and concave in v (as long as f(x̄, ū) is finite). In other situations the Lipschitz
continuity of mδ is not automatic, however, even in the face of Lipschitz continuity
of Mδ. For example, the lsc, proper function f : R× R → R defined by f(x, u) = x2

when u = 0 but f(x, u) = 1 + x2 when u 6= 0 has, for (x̄, ū) = (0, 0) and v̄ = 0, that
Mδ(u, v̄) = 0 for all u, yet mδ(u, v̄) is discontinuous at u = ū.

Stability properties of one kind or another have been extensively investigated
for optimal solutions to conventional nonlinear programming problems as well as for
Karush–Kuhn–Tucker pairs in such problems or, more broadly, solutions to “general-
ized equations” and variational inequalities. The pioneering contribution of Robinson
[1] put the focus on single-valued Lipschitzian behavior of optimal solutions. The
literature on the subject is vast; the articles of Klatte and Kummer [2] and Dontchev
and Rockafellar [3] provide an overview with many references to Lipschitzian behavior
and also to calmness (“upper Lipschitzian” behavior) under perturbations.
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The approach we take to stability differs from most of that literature, not merely
because we adopt the format of extended-real-valued functions, but also in the tools
we use. Crucial among them is the form of localized Lipschitz continuity for set-
valued mappings that was defined by Aubin [4] and the criterion for it that was
derived by Mordukhovich [5] in terms of his coderivative mappings. These tools of
variational analysis have already been applied to stability issues by those authors in
some general ways and also by Rockafellar and Wets in their recent book [6], which
offers a thorough exposition of the concepts and their history (in finite dimensions).
In other work, Dontchev and Rockafellar [7] have applied such methodology in finer
detail to nonlinear programming and variational inequalities over polyhedral sets.
Closest to our present effort, however, is the paper of Poliquin and Rockafellar [8],
where tilt stability was first explored—in the simpler framework of a minimization
problem perturbed by tilt vectors only.

The chief contribution of [8] was a characterization of tilt stability of locally
optimal solutions in terms of positive definiteness of the generalized Hessian for f
in the sense of Mordukhovich [5]. Here we build on the results in [8] by adding a
parameterization in u alongside the tilt perturbations in v. As in [8], a function
property called prox-regularity turns out to be essential. That property, which was
introduced by Poliquin and Rockafellar [9] for the sake of fundamental developments
in second-order nonsmooth analysis, must be adapted, however, to the additional
parameterization. Likewise, the generalized Hessian in x is no longer enough and
must be extended as part of the effort to make sure that the functions f(·, u) depend
reasonably on u.

We concentrate on characterizing full stability, being content with the fact that
necessary and sufficient conditions for full stability immediately yield sufficient condi-
tions for basic stability. The task of characterizing basic stability on its own appears
much more difficult and perhaps inappropriate. After all, tilt perturbations are a
special case of other perturbations (one could have f(x, u) = f0(x) − 〈u, x〉, say), so
a universal result about basic stability could not escape having to account for them
somehow. Indeed, it might well be that such a result would require a sort of ex-
tra “constraint qualification” that is tantamount to insisting on good tilt behavior.
Nonetheless, from a practical point of view, as in connection with numerical method-
ology, for instance, there is likely to be little interest in situations where tilt stability
is absent.

The assumptions behind our characterization of full stability, stated in Theorem
2.3, cover a very broad range of parameterized optimization problems expressible
in the pattern of P(u, v). That includes not only nonlinear programming models
in standard formats but also extended nonlinear programming models in which the
objective function can be represented as the composition of a C2 mapping with a
proper, lsc, convex function. We establish this in Proposition 2.2.

In order to apply our results to such special cases, one has to invoke a calculus of
generalized Hessian mappings to see what one gets for the particular forms of f(x, u)
that come up. We have not undertaken to do that because it is a major project in
itself and is better reserved for other papers in which the calculus rules suited for
the job can systematically be laid out. Here, as a critical first step, we identify the
underpinnings to stability at a depth not previously plumbed.

2. Main results. In dealing with subgradients, we follow the notation and ter-
minology of [6]. For a function g : Rn → R and a point x ∈ Rn, a vector v ∈ Rn is
a regular subgradient of g at x if g(x) is finite and g(x+ w) ≥ g(x) + 〈v, w〉+ o(|w|).
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It is a (general) subgradient at x if g(x) is finite and there exist sequences {xν}∞ν=1

and {vν}∞ν=1 with vν a regular subgradient of g at xν , such that vν → v, xν → x,
and g(xν) → g(x). The set of all such (general) subgradients of g at x includes the
regular subgradients at x and is denoted by ∂g(x). A set-valued subgradient mapping
∂g : Rn →→ Rn is thereby defined, which is empty-valued outside of dom g = {x |
g(x) <∞}. The graph of ∂g is the set gph ∂g ⊂ Rn×Rn consisting of the pairs (x, v)
such that v ∈ ∂g(x).

Also of use to us will be the concept of v being a horizon subgradient of g at
x. This refers to the existence of sequences {xν}∞ν=1 and {vν}∞ν=1 with vν a regular
subgradient of g at xν , such that xν → x, g(xν) → g(x), and λνvν → v for some
scalar sequence {λν}∞ν=1 with λν ↓0. The set of horizon subgradients v of g at x is
denoted by ∂∞g(x).

Prox-regularity arises from consideration of regular subgradients with a second-
order aspect. A proximal subgradient of g at x is a regular subgradient v for which the
error term o(|w|) can be specialized to (r/2)|w|2. Prox-regularity refers to a situation
in which proximal subgradients prevail locally and with the same r. Specifically, g is
prox-regular at x̄ for v̄ if it is locally lsc at x̄ (cf. [6, Def. 1.33, Exercise 1.34]), has
v̄ ∈ ∂g(x̄), and there are neighborhoods X of x̄ and V of v̄ along with ε > 0 and r ≥ 0
such that

g(x′) ≥ g(x) + 〈v, x′ − x〉 − r

2
|x′ − x|2 for all x′ ∈ X

when v ∈ ∂g(x), v ∈ V, x ∈ X, g(x) ≤ g(x̄) + ε.
(2.1)

It is continuously prox-regular at x̄ for v̄ if, in addition, g(x) is continuous as a
function of (x, v) ∈ gph ∂g at (x̄, v̄). (The latter property, by itself, is known as the
subdifferential continuity of g at x̄ for v̄.) In that case one can arrange, by a shrinking
of the neighborhoods X and V if necessary, that

g(x′) ≥ g(x) + 〈v, x′ − x〉 − r

2
|x′ − x|2 for all x′ ∈ X

when v ∈ ∂g(x), v ∈ V, x ∈ X.
(2.2)

The class of continuously prox-regular functions is very wide and includes not only
convex functions, C2 functions, and lower-C2 functions, but also any such function plus
the indicator of a set defined by finitely many C2 constraints under a constraint qual-
ification. Many, if not most, of the essential objective functions in finite-dimensional
optimization are covered. An overview is provided in [6, Chap. 13]. An elaboration
on the parametric situation at hand will be given below in Proposition 2.2.

For the indicator δD of a set D ⊂ Rn, the subgradient set ∂δD(x) is denoted by
ND(x) and its elements are called the normal vectors to D at x.

Generalized Hessians are derived from normal vectors to the graphs of subgradient
mappings. For any mapping S : Rm →→ Rp, we denote by gphS the set of all pairs
(z, w) ∈ Rm ×Rn such that w ∈ S(z). For any such pair (z, w), the coderivative of S
at z for w is the mapping D∗S(z |w) : Rp →→ Rm defined by

D∗S(z |w)(w′) = {z′ | (z′,−w′) ∈ NgphS(z, w)}.(2.3)

When S is single-valued and C1 around z with Jacobian matrix∇S(z), the coderivative
for w = S(z) reduces to the adjoint linear mapping w′ 7→ ∇S(z)∗w′.

For a subgradient mapping ∂g : Rn →→ Rn and a pair (x, v) ∈ gph ∂g, the mapping
D∗(∂g)(x |v) is the coderivative Hessian associated with g at x for v in the sense of
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Mordukhovich [5] and is denoted by ∂2g(x |v). If g is C2 around x with Hessian matrix
∇2g(x), then ∂2g(x |v) for v = ∇g(x) reduces to the linear mapping v′ 7→ ∇2g(x)v′.

In the context of our parametric model, as specified by the function f : Rn ×
Rd → R, these concepts need some adaptation. The spotlight there is on the partial
subgradient mapping ∂xf : Rn × Rd →→ Rn defined by

∂xf(x, u) = {set of subgradients v of fu := f(·, u) at x} = ∂fu(x).(2.4)

The importance of ∂xf comes from the elementary rule that wherever a function on
Rn has a local minimum, its subgradient set must contain 0. Application of that rule
to f(·, u)− 〈v, ·〉 yields the first-order necessary condition with which we must work:

x locally optimal in P(u, v) =⇒ v ∈ ∂xf(x, u).(2.5)

In particular, any local optimal solution x̄ to P(ū, v̄) must have v̄ ∈ ∂xf(x̄, ū).
Although the constraints in P(u, v) are only implicit in our general framework, as

signaled by∞ values of f , a notion of “constraint qualification” comes in nonetheless.
The basic constraint qualification at a feasible solution x to P(u, v) is the condition

Q(x, u) (0, y) ∈ ∂∞f(x, u) =⇒ y = 0.

In our reference problem P(ū, v̄), we will be concerned primarily with x̄ and Q(x̄, ū).
Note that ∂∞f(x, u) refers to horizon subgradients of f as a function of both

arguments, not just in x. As demonstrated in [6, Example 10.12], the constraint
qualification Q(x, u) guarantees, in connection with the optimality condition in (2.5),
the existence of y such that (v, y) ∈ ∂f(x, u). In other words, it implies that

∂xf(x, u) ⊂ {v | ∃ y with (v, y) ∈ ∂f(x, u)}.

In the circumstances with which we will ultimately be working (in Theorem 2.3), this
inclusion will turn out actually to be an equation (cf. Proposition 3.4). Nonetheless,
the mapping ∂xf : Rn ×Rd →→ Rn rather than the mapping ∂f : Rn ×Rd →→ Rn ×Rd
will be the vehicle for stating our results.

In analyzing the parametric behavior of locally optimal solutions on the platform
of the optimality condition in (2.5), we will inevitably be concerned not only with
∂xf but also with its partial inverse

M : (u, v) 7→ {x | v ∈ ∂xf(x, u)}.(2.6)

Because the first-order condition v ∈ ∂xf(x, u) is also necessary for optimality in the
minimization problem that defines Mδ(u, v) in (1.1) when |x− x̄| < δ, we know that

x ∈Mδ(u, v), |x− x̄| < δ =⇒ x ∈M(u, v).(2.7)

Much will hinge on ascertaining when the graphs of Mδ and M actually coincide
around (ū, v̄, x̄) for small δ, with M single-valued and Lipschitz continuous in such
localization. The analysis will center on the coderivative mappings D∗(∂xf)(x, u |v) :
Rn →→ Rn × Rd at points (x, u, v) ∈ gph ∂xf near (x̄, ū, v̄).

It should be observed that the mapping D∗(∂xf)(x, u |v) is not the same as the
coderivative Hessian mapping

∂2
xf(x, u |v) := D∗(∂fu)(x |v) = ∂2fu(x |v) for fu = f(·, u).(2.8)
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With f ∈ C2 and v = ∇xf(x, u) for instance, ∂2
xf(x, u |v) comes out as v′ 7→

∇2
xxf(x, u)v′, while D∗(∂xf)(x, u |v) comes out as v′ 7→ (∇2

xxf(x, u)v′,∇2
uxf(x, u)v′).

However, the mapping ∂2
xf(x, u |v)(v′) cannot even be identified, in general, with the

mapping

v′ 7→ {x′ | ∃u′, (x′, u′) ∈ D∗(∂xf)(x, u |v)(v′)}.(2.9)

The former has u fixed in its definition, whereas the latter, which for comparison
might be denoted by ∂̃2

xf(x, u |v), depends on limits being taken in the u argument
as well, and its graph may therefore be larger. Limits in u are a source of strength,
however. The positive definiteness that we eventually require will be imposed on
∂̃2
xf(x̄, ū | v̄) instead of ∂2

xf(x̄, ū | v̄), although the notation ∂̃2
xf(x̄, ū | v̄) will not be

employed in expressing it.
The notion of prox-regularity must now be expanded in order for it to account

for parametric effects in u.
Definition 2.1 (parametric prox-regularity). The lsc expression f(x, u) is prox-

regular in x at x̄ for v̄ with compatible parameterization by u at ū if v̄ ∈ ∂xf(x̄, ū)
and there exist neighborhoods U of ū, X of x̄, and V of v̄, along with ε > 0 and r ≥ 0
such that

f(x′, u) ≥ f(x, u) + 〈v, x′ − x〉 − r

2
|x′ − x|2 for all x′ ∈ X

when v ∈ ∂xf(x, u), v ∈ V, x ∈ X, u ∈ U, f(x, u) ≤ f(x̄, ū) + ε.
(2.10)

It is continuously prox-regular in x at x̄ for v̄ with compatible parameterization by
u at ū if, in addition, f(x, u) is continuous as a function of (x, u, v) ∈ gph ∂xf at
(x̄, ū, v̄).

Our attention will be focused on the parametric version of continuous prox-
regularity, which obviously entails continuous prox-regularity of f(·, ū) at x̄ for v̄,
in particular, but spreads some of it uniformly to subgradients of neighboring func-
tions f(·, u). According to its definition, it provides the existence of a neighborhood
X × U × V of (x̄, ū, v̄) ∈ gph ∂xf such that, for a certain r ≥ 0, one has

f(x′, u) ≥ f(x, u) + 〈v, x′ − x〉 − r

2
|x′ − x|2 for all x′ ∈ X

when (x, u, v) ∈ [X × U × V ] ∩ gph ∂xf.
(2.11)

Strongly amenable functions furnish a prime source of examples for parametric
continuous prox-regularity, as we show next. Amenable functions were first studied
as a class in [10]. Parametric amenability, as defined in the next proposition, was
introduced in [11].

Proposition 2.2 (prox-regularity from amenability). Suppose that f(x, u) is
strongly amenable in x at x̄ with compatible parameterization by u at ū, in the sense
that on some neighborhood of (x̄, ū) there is a composite representation f(x, u) =
g(F (x, u)) in which F : Rn×Rd → Rm is a C2 mapping and g : Rm → R is a convex,
proper, lsc function for which F (x̄, ū) ∈ D := dom g and

z ∈ ND(F (x̄, ū)), ∇xF (x̄, ū)∗z = 0 =⇒ z = 0.(2.12)

Then, as long as v̄ ∈ ∂xf(x̄, ū), one has f(x, u) continuously prox-regular in x at x̄
for v̄ with compatible parameterization by u at ū. Moreover, Q(x̄, ū) holds.
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Proof. From (2.12) we have, in particular, that f is strongly amenable at (x̄, ū)
as a function of (x, u), since that property by definition (cf. [6, Def. 10.23]) concerns
a representation f = g◦F of the same kind but which need only satisfy

z ∈ ND(F (x̄, ū)), ∇xF (x̄, ū)∗z = 0, ∇uF (x̄, ū)∗z = 0 =⇒ z = 0,

where ND = ∂∞g (because g is convex; cf. [6, Prop. 8.12]). This condition implies
by the subgradient chain rule in [6, Thm. 10.6] that ∂∞f(x̄, ū) consists of all (v, y)
such that there exists z ∈ ND(F (x̄, ū)) with ∇xF (x̄, ū)∗z = v and ∇uF (x̄, ū)∗z = y.
Clearly, then, it is impossible to have (0, y) ∈ ∂∞f(x̄, ū) unless y = 0. Thus, Q(x̄, ū)
is satisfied.

The condition in (2.12) carries over from (x̄, ū) to all nearby (x, u) with F (x, u) ∈
D, for if not there would be a contradiction based on a simple argument of taking
limits. This condition ensures by the same subgradient chain rule that for such (x, u)
one has

∂xf(x, u) = ∇xF (x, u)∗∂g(F (x, u)) = {v = ∇xF (x, u)∗z | z ∈ ∂g(F (x, u))}.(2.13)

Assuming v̄ ∈ ∂f(x̄, ū), let S be the mapping that associates with (x, u, v) the
set of vectors z on the right-hand side of (2.13). We argue that S is locally bounded
at (x̄, ū, v̄), i.e., that there exist ε > 0 and ζ > 0 such that

|(x, u, v)− (x̄, ū, v̄)| ≤ ε, z ∈ S(x, u, v) =⇒ |z| ≤ ζ,(2.14)

moreover, with (2.13) holding under these circumstances. Our reasoning is that if
we had sequences (xν , uν , vν) → (x̄, ū, v̄) and zν ∈ S(xν , uν , vν) with 0 < |zν | → ∞,
the vectors λνzν for λν = 1/|zν | ↓0 would cluster at some z̄ 6= 0. Then from having
∇xF (xν , uν)∗[λνzν ] = λνvν and zν ∈ ∂g(F (xν , uν)) we would get ∇xF (x̄, ū)∗z̄ = 0
and z̄ ∈ ∂∞g(F (x̄, ū)). Here we have ∂∞g(F (x̄, ū)) = ND(F (x̄, ū), so this would
contradict (2.12).

Now let X ×U × V be a neighborhood of (x̄, ū, v̄) small enough that f = g◦F on
X×U and |(x, u, v)−(x̄, ū, v̄)| ≤ ε when (x, u, v) ∈ X×U×V . Suppose (xν , uν , vν)→
(x̄, ū, v̄) in X × U × V with vν ∈ ∂xf(xν , uν). Is it true that f(xν , uν) → f(x̄, ū)?
Taking advantage of the formula in (2.13) at (xν , uν , vν), select zν ∈ ∂g(F (xν , uν))
such that ∇xF (xν , uν)∗zν = vν . We have |zν | ≤ ζ through (2.14), so by passing to
subsequences we can reduce to the case where zν converges to some z̄. The pairs
(F (xν , uν), zν) ∈ gph ∂g then converge to (F (x̄, ū), z̄), and since g is convex (hence
subdifferentially continuous) this implies that g(F (xν , uν)) → g(F (x̄, ū)). Thus,
f(xν , uν)→ f(x̄, ū) as required.

Observe next that because F is of class C2 and the neighborhood U is bounded,
there exists r > 0 such that, for all z with |z| ≤ ζ and u ∈ U , the function hzu : x 7→
〈z, F (x, u)〉 has hzu(x′) ≥ hzu(x) + 〈∇hzu(x), x′ − x〉 − r

2 |x′ − x|2 for all x, x′ ∈ X.
This tells us that

〈z, F (x′, u)− F (x, u)〉 ≥ 〈∇xF (x, u)∗z, x′ − x〉 − r

2
|x′ − x|2

when x, x′ ∈ X, u ∈ U, |z| ≤ ζ.
(2.15)

For any x, x′ ∈ X, u ∈ U , and v ∈ V with v ∈ ∂xf(x, u), we have v = ∇xF (x, u)∗z
for some z ∈ ∂g(F (x, u)), necessarily satisfying |z| ≤ ζ by the local boundedness of S
in (2.14). The convexity of g yields g(F (x′, u)) ≥ g(F (x, u)) + 〈z, F (x′, u)−F (x, u)〉,
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and in combination with (2.15) we therefore have f(x′, u) − f(x, u) = g(F (x′, u)) −
g(F (x, u)) ≥ 〈v, x′−x〉− r

2 |x′−x|2. In other words we have (2.11), as required.
As obvious very special cases of Proposition 2.2, f could be any C2 function (take

F = f and let g(t) = t on R) or any lsc, proper, convex function (take g = f and F =
I). For a broader discussion of the rich possibilities, see [11] and [6, Example 10.24].

Theorem 2.3 (full stability). Let x̄ be a feasible solution to P(ū, v̄) at which the
first-order condition v̄ ∈ ∂xf(x̄, ū) is satisfied along with the constraint qualification
Q(x̄, ū). Suppose f(x, u) is continuously prox-regular in x at x̄ for v̄ with compatible
parameterization by u at ū. Then for x̄ to be a locally optimal solution to P(ū, v̄) that
is fully stable, it is necessary and sufficient that the following second-order conditions
be fulfilled:

(a) (x′, u′) ∈ D∗(∂xf)(x̄, ū | v̄)(v′), v′ 6= 0 ⇒ 〈v′, x′〉 > 0,
(b) (0, u′) ∈ D∗(∂xf)(x̄, ū | v̄)(0) ⇒ u′ = 0.

Moreover, in that case it follows, when δ > 0 is sufficiently small, that for all (u, v)
in some neighborhood of (ū, v̄) one has Mδ(u, v) = M(u, v) ∩ {x | |x − x̄| < δ}. In
addition, the Lipschitz modulus of Mδ at (ū, v̄) is then given by

(lipMδ)(ū, v̄) = max

{ |(u′, v′)|
|x′| (x′, u′) ∈ D∗(∂xf)(x̄, ū | v̄)(v′), x′ 6= 0

}
,(2.16)

where (lip Mδ)(ū, v̄) is the upper limit of |Mδ(u1, v1)−Mδ(u2, v2)|/|(u1, v1)− (u2, v2)|
as (u1, v1)→ (ū, v̄) and (u2, v2)→ (ū, v̄) with (u1, v1) 6= (u2, v2).

This is our main result. It will be proved in section 5. The proof of equivalence
really centers just on the single-valuedness and Lipschitz continuity of Mδ. The lo-
cal Lipschitz continuity of mδ that has been incorporated into the definition of full
stability is already a consequence of merely assuming Q(x̄, ū) (cf. Proposition 3.5).

Theorem 2.3 covers the chief characterization of tilt stability in [8] as the case
where the parameterization in u drops out and only the tilt vectors v remain. It adds
to that characterization the corresponding specialization of the modulus formula in
(2.16), i.e., (lipMδ)(v̄) = max{|v′|/|x′| | x′ ∈ ∂2f(x̄ | v̄)(v′), x′ 6= 0}. Of course, it
also provides a criterion for the basic form of stability in Definition 1.1.

Corollary 2.4 (basic stability). The properties in Theorem 2.3 suffice for x̄ to
be a locally optimal solution to P(ū, v̄) that is stable (in the basic sense).

Corollary 2.5 (amenable case). Suppose f(x, u) is strongly amenable in x at
x̄ with compatible parameterization by u at ū. Then for x̄ to be a locally optimal
solution to P(ū, v̄) that is fully stable, it is necessary and sufficient that the second-
order conditions (a) and (b) of Theorem 2.3 be fulfilled along with the first-order
condition v̄ ∈ ∂xf(x̄, ū).

Proof. This is immediate from Theorem 2.3 and Proposition 2.2.
Corollary 2.6 (smooth case). Let f be of class C2 around (x̄, ū). In order for

x̄ to be a locally optimal solution to P(ū, v̄) that is fully stable, it is necessary and
sufficient that ∇xf(x̄, ū) = v̄ with ∇2

xxf(x̄, ū) positive definite.
Proof. For f of this type we have the amenability in Corollary 2.5. The coderiva-

tive mappingD∗(∂xf)(x̄, ū) reduces to the mapping v′ 7→ (∇2
xxf(x̄, ū)v′,∇2

uxf(x̄, ū)v′)
as noted earlier. Condition (a) of Theorem 2.3 turns into the positive definiteness of
∇2
xxf(x̄, ū), while condition (b) is trivialized.

It would be possible to derive the fact in Corollary 2.6 by classical methods,
but we present it this way to show how it fits into the broader scene. The direct
argument is not as easy as might be imagined, however; cf. the corresponding case of
tilt stability in [8].
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Corollary 2.6 brings attention to the “positive definiteness” in (a) of Theorem 2.3
as expressing a second-order sufficient condition for optimality, at least in combina-
tion with (b). This role was observed previously by Poliquin and Rockafellar in their
tilt stability setting in [8]. Although second-order conditions in terms of coderivative
Hessians can, in general, be far from the sharpest conditions for confirming local opti-
mality, if that were the only issue, our results show that they are sharp for confirming
local optimality together with stability. In the unconstrained optimization in Corol-
lary 2.6, especially the tilt case with u suppressed, such a gap between stable and
unstable second-order sufficient conditions is absent, but it appears to prevail almost
everywhere else.

Theorem 2.3 requires f to belong to a class of prox-regular functions. Proposition
2.2 underscores the breadth of this class. Still, one can ask whether the stability
conclusions might hold for an even larger class. The answer is essentially negative,
however.

Theorem 2.7 (effective need for prox-regularity). Let x̄ be a locally optimal
solution to P(ū, v̄) that is fully stable and satisfies Q(x̄, ū). Then there is a proper,

lsc function f̂ that has the prox-regularity ascribed to f in Theorem 2.3 and is locally
equivalent to f for purposes of optimization, in the following sense: For the problems
P̂(u, v) obtained with f̂ in place of f , the associated m̂δ and M̂δ for δ sufficiently

small agree with mδ and Mδ on a neighborhood of (ū, v̄). Indeed, one can take f̂(x, u)

convex in x and such that, for (u, v) near (ū, v̄), if v ∈ ∂xf̂(x, u) then v ∈ ∂xf(x, u)

and f̂(x, u) = f(x, u).
This theorem will be proved in section 5 as well. The need for replacing f with a

“locally equivalent” function f̂ to get a converse result can be seen already from exam-
ples focused on tilt stability. On R2, let f(x, u) = |x| sin(1/x) + 2|x| with f(0, u) = 0.
The increasingly wild oscillations prevent f from having the prox-regularity demanded
in Theorem 2.3 relative to (x̄, ū) = (0, 0) and v̄ = 0. The function f̂(x, u) = |x| does
have all the properties, however. (It is convex and therefore covered by Proposition
2.2.) For any δ > 0 and (u, v) ∈ W = R × (−1, 1) we have m̂δ(u, v) = mδ(u, v) = 0

and M̂δ(u, v) = Mδ(u, v) = 0. Thus, f and f̂ are equivalent in the sense described in
Theorem 2.7.

3. Prox-regularity under the constraint qualification. Laying the ground-
work for the proof of Theorem 2.3, we show that the combination of parametric prox-
regularity with the constraint qualification Q(x̄, ū) produces even more uniformity
than has been explicitly built into Definition 2.1. The analysis revolves around a
form of “graphically localized Lipschitz continuity” of set-valued mappings which will
also be important later in the study of the mappings ∂xf and M but for now is utilized
in an epigraphical context.

A mapping S : Rm →→ Rp has the Aubin property at z̄ for w̄, an element of S(z̄),
if there are neighborhoods Z of z̄ and W of w̄ along with κ ≥ 0 such that

S(z′) ∩W ⊂ S(z) + κ|z′ − z|B for all z, z′ ∈ Z.(3.1)

Here B is the closed unit ball in Rp. This property, which Aubin called “pseudo-
Lipschitz continuity” in [4], reduces for single-valued S to Lipschitz continuity around
z̄. A powerful criterion has been found by Mordukhovich [5], [12], [13]: As long as
gphS is closed relative to a neighborhood of (z̄, w̄), the Aubin property holds if and
only if

z′ ∈ D∗S(z̄ | w̄)(0) =⇒ z′ = 0,(3.2)
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where, moreover, the lowest limiting value at (z̄, w̄) of the moduli κ that work in (3.1)
has been characterized as the “norm” of the coderivative mapping D∗S(z̄ | w̄). (That
characterization will ultimately be the source of formula (2.16) in Theorem 2.3.) The
great advantage of the Mordukhovich criterion is that, because coderivatives of S
arise from normal vectors to gphS, it can be invoked in tandem with the calculus of
coderivatives that comes out of the calculus of normal vectors. See [6, Chap. 9] as
well as [14].

The constraint qualification Q(x̄, ū) has an interpretation in this context in terms
of the epigraphs

epi fu = epi f(·, u) := {(x, α) ∈ Rn × R | f(x, u) ≤ α}.

As shown in [6, Prop. 10.16], it amounts to the Mordukhovich criterion for the epi-
graphical mapping E : u 7→ epi fu at ū for (x̄, f(x̄, ū)) and therefore to the Aubin
property holding there. (The graph of this mapping is closed because f is lsc.)

Proposition 3.1 (consequences of the basic constraint qualification). Under the
constraint qualification Q(x̄, ū), there exist neighborhoods X1 of x̄ and U1 of ū along
with ε > 0 and κ ≥ 0 such that

x ∈ X1, u, u
′ ∈ U1

f(x, u) ≤ f(x̄, ū) + ε

}
=⇒ ∃x′ with

{ |x′ − x| ≤ κ|u′ − u|,
f(x′, u′) ≤ f(x, u) + κ|u′ − u|.

(3.3)

Proof. We have just observed that Q(x̄, ū) corresponds to having the Aubin
property of the set-valued mapping E : u 7→ epi fu hold at ū for (x̄, ᾱ), where ᾱ :=
f(x̄, ū), so the task is to show that this yields (3.3).

With convenient adjustments of notation to fit the epigraphical setting, the Aubin
property in question can be identified with the existence of neighborhoods X1 of x̄
and U1 of ū along with ε > 0 and κ ≥ 0 such that, for all u, u′ ∈ U1, one has

[epi fu] ∩ ([X1 × [ᾱ− ε, ᾱ+ ε]
) ⊂ [epi fu′ ] + κ|u′ − u|(B× [−1, 1]

)
,

or in other words, the implication

x ∈ X1

α ≥ f(x, u)

|α− ᾱ| ≤ ε

 =⇒ ∃(x′, α′) with


f(x′, u′) ≤ α′,
|x′ − x| ≤ κ|u′ − u|,
|α′ − α| ≤ κ|u′ − u|.

(3.4)

Because f is lsc in this implication, we can arrange (by shrinking X1 and U1 if
necessary) that f(x, u) ≥ ᾱ − ε when (x, u) ∈ X1 × U1. Then only the inequality
α ≤ ᾱ + ε has force on the left. Conversely, only the upper bound provided by the
inequality |α′ − α| ≤ κ|u′ − u| has force on the right. Thus, we can enhance (3.4) to

x ∈ X1

α ≥ f(x, u)

α ≤ ᾱ+ ε

 =⇒ ∃(x′, α′) with


f(x′, u′) ≤ α′,
|x′ − x| ≤ κ|u′ − u|,
α′ ≤ α+ κ|u′ − u|.

(3.5)

When (3.5) is invoked in the case of α = f(x, u), the x′ it produces has f(x′, u′) ≤
f(x, u) + κ|u′ − u|. Since (3.5) holds for arbitrary u, u′ ∈ U1, we have (3.3).

We use this now to bring out some important consequences of parametric prox-
regularity.
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Proposition 3.2 (persistence of prox-regularity). Let the constraint qualification
Q(x̄, ū) hold with v̄ ∈ ∂xf(x̄, ū), and suppose that f(x, u) is continuously prox-regular
in x at x̄ for v̄ with compatible parameterization by u at ū. Then an open neighborhood
X×U×V of (x̄, ū, v̄) can be found for which the uniform proximal subgradient property
in (2.11) holds and, in addition,

(a) f(x, u) is continuous as a function of (x, u, v) ∈ [X × U × V ] ∩ gph ∂xf ,
(b) gph ∂xf is closed relative to X × U × V .
In particular, then, one has for all (x̃, ũ, ṽ) ∈ [X×U×V ]∩gph ∂xf that f(x, u) is

continuously prox-regular in x at x̃ for ṽ with compatible parameterization by u at ũ.
Proof. Let X0, U0, and V0 be neighborhoods as in the definition of continuous

prox-regularity so that (2.11) holds for them and a certain r. Let X1, U1, λ, and κ
have the property of Proposition 3.1. Choose an open neighborhood X × U × V of
(x̄, ū, v̄) such that X × U × V ⊂ X0 × U0 × V0, X × U ⊂ X1 × U1, and

(x, u, v) ∈ [X × U × V ] ∩ gph ∂xf =⇒ f(x, u) < f(x̄, ū) + λ,

the latter being possible because f(x, u) is continuous at (x̄, ū) as a function of
(x, u, v) ∈ [X × U × V ] ∩ gph ∂xf . Then (2.11) holds for the neighborhoods X,
U , and V , and (3.3) can be invoked in the simplified form

(x, u) ∈ X × U, u′ ∈ U
(x, u, v) ∈ gph ∂xf, v ∈ V

}
=⇒ ∃x′ with

{ |x′ − x| ≤ κ|u′ − u|,
f(x′, u′) ≤ f(x, u) + κ|u′ − u|.

(3.6)

Consider any sequence of points (xν , uν , vν) ∈ [X×U×V ]∩gph ∂xf that converges
to a point (x̃, ũ, ṽ) ∈ [X × U × V ]. We have to demonstrate that f(xν , uν)→ f(x̃, ũ)
and (x̃, ũ, ṽ) ∈ gph ∂xf .

We first apply (3.6) to x = x̃, u = ũ, and u′ = uν to obtain for each ν the
existence of x̃ν such that |x̃ν − x̃| ≤ κ|uν − ũ| and f(x̃ν , uν) ≤ f(x̃, ũ) + κ|uν − ũ|.
Then x̃ν → x̃ and f(x̃ν , uν)→ f(x̃, ũ) (because f is lsc). Eventually, x̃ν ∈ X so that
we have

f(x̃ν , uν) ≥ f(xν , uν) + 〈vν , x̃ν − xν〉 − r

2
|x̃ν − xν |2.

The second and third terms on the right tend to 0 as (xν , uν) → (x̃, ũ), so from
knowing that f(x̃ν , uν)→ f(x̃, ũ) we may conclude that f(xν , uν)→ f(x̃, ũ) (because
f is lsc). This establishes (a).

Next we consider any point x̂ ∈ X and apply (3.6) to x = x̂, u = ũ, and u′ = uν

to get for each ν the existence of x̂ν such that |x̂ν − x̃| ≤ κ|uν − ũ| and f(x̂ν , uν) ≤
f(x̃, ũ) +κ|uν − ũ|. We have x̂ν → x̃ and f(x̂ν , uν)→ f(x̂, ũ) (again because f is lsc).
Furthermore, we have from (2.11) that

f(x̂ν , uν) ≥ f(xν , uν) + 〈vν , x̂ν − xν〉 − r

2
|x̂ν − xν |2.

Limits are known for all the terms in this inequality, and in passing to them we obtain

f(x̂, ũ) ≥ f(x̃, ũ) + 〈ṽ, x̂− x̃〉 − r

2
|x̂− x̃|2.

This has been shown to hold for arbitrary x̂ in X, which is a neighborhood of x̃, so
it follows that ṽ is a regular subgradient of f(·, ũ) at x̃ and hence, in particular, that
ṽ ∈ ∂xf(x̃, ũ). This establishes (b).
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Corollary 3.3 (nonparametric case). Suppose that a function g : Rn → R is
continuously prox-regular at x̄ for v̄. Then an open neighborhood X × V of (x̄, v̄) can
be found for which the uniform proximal subgradient property in (2.2) holds and, in
addition,

(a) g(x) is continuous as a function of (x, v) ∈ [X × V ] ∩ gph ∂g,
(b) gph ∂g is closed relative to X × V .
In particular, then, one has for all (x̃, ṽ) ∈ [X×V ]∩gph ∂g that g is continuously

prox-regular at x̃ for ṽ.
Proof. Here we take f(x, u) ≡ g(x).
Proposition 3.4 (subgradients under parametric prox-regularity). Under the

hypothesis of Proposition 3.2, there is a neighborhood of (x̄, ū, v̄) such that, as long as
(x, u, v) lies in this neighborhood, one has

v ∈ ∂xf(x, u) ⇐⇒ ∃ y with (v, y) ∈ ∂f(x, u).(3.7)

Proof. Because Q(x̄, ū) holds, the constraint qualification Q(x, u) also holds when
(x, u) is close enough to (x̄, ū) with f(x, u) close enough to f(x̄, ū). (Otherwise, a con-
tradiction can be reached by a simple argument based on the definition of ∂∞f(x̄, ū).)
As part of the continuous prox-regularity that is assumed, we know that when (x, u, v)
approaches (x̄, ū, v̄) within gph ∂xf , f(x, u) automatically approaches f(x̄, ū), so the
proviso about f(x, u) being close enough to f(x̄, ū) is superfluous.

The constraint qualification Q(x, u) guarantees that “⇒” holds in (3.7); see [6,
Cor. 10.11]. For the converse, suppose that (v, y) ∈ ∂f(x, u) with (x, u, v) in an open
neighborhood X×U×V of (x̄, ū, v̄) of the kind in Proposition 3.2. Then by definition
there is a sequence of points (xν , uν , vν , yν) → (x, u, v, y) with f(xν , uν) → f(x, u)
and (vν , yν) a regular subgradient of f at (xν , uν). Then vν is a regular subgradient of
f(·, uν) at xν and, in particular, vν ∈ ∂xf(xν , uν). Eventually (xν , uν , vν) belongs to
the neighborhood X ×U × V , and by appealing to (b) of Proposition 3.2 we see that
the limit (x, u, v) still lies in gph ∂xf . Thus, “⇐” holds in (3.7) when (x, u, v) ∈ X ×
U × V .

We finish with a result about the behavior of the functions mδ and mappings Mδ

in (1.1), which will be needed later in the proof of Theorem 2.3.
Proposition 3.5 (convergence in local optimality). Suppose Mδ(ū, v̄) = {x̄} for

some δ > 0 and the constraint qualification Q(x̄, ū) is satisfied. Then mδ is Lipschitz
continuous around (ū, v̄), and for every ε > 0 there is a neighborhood W of (ū, v̄) such
that

(u, v) ∈W =⇒ ∅ 6= Mδ(u, v) ⊂ {x | |x− x̄| < ε}.

Proof. In terms of the function

gδ(u, v, x) :=

{
f(x, u)− 〈v, x〉 if |x− x̄| ≤ δ,
∞ if |x− x̄| > δ,

we have mδ(u, v) = infx gδ(u, v, x) and Mδ(u, v) = argminx gδ(u, v, x). Here gδ is
lsc and proper on Rd × Rn × Rn, and for each (u, v) the level sets of the form {x |
gδ(u, v, x) ≤ α}, α ∈ R, are of course all contained in the ball {x | |x − x̄| ≤ δ}.
Further, we have

∂∞gδ(ū, v̄, x̄) = {(y, 0, w) | (w, y) ∈ ∂∞f(x̄, ū)}
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by the calculus rule in [6, Exercise 8.8(c)] so that, from Q(x̄, ū), gδ has (y, z, 0) ∈
∂∞gδ(ū, v̄, x̄) only for (y, z) = (0, 0). On the basis of this constraint qualification
we know that mδ is Lipschitz continuous on some neighborhood of (ū, v̄); cf. [6,
Thm. 10.13]. The rest then follows from the fundamental theorem on parametric
optimization in [6, Thm. 1.17].

4. Coderivative analysis of subgradient mappings. Our investigation shifts
now to coderivatives of the mapping ∂xf and its partial inverse M introduced in (2.6).

Proposition 4.1 (partial inverse mapping). The mapping M has its coderiva-
tives related to those of ∂xf by

(u′,−v′) ∈ D∗M(u, v |x)(−x′) ⇐⇒ (x′, u′) ∈ D∗(∂xf)(x, u |v)(v′).(4.1)

When gph ∂xf is closed locally around (x, u, v), the condition

(0, u′) ∈ D∗(∂xf)(x, u |v)(v′) =⇒ (u′, v′) = (0, 0)(4.2)

is necessary and sufficient for M to have the Aubin property at (u, v) for x.
Proof. By definition, (u′,−v′) ∈ D∗M(u, v |x)(−x′) means that (u′,−v′, x′) be-

longs toNgphM (u, v, x). Since the elements (u, v, x) of gphM correspond simply to the
elements (x, u, v) of gph ∂xf , this is the same as having (x′, u′,−v′) ∈ Ngph ∂xf (x, u, v).
However, that means (x′, u′) ∈ D∗(∂xf)(x, u |v)(v′).

Local closedness of gph ∂xf around (x, u, v) corresponds to local closedness of
gphM around (u, v, x) and allows the Aubin property of M at (u, v) for x to be cap-
tured by the Mordukhovich criterion: (u′,−v′) ∈ D∗M(u, v |x)(0) only for (u′,−v′) =
(0, 0). When the latter is translated through (4.1), it comes out as (4.2).

Corollary 4.2 (Aubin property of the partial inverse). Under the hypothesis of
Theorem 2.3, conditions (a) and (b) in the statement of that theorem guarantee that
M has the Aubin property at (ū, v̄) for x̄.

Proof. The hypothesis guarantees through Proposition 3.2 that gph ∂xf is closed
locally around (x̄, ū, v̄). The issue then is whether (4.2) holds there. Let (0, u′) ∈
D∗(∂xf)(x̄, ū | v̄)(v′). From condition (a) of Theorem 2.3, we must have v′ = 0.
However, then by condition (b) of Theorem 2.3 we must have u′ = 0. Thus, (4.2) is
correct.

Proposition 4.3 (partial coderivatives). Consider in terms of fu = f(·, u) the
set-valued mapping G : Rd →→ Rn × Rn defined by

G(u) = gph ∂fu = {(x, v) | (x, u, v) ∈ gph ∂xf}.(4.3)

When gph ∂xf is closed locally around (x̄, ū, v̄), condition (b) of Theorem 2.3 is equiv-
alent to G having the Aubin property at ū for (x̄, v̄). Furthermore, (b) ensures that
for all (x, u, v) ∈ gph ∂xf in some neighborhood of (x̄, ū, v̄), one has

∂2fu(x |v)(v′) ⊂ {x′ | ∃u′ with (x′, u′) ∈ D∗(∂xf)(x, u |v)(v′)}.(4.4)

Proof. The elements (u, x, v) of gphG correspond under permutation to the
elements (x, u, v) of gph ∂xf . From this we get

(x′, u′) ∈ D∗(∂xf)(x, u |v)(v′) ⇐⇒ (x′, u′,−v′) ∈ Ngph ∂xf (x, u, v)

⇐⇒ (u′, x′,−v′) ∈ NgphG(u, x, v)

⇐⇒ u′ ∈ D∗G(u |x, v)(−x′, v′).
(4.5)
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The local closedness of gph ∂xf around (x̄, ū, v̄) corresponds to the local closedness
of gphG around (ū, x̄, v̄). With such closedness, G has the Aubin property at ū
for (x̄, v̄) if and only if the Mordukhovich criterion is satisfied, namely, that u′ ∈
D∗G(ū | x̄, v̄)(0, 0) only for u′ = 0. This is identical under (4.5) to condition (b) of
Theorem 2.3.

The Aubin property of G at ū for (x̄, v̄) entails the Aubin property at u for (x, v)
whenever (u, x, v) is near enough to (ū, x̄, v̄) in gphG. Thus, for all such (u, x, v) in
gphG, and also within the neighborhood of (ū, x̄, v̄) where gphG is locally closed,
the Mordukhovich criterion is satisfied; we can write this as

(u′, 0, 0) ∈ NgphG(u, x, v) =⇒ u′ = 0.(4.6)

Fix any such element of gphG, say (ũ, x̃, ṽ). By determining the normal vectors
to the set G(ũ) = gph ∂fũ at (x̃, ṽ), we can determine the coderivative mapping
D∗(∂fũ)(x̃ | ṽ) = ∂2fũ(x̃ | ṽ). Observing that

G(ũ) = {(x, v) | F (x, v) ∈ gphG} for F : (x, v) 7→ (ũ, x, v),(4.7)

we apply the chain rule for normal vectors in [6, Thm. 6.14]. Because gphG is locally
closed around (ũ, x̃, ṽ), this chain rule is valid as long as the constraint qualification
holds that

(u′, x′, v′) ∈ NgphG(ũ, x̃, ṽ), ∇F (x̃, ṽ)∗(u′, x′, v′) = (0, 0) =⇒ (u′, x′, v′) = (0, 0, 0).

Trivially, however, ∇F (x̃, ṽ)∗(u′, x′, v′) = (0, 0) only when (x′, v′) = (0, 0), so this
constraint qualification comes out as (4.6) in the case of (u, x, v) = (ũ, x̃, ṽ) and thus
is indeed satisfied. The chain rule allows us to deduce from (4.7) that

NG(ũ)(x̃, ṽ) ⊂ {(x′′, v′′) | ∃ (u′, x′, v′) ∈ NgphG(ũ, x̃, ṽ)

with ∇F (x̃, ṽ)∗(u′, x′, v′) = (x′′, v′′)}
= {(x′, v′) | ∃u′ with (u′, x′, v′) ∈ NgphG(ũ, x̃, ṽ)}.

(4.8)

Noting that gphD∗(∂fũ)(x̃ | ṽ) consists of the pairs (v′, x′) with (x′,−v′)∈NG(ũ)(x̃, ṽ),
whereas gphD∗(∂xf)(x̃, ũ | ṽ) consists by (4.5) of all (v′, x′, u′) such that (u′, x′,−v′) ∈
NgphG(ũ, x̃, ṽ), we obtain from (4.8) that (4.4) holds.

In support of the final proposition in this section, the following lemma will be
crucial.

Lemma 4.4 (positive definiteness estimate). Let g : Rn → R be continuously
prox-regular at x̃ for ṽ and let ε > 0. If the inequality 〈x′, v′〉 ≥ ε|v′|2 holds for all
(v′, x′) ∈ gph ∂2g(x̃, ṽ) such that x′ = λv′ for some λ ∈ R, then it also holds without
that restriction.

Proof. Consider any µ ∈ (0, ε). Let G = gph ∂g. Under our inequality assumption
there must be an open neighborhood X0 × V0 of (x̃, ṽ) such that

(x, v) ∈ [X0 × V0] ∩ gph ∂g, (λv′, v′) ∈ gph ∂2g(x |v), |v′| = 1 =⇒ λ ≥ µ,(4.9)

inasmuch as gph ∂2g(x |v) consists of the vectors (v′, x′) with (x′,−v′) ∈ Ngph ∂g(x, v),
and the graph of the mapping Ngph ∂g is closed (by the general definition of normal
cones).

We can suppose (by shrinking X0 and V0 if necessary) that X0 × V0 lies within a
neighborhood X×V for which the continuous prox-regularity property in (2.2) is oper-
ational and, moreover, through Corollary 3.3, makes g continuously prox-regular at x
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for v when (x, v) ∈ [X×V ]∩gph ∂g. Consider now within [X0×V0]∩gph ∂g any point
(x, v) with the special property that the ∂g is proto-differentiable at x for v and the
corresponding derivative mapping D(∂g)(x |v) : Rn →→ Rn is generalized linear. (This
property is known actually to hold in an almost everywhere sense because continuous
prox-regularity makes gph ∂g a graphically Lipschitzian manifold of dimension n in
its localization relative to X × V ; cf. [9, Prop. 4.8]. The points (x, v) in question are
the “Rademacher points” of gph ∂g near (x̃, ṽ). Proto-differentiability is the graphical
counterpart to function differentiability; see [6]. A mapping is generalized linear when
its graph is a subspace.)

In this situation, three facts are at our disposal. First, according to a theorem of
Rockafellar and Zagrodny [15], the graph of D(∂g)(x |v) is included in the graph of
D∗(∂g)(x |v) = ∂2g(x |v), so that by (4.9) we have

(λv′, v′) ∈ gphD(∂g)(x |v), |v′| = 1 =⇒ λ ≥ µ.(4.10)

Second, because of the proto-differentiability, D(∂g)(x |v) is the subgradient mapping
∂h for h = d2g(x |v), the second subderivative function associated with g at x for v;
this holds through prox-regularity as shown in [9, Cor. 6.2]. Third, the generalized
linearity of ∂h corresponds to h being a generalized (purely) quadratic function: the
sum of a purely quadratic function on Rn and the indicator of a subspace. Thus, there
is a subspace L of Rn along with a symmetric, positive semidefinite matrix Q ∈ Rn×n
such that

D(∂g)(x |v)(v′) =

{
Qv′ + L⊥ when v′ ∈ L,
∅ when v′ /∈ L.(4.11)

In combining (4.11) with (4.10), we see that the eigenvalues λ of Q relative to L
must all satisfy λ ≥ µ. This tells us that the generalized linear mapping D(∂g)(x |v)
is µ-strongly monotone. We invoke next the criterion of [9, Prop. 5.7]: Because the
mappingsD(∂g)(x |v) of the special type just investigated are all µ-strongly monotone,
the localization of ∂g that we are working with is itself µ-strongly monotone.

A monotone mapping T has 〈x′, v′〉 ≥ 0 whenever x′ ∈ D∗T (x |v)(v′), as shown
by Poliquin and Rockafellar [8, Thm. 2.1]; therefore, a µ-monotone mapping T (for
which T − µI is monotone) has 〈x′, v′〉 ≥ µ|v′|2 whenever x′ ∈ D∗T (x |v)(v′). In
particular, then, in taking T to be our localization of ∂g, we see that

(x, v) ∈ [X0 × V0] ∩ gph ∂g, x′ ∈ ∂2g(x |v)(v′) =⇒ 〈x′, v′〉 ≥ µ|v′|2.
Applying this at (x, v) = (x̃, ṽ) and recalling that µ was an arbitrary value in (0, ε), we
reach the desired conclusion that 〈x′, v′〉 ≥ ε|v′|2 whenever x′ ∈ ∂2g(x̃ | ṽ)(v′).

Proposition 4.5 (uniform positive definiteness). Let the constraint qualification
Q(x̄, ū) hold with v̄ ∈ ∂xf(x̄, ū), and suppose that f(x, u) is continuously prox-regular
in x at x̄ for v̄ with compatible parameterization by u at ū. If conditions (a) and
(b) of Theorem 2.3 hold as well, there must actually exist a constant ε > 0 and a
neighborhood X × U × V of (x̄, ū, v̄) for which, in terms of fu = f(·, u), one has

x′ ∈ ∂2fu(x |v)(v′)

(x, u, v) ∈ [X × U × V ] ∩ gph ∂xf

}
=⇒ 〈x′, v′〉 ≥ ε|v′|2.(4.12)

Conversely, if this property holds, then condition (a) of Theorem 2.3 must hold
with

(x′, u′) ∈ D∗(∂xf)(x̄, ū | v̄)(v′) =⇒ 〈x′, v′〉 ≥ ε|v′|2.(4.13)
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Proof. Our hypothesis ensures through Proposition 3.2 that for all (x, u, v) near
enough to (x̄, ū, v̄) with v ∈ ∂fu(x) the function fu is continuously prox-regular at x
for v. In combining it with condition (b) of Theorem 2.3 and invoking Proposition
4.3, we get the coderivative inclusion in (4.4) to hold locally. Suppose now that
condition (a) of Theorem 2.3 is satisfied along with condition (b). To justify the
locally uniform positive definiteness property claimed in that case, we will rely on
Lemma 4.4, according to which we can obtain (4.12) by demonstrating that

λz ∈ ∂2fu(x |v)(z)

(x, u, v) ∈ [X × U × V ] ∩ gph ∂xf

}
=⇒ λ ≥ ε.

Through the inclusion in (4.4), it suffices to verify the existence of ε > 0 such that

(λz,w) ∈ D∗(∂xf)(x, u |v)(z)

(x, u, v) ∈ [X × U × V ] ∩ gph ∂xf

}
=⇒ λ ≥ ε.(4.14)

Suppose there is no such ε. Then there must exist sequences (xν , uν , vν) →
(x̄, ū, v̄) in gph ∂xf along with scalars λν ↓0 and vectors zν and wν with zν 6= 0,
such that (λνzν , wν) ∈ D∗(∂xf)(xν , uν |vν)(zν). The latter means by definition that
(λνzν , wν ,−zν) is a normal vector to gph ∂xf at (xν , uν , vν). Rescaling, we can make
|zν | = 1.

By passing to subsequences, we can suppose zν converges to some z with |z| = 1
and, as for wν , reduce to two cases: either wν converges to some w or 0 < |wν | → ∞.
In the first case we have in the limit that (0, w,−z) is normal to gph ∂xf at (x̄, ū, v̄), so
(0, w) ∈ D∗(∂xf)(x̄, ū | v̄)(z). However, that is excluded by condition (a) of Theorem
2.3. In the second case, let ŵν = wν/|wν | and ẑν = zν/|wν |. Then ẑν → 0, whereas,
by passing once more to subsequences if necessary, we can suppose ŵν converges to
some ŵ with |ŵ| = 1. We have (λν ẑν , ŵν ,−ẑν) normal to gph ∂xf at (xν , uν , vν),
and hence in the limit that (0, ŵ, 0) is normal to gph ∂xf at (x̄, ū, v̄). Then (0, ŵ) ∈
D∗(∂xf)(x̄, ū | v̄)(0), but that is impossible under condition (b) of Theorem 2.3.

Turning now to the converse claim at the end of the proposition, we drop the
assumption that (a) and (b) of Theorem 2.3 hold and suppose instead that (4.12) is
satisfied by ε and a neighborhood X × U × V . Let (x′, u′) ∈ D∗(∂xf)(x̄, ū | v̄)(v′), so
that (x′, u′,−v′) is a normal vector to gph ∂xf at (x̄, ū, v̄). By definition, then, there
exist sequences (x̄ν , ūν , v̄ν) → (x̄, ū, v̄) in X × U × V and (x̃ν , ũν , ṽν) → (x′, u′, v′)
in which (x̃ν , ũν ,−ṽν) is a regular normal vector to gph ∂xf at (x̄ν , ūν , v̄ν). Since
gph ∂fu is merely the cross section of gph ∂xf obtained by fixing the u argument,
(x̃ν ,−ṽν) is then a regular normal vector to gph ∂fūν at (x̄ν , v̄ν). This implies x̃ν ∈
D∗(∂fūν )(x̄ν | v̄ν)(ṽν) = ∂2fūν (x̄ν | v̄ν)(ṽν), so 〈x̃ν , ṽν〉 ≥ ε|ṽν |2 by (4.12). Taking the
limit we get the inequality in (4.13), as desired.

5. Proof of the main result. Two auxiliary facts still have to be established in
order to set the stage completely for the proof of necessity and sufficiency in Theorem
2.3. We first deal with one needed in the sufficiency argument. We denote by B(v, λ)
the closed ball of radius λ around v.

Lemma 5.1 (subgradient inversion estimate). Let g : Rn → R be convex and
let O be an open convex set on which g is finite and strongly convex with modulus µ.
Suppose v0 ∈ O and w0 ∈ ∂g(v0), and let λ > 0 be small enough that the B(v0, λ)
lies in O. Then for every w ∈ B(w0, λµ) there is a unique v ∈ B(v0, λ) with w ∈
∂g(v). Furthermore, the single-valued mapping w 7→ v defined in this way is Lipschitz
continuous on B(w0, λµ) with constant 1/µ.
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Proof. Fix any λ0 > λ small enough that B(v0, λ0) still lies in O. Define g0(v) to
be g(v0 + v)−〈w0, v〉 when v ∈ λ0B but∞ otherwise. Then ∂g0(v) = ∂g(v0 + v)−w0

for v ∈ λB and in particular 0 ∈ ∂g0(0). It will suffice to prove that for every w ∈ µλB
there is a unique v ∈ λB with w ∈ ∂g0(v) and that the associated mapping w 7→ v
has the Lipschitz property claimed.

Because g is continuous on O by virtue of its convexity, g0 is lsc on Rn as well
as µ-strongly convex on its effective domain λ0B. Then the subgradient mapping ∂g0

is µ-strongly monotone, and the conjugate convex function g∗0 is differentiable on Rn,
its gradient mapping being globally Lipschitz continuous with constant 1/µ; see [6,
Thm. 11.13, Prop. 12.60]. This makes ∂g∗0 reduce to ∇g∗0 , and since ∂g∗0 = (∂g0)−1

in general, it follows that we have v = ∇g∗0(w) if and only if w ∈ ∂g0(v).
Our task reduces to demonstrating that in these circumstances we have v ∈ λB

when w ∈ λµB. We know in general from the theory of conjugate functions that

∂g∗0(w) = argminv{g0(v)− 〈v, w〉} = argminv{g(v0 + v)− 〈v, w0 + w〉+ δλ0B(v)}.
The rules of subgradient calculus tell us that the minimum is attained at v if and
only if 0 ∈ ∂g(v0 + v) − [w0 + w] + Nλ0B(v). Therefore, v = ∇g∗0(w) if and only if
v ∈ λ0B and there exists θ ≥ 0 such that w0 + w − θv ∈ ∂g(v0 + v), in which case
w − θv ∈ ∂g0(v). Here necessarily θ = 0 unless |v| = λ0. Thus we can finish off by
showing that if w − θv ∈ ∂g0(v) and |v| = λ0, then |w| > µλ.

We accomplish this by appealing to the fact that ∂g0 is µ-strongly monotone with
0 ∈ ∂g0(0). In combination with the relation w−θv ∈ ∂g0(v) this yields 〈w−θv, v〉 ≥
µ|v|2, and hence 〈w, v〉 ≥ (µ + θ)|v|2. That implies |w| ≥ (µ + θ)|v| = (µ + θ)|λ0| >
µλ.

Proof of sufficiency in Theorem 2.3. Assume the hypothesis of Theorem 2.3 along
with conditions (a) and (b). Full stability will be demonstrated, and the assertion
about Mδ(u, v) equaling M(u, v) will be obtained as a by-product.

Our assumptions yield the uniform positive definiteness property in Proposition
4.5. In particular, in order to get started we observe that this implies for the function
fū that

x′ ∈ ∂2fū(x̄ | v̄)(v′), v′ 6= 0 =⇒ 〈v′, x′〉 > 0.

Since fū is continuously prox-regular at x̄ for v̄ in consequence of the parametric
continuous prox-regularity of f , we have everything in place to apply the main result
of Poliquin and Rockafellar in [8] and conclude that we at least have tilt stability. All
that we really need from this, however, is the fact that, for δ > 0 sufficiently small,
we have Mδ(ū, v̄) = {x̄}. Then we can invoke Proposition 3.5 in tandem with (2.7)
to see that, for some neighborhood W of (ū, v̄), we have mδ Lipschitz continuous on
W and

∅ 6= Mδ(u, v) = Mδ(u, v) ∩ {x | |x− x̄| < δ}
⊂ M(u, v) ∩ {x | |x− x̄| < δ} for all (u, v) ∈W.(5.1)

Conversely, we know from Corollary 4.2 that M has the Aubin property at (ū, v̄) for
x̄. The Lipschitz modulus of M at (ū, v̄) for x̄ (in the set-valued sense of the Aubin
property—see [6, Def. 9.36]) is given then by the “norm,” |D∗M(ū, v̄)|+ in [6, Thm.
9.40]. By virtue of the equivalence in (4.1) and this “norm” value can be expressed
as the max on the right-hand side of (2.16).

Thus, if we can prove that the mapping (u, v) 7→ M(u, v) ∩ {x | |x − x̄| < δ}
is single-valued around (ū, v̄), it will follow that, on some neighborhood of (ū, v̄),
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this single-valued mapping is Lipschitz continuous and agrees with Mδ, as claimed.
Furthermore, we will have the formula in (2.16) for the Lipschitz modulus of Mδ at
(ū, v̄), and be done.

Everything therefore hinges on establishing this single-valuedness. From [8], as
already noted, we already have it for M(ū, v) as a function of v around v̄. It might
seem an easy step to go from that to the local single-valuedness of M(u, v) in v for
parameter vectors u near ū, using the fact that functions fu, like fū, exhibit prox-
regularity locally by Proposition 3.2, together with the fact that the coderivative
Hessians associated with these functions are positive definite by Proposition 4.5. At
best, however, we could get from such an argument only a separate domain of single-
valuedness of M(u, v) in v for each u, whereas we require that these domains come
together as a neighborhood of (ū, v̄) in (u, v) jointly. That makes everything much
more complicated.

Let X×U×V be a bounded open neighborhood of (x̄, ū, v̄) small enough to ensure
the properties in Proposition 3.2 (for a certain prox-regularity parameter r ≥ 0) and
also the uniform positive definiteness in Proposition 4.5. Suppose further that U × V
is small enough that it lies in the neighborhood W where (5.1) holds. Fix any s > r
and let

f̄(x, u) :=

{
f(x, u) if |x− x̄| ≤ δ,
∞ if |x− x̄| > δ,

k(x, u, v) := f̄(x, u)− 〈v, x〉+ (s/2)|x− x̄|2.
(5.2)

Further, in terms of this define

φ(u, v) := infx k(x, u, v), Φ(u, v) := argminx k(x, u, v).(5.3)

Our first objective is to show by techniques of variational analysis that φ is Lipschitz
continuous on a neighborhood of (ū, v̄).

To this end we note first that when (u, v) ∈ U ×V there exists x with k(x, u, v) <
∞; indeed, any x ∈ Mδ(u, v) has this property, since (5.1) holds and U × V ⊂ W .
Therefore φ < ∞ on U × V . Conversely, k is lsc and we have for each α ∈ R that
the set {(v, u, x) | (v, u) ∈ V × U, k(v, u, x) ≤ α} is bounded. This guarantees by the
basic theorem on parametric optimization in [6, Thm. 1.17] that φ is lsc on U × V
with φ > −∞ and

Φ(u, v) 6= ∅ when (u, v) ∈ U × V, where Φ(ū, v̄) = {x̄}.(5.4)

Moreover, we have then from [6, Thm. 10.13] that

∂φ(u, v) ⊂ {(y, w) | ∃x ∈ Φ(u, v) with (0, y, w) ∈ ∂k(x, u, v)},
∂∞φ(u, v) ⊂ {(y, w) | ∃x ∈ Φ(v, u) with (0, y, w) ∈ ∂∞k(x, u, v)},(5.5)

where we calculate via [6, Exercise 8.8(c)] that

(0, y, w) ∈ ∂k(x, u, v) ⇐⇒ (0, y, w) ∈ (∂f̄(x, u), 0) + (s[x− x̄]− v, 0,−x)

⇐⇒ (v − s[x− x̄], y) ∈ ∂f̄(x, u) and w = −x,
(0, y, w) ∈ ∂∞k(x, u, v) ⇐⇒ (0, y) ∈ ∂∞f̄(x, u) and w = 0.

(5.6)

Applying the last formula to (ū, v̄) and observing that ∂∞f̄(x̄, ū) = ∂∞f(x̄, ū) because
Φ(ū, v̄) = {x̄}, we see through the constraint qualification Q(x̄, ū) that the only choice
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of (y, w) satisfying (0, y, w) ∈ ∂∞k(x̄, ū, v̄) is (y, w) = (0, 0). The second formula in
(5.5) then yields ∂∞φ(ū, v̄) = (0, 0). A function is Lipschitz continuous on a neighbor-
hood of any point where it is finite, lsc, and has no nonzero horizon subgradient [6,
Thm. 9.13], so we conclude that φ is Lipschitz continuous around (ū, v̄).

Continuity of φ at (ū, v̄) implies continuity of the set-valued mapping Φ at (ū, v̄),
where it is single-valued; see [6, Thm. 1.17(b)]. Thus, for some open neighborhood
U0 × V0 of (v̄, ū) within U × V , which can be taken to be convex, we have

Φ(u, v) ⊂ {x | |x− x̄| < δ} when (u, v) ∈ U0 × V0.(5.7)

By choosing U0 × V0 even smaller, we can arrange to have the additional property,
needed below, that

x ∈ Φ(u, v) =⇒ x ∈ X, v − s[x− x̄] ∈ V.(5.8)

Under (5.7), ∂f̄(x, u) reduces to ∂f(x, u) in (5.6), and we then obtain from (5.5) that

∂φ(u, v) ⊂ {(y,−x) | x ∈ Φ(v, u), (v, y) ∈ ∂f(x, u) + (s[x− x̄], 0)}
when (u, v) ∈ U0 × V0.

(5.9)

The Lipschitz continuity of φ on U0×V0 implies that ∂∞φ(u, v) = {(0, 0)} for (u, v) ∈
U0 × V0 [6, Thm. 9.13] and allows us to apply the partial subgradient rule in [6,
Cor. 10.11] to see that ∅ 6= ∂vφ(u, v) ⊂ {w | ∃ y with (y, w) ∈ ∂φ(u, v)} and then get
from (5.9) that

∂vφ(u, v) ⊂ {−x | x ∈ Φ(u, v)} when (u, v) ∈ U0 × V0.(5.10)

Next we determine what it means for x to belong to Φ(u, v) when (u, v) ∈ U0×V0.
Because of (5.7), the subgradient optimality condition for x to furnish the minimum
in (5.3) takes the form of requiring 0 ∈ ∂xf(x, u)− v + s[x− x̄]. Hence

Φ(u, v) ⊂ {x | v − s[x− x̄] ∈ ∂xf(x, u)} when (u, v) ∈ U0 × V0.(5.11)

It will be demonstrated that this makes Φ single-valued. Fix any (u, v) ∈ U0 × V0

and suppose that x, x′ ∈ Φ(v, u). In particular, we have (x, u, v − s[x − x̄]) and
(x′, u, v − s[x′ − x̄]) in X × U × V by (5.8) and therefore by prox-regularity

f(x′, u) ≥ f(x, u) + 〈v − s[x− x̄], x′ − x〉 − r

2
|x′ − x|2,

f(x, u) ≥ f(x′, u) + 〈v − s[x′ − x̄], x− x′〉 − r

2
|x′ − x|2,

from which it follows (by adding the two inequalities) that 0 ≥ (s− r)|x′ − x|2. Thus
x′ = x (inasmuch as s > r), and the single-valuedness of Φ is confirmed.

The single-valuedness of Φ on U0 × V0 produces the single-valuedness of the
mapping ∂vφ on that set by (5.10) and reveals that for each u ∈ U0 the function
φu = φ(·, u) is strictly differentiable with respect to v ∈ V0 [6, Thm. 9.18]—in fact
with gradient ∇φu(u, v) = −x for the unique x ∈ Φ(u, v). Strict differentiability at
every point of an open set is equivalent to continuous differentiability on that set [6,
Cor. 9.19].

The achievement so far can be summarized as follows in terms of φ and its “slices”
φu. We have an open neighborhood U0×V0 of (v̄, ū) on which φ is finite and Lipschitz
continuous and such that, for each u ∈ U0, φu is continuously differentiable on V0 with

−∇φu(v) = unique x ∈ Φ(u, v)

= unique x with |x− x̄| < δ, v − s[x− x̄] ∈ ∂fu(x).
(5.12)
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In particular, −∇φū(v̄) = x̄.
Keeping u as an arbitrary element of U0, let Fu(v) = −∇φu(v) on V0 for simplicity.

Then Fū(v̄) = x̄ and Fu is a continuous, single-valued mapping from V0 to Rn with
its graph related to that of ∂fu through (5.12) by

(v,x) ∈ gphFu ⇐⇒ (v, x) ∈ Ω, L(v, x) ∈ gph fu, where

Ω = V0 × {x | |x− x̄| < δ}, L(v, x) =
(
x, v − s[x− x̄]

)
.

(5.13)

The affine mapping L is invertible and gives a “change of coordinates” through which
normal cones to gphFu can be identified with normal cones to gph ∂fu; by way of
the rule in [6, Excercise 6.7] we obtain

(v′,−x′) ∈ NgphFu(v, x) ⇐⇒ (sv′ − x′, v′) ∈ Ngph ∂fu

(
x, v − s[x− x̄]

)
and can write this in coderivative form as

v′ ∈ D∗Fu(v |x)(x′) ⇐⇒ sv′ − x′ ∈ D∗(∂fu)(x |w)(−v′) for w = v − s[x− x̄].
(5.14)

Appealing now to the fact that the pairs (v, x) in this situation have x ∈ X and w ∈ V
by (5.7), we make use of the uniform positive definiteness of D∗(∂fu)(x |w) for such
(x,w) (as we arranged by making our neighborhoods be such that (4.12) holds) to see
from (5.14) that

v′ ∈ D∗Fu(v |x)(x′) =⇒ 〈sv′ − x′,−v′〉 ≥ ε| − v′|2
=⇒ 〈−x′,−v′〉 ≥ s|v′|2 + ε|v′|2
=⇒ |x′||v′| ≥ (s+ ε)|v′|2 =⇒ |v′| ≤ (s+ ε)−1|x′|.

This inequality on the coderivatives of Fu guarantees, in the face of the stipulated con-
vexity of V0, that Fu itself is Lipschitz continuous on V0 with constant (s+ε)−1. That
is an immediate outcome of the calculus of the Lipschitz modulus in [6, Thms. 9.31,
9.38, 9.40] as specialized to the case of a single-valued mapping like Fu.

We now introduce on V0 the mapping Gu : v 7→ v − s[Fu(v) − x̄], noting that
Gu(v) = ∇vψ(u, v) for the function ψ : (u, v) 7→ 1

2 |v|2 + sφ(u, v) + s〈v, x̄〉. The choice
of this mapping is motivated by the fact that w = Gu(v) if and only if w = v−s[x− x̄]
for the unique x such that |x − x̄| < δ and v − s[x − x̄] ∈ ∂fu(x). Then obviously
w ∈ ∂fu(x), so that x ∈ M(u,w). In particular, we have Gū(v̄) = v̄. If we can
determine a neighborhood V1 of v̄ along with a neighborhood U1 of ū such that for
each (u,w) ∈ U1× V1 there is a unique v ∈ V0 with Gu(v) = w, we will conclude that
for such (u,w) there is a unique x ∈M(u,w) with |x− x̄| < δ. That will confirm that
the mapping (u,w) 7→M(u,w)∩ {x | |s− x̄| < δ} is single-valued on U1 × V1, and we
will be finished.

Our key to this final stage will be Lemma 5.1. As preparation for using it, we
demonstrate that the gradient mapping Gu is strongly monotone: for v, v′ ∈ V0 we
have〈

Gu(v′)−Gu(v), v′ − v〉 =
〈
v′ − sFu(v′) + sx̄− v + sFu(v)− sx̄, v′ − v〉

= |v′ − v|2 − s〈Fu(v′)− Fu(v), v′ − v〉
≥ |v′ − v|2 − s|Fu(v′)− Fu(v)||v′ − v|
≥ |v′ − v|2 − s(s+ ε)−1|v′ − v|2 = ε(s+ ε)−1|v′ − v|2.
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This monotonicity implies that ψ(u, v) is µ-strongly convex in v ∈ V0 with modulus
µ = ε(s + ε)−1. Since ψ(u, v) is continuous in (u, v) ∈ U0 × V0 (it inherits this from
φ), the vector Gu(v) = ∇vψ(u, v) depends continuously on (u, v) ∈ U0 × V0 as well
[16, Thm. 25.7].

Take λ > 0 small enough that B(v̄, 2λ) ⊂ V0. Let gu(v) = ψ(u, v) if v ∈ B(v̄, 2λ)
but gu(v) = ∞ otherwise. Then gu is convex as a function on Rn and agrees with
ψ(u, ·) on the open set Ou = {v | |v − v̄| < 2λ}. There, gu is strongly convex with
modulus µ, and its gradient mapping is Gu; the unique subgradient w ∈ ∂gu(v)
is w = Gu(v) when v ∈ Ou. By virtue of Lemma 5.1, there exists then for each
w ∈ B(Gu(v̄), λµ) a unique v ∈ B(v̄, λ) with w = Gu(v).

All that remains is to observe that by choosing U1 to be a small enough neigh-
borhood of ū within U0 we can obtain (through the continuous dependence of Gu(v̄)
on u) the existence of a neighborhood V1 of v̄ within V0 such that, for all u ∈ U1, we
have B(Gu(v̄), λµ) ⊃ V1.

In moving on to the necessity in Theorem 2.3, we will need help from a different
auxiliary result.

Lemma 5.2 (dual criterion for localized strong convexity). Let h : Rn → R be
a proper, lsc, convex function whose conjugate h∗ is differentiable on a certain open
convex set O ⊂ Rn—moreover, with its gradient mapping ∇h∗ : O → Rn Lipschitz
continuous on O with constant 1/σ (for some σ > 0). Let λ > 0 and Oλ = {v |
B(v, λ) ⊂ O}. Then

h(x′) ≥ h(x) + 〈v, x′ − x〉+
σ

2
|x′ − x|2 if v ∈ ∂h(x) ∩Oλ, |x′ − x| ≤ λ

σ
,(5.15)

and therefore also

〈x′ − x, v′ − v〉 ≥ σ|x′ − x|2 whenever

{
v ∈ ∂h(x), v′ ∈ ∂h(x′),
v, v′ ∈ Oλ, |x′ − x| ≤ λ/σ.

(5.16)

Proof. For any v, v′ ∈ O we have h∗(v′)−h∗(v) =
∫ 1

0
〈∇h∗(v+ t[v′−v]), v′−v〉dt.

The estimate 〈∇h∗(v + t[v′ − v]), v′ − v〉 ≤ 〈∇h∗(v), v′ − v〉 + (t/σ)|v′ − v|2 holds
under our assumptions, so the integral gives us

h∗(v′)− h∗(v) ≤ 〈∇h∗(v), v′ − v〉+
1

2σ
|v′ − v|2.

Therefore, in terms of the indicator function δλB of the closed λ-ball around 0 and
the function j(w) = 1

2 |w|2, we have for any choice of v ∈ Oλ that

h∗(v′) ≤ k(v′ − v) for all v′ ∈ Rn, where

k(w) := h∗(v) + 〈∇h∗(v), w〉+ σ−1j(w) + δλB(w).
(5.17)

Fix v ∈ Oλ and take conjugates of both sides of (5.17) as convex functions of v′, using
x′ as the variable to describe the conjugate functions. That produces the inequality

h∗∗(x′) ≥ k∗(x′) + 〈v, x′〉 for all x′ ∈ Rn.(5.18)

Here h∗∗ = h because h is lsc, proper, and convex, and k∗ calculates to

k∗(x′) = −h∗(v) +
(
σ−1j + δλB

)∗(
x′ −∇h∗(v)

)
.
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The function conjugate to σ−1j is σj and the function conjugate to δλB is λ| · |,
and consequently

(
σ−1j + δλB

)∗
= σj λ| · |, with “ ” denoting the operation of

epi-addition (inf-convolution):

(
σj λ| · |)(u) = inf

u′
{σj(u′) + λ|u− u′|} =

{
σj(u) when |u| ≤ λ/σ,
λ(σ−1 + |u|) when |u| ≥ λ/σ.

(5.19)

Let x = ∇h∗(v); this relation is the same as x ∈ ∂h∗(v) when h∗ is differentiable at
v, and hence is equivalent also to v ∈ ∂h(x) as well as to h(x) + h∗(v) = 〈x, v〉 (by
convex analysis; cf. [6, Prop. 11.3]). We obtain from (5.18) and our calculations that

h(x′) ≥ h(x) + 〈v, x′ − x〉+
(
σj λ| · |)(x′ − x) for all x′ ∈ Rn.

This yields (5.15) through (5.19). By symmetry, of course, we also have

h(x) ≥ h(x′) + 〈v′, x− x′〉+
σ

2
|x− x′|2 if v′ ∈ ∂h(x′) ∩Oλ, |x− x′| ≤ λ

σ
.

In combining this inequality with the one in (5.15) we obtain (5.16).
Proof of necessity in Theorem 2.3. The hypothesis furnishes for us a neighborhood

X×U ×V of (x̄, ū, v̄) for which the properties in Proposition 3.2 hold. An additional
assumption now is that, for some δ > 0 sufficiently small, the mapping Mδ is single-
valued and Lipschitz continuous around (ū, v̄), its value at (ū, v̄) being x̄. Without
loss of generality, we can suppose these properties hold for Mδ on U × V and that

Mδ(u, v) ∈ {x | |x− x̄| < δ} ⊂ X for (u, v) ∈ U × V.(5.20)

We can also arrange that (5.1) holds for W = U × V , through Proposition 3.5 and
(2.7).

Define f̄ , k, φ, and Φ as in (5.2) and (5.3) but with s = 0, so φ = mδ and Φ =
Mδ. The subgradient calculus used in the proof of sufficiency after those definitions
remains valid and reveals that φ, which is Lipschitz continuous on an open convex
neighborhood U0 × V0, say, of (ū, v̄) in U × V , exhibits as instances of (5.10) and
(5.11) the relations

∂vφ(u, v) = −Mδ(u, v),

Mδ(u, v) ∈ {x | v ∈ ∂xf(x, u)} = M(u, v).
(5.21)

The first of these implies, moreover, that for each u ∈ U0 the function φu = φ(u, ·)
is continuously differentiable on V0 with gradient ∇φu(v) = −Mδ(u, v). In fact, our
Lipschitz assumption on Mδ gives us a constant κ > 0 such that for each u ∈ U0 the
mapping ∇φu is Lipschitz continuous on V0 with constant κ.

Let gu = −φu so that gu(v) = supx{〈v, x〉 − f̄(x, u)}, or in other words, gu is
conjugate to f̄u under the Legendre–Fenchel transform. In particular, gu is a proper,
lsc, convex function on Rn that is differentiable on V0 with ∇gu(v) = Mδ(u, v). Let
hu be conjugate in turn to gu. Then hu = g∗u = f̄∗∗u and gu = h∗u = f̄∗u , and we
have by the usual relation between subgradients of conjugate convex functions that
v ∈ ∂hu(x) if and only if x ∈ ∂gu(v), so that

v ∈ ∂hu(x) ⇐⇒ x = ∇gu(v) = Mδ(u, v), as long as u ∈ U0, v ∈ V0.(5.22)
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We now apply Lemma 5.2 to hu and its conjugate function gu on the set O = V0

with 1/σ = κ. Let λ > 0 be small enough that B(v̄, λ) ⊂ V0, so the set Oλ = {v |
B(v̄, λ) ⊂ V0} is an open neighborhood of v̄. Then (5.16) holds for hu, where by
(5.24) the relations v ∈ ∂h(x) and v′ ∈ ∂h(x′) can be written as x = Mδ(u, v) and
x′ = Mδ(u, v

′).
Choose X1 to be a neighborhood of x̄ within X so small that |x′−x| ≤ λ/σ when

x, x′ ∈ X1. Let U1×V1 be a neighborhood of (ū, v̄) within U0×Oλ small enough that
(u, v) ∈ U1 × V1 implies Mδ(u, v) ∈ X1. Then (5.16) yields the inequality

〈x′ − x, v′ − v〉 ≥ σ|x′ − x|2 when

{
x = Mδ(u, v), x′ = Mδ(u, v

′),
u ∈ U1, v, v

′ ∈ V1

.(5.23)

In terms of the mapping Tu obtained by restricting Mδ(u, ·) to V1, (5.23) says that
T−1
u is strongly monotone with constant σ. Let Su be the mapping whose graph

is the intersection of gphM(u, ·) with V1 × {x | |x − x̄| < δ}, so that S−1
u is the

mapping whose graph is the intersection of gph ∂fu with {x | |x − x̄| < δ} × V1.
We have gphTu ⊂ gphSu by (5.20) and the second relation in (5.21); hence also
T−1
u (x) ⊂ S−1

u (x) ⊂ ∂fu(x) for all x.
For the constant r in the prox-regularity of f , we know that the mappings ∂fu are

monotone when u ∈ U1. Let s > r and consider the mappings T−1
u +sI and S−1

u +sI.
As long as u ∈ U1, both of these are strongly monotone, the first with constant σ+ s
and the second surely with constant s − r. Hence, the inverses (T−1

u + sI)−1 and
(S−1
u + sI)−1 are single-valued on their domains. Because gphT−1

u ⊂ gphS−1
u , we

have gph(T−1
u + sI)−1 ⊂ gph(S−1

u + sI)−1, so it follows that

x ∈ (T−1
u + sI)−1(z) =⇒ (T−1

u + sI)−1(z) = (S−1
u + sI)−1(z) = {x}.(5.24)

Expressing z in the form v + sx, we find that this means

x ∈ (T−1
u + sI)−1(v + sx) ⇐⇒ v + sx ∈ (T−1

u + sI)(x) ⇐⇒ x ∈ Tu(v),

and similarly with Su substituted for Tu. Thus, (5.24) asserts that whenever x ∈ Tu(v)
we have Tu(v) = Su(v) = {x}. This has been established for arbitrary u ∈ U1, so in
recalling the definitions of Tu and Su we are able to conclude that

M(u, v) ∩ {x | |x− x̄| < δ} = Mδ(u, v) for all (u, v) ∈ U1 × V1.(5.25)

This localization of M therefore inherits the Lipschitz continuity of Mδ. Hence,
in particular, the Aubin property holds for M at (ū, v̄) for x̄. That implies by Propo-
sition 4.1 that condition (b) of Theorem 2.3 must hold. Furthermore, in terms of the
inverse mappings, (5.25) states that gphTu =

[{x | |x − x̄| < δ} × V1

] ∩ gph ∂fu
when u ∈ U1. This reveals that the coderivatives of these truncated mappings
must coincide: DTu(x |v) = D∗(∂fu)(x |v) = ∂2fu(x |v) at the common graph points
(x, v). Because Tu is strongly monotone with constant σ we have 〈x′, v′〉 ≥ σ|v′|2 for
x′ ∈ DTu(x |v)(v′); hence likewise

〈x′, v′〉 ≥ σ|v′|2 for x′ ∈ ∂2fu(x |v)(v′) when v ∈ ∂fu(x) = ∂xf(x, u),

provided that (u, v) ∈ U1×V1. That guarantees, through the converse part of Propo-
sition 4.5 that the positive definiteness condition (a) holds in Theorem 2.3.

Proof of Theorem 2.7. This is really just an extension of the proof of necessity in
Theorem 2.3. That proof utilized the function f̄ in (5.2) and, in terms of f̄u = f̄(·, u),
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introduced the conjugate functions gu = f̄∗ = −mδ(u, ·) and hu = g∗u = f̄∗∗u . The
conjugacy relations imply in turn that h∗u = gu and also that hu(x) = ∞ when
|x− x̄| > δ, since f̄u(x) has this property by definition. Hence

gu(v) = sup
x∈Rn
{〈v, x〉 − hu(x)} = sup

|x−x̄|≤δ
{〈v, x〉 − hu(x)},(5.26)

where the maximum is attained at x if and only if v ∈ ∂hu(x).

Take f̂(x, u) = hu(x). Then ∂xf̂(x, u) = ∂hu(x), and since gu(v) = −mδ(u, v)
the conjugacy formula hu(x) = supv{〈v, x〉 − gu(x)} converts to

f̂(x, u) = supv{〈v, x〉+mδ(u, v)},(5.27)

while from (5.26) we get

inf
|x−x̄|≤δ

{f̂(x, u)− 〈v, x〉} = mδ(u, v),

argmin
|x−x̄|≤δ

{f̂(x, u)− 〈v, x〉} = {x | v ∈ ∂xf̂(x, u)}.
(5.28)

For the problems P̂(u, v), the expressions on the left-hand side of (5.28) are m̂δ(u, v)

and M̂δ(u, v). Conversely, according to (5.22), the right-hand side of the second
equation in (5.28) gives Mδ(u, v) when (u, v) lies in a certain neighborhood U0 × V0

of (ū, v̄). Therefore, m̂δ(u, v) and M̂δ(u, v) agree with mδ(u, v) and Mδ(u, v) around

(ū, v̄); thus, f̂ is equivalent to f in the sense described in Theorem 2.7.

Furthermore, f̂ is lsc on Rn ×Rd; by (5.27) because mδ is lsc on Rd ×Rn; which
is true because mδ is a special case of the function φ defined in (5.3) through (5.2)
(namely for s = 0), and φ was shown to be lsc in the argument leading up to (5.4).

In addition we have, for (x, u, v) ∈ gph ∂xf̂ with (u, v) ∈ U0 × V0, that

f̂(x, u)− 〈v, x〉 = mδ(u, v) = f(x, u)− 〈v, x〉

and consequently f̂(x, u) = f(x, u) = mδ(u, v) + 〈v, x〉, an expression that is contin-

uous with respect to the elements (x, u, v) in question. The convexity of f̂(x, u) in

x combined with that continuity makes f̂ continuously prox-regular at (x̄, ū) for v̄.
(Convexity allows the constant r in the definition of prox-regularity to be taken to
be 0.)
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A TRULY GLOBALLY CONVERGENT NEWTON-TYPE
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Abstract. The Josephy–Newton method for solving a nonlinear complementarity problem con-
sists of solving, possibly inexactly, a sequence of linear complementarity problems. Under appropriate
regularity assumptions, this method is known to be locally (superlinearly) convergent. To enlarge
the domain of convergence of the Newton method, some globalization strategy based on a chosen
merit function is typically used. However, to ensure global convergence to a solution, some additional
restrictive assumptions are needed. These assumptions imply boundedness of level sets of the merit
function and often even (global) uniqueness of the solution. We present a new globalization strategy
for monotone problems which is not based on any merit function. Our linesearch procedure utilizes
the regularized Newton direction and the monotonicity structure of the problem to force global con-
vergence by means of a (computationally explicit) projection step which reduces the distance to the
solution set of the problem. The resulting algorithm is truly globally convergent in the sense that
the subproblems are always solvable, and the whole sequence of iterates converges to a solution of
the problem without any regularity assumptions. In fact, the solution set can even be unbounded.
Each iteration of the new method has the same order of computational cost as an iteration of the
damped Newton method. Under natural assumptions, the local superlinear rate of convergence is
also achieved.

Key words. nonlinear complementarity problem, Newton method, proximal point method,
projection method, global convergence, superlinear convergence

AMS subject classifications. 90C30, 90C33
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1. Introduction. The classical nonlinear complementarity problem [28, 7],
NCP(F ), is to find a point x ∈ <n such that

x ≥ 0, F (x) ≥ 0, 〈x, F (x)〉 = 0,(1.1)

where F : <n → <n and 〈·, ·〉 denotes the usual inner product in <n. Throughout this
paper, we shall assume that F (·) is continuous and monotone, i.e.,

〈F (x)− F (y), x− y〉 ≥ 0 for all x, y ∈ <n.

Note that under this assumption, the solution set of (1.1) is convex.
While there exists a wide range of approaches to solving NCP(F ) (see [14, 28, 7]),

some of the most successful and widely used are Newton-type algorithms based on
solving successive linearizations of the problem (see, for example, the more detailed
discussion in [8]). Given a point xk, the (Josephy–) Newton method [17, 30, 26, 14, 1]
generates the next iterate xk+1 by solving the linear complementarity problem

x ≥ 0, Fk(x) ≥ 0, 〈x, Fk(x)〉 = 0,(1.2)
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where Fk(·) is the first-order approximation of F (·) at xk,

Fk(x) := F (xk) +∇F (xk)(x− xk),(1.3)

assuming F (·) is differentiable. If the starting point is sufficiently close to some regular
[35] solution x̄ of (1.1), the sequence generated by the Newton method is well defined
and converges to x̄ superlinearly or quadratically, depending on further assumptions.
We note, in passing, that monotonicity of F is not needed for such local analysis.

There are two key difficulties with using the Newton method given by (1.2), (1.3)
for solving NCP(F ). First, in the absence of regularity even local convergence cannot
be ensured. Second, even if regularity holds at a solution, there are serious problems
with ensuring global convergence. In particular, far from a regular solution of the
problem, there is no guarantee that the linearization subproblems are solvable. And
even if the subproblem solution exists, there is no guarantee that it actually constitutes
some progress toward solving the original problem, NCP(F ). In this paper, we shall
successfully address each of these difficulties in the context of monotone problems.

To enlarge the domain of convergence of the Newton method, some globaliza-
tion strategy has to be used. However, as pointed out in [14, p. 182], “the global
convergence remains a rare property for most of the modified methods.” As men-
tioned in [14, p. 185], “the trouble with general variational inequalities and nonlinear
complementarity problems is that valid merit functions which are relatively easy to
compute are very difficult if not impossible to find.” Although considerable progress
has been made in the theory and numerical use of merit functions in recent years
[11, 23, 10, 19, 6, 44, 22, 24, 45, 46] (see [12] for a survey of merit functions for varia-
tional inequality and complementarity problems), most of the known merit functions
do not appear to be useful for the specific task of globalizing the Newton method
given by (1.2), (1.3). At this point, it is worth emphasizing that the Newton method
under consideration should not be confused with other Newton-like methods which
are not of the Josephy type—for example, Newton methods for minimizing a par-
ticular merit function or Newton methods for equation-based NCP reformulations
[18, 34, 21, 4, 6, 15, 49, 53, 16, 20, 13, 48].

Perhaps the most natural globalization strategy for (1.2), (1.3) is a linesearch
procedure in the obtained Newton direction (if it exists!) aimed at decreasing the
value of some valid merit function. In this regard, we note the following. First,
many of the known NCP merit functions are not differentiable, e.g., those based on
the natural residual [26] and the normal map [36]. This makes linesearch difficult,
although an alternative pathsearch approach is possible [34, 3]. Second, for some
differentiable merit functions, e.g., (the square of) the Fischer–Burmeister function
[9, 19, 6], it appears that the Newton direction need not be a direction of descent,
particularly far from a solution or in the absence of regularity. Thus the use of this
function results in a rather indirect globalization of the Newton method [8]. (More
on this later.)

To our knowledge, the only merit functions which have been used to globalize
the Newton method of the form (1.2), (1.3) are the gap function [25], the regularized
gap function [51, 50], the D-gap function [31, 32], and (the square of) the Fischer–
Burmeister function [8]. (We note that some of these methods were developed for
the more general mixed complementarity or variational inequality setting.) How-
ever, each of these globalizations has certain drawbacks. Using the gap function [25]
requires exact minimization along the line to compute the stepsize, which is not im-
plementable. Moreover, the gap function itself is not easy to compute in general.
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In addition, compactness of the feasible set of the variational inequality problem is
required, which precludes an application to complementarity problems. Using the
regularized gap function [51, 50] admits inexact Armijo-type linesearch but requires
strong monotonicity of F for global convergence (see also [52]). In addition, meth-
ods of [25, 51, 50] also need the (restrictive) strict complementarity assumption to
establish superlinear/quadratic rate of convergence. Note that the subproblems in
[25, 51, 50] are solvable due to the compactness of the feasible set and the strong
monotonicity of F , respectively.

The methods based on the D-gap function [31, 32] and the Fischer–Burmeister
function [8] globalize the Newton method in a rather indirect way. In [31, 32, 8] there
is no guarantee that the subproblems are solvable. If the Newton direction does not
exist (which cannot be checked a priori, so some wasteful computing will inevitably
be done), the method resorts to an “escape” mechanism of taking a gradient descent
step for the merit function. Even if the Newton direction exists, it still may happen
that it does not satisfy conditions needed to obtain sufficient descent of the merit
function by means of a linesearch procedure. In this case, the Newton point will be
discarded altogether, and again a gradient descent step will be taken. In a sense,
this is a rather indirect globalization of the Newton method, because such a strategy
does not correspond to the damped Newton methodology. As for the convergence
results in [31, 32, 8], every accumulation point of the generated sequence of iterates
is a stationary point of the employed merit function (even without the monotonicity
assumption on F ). However, the existence of such accumulation points, and the
equivalence of stationary points of the merit functions to solutions of NCP(F ), cannot
be guaranteed without further assumptions. For example, in [31, 32], F is assumed to
be a uniform P -function, which implies that NCP(F ) has a (globally) unique solution.

Finally, we briefly comment on the interesting regularization approach proposed
in [5], which converges globally when the solution set of the NCP is compact and F
is a P0-function. First, it is important to note that the subproblems in the method
of [5] are nonlinear complementarity problems, which are structurally just as difficult
to solve as the original problem itself (although they are better behaved due to reg-
ularization). Therefore, this method is not of the Newton type. Second, the global
convergence result of [5] states that the sequence of iterates remains bounded, and its
every accumulation point solves the NCP. This is weaker than the full convergence of
the whole sequence which we shall establish for our method. On the other hand, the
P0 assumption on F is, of course, weaker than our assumption of monotonicity. It
should also be mentioned that it is often unknown whether the solution set is compact.
When F is monotone, this holds if the NCP is strictly feasible, i.e., there exists an x
such that x > 0 and F (x) > 0. However, this condition is not easy to verify in general.
In any case, the key conceptual difference between our method and that of [5] is in the
linear versus nonlinear structure of subproblems solved at each iteration. It is worth
noting that the latter is also the important difference between our method and the
proximal point algorithm [37], which does converge globally under the monotonicity
assumption only.

We emphasize that for each of the cited Josephy–Newton algorithms, to ensure
global convergence of the whole sequence of iterates to a solution of the problem, one
needs assumptions which, among other things, imply that the solution is unique. In
fact, relatively restrictive assumptions are required even to prove boundedness of the
iterates and convergence to zero of the distance to the solution set.

In this paper, we present a new globalization strategy for monotone problems
which overcomes the above mentioned drawbacks. In particular, our algorithm is
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truly globally convergent in the sense that from any starting point the whole sequence
of iterates converges to a solution of NCP(F ) under no assumptions other than mono-
tonicity and continuity of F (and of course, the existence of a solution); see Theorem
3.2. In particular, no regularity-type assumptions are needed. In fact, the solution
set may even be unbounded. In addition, the linear complementarity subproblems
are always solvable, and our algorithm allows for their inexact solution similar to the
setting of [26]. This feature of approximate subproblem solutions is of particular im-
portance for large-scale problems. (We note that the effect of an inexact subproblem
solution has not been analyzed in globalizations proposed in [51, 50, 31, 32, 8].) Un-
der the assumptions of positive definiteness of the Jacobian of F at the solution, and
its Hölder continuity in some neighborhood of it, the local superlinear rate of con-
vergence is also established (see Theorem 4.3). Each iteration of our algorithm (see
Algorithm 2.2) consists of an approximate solution of a (strongly monotone) linear
complementarity problem, followed by a linesearch procedure and a (computationally
trivial) projection step. Thus computational cost of each iteration is of the same order
as that of the damped Newton method.

2. The algorithm. We start with some equivalent formulations of NCP(F ),
each of which will be useful in the subsequent analysis. In particular, the following
five statements are equivalent:

1. x̄ solves NCP(F ).
2. x̄ is a solution of the variational inequality problem over the nonnegative

orthant <n+:

x̄ ∈ <n+, 〈F (x̄), x− x̄〉 ≥ 0 for all x ∈ <n+.

3. x̄ yields a zero of the (maximal monotone) operator F +N :

0 ∈ F (x̄) +N(x̄),

where N(x) is the normal cone to <n+ at the point x.
4. x̄ is a zero of the natural (projection) residual:

0 = r(x̄) := min{x̄;F (x̄)} = x̄− [x̄− F (x̄)]+,

where the minimum is taken componentwise and [·]+ stands for the orthogonal
projection map onto <n+.

The approach presented in this paper is in some ways motivated by the hybrid
projection–proximal point method of [43] and the projection method of [47], which al-
ready proved to be useful for developing globally (and locally superlinearly) convergent
Newton methods for systems of monotone equations [40]. In fact, in a sufficiently small
neighborhood of a regular solution of NCP(F ) our Newton-type Algorithm 2.2 takes
steps which can be viewed, in a certain sense, as iterations of the hybrid projection–
proximal point method. This will prove to be the key to the local superlinear rate of
convergence. We therefore first state the algorithm of [43] in the more general context
of finding zeros of set-valued maximal monotone operators in a Hilbert space. Let
T be a maximal monotone operator on a real Hilbert space H. And consider, for a
moment, the problem of finding an x ∈ H such that 0 ∈ T (x). Note that NCP(F )
considered here is a particular instance of this problem with T (x) = (F +N)(x) and
H = <n.
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Algorithm 2.1 (hybrid projection–proximal point method [43]). Choose any
x0 ∈ H and σ ∈ [0, 1); set k := 0.

Inexact Proximal Step. Choose µk > 0 and find yk ∈ H and vk ∈ T (yk) such that

0 = vk + µk(yk − xk) + εk,(2.1)

where

‖εk‖ ≤ σmax{‖vk‖, µk‖yk − xk‖}.(2.2)

Stop if vk = 0 or yk = xk. Otherwise,

Projection Step. Compute

xk+1 = xk − 〈v
k, xk − yk〉
‖vk‖2 vk.

Set k := k + 1; and repeat.
If problem 0 ∈ T (x) has a solution and the sequence {µk} is bounded above, then

the generated sequence {xk} either is finite and terminates at a solution or is infinite
and converges (weakly) to a solution. The linear/superlinear rate of convergence is
also achieved under standard assumptions. For complete properties of the method,
see [43]. The idea of Algorithm 2.1 is to use an approximate proximal iteration to
construct a hyperplane

Hk := {x | 〈vk, x− yk〉 = 0},(2.3)

which separates the current iterate xk from the solutions of 0 ∈ T (x). Let us make
this more precise. If 0 ∈ T (x̄), then, by monotonicity of T ,

〈vk, x̄− yk〉 ≤ 0

for any yk and any vk ∈ T (yk). Here we will consider a condition somewhat stronger
than (2.2), namely,

‖εk‖ ≤ σµk‖yk − xk‖,(2.4)

because this will be the only condition used in our Algorithm 2.2. Using (2.1) and
the Cauchy–Schwarz inequality, we obtain

〈vk, xk − yk〉 = µk‖xk − yk‖2 − 〈εk, xk − yk〉
≥ µk‖xk − yk‖2 − ‖εk‖‖xk − yk‖
≥ µk(1− σ)‖xk − yk‖2
> 0,(2.5)

where the last inequality follows from (2.4). Thus whenever (2.4) holds, we have (2.5),
and so Hk given by (2.3) indeed separates xk from zeros of T . The last step of Algo-
rithm 2.1 is equivalent to projecting xk onto this hyperplane. Separation arguments
show that the distance to the solution set for a sequence thus constructed monotoni-
cally decreases, which essentially ensures global convergence of the algorithm. Algo-
rithm 2.1 has certain advantages over the classical proximal point method [37] in the
sense of less restrictive and more constructive tolerance requirements imposed on ap-
proximate solutions of proximal subproblems. See [43] for a more detailed discussion.
Other related works are [39, 41, 38, 42].
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Of course, in the context of this paper straightforward application of Algorithm
2.1 to solving NCP(F ) is not practical, since this would involve solving a sequence of
nonlinear subproblems which are in general just as difficult as the original NCP, even
if they are better behaved due to the regularization. In this sense, the situation is
similar to the method of [5] discussed in the introduction. However, the regularization
and projection methodology of Algorithm 2.1 would prove to be crucial for devising
a globally convergent method.

Given a current iterate xk and a regularization parameter µk > 0, consider the
regularized linear complementarity problem LCP(ϕk)

x ≥ 0, ϕk(x) ≥ 0, 〈x, ϕk(x)〉 = 0,(2.6)

where

ϕk(x) := F (xk) +Gk(x− xk) + µk(x− xk)(2.7)

with Gk being a positive semidefinite matrix (presumably, the Jacobian of F or its
approximation, if F is differentiable at xk). Suppose zk ≥ 0 is some approximate
solution of this problem with ek being the associated natural residual [2, 26]:

min{zk;ϕk(zk)} = ek,(2.8)

where the minimum is taken componentwise (see (2.9), (2.10) in Algorithm 2.2 for
conditions imposed on the error tolerance ek). Note that since the matrix Gk +µkI is
positive definite, LCP(ϕk) always has (unique) solution ẑk [2] for which the residual
is zero:

0 = min{ẑk;ϕk(ẑk)}.
Hence, LCP(ϕk) always has inexact solutions such that ‖ek‖ ≤ δk, whichever δk ≥ 0
we choose. Therefore this inexact Newton step is well defined.

The next step of our algorithm is checking whether the inexact Newton point
obtained by solving LCP(ϕk) provides an acceptable (in the sense of Algorithm 2.1)
approximate solution for the proximal point subproblem

0 ∈ (F +N)(x) + µk(x− xk).

If this is the case, the previously described separation property holds, and our algo-
rithm proceeds to make the projection step prescribed by Algorithm 2.1.

To make this more precise, we provide the following considerations. Since

ek = min{zk;ϕk(zk)} = zk − [zk − ϕk(zk)]+,

we have that

zk − ek = [zk − ϕk(zk)]+ ∈ <n+.
By properties of the projection operator [33, p. 121],

〈zk − ϕk(zk)− (zk − ek), x− (zk − ek)〉 ≤ 0 for all x ∈ <n+.
Therefore

〈−ϕk(zk) + ek, x− (zk − ek)〉 ≤ 0 for all x ∈ <n+,
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which implies that

hk := −ϕk(zk) + ek ∈ N(zk − ek),

so that we have available an element in the normal cone N at the point zk− ek ∈ <n+.
Consider now the pair

yk = zk − ek

and

vk = F (zk − ek)− ϕk(zk) + ek ∈ (F +N)(zk − ek) = (F +N)(yk).

Let us analyze yk, vk as an approximate solution of the proximal subproblem (2.1) in
Algorithm 2.1 with T = F +N . We have to check whether (2.4), the stronger version
of condition (2.2), is satisfied with

εk = −vk − µk(yk − xk)

and yk, vk given above. If (2.4) is satisfied, then (2.5) holds and the hyperplane
Hk given by (2.3) separates the current iterate xk from zeros of T = F + N or,
equivalently, from solutions of NCP(F ). Therefore we can make progress toward a
solution of NCP(F ) by making the projection step of Algorithm 2.1 with yk and vk

defined above (followed by projection onto <n+ to preserve feasibility). As we shall see,
the test (2.4) and the resulting step will be crucial for obtaining fast local convergence
when the regularity assumption holds.

However, far from the solution or if regularity does not hold, an approximate (and
even exact) Newton point obtained from solving the linear model may not satisfy the
tolerance requirements (2.4) for the nonlinear proximal subproblem. In this case, the
preceding separation arguments are not valid, and the Newton point has to be refined.
For this task, we employ a linesearch procedure in the approximate Newton direction
zk − xk (see (2.12) in Algorithm 2.2) which computes a point yk = xk + αk(zk − xk)
such that

0 < 〈F (yk), xk − yk〉.
A similar linesearch technique was used in [47, 40]. Note that for any x̄ which solves
NCP(F ) we have

0 ≥ 〈F (x̄), x̄− yk〉,
where yk ∈ <n+. Hence, by monotonicity of F ,

0 ≥ 〈F (yk), x̄− yk〉.
Therefore in this case another hyperplane, namely,

Hk := {x ∈ <n | 〈F (yk), x− yk〉 = 0},
strictly separates the current iterate xk from solutions of the problem. Once the
separating hyperplane Hk is obtained, the next iterate xk+1 is computed by projecting
xk onto Hk and then onto the nonnegative orthant <n+.

We now formally state the algorithm.
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Algorithm 2.2. Choose any x0 ∈ <n, σ ∈ (0, 1), β ∈ (0, 1), and λ ∈ (0, 1). Set
k := 0.

Inexact Newton Step. Choose a positive semidefinite matrix Gk and µk > 0.
Choose ρk ∈ [0, 1) and compute zk ∈ <n+, an inexact solution of LCP(ϕk) given by
(2.6)–(2.8), such that

‖ek‖ ≤ ρkµk‖zk − xk‖(2.9)

and

〈ek, ϕk(zk) + zk − xk〉 ≤ ρkµk‖zk − xk‖2.(2.10)

Stop if zk = xk. Otherwise,

Linesearch Step. Set

vk := F (zk − ek)− ϕk(zk) + ek and yk := zk − ek.

Let

εk = −vk − µk(yk − xk).

If

‖εk‖ ≤ σµk‖yk − xk‖,(2.11)

then go to the Projection Step.

Otherwise, find yk = xk + αk(zk − xk), where αk = βmk with mk being the smallest
nonnegative integer m such that

〈F (xk + βm(zk − xk)), xk − zk〉 ≥ λ(1− ρk)µk‖zk − xk‖2.(2.12)

Set vk := F (yk) and go to the Projection Step.

Projection Step. Compute

xk+1 = max

{
0;xk − 〈v

k, xk − yk〉
‖vk‖2 vk

}
.(2.13)

Set k := k + 1; and repeat.
To compute zk, an approximate solution of LCP(ϕk) satisfying (2.6)–(2.10), one

can employ any appropriate algorithm known to converge for the strongly monotone
linear complementarity problem. There are many algorithms which would generate
a sequence converging to the unique solution of LCP(ϕk) with a (global) quadratic
rate. This guarantees that after finitely many iterations (just a few, one hopes), the
LCP(ϕk) residual ek would be small enough, so that (2.9)–(2.10) holds.

Note that Algorithm 2.2 has computational cost per iteration of the same order as
any other damped Newton method: solving, possibly inexactly, a linear complemen-
tarity problem followed by a simple linesearch procedure (if (2.11) is not satisfied).
The projection step is explicit, and therefore its computational cost is negligible. The
advantage of Algorithm 2.2 over other Newton-type methods is that it is truly globally
convergent under minimal assumptions.



A NEWTON METHOD FOR NONLINEAR COMPLEMENTARITY 613

3. Global convergence analysis. We start with the global convergence anal-
ysis. Throughout we assume that the solution set of the problem is nonempty. First
note that if Algorithm 2.2 terminates with zk = xk, then ek = 0 by (2.9), and we
have that zk is the exact solution of LCP(ϕk). Therefore 〈ϕk(zk), x − zk〉 ≥ 0 for
all x ∈ <n+. Because zk = xk implies that ϕk(zk) = F (zk), it follows from the latter
inequality that zk solves NCP(F ). From now on, we assume that zk 6= xk for all k,
and an infinite sequence {xk} is generated.

We first state a preliminary result [43] whose simple proof we include for com-
pleteness.

Lemma 3.1. Let x, y, v, x̄ be any elements of <n such that

〈v, x− y〉 > 0 and 〈v, x̄− y〉 ≤ 0.

Let

x̂ = x− 〈v, x− y〉‖v‖2 v.

Then

‖x̂− x̄‖2 ≤ ‖x− x̄‖2 − ‖x̂− x‖2.

Proof. It follows from the hypothesis that the hyperplane H = {s | 〈v, s−y〉 = 0}
separates x from x̄. Moreover, x̂ is the projection of x onto the half-space {s |
〈v, s− y〉 ≤ 0}. Since x̄ belongs to this half-space, it follows from the basic properties
of the projection operator (see [33, p. 121]) that 〈x− x̂, x̂− x̄〉 ≥ 0. Therefore

‖x− x̄‖2 = ‖x− x̂‖2 + ‖x̂− x̄‖2 + 2〈x− x̂, x̂− x̄〉
≥ ‖x− x̂‖2 + ‖x̂− x̄‖2,

which completes the proof.
We are now ready to prove our main global convergence result. The remarkable

property established in Theorem 3.2 is that the whole sequence of iterates always
converges to some solution of NCP(F ) under the assumptions of merely monotonicity
and continuity of F . NCP(F ) need not have a unique solution; in fact, the solution
set may even be unbounded. In the latter case the level sets of any merit function
for NCP(F ) are also unbounded, so that for typical Newton methods with global-
ization strategies based on merit functions, even boundedness of iterates cannot be
established.

Theorem 3.2. Suppose that F is continuous and monotone. Then any sequence
{xk} generated by Algorithm 2.2 is bounded.

Suppose further that there exist constants C1, C2, C3 > 0 and t > 0 such that
‖Gk‖ ≤ C1 for all k and, starting with some index k0,

C2 ≥ µk ≥ C3‖r(xk)‖t.

Suppose that

min{1; 1/C2} > lim sup
k→∞

ρk.

Then {xk} converges to some x̄, which is a solution of NCP(F ).
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Proof. First note that because

zk − ek = [zk − ϕk(zk)]+

and xk ∈ <n+, by properties of the projection operator [33, p. 121] it follows that

〈zk − ϕk(zk)− (zk − ek), xk − (zk − ek)〉 ≤ 0.

Therefore

〈−ϕk(zk) + ek, xk − zk + ek〉 ≤ 0.

Making use of the latter inequality, we further obtain

〈F (xk), xk − zk〉 ≥ 〈F (xk)− ϕk(zk) + ek, xk − zk + ek〉 − 〈F (xk), ek〉
= 〈(Gk + µkI)(xk − zk), xk − zk + ek〉+ 〈ek, xk − zk − F (xk)〉+ ‖ek‖2
≥ µk‖zk − xk‖2 − 〈ek, (Gk + µkI)(zk − xk) + F (xk) + zk − xk〉
= µk‖zk − xk‖2 − 〈ek, ϕk(zk) + zk − xk〉
≥ µk(1− ρk)‖zk − xk‖2,(3.1)

where the last inequality follows from (2.10) and the next to last follows from positive
semidefiniteness of Gk.

We next show that the linesearch procedure (2.12), if activated, always terminates
with a positive stepsize αk. Suppose that for some iteration index k this is not the
case. That is, for all integers m we have

〈F (xk + βm(zk − xk)), xk − zk〉 < λ(1− ρk)µk‖zk − xk‖2.
Since F is continuous, passing onto the limit as m→∞, we obtain

〈F (xk), xk − zk〉 ≤ λ(1− ρk)µk‖zk − xk‖2.(3.2)

Now since λ ∈ (0, 1), ρk ∈ [0, 1), and zk 6= xk, (3.2) contradicts (3.1). Therefore the
linesearch step is well defined.

Denote

x̂k := xk − 〈v
k, xk − yk〉
‖vk‖2 vk.(3.3)

Observe that this is well defined because vk 6= 0. Indeed, if vk = 0 in the case
when the linesearch is not activated, then (2.11) must hold. Furthermore, in that
case vk = 0 implies εk = −µk(yk − xk), which together with (2.11) implies that
εk = yk−xk = 0. Therefore, using the definition of yk, we conclude that xk = zk−ek.
If µk ≤ 1, then ρkµk < 1, so (2.9) implies that zk = xk, in contradiction with the
stopping test. Suppose now that µk > 1. Note that 0 = vk = F (xk)− ϕk(zk) + ek =
(−Gk+(1−µk)I)ek. It then follows that 0 = 〈(−Gk+(1−µk)I)ek, ek〉 ≤ (1−µk)‖ek‖2.
Since 1 < µk, we again have that ek = 0, i.e., zk = xk, which contradicts the stopping
rule. If the linesearch is used to compute yk, then vk = F (yk), which again cannot
be zero by (2.12). The observation that vk 6= 0 concludes the proof that the whole
algorithm is well defined.

With the notation (3.3), we have that xk+1 = [x̂k]+. Let x̄ be any solution of
NCP(F ). Since x̄ ∈ <n+, it is easy to see that

‖xk+1 − x̄‖ ≤ ‖x̂k − x̄‖.(3.4)
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Note that if (2.11) is satisfied, then 〈vk, xk − yk〉 > 0 (see (2.5)). If (2.11) is not
satisfied, then 〈vk, xk − yk〉 = αk〈F (yk), xk − zk〉 > 0 still holds by (2.12). In this
respect, the only difference is the choice of yk and vk. As discussed before, in either
case 〈vk, x̄− yk〉 ≤ 0, so that by Lemma 3.1, it follows that

‖x̂k − x̄‖2 ≤ ‖xk − x̄‖2 − ‖x̂k − xk‖2.
Combining the latter relation with (3.4), we obtain

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 − ‖x̂k − xk‖2.(3.5)

It immediately follows that the sequence {‖xk − x̄‖} is monotone, so it converges.
Therefore, {xk} is bounded.

We next consider the two possible cases:

0 = lim inf
k→∞

‖r(xk)‖(3.6)

and

0 < lim inf
k→∞

‖r(xk)‖.(3.7)

In the first case, by continuity of r(·) and boundedness of {xk}, there exists x̃, an
accumulation point of {xk}, such that r(x̃) = 0. Therefore x̃ is a solution of NCP(F ).
Since x̄ was an arbitrary solution, we can now choose x̄ = x̃ in (3.5). Because the
sequence {‖xk − x̃‖} converges and x̃ is an accumulation point of {xk}, it must be
the case that {xk} converges to x̃, which is a solution of NCP(F ).

Consider now the second case. By (3.5), it follows that

0 = lim
k→∞

‖x̂k − xk‖
or, equivalently,

0 = lim
k→∞

〈vk, xk − yk〉
‖vk‖ .(3.8)

By the choice of µk and (3.7), it then follows that µk ≥ C3‖r(xk)‖t ≥ C4 > 0 for all
k. By (3.1) and the Cauchy–Schwarz inequality, we obtain

‖F (xk)‖‖xk − zk‖ ≥ 〈F (xk), xk − zk〉
≥ µk(1− ρk)‖xk − zk‖2.

Hence,

‖F (xk)‖ ≥ C4(1− ρk)‖xk − zk‖.
Taking into account boundedness of {xk} and continuity of F , and the fact that
1 > lim supk→∞ ρk, we conclude that the sequence {xk − zk} is bounded. It now
easily follows that the sequences {zk}, {ek}, and {yk} are all bounded.

By the triangle and Cauchy–Schwarz inequalities, and the nonexpansiveness of
the projection operator, we have

‖xk − zk‖ ≥ ‖xk − (zk − ek)‖ − ‖ek‖
= ‖xk − [zk − ϕk(zk)]+‖ − ‖ek‖
≥ ‖xk − [xk − F (xk)]+‖ − ‖[xk − F (xk)]+ − [zk − ϕk(zk)]+‖ − ‖ek‖
≥ ‖r(xk)‖ − ‖xk − zk − F (xk) + ϕk(zk)‖ − ‖ek‖
≥ ‖r(xk)‖ − (1 + ρkµk)‖xk − zk‖ − ‖(Gk + µkI)(xk − zk)‖
≥ ‖r(xk)‖ − (1 + C1 + 2C2)‖xk − zk‖.
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Hence,

(2 + C1 + 2C2)‖xk − zk‖ ≥ ‖r(xk)‖.
It follows from (3.7) that

0 < lim inf
k→∞

‖xk − zk‖.(3.9)

Suppose that condition (2.11) in Algorithm 2.2 holds an infinite number of times. For
such iterations k, by (2.5), we have (recall also that vk 6= 0)

〈vk, xk − yk〉
‖vk‖ ≥ µk(1− σ)‖xk − yk‖2

‖vk‖

≥ C4(1− σ)‖xk − zk + ek‖2
‖F (zk − ek)− ϕk(zk) + ek‖ .(3.10)

Since ‖Gk‖ ≤ C1, µk ≤ C2 and {zk}, {ek} are bounded, it follows that {F (zk − ek)}
and {ϕk(zk)} are bounded. Therefore, for some C5 > 0,

C4(1− σ)

‖F (zk − ek)− ϕk(zk) + ek‖ ≥ C5.

Passing onto the limit in (3.10) (along the indices k for which (2.11) holds) and taking
into account (3.8), we obtain that

0 = lim inf
k→∞

‖xk − zk + ek‖.

By the triangle inequality and (2.9), we have

‖xk − zk + ek‖ ≥ ‖xk − zk‖ − ‖ek‖
≥ (1− ρkµk)‖xk − zk‖
≥ (1− ρkC2)‖xk − zk‖.

Because 1/C2 > lim supk→∞ ρk, we further conclude that

0 = lim inf
k→∞

‖xk − zk‖

which contradicts (3.9). We conclude that if 0 < lim infk→∞ ‖r(xk)‖, then condition
(2.11) in Algorithm 2.2 may hold no more than a finite number of times.

Hence, we can assume that for all k sufficiently large, yk and vk are obtained
through the linesearch step (2.12), in which case

〈vk, xk − yk〉
‖vk‖ =

αk〈F (yk), xk − zk〉
‖F (yk)‖

≥ αkλ(1− ρk)µk‖xk − zk‖2
‖F (yk)‖ .

Using (3.8) and taking into account the boundedness of {F (yk)} and the fact that
µk ≥ C4 and 1 > lim supk→∞ ρk, we obtain that

0 = lim
k→∞

αk‖xk − zk‖.
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Now, because of (3.9), we conclude that it must be the case that

0 = lim
k→∞

αk.

The latter is equivalent to saying that mk →∞. It follows that for every sufficiently
large k, the stepsize is decreased at least twice, i.e., mk ≥ 2. Hence, the stepsize rule
(2.12) is not satisfied for the value of βmk−1, i.e.,

〈F (xk + βmk−1(zk − xk)), xk − zk〉 < λ(1− ρk)µk‖zk − xk‖2.
Taking into account boundedness of the sequences {xk}, {µk}, {ρk}, and {zk}, and
passing onto a subsequence if necessary, as k →∞ we obtain

〈F (x̂), x̂− ẑ〉 ≤ λ(1− ρ̂)µ̂‖ẑ − x̂‖2,
where x̂, µ̂, ρ̂, and ẑ are limits of corresponding subsequences. On the other hand,
passing onto the limit in (3.1), we have that

〈F (x̂), x̂− ẑ〉 ≥ (1− ρ̂)µ̂‖ẑ − x̂‖2.
Taking into account that µ̂ > 0 and ‖ẑ− x̂‖ > 0 (by (3.9)), and ρ̂ ≤ lim supk→∞ ρk <
1, the last two relations are a contradiction because λ ∈ (0, 1). Hence the case
0 < lim infk→∞ ‖r(xk)‖ is not possible.

This completes the proof.
Remark. Since boundedness of {xk} was established without any boundedness

assumptions on {Gk}, for the special choice of Gk = ∇F (xk) the condition ‖Gk‖ ≤ C1

can be removed, due to the continuity of ∇F (·).
4. Local convergence analysis. The following error bound [29] result will be

crucial for establishing the superlinear rate of convergence of our algorithm. Note
that this error bound actually holds under the more general assumption of x̄ being
a regular solution [35, 26, 14]. Positive definiteness of ∇F (x̄) is a simple sufficient
condition for x̄ to be regular [31]. Here we state only the simplified result.

Lemma 4.1 ([14, Proposition 4.4]). If x̄ is a solution of NCP(F ) where ∇F (x̄)
is positive definite, then there exist a constant θ > 0 and a neighborhood B of x̄ such
that

‖x− x̄‖ ≤ θ‖r(x)‖
for all x ∈ B.

We will also need the following error bound result for strongly monotone linear
complementarity problems [27]. This result is actually related to Lemma 4.1, but note
that the constant θ can be estimated explicitly and the error bound holds globally.

Lemma 4.2. Let ẑ be the solution of the linear complementarity problem

z ≥ 0, Mz + q ≥ 0, 〈Mz + q, z〉 = 0,

where M is a positive definite matrix and q is an arbitrary vector. For all z ∈ <n it
holds that

‖z − ẑ‖ ≤ 1 + ‖M‖
C(M)

‖min{z;Mz + q}‖,

where C(M) > 0 is the smallest eigenvalue of (M +M>)/2.



618 M. V. SOLODOV AND B. F. SVAITER

We are now ready to establish the superlinear convergence of our algorithm for
solving the monotone nonlinear complementarity problems under the assumptions of
positive definiteness of ∇F at the solution and its local Hölder continuity. The proof
relies on the fact that in a sufficiently small neighborhood of such a solution, the
approximate Newton point computed by Algorithm 2.2 satisfies the error tolerance
requirements of Algorithm 2.1 for solving the corresponding nonlinear proximal point
subproblem. Therefore the corresponding projection step in Algorithm 2.2 is taken
immediately, and the linesearch procedure is not used.

Theorem 4.3. Let F be monotone and continuous on <n. Let x̄ be the (unique)
solution of NCP(F ) at which F is differentiable with ∇F (x̄) positive definite. Let
∇F be locally Hölder continuous around x̄ with degree p ∈ (0, 1]. Suppose that the
assumptions of Theorem 3.2 are satisfied. In addition, suppose that

µk = ‖r(xk)‖t, t ∈ (0, p),

0 = lim
k→∞

ρk,

and starting with some index k0, Gk = ∇F (xk).
Then the sequence {xk} converges to x̄ Q-superlinearly.
Proof. By Theorem 3.2, we already know that the sequence {xk} converges to x̄.

(Note that monotonicity of F and nonsingularity of ∇F (x̄) imply that x̄ is the unique
solution.) Note that by the choice of µk, we have that 0 = limk→∞ µk.

By Hölder continuity of ∇F in the neighborhood of x̄, it follows that there exists
some L > 0 such that for all u ∈ <n sufficiently small and all indices k sufficiently
large

‖∇F (xk + u)−∇F (xk)‖ ≤ L‖u‖p, p ∈ (0, 1].

Therefore

F (xk + u)− F (xk) =

∫ 1

0

∇F (xk + su)u ds

= ∇F (xk)u+

∫ 1

0

(∇F (xk + su)−∇F (xk))u ds

= ∇F (xk)u+Rk(u),

where

‖Rk(u)‖ ≤
∫ 1

0

‖∇F (xk + su)−∇F (xk)‖‖u‖ ds

≤ L
∫ 1

0

sp‖u‖1+p ds

=
L

1 + p
‖u‖1+p.

Hence, defining C6 := L/(1 + p), we have that

F (xk + u)− F (xk)−∇F (xk)u = Rk(u),(4.1)

‖Rk(u)‖ ≤ C6‖u‖1+p.
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We next show that (2.11) is always satisfied for all k sufficiently large, so that the
linesearch step is never used. Thus let yk = zk−ek and vk = F (zk−ek)−ϕk(zk)+ek.
Assume that k is sufficiently large so that (4.1) holds and yk − xk is sufficiently small
(later we shall verify that {yk − xk} → 0). Then we have that

−εk = vk + µk(yk − xk)

= F (zk − ek)− ϕk(zk) + ek + µk(zk − ek − xk)

= F (zk − ek)− F (xk)−∇F (xk)(zk − ek − xk)−∇F (xk)ek + (1− µk)ek

= Rk(zk − ek − xk)−∇F (xk)ek + (1− µk)ek.(4.2)

By (4.1) and the Cauchy–Schwarz and triangle inequalities, it follows that

‖εk‖ ≤ C6‖yk − xk‖1+p + (C1 + 1)‖ek‖
≤ C6‖yk − xk‖1+p + (C1 + 1)ρkµk‖zk − xk‖.(4.3)

Furthermore,

‖zk − xk‖ ≤ ‖yk − xk‖+ ‖ek‖
≤ ‖yk − xk‖+ ρkµk‖zk − xk‖.

Hence,

‖zk − xk‖ ≤ C7‖yk − xk‖,(4.4)

where C7 ≥ 1/(1 − ρkµk) (recall that ρkµk → 0). Defining C8 := C7(C1 + 1), and
combining (4.4) with (4.3), we obtain

‖εk‖ ≤ (C6‖yk − xk‖p + C8ρkµk)‖yk − xk‖

=

(
C6
‖yk − xk‖p
‖r(xk)‖t + C8ρk

)
µk‖yk − xk‖.

Clearly, condition (2.11) is satisfied whenever

C6
‖yk − xk‖p
‖r(xk)‖t + C8ρk ≤ σ.

Since

0 = lim
k→∞

ρk,

the latter relation is satisfied for all indices k sufficiently large if it holds that

0 = lim
k→∞

‖yk − xk‖p
‖r(xk)‖t .(4.5)

Thus for establishing that the linesearch procedure is never used for indices k suffi-
ciently large, it is left to prove (4.5). (This would also imply that {yk − xk} → 0.)

Let ẑk be the exact solution of LCP(ϕk). It holds that

〈F (x̄)− ϕk(ẑk), x̄− ẑk〉 = −〈ẑk, F (x̄)〉 − 〈x̄, ϕk(ẑk)〉 ≤ 0,



620 M. V. SOLODOV AND B. F. SVAITER

because x̄, F (x̄), ẑk, ϕk(ẑk) are all nonnegative and 〈x̄, F (x̄)〉 = 〈ẑk, ϕk(ẑk)〉 = 0.
Furthermore, by (4.1) we obtain

F (x̄)− ϕk(ẑk) = F (x̄)− F (xk)− (∇F (xk) + µkI)(ẑk − xk)

= F (x̄)− F (xk)−∇F (xk)(x̄− xk)−∇F (xk)(ẑk − x̄)− µk(ẑk − xk)

= Rk(x̄− xk)−∇F (xk)(ẑk − x̄)− µk(ẑk − xk).

Hence,

0 ≥ 〈F (x̄)− ϕk(ẑk), x̄− ẑk〉
= 〈Rk(x̄− xk), x̄− ẑk〉 − 〈∇F (xk)(ẑk − x̄), x̄− ẑk〉 − µk〈ẑk − xk, x̄− ẑk〉.(4.6)

By positive definiteness of ∇F (x̄), it follows that for some C9 > 0 and all indices k
sufficiently large

〈∇F (xk)d, d〉 ≥ C9‖d‖2 for all d ∈ <n.(4.7)

By (4.6) and the latter relation we obtain

C9‖ẑk − x̄‖2 ≤ 〈∇F (xk)(ẑk − x̄), ẑk − x̄〉
≤ 〈Rk(x̄− xk), ẑk − x̄〉+ µk〈ẑk − xk, x̄− ẑk〉
≤ C6‖xk − x̄‖1+p‖ẑk − x̄‖+ µk‖ẑk − xk‖‖ẑk − x̄‖,

where the last inequality follows from (4.1) and the Cauchy–Schwarz inequality.
Therefore,

C9‖ẑk − x̄‖ ≤ C6‖xk − x̄‖1+p + µk‖ẑk − xk‖.(4.8)

By the triangle inequality,

‖ẑk − xk‖ ≤ ‖ẑk − x̄‖+ ‖xk − x̄‖.

Combining the latter inequality with (4.8), we obtain

‖ẑk − xk‖ ≤ C−1
9

(
C6‖xk − x̄‖1+p + µk‖ẑk − xk‖

)
+ ‖xk − x̄‖.

Hence,

(1− µk/C9)‖ẑk − xk‖ ≤ C6/C9‖xk − x̄‖1+p + ‖xk − x̄‖.

And for C11 ≥ 1/(1− µk/C9) (recall that µk → 0), we obtain

‖ẑk − xk‖ ≤ C11

(
1 + C6/C9‖xk − x̄‖p

) ‖xk − x̄‖.(4.9)

By the triangle inequality,

‖zk − xk‖ ≤ ‖ẑk − zk‖+ ‖ẑk − xk‖.(4.10)

Furthermore by Lemma 4.2, we have that

‖zk − ẑk‖ ≤ 1 + ‖∇F (xk) + µkI‖
ck

‖ek‖,
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where ck is the smallest eigenvalue of (∇F (xk)+∇F (xk)>)/2+µkI. In view of (4.7),
clearly ck ≥ C9. Therefore

‖zk − ẑk‖ ≤ 2 + C1

C9
‖ek‖.

Furthermore, defining C10 := (2 + C1)/C9, we obtain

‖zk − ẑk‖ ≤ C10ρkµk‖zk − xk‖.(4.11)

Combining the latter relation with (4.10), we have that

‖zk − xk‖ ≤ C10ρkµk‖zk − xk‖+ ‖ẑk − xk‖.
Since ρkµk → 0, taking into account (4.9), it is now clear that there exists C12 > 0
such that

‖zk − xk‖ ≤ C12‖xk − x̄‖.(4.12)

Note that

‖yk − xk‖ ≤ ‖zk − xk‖+ ‖ek‖
≤ (1 + ρkµk)‖zk − xk‖
≤ 2‖zk − xk‖
≤ 2C12‖xk − x̄‖,(4.13)

where the last inequality follows from (4.12). Hence, by Lemma 4.1,

‖yk − xk‖ ≤ 2C12θ‖r(xk)‖.(4.14)

Therefore

‖yk − xk‖p
‖r(xk)‖t ≤ 2C12θ‖r(xk)‖p−t,(4.15)

which establishes (4.5) by the choice of t ∈ (0, p).
Hence, from now on, we can assume that the linesearch is never used, so that

yk = zk − ek and vk = F (zk − ek)− ϕk(zk) + ek. Recalling the definition

x̂k := xk − 〈v
k, xk − yk〉
‖vk‖2 vk,

it is easy to see that

‖xk+1 − x̄‖ ≤ ‖x̂k − x̄‖
because x̄ ∈ <n+ and xk+1 is the orthogonal projection of x̂k onto <n+. Applying
further the triangle inequality, we obtain

‖xk+1 − x̄‖ ≤ ‖x̂k − yk‖+ ‖yk − zk‖+ ‖zk − ẑk‖+ ‖ẑk − x̄‖.(4.16)

We proceed to analyze the four terms in the right-hand side of (4.16).
For the second term in (4.16) we have

‖yk − zk‖ = ‖ek‖ ≤ ρkµk‖zk − xk‖,
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and for the third term (see (4.11)) we have

‖zk − ẑk‖ ≤ C10‖ek‖ ≤ C10ρkµk‖zk − xk‖.
Using (4.12) we obtain

‖yk − zk‖+ ‖zk − ẑk‖ ≤ (1 + C10)ρkµk‖zk − xk‖
≤ (1 + C10)C12ρk‖r(xk)‖t‖xk − x̄‖.(4.17)

Next, we consider the last term in (4.16). By (4.8), we have

C9‖ẑk − x̄‖ ≤ C6‖xk − x̄‖1+p + µk‖ẑk − xk‖
≤ C6‖xk − x̄‖1+p + µk(‖ẑk − x̄‖+ ‖xk − x̄‖),

where the last inequality follows from the triangle inequality. Therefore,

(C9 − µk)‖ẑk − x̄‖ ≤ C6‖xk − x̄‖1+p + µk‖xk − x̄‖.
Since µk → 0, for C13 ≥ max{1;C6}/(C9 − µk), we have

‖ẑk − x̄‖ ≤ C13

(‖xk − x̄‖p + ‖r(xk)‖t) ‖xk − x̄‖.(4.18)

Finally, we consider the first term in the right-hand side of (4.16). Since the
point x̂k is the projection of xk onto the hyperplane Hk = {x | 〈vk, x− yk〉 = 0}, and
yk ∈ Hk, the vectors x̂k − xk and x̂k − yk are orthogonal. Hence,

‖x̂k − yk‖ = ‖yk − xk‖ sin ξk,(4.19)

where ξk is the angle between x̂k − xk and yk − xk. Because x̂k − xk = −skvk for a
certain sk > 0, the angle between the vectors vk and −µk(yk−xk) is also ξk. Observe
from (4.2) that

vk = −µk(yk − xk) +Rk(yk − xk)−∇F (xk)ek + (1− µk)ek.

Given the above relation, sin of the angle between vk and −µk(yk − xk) can be easily
bounded:

sin ξk ≤ ‖R
k(yk − xk) + ((1− µk)I −∇F (xk))ek‖

µk‖yk − xk‖

≤ C6‖yk − xk‖1+p + (1 + C1)‖ek‖
µk‖yk − xk‖

≤ C6
‖yk − xk‖p
‖r(xk)‖t + (1 + C1)

ρk‖zk − xk‖
‖yk − xk‖

≤ 2C6C12θ‖r(xk)‖p−t + C7(1 + C1)ρk,

where the second inequality follows from (4.1) and the last inequality follows from
(4.15) and (4.4). Hence, for some C14 > 0,

sin ξk ≤ C14(‖r(xk)‖p−t + ρk).(4.20)

By (4.19), using (4.13) and (4.20), we obtain

‖x̂k − yk‖ = ‖yk − xk‖ sin ξk

≤ 2C12C14

(‖r(xk)‖p−t + ρk
) ‖xk − x̄‖.(4.21)
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By (4.16), combining (4.21), (4.17), and (4.18), we conclude that there exists C15 > 0
such that

‖xk+1 − x̄‖ ≤ C15

(‖r(xk)‖p−t + ρk + (1 + ρk)‖r(xk)‖t + ‖xk − x̄‖p)
× ‖xk − x̄‖,(4.22)

which means that {xk} converges to x̄ at least superlinearly.
Remark. Finally, we note that

‖r(x)‖ = ‖x− [x− F (x)]+ − x̄+ [x̄− F (x̄)]+‖
≤ ‖x− x̄‖+ ‖[x− F (x)]+ − [x̄− F (x̄)]+‖
≤ (2 + C16)‖x− x̄‖,

where C16 is the constant of local Lipschitz continuity of F . Therefore if one further
chooses

ρk = ‖r(xk)‖p,

relation (4.22) implies that the order of superlinear convergence is at least 1 + p− t,
where t ∈ (0, p).

5. Concluding remarks. We presented a new globalization strategy for the
Newton method applied to the monotone nonlinear complementarity problem. Our
strategy is based on the projection–proximal point methodology and makes full use
of the monotonicity structure of the problem. The resulting hybrid algorithm is truly
globally convergent to a solution without any additional assumptions, even if the
solution set is unbounded. This is an important property which is not possessed
by globalization approaches based on merit functions. Under natural assumptions,
locally superlinear rate of convergence was also established.

Acknowledgments. We thank the two anonymous referees and the associate
editor for constructive suggestions which helped us to improve the paper.
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Abstract. We consider the gradient method xt+1 = xt + γt(st + wt), where st is a descent
direction of a function f : <n → < and wt is a deterministic or stochastic error. We assume that
∇f is Lipschitz continuous, that the stepsize γt diminishes to 0, and that st and wt satisfy standard
conditions. We show that either f(xt) → −∞ or f(xt) converges to a finite value and ∇f(xt) → 0
(with probability 1 in the stochastic case), and in doing so, we remove various boundedness conditions
that are assumed in existing results, such as boundedness from below of f , boundedness of ∇f(xt),
or boundedness of xt.
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dient convergence
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1. Introduction. We consider the problem

(1.1)
minimize f(x)

subject to x ∈ <n,
where <n denotes the n-dimensional Euclidean space and f : <n 7→ < is a continuously
differentiable function, such that for some constant L we have

(1.2) ‖∇f(x)−∇f(x)‖ ≤ L‖x− x‖ ∀ x, x ∈ <n.
The purpose of this paper is to sharpen the existing convergence theory for the

classical descent method

(1.3) xt+1 = xt + γt(st + wt),

where
(a) γt is a positive stepsize sequence satisfying

(1.4)
∞∑
t=0

γt =∞,
∞∑
t=0

γ2
t <∞;

(b) st is a descent direction satisfying for some positive scalars c1 and c2, and
all t,

(1.5) c1‖∇f(xt)‖2 ≤ −∇f(xt)′st, ‖st‖ ≤ c2‖∇f(xt)‖;
(c) wt either is a deterministic error satisfying for some positive scalars p and q,

and all t,

(1.6) ‖wt‖ ≤ γt
(
q + p‖∇f(xt)‖

)
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or is a stochastic error satisfying conditions that are standard in stochastic gradient
and stochastic approximation methods.

Our main result is that either f(xt) → −∞ or f(xt) converges to a finite value
and limt→∞∇f(xt) = 0 (with probability 1 on the stochastic case).

The method where the errors wt are deterministic includes as a special case the
standard incremental gradient/backpropagation method for neural network training,
the convergence of which has been the object of much recent analysis [Luo91], [Gai94],
[Gri94], [LuT94], [MaS94], [Man93], [Ber95a] (see [BeT96] for our discussion of incre-
mental gradient methods and their application to neural network training). The
method where the errors wt are stochastic includes as a special case the classical
Robbins–Monro/stochastic gradient method, as well as methods involving scaling
of the gradient and satisfying the pseudogradient condition of Poljak and Tsypkin
[PoT73]; see section 4 for a precise statement of our assumptions. Basically, the entire
spectrum of unconstrained gradient methods is considered, with the only restriction
being the diminishing stepsize condition (1.4) (which is essential for convergence in
gradient methods with errors) and the attendant Lipschitz condition (1.2) (which is
necessary for showing any kind of convergence result under the stepsize condition
(1.4)).

To place our analysis in perspective, we review the related results of the literature
for gradient-like methods with errors and in the absence of convexity. Our results
relate to two types of analysis:

(1) Results that are based on some type of deterministic or stochastic descent
argument, such as the use of a Lyapunov function or a supermartingale convergence
theorem. All of the results of this type known to us assume that f is bounded below
and in some cases require a boundedness assumption on the sequence {xt} or show
only that lim inft→∞ ‖∇f(xt)‖ = 0. By contrast, we show that limt→∞ ‖∇f(xt)‖ = 0
and we also deal with the case where f is unbounded below and {xt} is unbounded.
In fact, a principal aim of our work has been to avoid any type of boundedness as-
sumption. For example, the classical analysis of Poljak and Tsypkin [PoT73], under
essentially the same conditions as ours, shows that if f is bounded below, then f(xt)
converges and lim inft→∞ ‖∇f(xt)‖ = 0 (see Poljak [Pol87, p. 51]). The analysis of
Gaivoronski [Gai94], for stochastic gradient and incremental gradient methods, under
similar conditions to ours shows that limt→∞ ‖∇f(xt)‖ = 0, but it also assumes that
f(x) is bounded below and that ‖∇f(x)‖ is bounded over <n. The analysis of Luo and
Tseng [LuT94] for the incremental gradient method shows that limt→∞ ‖∇f(xt)‖ = 0,
but it also assumes that f(x) is bounded below, and it makes some additional assump-
tions on the stepsize γt. The analyses by Grippo [Gri94] and by Mangasarian and
Solodov [MaS94] for the incremental gradient method (with and without a momen-
tum term) make assumptions that are different from ours and include boundedness of
the generated sequence xt. The analysis of Walk [Wal92, p. 2] (see also Pflug [Pfl96,
p. 282]) shows that limt→∞ ‖∇f(xt)‖ = 0, assuming that st = −∇f(xt), that wt
is deterministic and satisfies somewhat different conditions than ours, and that f is
bounded below. Our method of proof for the case of deterministic errors is similar
to the method of Walk. (The assumption that f is bounded below is not critical
for Walk’s analysis.) However, in the case of stochastic errors, standard stochastic
descent proofs rely critically on the boundedness of f from below, and we have used
a new line of proof for our result (see the discussion in section 4).

(2) Results based on the so-called ODE analysis [Lju77], [KuC78], [BMP90],
[KuY97] that relate the evolution of the algorithm to the trajectories of a differ-
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ential equation dx/dt = h(x). For example, if we are dealing with the stochastic
steepest descent method xt+1 = xt − γt(∇f(xt) − wt), the corresponding ODE is
dx/dt = −∇f(x). This framework typically involves an explicit or implicit assump-
tion that the average direction of update h(x) is a well-defined function of the current
iterate x. It cannot be applied, for example, to a gradient method with diagonal
scaling, where the scaling may depend in a complicated way on the past history of
the algorithm, unless one works with differential inclusions—rather than differential
equations—for which not many results are available. For another example, an asyn-
chronous gradient iteration that updates a single component at a time (selected by
some arbitrary or hard-to-model mechanism) does not lead to a well-defined aver-
age direction of update h(x), unless one makes some very special assumptions, e.g.,
the stepsize assumptions of Borkar [Bor95]. In addition to the above described dif-
ficulty, the ODE approach relies on the assumption that the sequence of iterates xt
is bounded or recurrent, something that must be independently verified. Let us also
mention the following more recent results by Delyon [Del96], which have some similar-
ities with ours: they are proved using a potential function argument and can establish
the convergence of ∇f(xt) to zero. Similar to the ODE approach, these results as-
sume a well-defined average update direction h(x) and are based on boundedness or
recurrence assumptions.

The paper is organized as follows. In the next section, we focus on the method
where there is a nonrandom error wt satisfying the condition (1.6). The convergence
result obtained is then applied in section 3 to the case of incremental gradient meth-
ods for minimizing the sum of a large number of functions. In section 4, we focus
on stochastic gradient methods. Finally, in section 5, a stochastic version of the
incremental gradient method is discussed.

2. Deterministic gradient methods with errors. Throughout the paper,
we focus on the unconstrained minimization of a continuously differentiable function
f : <n 7→ <, satisfying for some constant L

(2.1) ‖∇f(x)−∇f(x)‖ ≤ L‖x− x‖ ∀ x, x ∈ <n.
As mentioned in the preceding section, the line of proof of the following proposition is
known, although some of our assumptions differ slightly from those in the literature.
We will need the following known lemma, which we prove for completeness.

Lemma 1. Let Yt, Wt, and Zt be three sequences such that Wt is nonnegative for
all t. Assume that

Yt+1 ≤ Yt −Wt + Zt, t = 0, 1, . . . ,

and that the series
∑T
t=0 Zt converges as T → ∞. Then either Yt → −∞ or else Yt

converges to a finite value and
∑∞
t=0Wt <∞.

Proof. Let t be any nonnegative integer. By adding the relation Yt+1 ≤ Yt + Zt
over all t ≥ t and by taking the limit superior as t→∞, we obtain

lim sup
t→∞

Yt ≤ Yt +

∞∑
t=t

Zt <∞.

By taking the limit inferior of the right-hand side as t → ∞ and using the fact
limt→∞

∑∞
t=t Zt = 0, we obtain

lim sup
t→∞

Yt ≤ lim inf
t→∞

Yt <∞.
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This implies that either Yt → −∞ or else Yt converges to a finite value. In the latter
case, by adding the relation Yi+1 ≤ Yi −Wi + Zi from i = 0 to i = t, we obtain

t∑
i=0

Wi ≤ Y0 +
t∑
i=0

Zi − Yt+1, t = 0, 1, . . . ,

which implies that
∑∞
i=0Wi ≤ Y0 +

∑∞
i=0 Zi − limt→∞ Yt <∞.

We have the following result.

Proposition 1. Let xt be a sequence generated by the method

xt+1 = xt + γt(st + wt),

where st is a descent direction satisfying for some positive scalars c1 and c2, and all t,

(2.2) c1‖∇f(xt)‖2 ≤ −∇f(xt)′st, ‖st‖ ≤ c2
(
1 + ‖∇f(xt)‖

)
,

and wt is an error vector satisfying for some positive scalars p and q, and all t,

(2.3) ‖wt‖ ≤ γt
(
q + p‖∇f(xt)‖

)
.

Assume that the stepsize γt is positive and satisfies

∞∑
t=0

γt =∞,
∞∑
t=0

γ2
t <∞.

Then either f(xt)→ −∞ or else f(xt) converges to a finite value and limt→∞∇f(xt) =
0. Furthermore, every limit point of xt is a stationary point of f .

Proof. Fix two vectors x and z, let ξ be a scalar parameter, and let g(ξ) =
f(x+ ξz). The chain rule yields (dg/dξ)(ξ) = z′∇f(x+ ξz). We have

(2.4)

f(x+ z)− f(x) = g(1)− g(0)

=

∫ 1

0

dg

dξ
(ξ) dξ

=

∫ 1

0

z′∇f(x+ ξz) dξ

≤
∫ 1

0

z′∇f(x) dξ +

∣∣∣∣∫ 1

0

z′
(∇f(x+ ξz)−∇f(x)

)
dξ

∣∣∣∣
≤ z′∇f(x) +

∫ 1

0

‖z‖ · ‖∇f(x+ ξz)−∇f(x)‖dξ

≤ z′∇f(x) + ‖z‖
∫ 1

0

Lξ‖z‖ dξ

= z′∇f(x) +
L

2
‖z‖2.

We apply (2.4) with x = xt and z = γt(st + wt). We obtain

f(xt+1) ≤ f(xt) + γt∇f(xt)′(st + wt) +
γ2
tL

2
‖st + wt‖2.
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Using our assumptions, we have

∇f(xt)′(st + wt) ≤ −c1‖∇f(xt)‖2 + ‖∇f(xt)‖ ‖wt‖
≤ −c1‖∇f(xt)‖2 + γtq‖∇f(xt)‖+ γtp‖∇f(xt)‖2.

Furthermore, using the relations ‖st‖2 ≤ 2c22
(
1 + ‖∇f(xt)‖2

)
and ‖wt‖2 ≤ 2γ2

t

(
q2 +

p2‖∇f(xt)‖2
)
, which follow from (2.2) and (2.3), respectively, we have

‖st + wt‖2 ≤ 2‖st‖2 + 2‖wt‖2
≤ 4c22

(
1 + ‖∇f(xt)‖2

)
+ 4γ2

t

(
q2 + p2‖∇f(xt)‖2

)
.

Combining the above relations, we obtain

f(xt+1) ≤ f(xt)− γt(c1 − γtp− 2γtc22L− 2γ3
t p

2L)‖∇f(xt)‖2
+ γ2

t q‖∇f(xt)‖+ 2γ2
t c

2
2L+ 2γ4

t q
2L.

Since γt → 0, we have for some positive constant c and all t sufficiently large

f(xt+1) ≤ f(xt)− γtc‖∇f(xt)‖2 + γ2
t q‖∇f(xt)‖+ 2γ2

t c
2
2L+ 2γ4

t q
2L.

Using the inequality ‖∇f(xt)‖ ≤ 1 + ‖∇f(xt)‖2, the above relation yields for all t

f(xt+1) ≤ f(xt)− γt(c− γtq)‖∇f(xt)‖2 + γ2
t (q + 2c22L) + 2γ4

t q
2L,

which for sufficiently large t can be written as

(2.5) f(xt+1) ≤ f(xt)− γtβ1‖∇f(xt)‖2 + γ2
t β2,

where β1 and β2 are some positive scalars.
By using (2.5), Lemma 1, and the assumption

∑∞
t=0 γ

2
t < ∞, we see that either

f(xt)→ −∞ or else f(xt) converges and

(2.6)

∞∑
t=0

γt‖∇f(xt)‖2 <∞.

If there existed an ε > 0 and an integer t such that ‖∇f(xt)‖ ≥ ε for all t ≥ t, we
would have

∞∑
t=t

γt‖∇f(xt)‖2 ≥ ε2
∞∑
t=t

γt =∞,

which contradicts (2.6). Therefore, lim inft→∞ ‖∇f(xt)‖ = 0.
To show that limt→∞∇f(xt) = 0, assume the contrary; that is, lim supt→∞

‖∇f(xt)‖ > 0. Then there exists an ε > 0 such that ‖∇f(xt)‖ < ε/2 for infinitely
many t and also ‖∇f(xt)‖ > ε for infinitely many t. Therefore, there is an infinite
subset of integers T such that for each t ∈ T , there exists an integer i(t) > t such
that

‖∇f(xt)‖ < ε/2, ‖∇f(xi(t))‖ > ε,

ε/2 ≤ ‖∇f(xi)‖ ≤ ε if t < i < i(t).
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Since

‖∇f(xt+1)‖ − ‖∇f(xt)‖ ≤ ‖∇f(xt+1)−∇f(xt)‖
≤ L‖xt+1 − xt‖
= γtL‖st‖
≤ γtLc2

(
1 + ‖∇f(xt)‖

)
,

it follows that for all t ∈ T that are sufficiently large so that γtLc2 < ε/4, we have

ε/4 ≤ ‖∇f(xt)‖;

otherwise, the condition ε/2 ≤ ‖∇f(xt+1)‖ would be violated. Without loss of gener-
ality, we assume that the above relations as well as (2.5) hold for all t ∈ T .

We have for all t ∈ T , using the condition ‖st‖ ≤ c2
(
1 + ‖∇f(xt)‖

)
and the

Lipschitz condition (2.1),

(2.7)

ε

2
≤ ‖∇f(xi(t))‖ − ‖∇f(xt)‖
≤ ‖∇f(xi(t))−∇f(xt)‖
≤ L‖xi(t) − xt‖

≤ L
i(t)−1∑
i=t

γi(‖si‖+ ‖wi‖)

≤ Lc2
i(t)−1∑
i=t

γi
(
1 + ‖∇f(xi)‖

)
+ L

i(t)−1∑
i=t

γ2
i

(
q + p‖∇f(xi)‖

)
≤ Lc2(1 + ε)

i(t)−1∑
i=t

γi + L(q + pε)

i(t)−1∑
i=t

γ2
i .

From this it follows that

(2.8)
1

2Lc2(1 + ε)
≤ lim inf

t→∞

i(t)−1∑
i=t

γi.

Using (2.5), we see that

f
(
xi(t)

) ≤ f(xt)− β1

( ε
4

)2
i(t)−1∑
i=t

γi + β2

i(t)−1∑
i=t

γ2
i ∀ t ∈ T .

Using the convergence of f(xt) already shown and the assumption
∑∞
t=0 γ

2
t <∞, this

relation implies that

lim
t→∞, t∈T

i(t)−1∑
i=t

γi = 0

and contradicts (2.8).
Finally, if x is a limit point of xt, then f(xt) converges to the finite value f(x).

Thus we have ∇f(xt)→ 0, implying that ∇f(x) = 0.
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3. Incremental gradient methods. In this section, we apply the results of
the preceding section to the case where f has the form

f(x) =
m∑
i=1

fi(x),

where fi : <n 7→ < is for every i a continuously differentiable function satisfying the
Lipschitz condition

(3.1) ‖∇fi(x)−∇fi(x)‖ ≤ L‖x− x‖ ∀ x, x ∈ <n

for some constant L.
In situations where there are many component functions fi, it may be attractive to

use an incremental method that does not wait to process the entire set of components
before updating x; instead, the method cycles through the components in sequence
and updates the estimate of x after each component is processed. In particular, given
xt, we may obtain xt+1 as

xt+1 = ψm,

where ψm is obtained at the last step of the algorithm

(3.2) ψi = ψi−1 − γt∇fi(ψi−1), i = 1, . . . ,m,

and

(3.3) ψ0 = xt.

This method can be written as

(3.4) xt+1 = xt − γt
m∑
i=1

∇fi(ψi−1).

It is referred to as the incremental gradient method , and it is used extensively in
the training of neural networks. It should be compared with the ordinary gradient
method, which is

(3.5) xt+1 = xt − γt∇f(xt) = xt − γt
m∑
i=1

∇fi(xt).

Thus, a cycle of the incremental gradient method through the components fi differs
from an ordinary gradient iteration only in that the evaluation of ∇fi is done at
the corresponding current estimates ψi−1 rather than at the estimate xt available
at the start of the cycle. The advantages of incrementalism in enhancing the speed
of convergence (at least in the early stages of the method) are well known; see, for
example, the discussions in [Ber95a], [Ber95b], [BeT96].

The main idea of the following convergence proof is that the incremental gradient
method can be viewed as the regular gradient iteration where the gradient is perturbed
by an error term that is proportional to the stepsize. In particular, if we compare the
incremental method (3.4) with the ordinary gradient method (3.5), we see that the
error term in the gradient direction is bounded by

m∑
i=1

∥∥∇fi(ψi−1)−∇fi(xt)
∥∥.
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In view of our Lipschitz assumption (3.1), this term is bounded by

L
m∑
i=1

‖ψi−1 − xt‖,

which from (3.2) is seen to be proportional to γt. (A more precise argument is given
below.)

Proposition 2. Let xt be a sequence generated by the incremental gradient
method (3.2)–(3.4). Assume that for some positive constants C and D, and all i =
1, . . . ,m, we have

(3.6) ‖∇fi(x)‖ ≤ C +D‖∇f(x)‖ ∀ x ∈ <n.
Assume also that

∞∑
t=0

γt =∞,
∞∑
t=0

γ2
t <∞.

Then either f(xt)→ −∞ or else f(xt) converges to a finite value and limt→∞∇f(xt) =
0. Furthermore, every limit point of xt is a stationary point of f .

Proof. We formulate the incremental gradient method as a gradient method
with errors that are proportional to the stepsize and then apply Proposition 1. For
simplicity we will assume that there are only two functions fi, that is, m = 2. The
proof is similar when m > 2. We have

ψ1 = xt − γt∇f1(xt),

xt+1 = ψ1 − γt∇f2(ψ1).

By adding these two relations, we obtain

xt+1 = xt + γt
(−∇f(xt) + wt

)
,

where

wt = ∇f2(xt)−∇f2(ψ1).

We have

‖wt‖ ≤ L‖xt − ψ1‖ = γtL‖∇f1(xt)‖ ≤ γt
(
LC + LD‖∇f(xt)‖

)
.

Thus Proposition 1 applies.
Condition (3.6) is guaranteed to hold if each fk is of the form

fk(x) = x′Qkx+ g′kx+ hk,

where each Qk is a positive semidefinite matrix, each gk is a vector, and each hk is a
scalar. (This is the generic situation encountered in linear least squares problems.) If∑K
k=1Qk is positive definite, there exists a unique minimum to which the algorithm

must converge. In the absence of positive definiteness, we obtain ∇f(xt) → 0 if the
optimal cost is finite. If, on the other hand, the optimal cost is −∞, it can be shown
that ‖∇f(x)‖ ≥ α for some α > 0 and for all x. This implies that f(x) → −∞ and
that ‖x‖ → ∞.
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4. Stochastic gradient methods. In this section, we study stochastic gradient
methods. Our main result is similar to Proposition 1 except that we let the noise
term wt be of a stochastic nature. Once more, we will prove that f(xt) converges
and, if the limit is finite, ∇f(xt) converges to 0. We comment on the technical issues
that arise in establishing such a result. The sequence f(xt) can be shown to be
approximately a supermartingale. The variance of the underlying noise is allowed to
grow with ‖∇f(xt)‖ and therefore can be unbounded. While such unboundedness has
been successfully handled in past works on related methods, new complications arise
because no lower bound on f(xt) is assumed. For that reason, the supermartingale
convergence theorem cannot be used in a simple manner. Our approach is to show
that whenever ‖∇f(xt)‖ is large, it remains so for a sufficiently long time interval,
guaranteeing a decrease in the value of f(xt) which is significant and dominates the
noise effects.

Proposition 3. Let xt be a sequence generated by the method

xt+1 = xt + γt(st + wt),

where γt is a deterministic positive stepsize, st is a descent direction, and wt is a
random noise term. Let Ft be an increasing sequence of σ-fields. We assume the
following:

(a) xt and st are Ft-measurable.

(b) There exist positive scalars c1 and c2 such that

(4.1) c1‖∇f(xt)‖2 ≤ −∇f(xt)′st, ‖st‖ ≤ c2(1 + ‖∇f(xt)‖) ∀ t.

(c) We have, for all t and with probability 1,

(4.2) E[wt | Ft] = 0,

(4.3) E[‖wt‖2 | Ft] ≤ A(1 + ‖∇f(xt)‖2),

where A is a positive deterministic constant.

(d) We have

∞∑
t=0

γt =∞,
∞∑
t=0

γ2
t <∞.

Then, either f(xt) → −∞ or else f(xt) converges to a finite value and limt→∞
∇f(xt) = 0. Furthermore, every limit point of xt is a stationary point of f .

Remarks. (a) The σ-field Ft should be interpreted as the history of the algorithm
up to time t, just before wt is generated. In particular, conditioning on Ft can be
thought of as conditioning on x0, s0, w0, . . . , xt−1, st−1, wt−1, xt, st.

(b) Strictly speaking, the conclusions of the proposition only hold “with prob-
ability 1.” For simplicity, an explicit statement of this qualification often will be
omitted.

(c) Our assumptions on wt are of the same type as those considered in [PoT73].
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Proof of Proposition 3. We apply (2.4) with x = xt and z = γt(st + wt). We
obtain

(4.4)

f(xt+1) ≤ f(xt) + γt∇f(xt)′(st + wt) +
γ2
tL

2
‖st + wt‖2

≤ f(xt)− γtc1‖∇f(xt)‖2 + γt∇f(xt)′wt + γ2
tL(‖st‖2 + ‖wt‖2)

≤ f(xt)− γtc1‖∇f(xt)‖2 + γt∇f(xt)′wt + γ2
t 2Lc22

+ γ2
t 2Lc22‖∇f(xt)‖2 + γ2

tL‖wt‖2

≤ f(xt)− γt c1
2
‖∇f(xt)‖2 + γt∇f(xt)′wt + γ2

t 2Lc22 + γ2
tL‖wt‖2,

where the last inequality is valid only when t is large enough so that γt2Lc22 ≤ c1/2.
Without loss of generality, we will assume that this is the case for all t ≥ 0.

Let δ > 0 be an arbitrary positive number that will be kept constant until the
very end of this proof. Let η be a positive constant defined, in terms of δ, by

(4.5) ηc2

(
1

δ
+ 2

)
+ η =

1

2L
.

We will partition the set of all times t (the nonnegative integers) into a set S of times
at which ‖∇f(xt)‖ is “small” and intervals Ik = {τk, τk + 1, . . . , τ ′k} during which
‖∇f(xt)‖ stays “large.” The definition of the times τk and τ ′k is recursive and is
initialized by letting τ ′0 = −1. We then let, for k = 1, 2, . . .,

τk = min
{
t > τ ′k−1

∣∣ ‖∇f(xt)‖ ≥ δ
}
.

(We leave τk undefined if ‖∇f(xt)‖ < δ for all t > τ ′k−1.) We also let

τ ′k = max

{
t ≥ τk

∣∣∣ t∑
i=τk

γi ≤ η, and

‖∇f(xτk)‖
2

≤ ‖∇f(xr)‖ ≤ 2‖∇f(xτk)‖ ∀ r with τk ≤ r ≤ t
}
.

We say that the interval Ik is full if
∑τ ′k+1
t=τk

γt > η. Let S be the set of all times that
do not belong to any of the intervals Ik.

We define a sequence Gt, used to scale the noise terms wt, by

Gt =

{
δ if t ∈ S,
‖∇f(xτk)‖ = Hk if t ∈ Ik,

where the last equality should be taken as the definition of Hk. In particular, Gt is
constant during an interval It. Note that Gt ≥ δ for all t.

We now collect a few observations that are direct consequences of our definitions.
(P1) For all t ∈ S, we have ‖∇f(xt)‖ < δ = Gt.
(P2) For all t ∈ Ik, we have

Gt
2

=
Hk

2
≤ ‖∇f(xt)‖ ≤ 2Hk = 2Gt.

Combining this with (P1), we also see that the ratio ‖∇f(xt)‖/Gt is bounded above
by 2.
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(P3) If τk is defined and Ik is a full interval, then

(4.6)
η

2
≤ η − γτ ′

k
+1 <

τ ′k∑
t=τk

γt ≤ η,

where the leftmost inequality holds when k is large enough so that γτ ′
k
+1 ≤ η/2.

Without loss of generality, we will assume that this condition actually holds for all k.
(P4) The value of Gt is completely determined by x0, x1, . . . , xt and is therefore

Ft-measurable. Similarly, the indicator function

χt =
{

1 if t ∈ S,
0 otherwise

is also Ft-measurable.
Lemma 2. Let rt be a sequence of random variables with each rt being Ft+1-

measurable, and suppose that E[rt | Ft] = 0 and E[‖rt‖2 | Ft] ≤ B, where B is some
deterministic constant. Then, the sequences

T∑
t=0

γtrt and
T∑
t=0

γ2
t ‖rt‖2, T = 0, 1, . . . ,

converge to finite limits (with probability 1).

Proof. It is seen that
∑T
t=0 γtrt is a martingale whose variance is bounded by

B
∑∞
t=0 γ

2
t . It must therefore converge by the martingale convergence theorem. Fur-

thermore,

E

[ ∞∑
t=0

γ2
t ‖rt‖2

]
≤ B

∞∑
t=0

γ2
t <∞,

which shows that
∑∞
t=0 γ

2
t ‖rt‖2 is finite with probability 1. This establishes conver-

gence of the second sequence.
Using Lemma 2, we obtain the following.
Lemma 3. The following sequences converge (with probability 1):

(a)
T∑
t=0

χtγt∇f(xt)′wt;

(b)
T∑
t=0

γt
wt
Gt

;

(c)
T∑
t=0

γt
∇f(xt)′wt

G2
t

;

(d)
T∑
t=0

γ2
t

‖wt‖2
G2
t

;

(e)
T∑
t=0

γ2
t χt‖wt‖2.

Proof. (a) Let rt = χt∇f(xt)′wt. Since χt and ∇f(xt) are Ft-measurable and
E[wt | Ft] = 0, we obtain E[rt | Ft] = 0. Whenever χt = 1, we have ‖∇f(xt)‖ ≤ δ
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and E[‖wt‖2 | Ft] ≤ A(1 + δ2). It follows easily that E[|rt|2 | Ft] is bounded. The
result follows from Lemma 2.

(b) Let rt = wt/Gt. Since Gt is Ft-measurable and E[wt | Ft] = 0, we obtain
E[rt | Ft] = 0. Furthermore,

E[‖rt‖2 | Ft] ≤ A(1 + ‖∇f(xt)‖2)

G2
t

.

Since the ratio ‖∇f(xt)‖/Gt is bounded above [cf. observation (P2)], Lemma 2 applies
and establishes the desired convergence result.

(c) Let rt = ∇f(xt)′wt/G2
t . Note that

∇f(xt)′wt
G2
t

≤ ‖∇f(xt)‖ · ‖wt‖
G2
t

≤ 2
‖wt‖
Gt

.

The ratio in the left-hand side has bounded conditional second moment, by the same
argument as in the proof of part (b). The desired result follows from Lemma 2.

(d) This follows again from Lemma 2. The needed assumptions have already been
verified while proving part (b).

(e) This follows from Lemma 2 because χtwt has bounded conditional second
moment, by an argument similar to the one used in the proof of part (a).

We now assume that we have removed the zero probability set of sample paths
for which the series in Lemma 3 does not converge. For the remainder of the proof,
we will concentrate on a single sample path outside this zero probability set. Let ε be
a positive constant that satisfies

(4.7) ε ≤ η, 2ε+ 2Lε ≤ c1η

48
, 4Lc22ε ≤

c1δ2η

48
.

Let us choose some t0 after which all of the series in Lemma 3, as well as the series∑T
t=0 γ

2
t , stay within ε from their limits.

Lemma 4. Let t0 be as above. If τk is defined and is larger than t0, then the
interval Ik is full.

Proof. Recall that for t ∈ Ik = {τk, . . . , τ ′k} we have Gt = Hk = ‖∇f(xτk)‖ ≥ δ
and ‖st‖ ≤ c2(1 + ‖∇f(xt)‖) ≤ c2(1 + 2Hk). Therefore,

‖xτ ′
k
+1 − xτk‖ ≤

τ ′k∑
t=τk

γt‖st‖+

∥∥∥∥∥∥
τ ′k∑
t=τk

γtwt

∥∥∥∥∥∥
=

τ ′k∑
t=τk

γt‖st‖+Hk

∥∥∥∥∥∥
τ ′k∑
t=τk

γt
wt
Gt

∥∥∥∥∥∥
≤ ηc2(1 + 2Hk) +Hkε

≤ ηc2Hk

(
1

δ
+ 2

)
+ ηHk

=
Hk

2L
,

where the last equality follows from our choice of η (cf. (4.5)). Thus,

‖∇f(xτ ′
k
+1)−∇f(xτk)‖ ≤ L‖xτ ′

k
+1 − xτk‖ ≤

Hk

2
=
‖∇f(xτk)‖

2
,
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which implies that

1

2
‖∇f(xτk)‖ ≤ ‖∇f(xτ ′

k
+1)‖ ≤ 2‖∇f(xτk)‖.

If we also had
∑τ ′k+1
t=τk

γt ≤ η, then τ ′k + 1 should be an element of Ik, which it isn’t.

This shows that
∑τ ′k+1
t=τk

γt > η and that Ik is a full interval.
Our next lemma shows that after a certain time, f(xt) is guaranteed to decrease

by at least a constant amount during full intervals.
Lemma 5. Let t0 be the same as earlier. If τk is defined and larger than t0, then

f(xτ ′
k
+1) ≤ f(xτk)− h,

where h is a positive constant that depends only on δ.
Proof. Note that Ik is a full interval by Lemma 4. Using (4.4), we have

f(xt+1)− f(xt) ≤ −γt c1
2
‖∇f(xt)‖2 + γt∇f(xt)′wt + γ2

t 2Lc22 + γ2
tL‖wt‖2.

We will sum (from τk to τ ′k) the terms in the right-hand side of the above inequality
and provide suitable upper bounds. Recall that for t ∈ Ik, we have ‖∇f(xt)‖ ≥ Hk/2.
Thus, also using (4.6),

(4.8) −
τ ′k∑
t=τk

γt
c1
2
‖∇f(xt)‖2 ≤ −c1H

2
k

8

τ ′k∑
t=τk

γt ≤ −c1H
2
kη

16
.

Furthermore,

(4.9)

τ ′k∑
t=τk

γt∇f(xt)′wt ≤ 2H2
kε,

which follows from the convergence of the series in Lemma 3(c) and the assumption
that after time t0 the series is within ε of its limit. By a similar argument based on
Lemma 3(d), we also have

(4.10) L

τ ′k∑
t=τk

γ2
t ‖wt‖2 ≤ 2LH2

kε.

Finally,

(4.11) 2Lc22

τ ′k∑
t=τk

γ2
t ≤ 4Lc22ε.

We add (4.8)–(4.11) and obtain

f(xτ ′
k
+1) ≤f(xτk)− c1ηH2

k

16
+ (2ε+ 2Lε)H2

k + 4Lc22ε

≤f(xτk)− 2c1ηH2
k

48
+
c1ηδ2

48

≤f(xτk)− c1ηδ2

48
.

The second inequality made use of (4.7); the third made use of Hk ≥ δ.
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Lemma 6. For almost every sample path, f(xt) converges to a finite value or to
−∞. If limt→∞ f(xt) 6= −∞, then lim supt→∞ ‖∇f(xt)‖ ≤ δ.

Proof. Suppose that there are only finitely many intervals Ik and, in particular,

lim sup
t→∞

‖∇f(xt)‖ ≤ δ.

Let t∗ be some time such that t ∈ S for all t ≥ t∗. We then have χt = 1 for all t ≥ t∗.
We use (4.4) to obtain

f(xt+1) ≤ f(xt) + γtχt∇f(xt)′wt + γ2
t 2Lc22 + χtγ2

tL‖wt‖2
= f(xt) + Zt for t ≥ t∗,

where the last equality can be taken as the definition of Zt. Using parts (a) and (e)
of Lemma 3, the series

∑
t Zt converges. Lemma 1 then implies that f(xt) converges

to a finite value or to −∞. This proves Lemma 6 for the case where there are finitely
many intervals.

We consider next the case where there are infinitely many intervals. We will prove
that f(xt) converges to −∞. We first establish such convergence along a particular
subsequence. Let T = S ∪ {τ1, τ2, . . .}. We will show that the sequence {f(xt)}t∈T
converges to −∞. To see why this must be the case, notice that whenever t ∈ S,
we have f(xt+1) ≤ f(xt) + Zt, where Zt is as in the preceding paragraph and is
summable. Also, whenever t ∈ T but t /∈ S, then t = τk for some k, and the next
element of T is the time τ ′k + 1. Using Lemma 5, f(xt) decreases by at least h during
this interval (for k large enough). We are now in the situation captured by Lemma
1, with Wt = h whenever t = τk. The convergence of the subsequence {f(xt)}t∈T
follows. Furthermore, since Wt = h infinitely often, the limit can be only −∞.

Having shown that f(xτk) converges to −∞, it now remains to show that the
fluctuations of f(xt) during intervals Ik cannot be too large. Because the technical
steps involved here are very similar to those given earlier, we provide only an outline.
In order to carry out this argument, we consider the events that immediately precede
an interval Ik.

Let us first consider the case where Ik is preceded by an element of S, i.e., τk −
1 ∈ S. By replicating the first half of the proof of Lemma 4, we can show that
xt − xτk−1 for t ∈ Ik is bounded by a constant multiple of δ (for k large enough).
Since ‖∇f(xτk−1)‖ ≤ δ, this leads to a cδ2 bound on the difference f(xt)− f(xτk−1),
where c is some absolute constant. Since f(xτk−1)→ −∞, the same must be true for
f(xt), t ∈ Ik.

Let us now consider the case where Ik is immediately preceded by an interval
Ik−1. By replicating the proof of Lemma 5 (with a somewhat smaller choice of ε), we
can show that (for k large enough) we will have f(xt) ≤ f(xτk−1) for all t ∈ Ik. Once
more, since f(xτk−1) converges to −∞, the same must be true for f(xt), t ∈ Ik.

According to Lemma 6, f(xt) converges and if

lim
t→∞ f(xt) 6= −∞,

then lim supt→∞ ‖∇f(xt)‖ ≤ δ. Since this has been proved for an arbitrary δ > 0,
we conclude that if limt→∞ f(xt) 6= −∞, then lim supt→∞ ‖∇f(xt)‖ = 0, that is,
∇f(xt)→ 0.

Finally, if x∗ is a limit point of xt, this implies that f(xt) has a subsequence that
converges to f(x∗). Therefore, the limit of the entire sequence f(xt), which we have
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shown to exist, must be finite and equal to f(x∗). We have shown that in this case
∇f(xt) converges to zero. By taking the limit of ∇f(xt) along a sequence of times
such that xt converges to x∗, we conclude that ∇f(x∗) = 0.

5. The incremental gradient method revisited. We now provide an alter-
native view of the incremental gradient method that was discussed in section 4.

Consider again a cost function f of the form

f(x) =
1

m

m∑
i=1

fi(x),

where each fi is a function from <n into < that satisfies the Lipschitz condition
(4.1). In contrast to the setting of section 4, we now assume that each update is
based on a single component function fi, chosen at random. More specifically, let
k(t), t = 1, 2, . . ., be a sequence of independent random variables, each distributed
uniformly over the set {1, . . . ,m}. The algorithm under consideration is

(5.1) xt+1 = xt − γt∇fk(t)(xt),

where γt is a nonnegative scalar stepsize. We claim that this is a special case of the
stochastic gradient algorithm. Indeed, the algorithm (5.1) can be rewritten as

xt+1 = xt − γt
m

m∑
i=1

∇fi(xt)− γt
(
∇fk(t)(xt)− 1

m

m∑
i=1

∇fi(xt)
)
,

which is of the form

xt+1 = xt − γt∇f(xt)− γtwt,
where

wt = ∇fk(t)(xt)− 1

m

m∑
i=1

∇fi(xt).

We now verify that wt satisfies the assumptions of Proposition 3. Due to the way
that k(t) is chosen, we have

E
[∇fk(t)(xt) | Ft

]
=

1

m

m∑
i=1

∇fi(xt),

from which it follows that E[wt | Ft] = 0. We also have

E
[‖wt‖2 | Ft] = E

[∥∥∇fk(t)(rt)
∥∥2 | Ft

]− ∥∥E[∇fk(t)(rt) | Ft
]∥∥2

≤ E[∥∥∇fk(t)(rt)
∥∥2 | Ft

]
,

which yields

E
[‖wt‖2 | Ft] ≤ max

k

∥∥∇fk(xt)
∥∥2
.

Let us assume that there exist constants C and D such that

(5.2)
∥∥∇fi(x)

∥∥ ≤ C +D
∥∥∇f(x)

∥∥ ∀ i, x
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(cf. the assumption of Proposition 2). It follows that

E
[‖wt‖2 | Ft] ≤ 2C2 + 2D2

∥∥∇f(xt)
∥∥2

so that condition (4.3) is satisfied and the assertion of Proposition 3 holds.
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Abstract. Benders decomposition is a well-known technique for solving large linear programs
with a special structure. In particular, it is a popular technique for solving multistage stochastic
linear programming problems. Early termination in the subproblems generated during Benders de-
composition (assuming dual feasibility) produces valid cuts that are inexact in the sense that they
are not as constraining as cuts derived from an exact solution. We describe an inexact cut algorithm,
prove its convergence under easily verifiable assumptions, and discuss a corresponding Dantzig–Wolfe
decomposition algorithm. The paper is concluded with some computational results from applying the
algorithm to a class of stochastic programming problems that arise in hydroelectric scheduling.
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1. Introduction. Many large linear programming problems exhibit a block-
diagonal structure that makes them amenable to decomposition techniques such as
Dantzig–Wolfe decomposition [5, 6] or its dual, Benders decomposition [3]. The latter
technique has become increasingly popular in stochastic linear programming, starting
with the independent publication of the L-shaped method by Van Slyke and Wets [17]
for two-stage stochastic linear programming. (The L-shaped method is often referred
to as stochastic Benders decomposition.)

In this paper we are concerned with Benders decomposition applied to linear
programs of the form

P: minimize cTx+ qT y

subject to Ax = b,

Tx+Wy = h,

x ≥ 0, y ≥ 0.

If we define

Q(x) = min{qT y |Wy = h− Tx, y ≥ 0},
then P can be written as

P: minimize cTx+Q(x)

subject to Ax = b,

x ≥ 0.

Throughout this paper we assume that X = {x ≥ 0 | Ax = b} is contained in domQ =
{x | Q(x) < ∞}. Under this assumption the Benders decomposition algorithm can
be defined as follows.
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Benders decomposition algorithm.

Set i := 0, U0 :=∞, L0 := −∞, F := Rn × [L0,∞).

While Ui − Li > 0

(1) Set i := i+ 1.
(2) Solve the master problem

MP: minimize cTx+ θ

subject to Ax = b,

(x, θ) ∈ F,
x ≥ 0

to obtain optimal primal variables (xi, θi).
(3) Set Li := cTxi + θi.
(4) Solve the subproblem

SP(xi): minimize qT y

subject to Wy = h− Txi,
y ≥ 0

to obtain optimal primal variables yi and dual variables πi.
(5) Set Ui := min{Ui−1, c

Txi + qT yi}.
(6) Set F := F ∩ {(x, θ) | πTi (h− Tx) ≤ θ}.
In the classical case the cut defined by step 6 comes from an optimal basic feasible

solution to the subproblem. Since there is a finite number of basis matrices for this
problem, finite termination of the algorithm at the optimal solution can be guaranteed
(see, e.g., [13]).

In this paper we explore the Benders decomposition algorithm in the case where
the cuts are not computed from an optimal extreme-point solution to a linear pro-
gramming subproblem. For example, when the subproblems are very large, it makes
sense to determine the cuts by applying a primal-dual interior-point method to the
subproblem. Terminating this procedure when it yields a feasible dual solution will
still define a valid cut. We call this an inexact cut. If the dual solution is close to
optimal, then an inexact cut will also separate the optimal solution from the cur-
rent iterate (except when this is optimal). As observed by a number of authors (see,
e.g., [2]), inexact cuts may be less effort to compute than the exact cuts, especially
for linear programming algorithms that yield an approximately optimal dual feasible
solution before termination.

In theoretical terms, Benders decomposition is a special case of a more general
class of convex cutting plane algorithms first introduced by Kelley [14]. Cutting plane
algorithms construct a sequence of hyperplanes that separate the current iterate from
the optimal solution. In the case where the cutting planes are computed inexactly, the
asymptotic convergence of this process to the optimal solution has been investigated
by a number of authors [1, 7, 8, 11, 14]. In the context of Benders decomposition
applied to linear programs of the form P, all of the convergence results in these papers
assume that the sets containing x and πTT are both bounded. In the convergence
theorem that we prove for inexact cuts, we require that X = {x ≥ 0 | Ax = b} be
bounded and that X ⊆ domQ. The latter assumption, which is known as relatively
complete recourse in stochastic programming, is weaker than requiring that πTT be
bounded.
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To avoid possible confusion, we remark that our use of the term inexact is less
general here than that of Au, Higle, and Sen [1]. At each iteration i of their inexact
subgradient algorithm (applied to minimize a general objective function f(x)), they
construct an approximate subgradient at the current point xi by computing a sub-
gradient to an approximating function fi and taking a projected step from xi in (the
negative of) that direction. With certain restrictions on the convergence of {fi} to
f they prove convergence of xi to the minimum of f under the assumption that the
subgradients of fi at xi form a bounded sequence. Our results are confined to Benders
decomposition (where f(x) = cTx+Q(x) and each fi is defined by the inexact cuts at
iteration i), but we do not require that the subgradients of fi at each iterate (namely,
c− πTi T in our special case) form a bounded sequence.

In the next section we describe a Benders decomposition algorithm that termi-
nates the solution of the subproblem before optimality to produce an inexact cut. The
steps of the algorithm ensure that this cut separates the optimal solution from the
current iterate. In section 3 we consider the convergence of the inexact cut algorithm
under the above assumptions, and in section 4 we discuss the implications of our
results for Dantzig–Wolfe decomposition. In section 5 we give some computational
results.

2. The algorithm. We start the inexact cut algorithm by choosing a conver-
gence tolerance δ, setting an iteration counter i := 0, and choosing some decreasing
sequence {εi} that converges to 0. We also set U0 :=∞ and L0 := −∞. The remaining
steps of the algorithm are as follows.

Inexact cut algorithm.
While Ui − Li > δ

(1) Set i := i+ 1.
(2) Solve MP to obtain (xi, θi).
(3) Set Li := cTxi + θi.
(4) Perform an inexact optimization to generate a vector πi feasible for the dual

of SP(xi) such that

πTi (h− Txi) + εi > Q(xi).(1)

(5) Set Ui := min{Ui−1, c
Txi + πTi (h− Txi) + εi}.

(6) If πTi (h− Txi) > θi, then add the cut πTi (h− Tx) ≤ θ to MP,
else set i := i + 1, xi+1 := xi, θi+1 := θi, Li+1 := Li, Ui+1 := Ui and go to
step 4.1

We denote by vi the value of the inexact optimization in step 4. Thus vi =
πTi (h − Txi). In step 6 of each iteration of this method we check to see if vi > θi,
which ensures that the hyperplane πTi (h− Tx) = θ will strictly separate the current
iterate (xi, θi) from any optimal solution of P. If this check fails, then we decrease the
duality gap tolerance ε and continue with the solution of SP(xi), until either εi → 0
with no change in (xi, θi) or (xi, θi) is separated from an optimal solution of P by a
cut.

To show that this algorithm converges we make use of the following simple results.
Lemma 2.1. −πTi T is an εi-subgradient of Q at xi.
Proof. Since πi is dual feasible for SP(xi), it is dual feasible for every possible

subproblem SP(x). Hence for every x of suitable dimension, we have

Q(x) ≥ πTi (h− Tx),

1Note that in this case x and θ remain fixed and only (possibly) ε changes.
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and by (1)

Q(xi) ≤ vi + εi.

Thus

Q(x)−Q(xi) ≥ πTi (h− Tx)− πTi (h− Txi)− εi,

giving

Q(x) ≥ Q(xi)− πTi T (x− xi)− εi,

which gives the result.
Lemma 2.2. Let Ui, Li, xi, and θi be generated by applying the inexact cut

algorithm with εi. Then

0 ≤ Ui − Li ≤ vi + εi − θi.

Proof. Since Ui is an upper bound on the value of P and Li is a lower bound,
Ui − Li ≥ 0. Moreover, since

Ui ≤ cTxi + vi + εi

and Li = cTxi + θi, we have

0 ≤ Ui − Li ≤ cTxi + vi + εi − cTxi − θi
and the result follows.

3. Convergence of the algorithm. In this section we prove that the sequence
{(xi, θi)} generated by the inexact cut algorithm converges to an optimal solution
to P. As alluded to above, abstract proofs of convergence for cutting plane methods
(see [14]) typically invoke a compactness argument that in our context relies on an
assumption that the sets containing x and πTT are both bounded. A general con-
vergence theory that might avoid these assumptions is developed in Higle and Sen
[10], who prove several convergence results for algorithms similar to the inexact cut
algorithm. Unfortunately, the direct application of these results to our algorithm is
not straightforward.

The difficulty with applying the results in [10] lies in demonstrating the key
assumption that the sequence {maxj<i(π

T
j (h − Txi))} converges to Q(x̄) whenever

{xi} converges to x̄. (Observe that εi → 0 implies {maxj<i(π
T
j (h−Txi−1))} converges

to Q(x̄) when {xi} converges to x̄, but this is different from the above assertion, since
xi−1 is not the minimizer of maxj<i(π

T
j (h − Tx)).) To deal with situations like this

(for a slightly different class of algorithms from ours) [10, Theorem 9] relaxes the
assumption to

lim
i∈K

{
max
j<i

(πTj (h− Txi))−max
j<i

(πTj (h− Txi−1))
}

= 0,

where K is some infinite index set. This can be shown to be equivalent to our equa-
tion (6) below. (Lemma 3.9 shows that this equation holds for our algorithm.) As
[10, Theorem 9] is not directly applicable, we present a self-contained proof of our
convergence result.
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To illuminate the role that the boundedness of {πTT} plays in the proof we
begin by showing that the sequence {πTi T} generated by the inexact cut algorithm
is bounded provided that the set X = {x ≥ 0 | Ax = b} is bounded, and domQ is
Rn. (In stochastic programming the latter is known as complete recourse.) In what
follows we shall relax the latter assumption to X ⊆ domQ, for which we may still
prove convergence although we are no longer guaranteed a bound on {πTT}. We
make use of the following technical result.

Lemma 3.1. If for some given pair (b, β) the epigraph of

f(x) = max
1≤k≤N

{bTk x+ βk}

lies in the half-space H = {(x, µ) | µ ≥ bTx+ β}, then ‖b‖ ≤ max1≤k≤N ‖bk‖.
Proof. Suppose ‖b‖ > max1≤k≤N ‖bk‖ = M and let β̃ = max1≤k≤N |βk|. Let

n > |β̃−β|
‖b‖2−M‖b‖ and define z := nb. We will show that f(z) < bT z + β, contradicting

the hypothesis. Formally,

bT z + β = n‖b‖2 + β > n‖b‖M + β + |β̃ − β|
≥ nM‖b‖+ β̃

≥ max
1≤k≤N

[(nbT )bk] + β̃

= max
1≤k≤N

[(nbT )bk] + max
1≤k≤N

|βk|

≥ max
1≤k≤N

[(nbT )bk + βk]

= f(z).

This contradicts the assumption that the epigraph of max1≤k≤N{bTk x+βk} lies in H.
Hence we must have ‖b‖ ≤M as required.

Lemma 3.2. If domQ = Rn, then the sequence {−πTi T} is bounded.

Proof. Let {π̂k | 1 ≤ k ≤ N} be the set of basic feasible solutions of WTπ ≤ q.
Recall that for every x ∈ Rn, πi is dual feasible for SP(x). So for every such x we
have

πTi (h− Tx) ≤ max
1≤k≤N

π̂Tk (h− Tx) = Q(x),

where the equation follows by virtue of domQ = Rn. Therefore the epigraph of Q lies
in the half-space

H = {(x, µ) | µ ≥ bTx+ β},

where b = −πTi T and β = πTi h. The conclusion is then immediate from Lemma
3.1.

Next we will show that the inexact cut algorithm terminates in a finite number of
iterations with a δ-optimal solution. If the inexact cut algorithm does not terminate
in a finite number of iterations, then it will produce an infinite sequence {(xi, θi)}
that satisfies one of the following conditions:

(1) There exists m such that θi ≥ vi for all i ≥ m.
(2) There exists a subsequence {(xσ(i), θσ(i))} such that θσ(i) < vσ(i).
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The following lemmas show that a contradiction results in either case, namely, the
algorithm eventually yields a δ-optimal solution.

Lemma 3.3. If there exists m such that θi ≥ vi for all i ≥ m, then Ui − Li ↓ 0.

Proof. Since θi ≥ vi, Lemma 2.2 implies

0 ≤ Ui − Li ≤ vi + εi − θi ≤ εi.

The result follows since εi → 0.

Lemma 3.4. If there exists a convergent subsequence {(xτ(i), θτ(i))} such that
θτ(i) < vτ(i), then

(1) 0 < vτ(i) − θτ(i) ≤ vτ(i) − vτ(i−1) + πTτ(i−1)T (xτ(i) − xτ(i−1));

(2) lim vτ(i) − vτ(i−1) = 0;
(3) lim inf πTτ(i−1)T (xτ(i) − xτ(i−1)) ≥ 0.

Proof. It is clear that 0 < vτ(i)− θτ(i) from the assumption. To obtain the second
inequality, observe that (xτ(i), θτ(i)) is constrained to satisfy the cut we added at
iteration τ(i− 1). Therefore

θτ(i) ≥ πTτ(i−1)(h− Txτ(i)),

which implies

vτ(i) − θτ(i) ≤ vτ(i) − πTτ(i−1)(h− Txτ(i))

= vτ(i) − vτ(i−1) + πTτ(i−1)T (xτ(i) − xτ(i−1)).(2)

Now (xτ(i), θτ(i))→ (x∗, θ∗) by assumption. Furthermore, from the algorithm we have

Q(xτ(i))− ετ(i) ≤ vτ(i) ≤ Q(xτ(i))

and therefore

vτ(i) → Q(x∗),(3)

which implies lim vτ(i) − vτ(i−1) = 0. Furthermore, (2) and (3) imply

lim inf πTτ(i−1)T (xτ(i) − xτ(i−1)) ≥ 0.

Lemma 3.5. Suppose X = {x ≥ 0 | Ax = b} is bounded and domQ is Rn. If
there exists a subsequence {(xτ(i), θτ(i))} such that θτ(i) < vτ(i), then Ui − Li ↓ 0.

Proof. The subsequence {(xτ(i), θτ(i))} is bounded since X is bounded. Thus we
may assume, by extracting a further subsequence if necessary, that {(xτ(i), θτ(i))} is
convergent to (x∗, θ∗), say. We proceed to show that Uτ(i) − Lτ(i) converges to zero,
which implies the result. By Lemma 2.2 we have that

0 ≤ Uτ(i) − Lτ(i) ≤ vτ(i) + ετ(i) − θτ(i),

so if we let

Vτ(i) = vτ(i) + ετ(i) − θτ(i),

then by Lemma 3.4
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0 < Vτ(i) ≤ vτ(i) − vτ(i−1) + πTτ(i−1)T (xτ(i) − xτ(i−1)) + ετ(i)(4)

and

lim vτ(i) − vτ(i−1) = 0.(5)

Furthermore, since domQ = Rn, by Lemma 3.2, πTτ(i−1)T is bounded, and so

πTτ(i−1)T (xτ(i) − xτ(i−1))→ 0.

Substituting into (4) and taking the limit as τ(i) → ∞ yields Vτ(i) → 0. Since
Uτ(i) − Lτ(i) is bounded above by Vτ(i) and below by 0, it must converge to 0. Now
by their definitions, {Ui} is decreasing and {Li} is increasing. Hence {Ui − Li} is
decreasing, and since a subsequence of this sequence converges, it follows that the
whole sequence converges.

Theorem 3.6. If {x ≥ 0 | Ax = b} is bounded and domQ = Rn, the inexact cut
algorithm terminates in a finite number of iterations with a δ-optimal solution of P.

Proof. From Lemma 3.3 and Lemma 3.5 we have that Ui − Li ↓ 0. Therefore
there exists some I such that UI − LI < δ, so the algorithm terminates in at most I
iterations. Let xk be such that UI = cTxk + vk + εk. Then

cTxk +Q(xk) ≤ cTxk + vk + εk < LI + δ,

and so cTxk +Q(xk) is within δ of the optimum.
We shall now consider relaxing the assumption that domQ = Rn to X ⊆ domQ.

(We retain the assumption that X is bounded.) In this case we are no longer guar-
anteed that {−πTi T} is a bounded sequence, since {xi} could lie on the boundary of
the domain of Q. At such points it is possible to have unbounded εi-subgradients.
Since Lemma 3.4 remains valid without our assumption, in what follows we confine
our attention to the term

πTτ(i−1)T (xτ(i) − xτ(i−1))

and demonstrate that for some subsequence {xσ(i)} of {xτ(i)},

lim
i→∞

−πTσ(i−1)T (xσ(i) − xσ(i−1)) = 0.(6)

We do this by showing in Lemma 3.9 that for some subsequence {xσ(i)} of {xτ(i)},

lim inf −πTσ(i−1)T (xσ(i) − xσ(i−1)) ≥ 0.(7)

Since by virtue of Lemma 3.4

lim inf πTσ(i−1)T (xσ(i) − xσ(i−1)) ≥ 0,

we get

lim sup−πTσ(i−1)T (xσ(i) − xσ(i−1)) ≤ 0,

which with (7) yields (6).
The proof of Lemma 3.9 uses a subsequence of {xi} lying in the relative interior

of a face of X. Each face of X is a bounded polyhedral set. To derive the inequality
(7) we make use of the following two lemmas for polyhedral sets.
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Lemma 3.7. Let

K = {x | bTj x ≤ βj , 1 ≤ j ≤ k}
and suppose bTj x

∗ = βj, 1 ≤ j ≤ k. Then x∗+y ∈ K implies that y is in the recession
cone of K.

Proof. Since x∗ + y ∈ K it follows that for every j = 1, 2, . . . , k, bTj y ≤ 0, and so
for any x ∈ K, λ ≥ 0 and any j,

bTj (x+ λy) = bTj x+ λbTj y

≤ βj + λbTj y

≤ βj ,(8)

which shows that y is in the recession cone of K.
Lemma 3.8. Suppose {xi} is a sequence of points in G = {x | bTj x ≤ βj , 1 ≤ j ≤

m}, converging to x∗, such that for some k ≤ m
bTj x

∗ = βj if 1 ≤ j ≤ k,
bTj x

∗ < βj otherwise.

Then there is some λ > 0 and N such that for every y in the recession cone of
{x | bTj x ≤ βj , 1 ≤ j ≤ k},

i > N ⇒ xi + λ
y

‖y‖ ∈ G.

Proof. If k = m, then the result is trivial. Otherwise k < m, so let

K = {x | bTj x ≤ βj , 1 ≤ j ≤ k},
and define C to be the recession cone of K. Since

G = K ∩ {x | bTj x ≤ βj , k < j ≤ m},
every member of {xi} lies in K and satisfies

xi + λy ∈ K, λ ≥ 0, y ∈ C.(9)

Now since bTj x
∗ < βj for k < j ≤ m, we may choose λ > 0 so that

‖z − x∗‖ < 2λ =⇒ bTj z ≤ βj , k < j ≤ m.(10)

Thus if N is chosen sufficiently large so that

i > N =⇒ ‖xi − x∗‖ < λ,

then for every y ∈ C, ∥∥∥∥xi + λ
y

‖y‖ − x
∗
∥∥∥∥ ≤ ‖xi − x∗‖+ λ < 2λ.

It now follows from (10) that

bTj

(
xi + λ

y

‖y‖
)
≤ βj , k < j ≤ m.
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Furthermore by (9),

bTj

(
xi + λ

y

‖y‖
)
≤ βj , 1 ≤ j ≤ k,

and so xi + λ y
‖y‖ ∈ G.

We now apply the above lemmas to prove Lemma 3.9. The proof proceeds by
showing that for an appropriately chosen convergent subsequence {xσ(i)}, the projec-
tion of πTσ(i)T in the direction of xσ(i+1) − xσ(i) is uniformly bounded. Once this is
established the conclusion of Lemma 3.9 is immediate.

Lemma 3.9. Suppose {(xτ(i), θτ(i))} is a subsequence of the sequence of solutions
generated by the inexact cut algorithm, and let {πτ(i)} be the corresponding approxi-
mately optimal solutions to the dual of SP(xτ(i)). Then there exists a subsequence of
{xτ(i)} (indexed by σ(i)) such that xσ(i) → x∗ and

lim inf −πTσ(i)T (xσ(i+1) − xσ(i)) ≥ 0.

Proof. Since X is bounded, convex, and polyhedral, the (finite) collection of all
relative interiors of the faces of X partition it [16, Theorem 18.2]. Hence there is a
subsequence of {xτ(i)}, indexed by γ(i), such that {xγ(i)} lies in the relative interior
of a face G of X and converges to a point x∗ ∈ G. (We shall henceforth denote the
relative interior of G by riG.) Since G is polyhedral we may represent it by

G = {x | bTi x ≤ βi, 1 ≤ i ≤ m}.
If x∗ is in the interior of G, then define C to be Rn. In this case there is clearly some
λ > 0 such that for every y ∈ C, and i sufficiently large, xγ(i) + λ y

‖y‖ ∈ G.

Otherwise, without loss of generality define k to be such that

bTi x
∗ = βi, 1 ≤ i ≤ k, bTi x

∗ < βi, k < i ≤ m,
and define C to be the recession cone of {x | bTi x ≤ βi, 1 ≤ i ≤ k}. By Lemma 3.8
there is some λ > 0 such that for every y ∈ C and for i sufficiently large,

xγ(i) + λ
y

‖y‖ ∈ G.(11)

Since we are concerned here with the limiting behavior of {xγ(i)} we shall henceforth
assume that (11) holds for all members of {xγ(i)}.

We now show that we can choose a subsequence {xσ(i)} of {xγ(i)} such that
xσ(i−1) − xσ(i) ∈ C. When C = Rn this is trivial. Otherwise we construct the subse-
quence by choosing xσ(k) given xσ(k−1) in the following manner. Since xσ(k−1) ∈ riG,
there exists ε > 0 such that

({xσ(k−1)}+ εB) ∩ affG ⊆ G,
where B is the open unit ball and affG is the affine hull of G. Now for γ(i) large
enough we have that x∗ − xγ(i) ∈ εB, and so if we choose σ(k) = γ(i), then

x∗ + (xσ(k−1) − xσ(k)) = xσ(k−1) + x∗ − xγ(i) ∈ G,
since xσ(k−1) + x∗ − xγ(i) is also in affG. Therefore

x∗ + (xσ(k−1) − xσ(k)) ∈ {x | bTi x ≤ βi, 1 ≤ i ≤ k},
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and by Lemma 3.7 we deduce that

xσ(k−1) − xσ(k) ∈ C.(12)

Since xσ(i) ∈ riG, this construction may be repeated to yield an infinite sequence.
Applying Lemma 2.1 to members of {xσ(i)}, we have for any x that

Q(x) ≥ Q(xσ(i−1))− πTσ(i−1)T (x− xσ(i−1))− εσ(i−1).

If we choose

x = xσ(i−1) +
xσ(i−1) − xσ(i)∥∥xσ(i−1) − xσ(i)

∥∥λ,
then by Lemma 3.8, (12) and (11) yield x ∈ G and give

−λπTσ(i−1)T
xσ(i−1) − xσ(i)∥∥xσ(i−1) − xσ(i)

∥∥ ≤ Q(x)−Q(xσ(i−1)) + εσ(i−1)

≤ sup
x∈G
Q(x)− inf

x∈G
Q(x) + εσ(i−1).

If we set M = supx∈GQ(x)− infx∈GQ(x)+ε1, then since {εi} is decreasing we obtain

−πTσ(i−1)T
xσ(i−1) − xσ(i)∥∥xσ(i−1) − xσ(i)

∥∥ ≤ M

λ
.

Therefore

−πTσ(i−1)T (xσ(i) − xσ(i−1)) ≥ −M
λ

∥∥xσ(i−1) − xσ(i)

∥∥ ,
which implies

lim inf −πTσ(i−1)T (xσ(i) − xσ(i−1)) ≥ 0.

Theorem 3.10. If X = {x ≥ 0 | Ax = b} is bounded and X ⊆ domQ, the
inexact cut algorithm terminates in a finite number of iterations with a δ-optimal
solution of P.

Proof. The proof is similar to that of Theorem 3.6. We will start by showing
Ui − Li ↓ 0. If there exists m such that θi ≥ vi for all i ≥ m, then Lemma 3.3
delivers the conclusion. Otherwise, there exists a subsequence {(xτ(i), θτ(i))} such
that θτ(i) < vτ(i), and since X is bounded, without loss of generality we may assume
that {(xτ(i), θτ(i))} converges to (x∗, θ∗), say. Then by Lemma 3.4,

lim inf πTτ(i−1)T (xτ(i) − xτ(i−1)) ≥ 0.

Thus

lim sup−πTτ(i−1)T (xτ(i) − xτ(i−1)) ≤ 0.(13)

Now we can apply Lemma 3.9 to extract a subsequence {xσ(i)} of {xτ(i)} such that

lim inf −πTσ(i)T (xσ(i+1) − xσ(i)) ≥ 0.(14)

From (13) and (14) we have

−πTσ(i)T (xσ(i+1) − xσ(i))→ 0.



INEXACT CUTS IN BENDERS DECOMPOSITION 653

This yields Uσ(i) − Lσ(i) → 0, implying that the decreasing sequence {Ui − Li}
tends to 0, which then gives the result as in the proof of Theorem 3.6.

4. Dantzig–Wolfe decomposition. It is well known that Benders decompo-
sition is dual to Dantzig–Wolfe decomposition. Therefore some form of inexact opti-
mization procedure should apply to the latter algorithm in a way that mirrors the
steps of the inexact cut algorithm described in section 2. In fact such a scheme has
been outlined in the literature by Kim and Nazareth [15], who discuss the compu-
tational advantages of using interior-point methods in such an approach. We digress
briefly in this section to explore the asymptotic convergence properties of such an
algorithm.

The dual problem of P can be formulated as

D: maximize bTu+ hT v

subject to ATu+ TT v ≤ c,
WT v ≤ q.

Suppose for the moment that the set V = {v | WT v ≤ q} is bounded with extreme
points {vi}. Then Dantzig–Wolfe decomposition solves a restricted master problem

MD: maximize bTu+
∑
i λih

T vi

subject to ATu+
∑
i λiT

T vi ≤ c,∑
i λi = 1,

λ ≥ 0,

where the summations are taken over a subset of {vi}. New extreme points are added
iteratively to this subset by solving MD, obtaining optimal dual variables (x, θ), and
then solving the subproblem

SD(x): maximize (hT − xTTT )v

subject to WT v ≤ q,
to give a new column

[
TT vi

1

]
to be added to the restricted master problem, in the

event that this column has a positive reduced cost defined by

(hT − xTTT )vi − θ.
In our inexact Dantzig–Wolfe decomposition algorithm we first choose a conver-

gence tolerance δ, set an iteration counter i := 0, and choose some decreasing sequence
{εi} that converges to 0. We do not require that V be bounded, but following [15]
we require an initial set of (not necessarily extreme) points {v1, v2, . . . , vN} ⊆ V such
that MD has a feasible solution. The algorithm then proceeds as follows.

Inexact Dantzig–Wolfe decomposition algorithm.
While Ui − Li > δ

(1) Set i := i+ 1.
(2) Solve MD to obtain (ui, λ) and dual variables xi and θi.
(3) Set Li := bTui +

∑
i λih

T vi.
(4) Perform an inexact optimization to generate a vector vi feasible for SD(xi)

such that

vTi (h− Txi) + εi > V (SD(xi)).(15)

(5) Set Ui := min{Ui−1, c
Txi + vTi (h− Txi) + εi}.
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(6) If vTi (h− Txi) > θi, then add the column
[
TT vi

1

]
to MD,

else set i := i + 1, xi+1 := xi, θi+1 := θi, Li+1 := Li, Ui+1 := Ui and go to
step 4.

Here V (SD(xi)) is the optimal value of SD(xi). Since the dual of SD(xi) is easily
seen to be SP(xi), V (SD(xi)) = Q(xi), and so step 4 of this algorithm is identical to
the same step of the inexact cut algorithm of section 2.

In classical Dantzig–Wolfe decomposition, each solution vi obtained for SD is an
extreme point, of which there is a finite number, thus guaranteeing finite termination.
In the inexact algorithm, this is no longer true. However, Theorem 3.10 may be
invoked to yield the following corollary.

Corollary 4.1. If X = {x ≥ 0 | Ax = b} is a bounded set and for every x ∈ X
the problem SD(x) is bounded, then the inexact Dantzig–Wolfe algorithm terminates
in a finite number of iterations with a δ-optimal solution of D.

Since SD(x) will always have a feasible solution (if D does), the boundedness
condition on SD(x) is equivalent to SP(x) being feasible, which is the relatively com-
plete recourse assumption of the previous section. The other assumption, that X is
bounded, appears to be rather restrictive in the current context, and it fails to hold
in the case when A and b are both absent, a typical situation in many applications of
Dantzig–Wolfe decomposition. The convergence proof requires X to be bounded to
enable the extraction of convergent subsequences. Even when A and b fail to bound
X, we can still extract convergent subsequences as long as we have a guarantee that
the sequence {xi} lies in a bounded set. In Benders decomposition we can enforce this
condition in practice by placing a priori bounds on the components of x. Similarly, in
inexact Dantzig–Wolfe decomposition we can impose a priori bounds on the optimal
dual variables for the master problem constraints (by placing a priori penalties on
infeasibilities in these constraints).

5. Computational results. We conclude by presenting some computational
results of applying the inexact cut algorithm to a set of problems that arise in the
planning of hydroelectric power generation. The problems are all based on a mul-
tistage stochastic programming model developed by Broad [4], in which the New
Zealand electricity system is represented as a side-constrained network model with
nodes representing hydroelectric reservoirs, hydroelectric generation facilities, thermal
generation facilities, and demand points and arcs with constant losses representing
the transmission network. The model consists of six reservoirs, six thermal stations,
and 22 hydrostations.

Each stage is a week long, and demand in each week is represented by a piecewise
linear load duration curve with three linear sections. At each stage several random
outcomes are possible for the inflows into the reservoirs in the current week. We impose
a lower bound on the final level of the reservoirs at the end of the final stage. This lower
bound is a fixed fraction of the original initial level of the reservoirs in the very first
stage. Additional side constraints include DC load flow constraints that govern the
transmission flows and conservation of water flow equations in hydroelectric systems.
The linear program for each stage has 273 variables and 120 constraints. The objective
in each stage is to minimize the cost of thermal electricity generation over the current
week plus the expected future cost of thermal generation.

The multistage models described above were converted into two-stage and three-
stage problems by aggregating consecutive stages into larger problems. For example, to
obtain a two-stage problem from a multistage problem we aggregate each second-stage
problem and its descendants into a single deterministic equivalent linear program.
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Table 1
Problem sizes.

Problem # agg stg P Subproblem # stg # scen/stg

P1 2 10,920 × 24,843 1,200 × 2,730 3 9
P2 2 10,920 × 24,843 1,200 × 2,730 3 9
P3 2 14,520 × 33,033 4,800 × 10,920 5 3
P4 2 14,520 × 33,033 4,800 × 10,920 5 3
P5 2 43,680 × 99,372 14,520 × 33,033 6 3
P6 2 43,680 × 99,372 14,520 × 33,033 6 3
P7 3 14,520 × 33,033 1,560 × 3,549 5 3
P8 3 14,520 × 33,033 1,560 × 3,549 5 3
P9 3 43,680 × 99,372 4,800 × 10,920 6 3
P10 3 43,680 × 99,372 4,800 × 10,920 6 3
P11 3 35,154 × 42,966 1,404 × 1,560 5 5

Similarly, to obtain a three-stage problem from a multistage problem, we aggregate
each third-stage problem and its descendants into a single deterministic equivalent
linear program. Table 1 presents the size and characteristics of the resulting problems.
Although the problems in each pair have the same size, they differ in the lower bounds
imposed on the final levels of the reservoirs. Column 1 of Table 1 gives the problem
identifiers, column 2 presents the number of stages in the problem (after aggregation),
and column 3 contains the size of the deterministic equivalent problem. Column 4
contains the size of each subproblem after aggregation. Column 5 contains the number
of stages in the problem before aggregation. For example, problem P5 is a six-stage
problem, in which we have aggregated the last five stages to produce a two-stage
problem. The last column contains the number of random outcomes (inflows) at each
stage.

When applied to stochastic programs, Benders decomposition and the inexact cut
algorithm must solve a number of subproblems in each iteration. The resulting cut
has as coefficients the expectation of the subproblem coefficients. In the case of three-
stage problems we traverse the scenario tree depth first using the fast pass procedure
(see [12, 18]).

Benders decomposition and the inexact cut algorithm were both implemented
using CPLEX 4.0’s primal-dual interior-point solver baropt to solve the subproblems
and the simplex solver optimize to solve the first-stage problems. We do not apply
the crossover operation (hybbaropt) in solving the subproblems. For the inexact cut
algorithm we terminate optimizing the last stage problems once an ε-optimal solution
has been achieved. (All but last-stage problems are solved to optimality.) We start
with ε = 10, 000 and reduce it by a factor of 10 at each iteration; we terminate baropt
when both primal and dual feasibility are attained in the subproblem and the dual
objective is at most ε away from the primal objective.

Observe that obtaining a primal feasible solution is not a key requirement of the
algorithm but gives a convenient means for bounding how far our dual solution is from
optimality; there is potential for efficiency improvements if a bound can be found that
requires less computation. Indeed it is easy to see that since the proof of convergence
works with a subsequence of the iterates, the requirement that εi decreases monoton-
ically is not necessary, as long as εi → 0. This raises the (unexplored) possibility of
ignoring εi, at least in the early stages of the algorithm, and interrupting baropt in
step 4 as soon as dual feasibility is attained, then restarting it only if πTi (h−Txi) ≤ θi
(i.e., the cut is not exact enough to change xi).
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Table 2
Performance comparison.

Problem # BD cuts # inex cuts BD time inex time % improvement

P1 22 9 170 68 60%
P2 33 20 261 159 39%
P3 5 5 124 109 12%
P4 24 17 640 398 38%
P5 4 4 594 546 8%
P6 4 4 626 585 7%
P7 30 14 324 150 54%
P8 33 27 376 304 19%
P9 17 15 1207 1087 10%
P9 14 11 979 780 20%
P11 4 4 150 134 11%

Table 2 contains a comparison of the computational results for the two meth-
ods. The termination criterion for both algorithms requires a relative gap of 10−5

between the upper and the lower bounds (i.e., we stop when U−L
U < 10−5). All times

are reported on an SGI Power Challenge. Column 1 contains the problem identifiers.
Columns 2 and 3 contain the number of cuts under the exact and inexact cut algo-
rithms, respectively. Columns 4 and 5 contain the timing in seconds for the exact and
inexact methods, respectively. The last column contains the percentage of improve-
ment of the inexact cut algorithm over the exact Benders decomposition algorithm.

The entries in this column are calculated as (exact time − inexact time
exact time )× 100%.

Note that traditionally the subproblems are not aggregated and they are solved
using the (dual) simplex method with warm starting. For some problems this is more
efficient than using an interior-point method on an aggregated subproblem, although
in other cases (e.g., P3, P7, and P11) we experienced significant speed-up by aggre-
gating and using the interior-point method versus Benders decomposition with warm
starting simplex. It may be possible to warm start the interior-point method effec-
tively when solving the subproblems, using recent research developed to this end (see,
for example, [19, 9]).

6. Conclusions. In every one of our problems the inexact cut algorithm im-
proved the time to obtain a solution with the same accuracy as that of the Benders
decomposition algorithm. In our experiments, the choice of {εi} is made indepen-
dently of the problem. Further improvements in speed can be achieved by making
a problem-dependent choice of {εi}. In Table 2 the greatest improvements were ob-
tained in cases where the Benders decomposition required a large number of cuts. In
these cases we observed that often during the course of the exact algorithm the lower
bounds did not change over the course of several iterations. The inexact cut algorithm
does not display this behavior, and it reaches an approximately optimal solution with
fewer cuts. This suggests that computing cuts inexactly is a promising and simple im-
provement strategy for operations research practitioners who observe similar behavior
in Benders decomposition applied to their stochastic linear programming models.
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tion of this paper.
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Abstract. Minimizing a separable convex objective subject to an ordering restriction on its
variables is a generalization of a class of problems in statistical estimation and inventory control. It
is shown that a pool adjacent violators (PAV) algorithm can be used to compute an optimal solution
of this problem as well as the minimal and maximal extended solutions, which provide lower and
upper bounds on all optimal solutions and solve certain subproblems. These results unify and extend
several previously known results. In addition, it is shown that a PAV algorithm can be applied to
solving the problem with integer constraints on the variables.
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1. Introduction. Let I = (a, b) be a real interval, where −∞ ≤ a, b ≤ ∞. Let
N = {1, 2, . . . , n} and fi, i ∈ N , be real-valued convex functions defined on I. We
consider the following problem.

Problem P. Find xi ∈ I for i ∈ N , so as to

minimize
n∑
i=1

fi(xi)

subject to x1 ≤ x2 ≤ · · · ≤ xn.
The constraint x1 ≤ x2 ≤ · · · ≤ xn in the Problem P is called the simple chain
or monotonicity constraint. A vector x = (x1, x2, . . . , xn) with xi ∈ I, satisfying
the monotonicity constraint, is called a monotone vector. Since I is open, convex
functions such as fi are continuous on I but they may not have minimizers in I.
Unless otherwise stated, we assume throughout that the following Condition A holds.

Condition A. Each fi, i ∈ N , has a minimizer µi in I.
Note that µi is in the interior of I since I is open.
Several special cases of Problem P have been previously considered in the lit-

erature, for example, in statistical applications, estimation, inventory control, and
curve fitting. We cite three cases. The first is the isotonic regression problem; in
this case I = (−∞,∞), fi(xi) = wi(ci − xi)

2, with wi > 0 for each i. See, e.g.,
Robertson, Wright, and Dykstra [14] or Best and Chakravarti [2]. The second is
the isotonic median regression; in this case I = (−∞,∞), fi(xi) = |ci − xi| for
each i. See, e.g., Robertson and Wright [13] or Chakravarti [4]. In the third case,
I = (0,∞), fi(xi) = ai/xi + bixi, with ai > 0, bi > 0 for each i. See, e.g., Schwarz
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and Schrage [16]. Each of these cases can be solved by a pool adjacent violators
(PAV) algorithm. Strömberg [17] has also applied a PAV algorithm to a problem with
a convex distance function defined in a special way that entails conditions stronger
than Condition A. The algorithm computes an optimal solution and the minimal and
maximal optimal solutions. This problem is also a special case of our problem. The
PAV algorithm appearing in these works or elsewhere is essentially the same. It main-
tains a partition of the set of indexes N into sets of consecutive integers, called blocks.
Adjacent blocks are pooled in the event of a “violation,” suitably defined in each case.
Our Problem P is the most general considered up to this time in that each fi is arbi-
trary and is allowed to have more than one minimizer, and hence a bounded or even
an unbounded interval of minimizers. In this article we show that a PAV algorithm
can be used to solve the more general Problem P. The article therefore extends and
unifies previous results. Our contribution is in enlarging the class of problems that
can be solved by a PAV algorithm. (Although the PAV algorithm is essentially the
same, for the least squares objective it may be cast into a somewhat different form
using greatest convex minorants. See Preparata and Shamos [12, p. 168] and Ubhaya
[20].)

We also show that the PAV algorithm can be suitably used to obtain what we call
the extremal (minimal and maximal) extended solutions. These solutions give lower
and upper bounds on all optimal solutions to P. Furthermore, subvectors formed by
their components provide extremal optimal solutions to certain subproblems of P. In
the case of certain optimization and approximation problems, it is known that there
exist extremal (a maximal and/or a minimal) optimal solutions so that the set of
all optimal solutions is appropriately bounded above and/or below by the respective
extremal solution. Under certain conditions, the converse is also true, i.e., that any
feasible solution to the problem that is enclosed between the two extremal solutions
is optimal. See, e.g., Landers and Rogge [8, 9], Liu and Ubhaya [10], and Ubhaya
[18, 19, 21]. However, these conditions do not apply to our very general problem. The
extremal extended solutions mentioned above fulfill the role of the extremal solutions.

We now describe the significance of multiple and extremal solutions. If the set S
of optimal solutions to P has more than one element, then we may be able to find one
solution that optimizes another objective function of interest over S, e.g., minimize
(respectively, maximize) Σni=1cixi, where ci > 0 represent cost (respectively, profit)
per unit of ithe commodity. Roughly speaking, the required optimal solution will be
the minimal (respectively, maximal) solution. When ci have mixed signs, a solution
in between these two may result. Another problem is sensitivity analysis, i.e., the
effect of perturbations in the constants z appearing in fi on the optimal solution. For
example, if fi(xi) = |ci−xi|, then z = (c1, c2, . . . , cn), and if fi(xi) = ai/xi+bixi, then
z = (a1, b1, a2, b2, . . . , an, bn). For each z, let Sz denote the set of optimal solutions
to P and consider the “selection problem” of selecting one solution x out of Sz for
each z so that the mapping z → x has certain properties such as stability. Ubhaya
[21] has shown that such selections can be made in certain optimization problems and
that the extremal optimal solutions play a significant part. In the case of Problem P,
further investigations are needed.

We also show that a PAV algorithm can be applied to obtain a solution of Prob-
lem P with integer constraints on its variables. Goldstein and Kruskal [7] have shown
that the isotonic regression problem with integer constraints may be solved by first
solving the continuous problem and then simply rounding the solution. In our more
general framework, such a strategy does not work. We show, however, that this
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strategy can be used if certain conditions, which are satisfied by the integer isotonic
regression, are imposed on P. Integer constrained problems arise when xi represent
quantities taking integer values such as number of units produced, number of work-
ers assigned, ranks, etc. Examples appear in [7] and in Liu and Ubhaya [10] and
will not be repeated here. In [10], polynomial algorithms are developed for solving
a related regression problem with a convex but nonseparable distance function, and
monotonicity and integer constraints on the variables.

The rest of this article is organized as follows. Section 2 mainly consists of a
description and validation of the PAV algorithm for Problem P. It also contains the
discussion of some special known cases of P in the light of our results. In section 3 we
establish the existence of extremal extended solutions for P and present an algorithm
to compute them. In section 4 we develop algorithms for obtaining an optimal solution
and extremal extended solutions to the integer version of P.

2. PAV algorithm. In this section we develop a PAV algorithm for solving
Problem P. Let us start by briefly reviewing some basic facts about subgradients of
convex functions. See Clarke [5] and Rockafellar [15].

Let I = (a, b) be as in section 1 and f : I → R be a convex function. A number
ξ is said to be a subgradient of f at x in I if f(y)− f(x) ≥ ξ(y− x) for all y ∈ I. We
denote by ∂f(x) the set of all the subgradients at x ∈ I. It is known that ∂f(x) is a
nonempty compact interval for each x in I and that it has the following monotonicity
properties. If ξ1 ∈ ∂f(x1) and ξ2 ∈ ∂f(x2), then

x1 < x2 ⇒ ξ1 ≤ ξ2 and ξ1 < ξ2 ⇒ x1 ≤ x2.(2.1)

Furthermore, x ∈ I minimizes f over I if and only if 0 ∈ ∂f(x). It is also known that
if fi : I → (−∞,∞), i ∈ N , are convex functions, then

δ

(
n∑
i=1

fi

)
(x) =

n∑
i=1

∂fi(x), x ∈ I.(2.2)

We now state the optimality conditions for Problem P needed for developing the PAV
algorithm. These may be derived easily by elementary methods from Theorem 6.1.1
of [5] or Theorem 28.3 of [15].

Proposition 2.1. x = (x1, x2, . . . , xn) is an optimal solution for Problem P if
and only if there exist dual variables ξj ∈ ∂fj(xj), j ∈ N , and νi, 1 ≤ i ≤ n− 1, such
that

x1 ≤ x2 ≤ · · · ≤ xn,(2.3)

ξ1 = −ν1, ξ2 = ν1 − ν2, . . . , ξn−1 = νn−2 − νn−1, ξn = νn−1,(2.4)

νi ≥ 0, 1 ≤ i ≤ n− 1,(2.5)

xi < xi+1 ⇒ νi = 0, 1 ≤ i ≤ n− 1.(2.6)

For any subset B of N , define a function FB on I by

FB(x) =
∑
i∈B

fi(x).

Clearly, F{i} = fi for all i ∈ N . Note that FB is convex. Recall that, by Condition A
of section 1, each fi has a minimizer µi in I. Clearly, each fi has the following
Property A.



MINIMIZING SEPARABLE CONVEX FUNCTIONS 661

Property A. Each fi is nonincreasing on (a, µi) and nondecreasing on (µi, b).
The above property may be used to prove the following proposition. The proof

is left to the reader.
Proposition 2.2. For any B ⊂ N , FB has a minimizer µB in [α, β], where α =

min{µi : i ∈ B} > a and β = max{µi : i ∈ B} < b. Furthermore, Problem P has an
optimal solution x = (x1, x2, . . . , xn) with xi ∈ [γ, δ], where γ = min{µi : i ∈ N} > a
and δ = max{µi : i ∈ N} < b.

A partition J of N is a decomposition of N into disjoint sets of consecutive
integers whose union is N . Each member of the partition is called a block of J ,
generally denoted by B. We define x(J) to be any n-vector whose ithe coordinate
xi(J), i ∈ N , is given by xi(J) = µB , where B is the unique block of J containing
i and µB is a minimizer of FB , which exists by Proposition 2.2. Thus xi(J) has
identical values for all i in a block.

We next present a PAV algorithm for Problem P. Beginning with the finest parti-
tion whose blocks are single integers in N and an initial infeasible solution x (violating
constraint (2.3)), the algorithm successively merges blocks to reduce infeasibility, ob-
taining a new, coarser partition J and an infeasible solution x(J). It terminates when
x(J) becomes feasible, giving an optimal solution and partition. Let B = {p, . . . , q},
1 ≤ p ≤ q ≤ n, denote a block of a partition J during any iteration of the algorithm.
The predecessor and successor blocks of B, denoted, respectively, by B− and B+, of
the same partition J , are defined as follows: if p > 1, then B− is the block containing
p − 1, otherwise B− = ∅. Similarly, if q < n, then B+ is the block containing q + 1,
otherwise B+ = ∅.

Algorithm 2.3 (the PAV algorithm for computing an optimal solution x = x(J)
to Problem P). Note that, by Proposition 2.2, FB has a minimizer in I. In the
following, the minimizers µB of FB are not necessarily unique. Choose any minimizer
µB , but once chosen, use this minimizer for all subsequent occurrences of that B.
Algorithm PAV

initialization:
Set J =

{{i} : i ∈ N}; compute a minimizer µB of fB , B ∈ J ;
Set B = {1}, B+ = {2}, B− = ∅;

while B+ 6= ∅
if µB > µB+ then

merge B and B+ (i.e., set J = J\{B,B+} ∪ {B ∪B+} and B = B ∪B+);
compute new µB and set B+ appropriately (B− remains unchanged);
while B− 6= ∅ and µB− > µB

merge B and B− (i.e., set J = J\{B,B−} ∪ {B ∪B−} and B = B ∪B−);
compute new µB and set B− appropriately (B+ remains unchanged);

end while
else

set B = B+; set B− and B+ appropriately;
end if

end while
xi(J) = µB , i ∈ B ∈ J is an optimal solution;

end algorithm PAV
We now analyze the worst-case complexity of the algorithm. The initial partition

is of size n, i.e., it has n blocks. Whenever two blocks are merged, a new block is
formed and the number of blocks in the partition is decreased by 1. In the worst
case, therefore, there are n different partitions having decreasing sizes n, n− 1, . . . , 1.
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Each time a new block is formed, there are at most two comparisons, giving a total
of 2(n − 1). The algorithm also requires the computation of µB for subsets B of
N at most 2n − 1 times, n times at the initialization step, and once every time a
new block is formed by merging. The algorithm therefore has linear time worst-case
complexity if we assume that each comparison and each computation of µB incurs
unit cost. In general, it may take more than unit cost to compute µB (see below) or
to set B = B ∪B+, etc. Suitable data structures may have to be used to improve the
complexity, as in some special cases of Problem P given later in the paper.

If each fi is differentiable, then ∂FB(X) is a singleton and equals the derivative
of FB at x. In this case µB is determined by setting this derivative equal to zero.
In case fi(xi) = wi(ci − xi)

2 (isotonic regression), µB turns out to be the “block
average” (Σi∈Bwici)/(Σi∈Bwi). Each computation of µB during the PAV algorithm
requires a constant number of elementary arithmetic operations with the use of an
appropriate data structure. The PAV algorithm therefore has linear time complexity
in the usual unit cost random access machine model (Aho, Hopcroft, and Ullman
[1]). For more details, see, e.g., Preparata and Shamos [12], Best and Chakravarti
[2], or Grotzinger and Witzgall [6]. It has been observed by Ubhaya [20] that the
problem of quasi-convex regression (with the above quadratic distance function) can
be solved by solving n isotonic regression problems giving the worst-case complexity
of O(n2). However, Ubhaya has shown that this complexity can be reduced to O(n)
by using special computations and a data structure. Such an improvement does not
seem possible for quasi-convex regression with an arbitrary function fi(xi). For the
case fi(xi) = |ci − xi| (isotonic median regression), µB is given by the median of the
set {ci : i ∈ B}. Each computation of µB requires O(|B|) comparisons, and the time
complexity of the algorithm is O(n2). An interesting feature of the algorithm in this
case is that it requires no arithmetic operations other than comparisons and so is free
of rounding error (Chakravarti [4]). Finally, let fi(xi) = ai/xi + bixi, with ai > 0,
bi > 0. In this case µB is given by ((Σi∈Bai)/(Σi∈Bbi))1/2. If an appropriate data
structure is used, each computation of µB requires a constant number of elementary
arithmetic operations and a single square-root extraction. The PAV algorithm has
linear time complexity provided that each square-root extraction incurs unit cost. In
what follows we prove the correctness of the algorithm.

Lemma 2.4. Let J be any partition obtained during the course of Algorithm 2.3,
and let B = {p, p + 1, . . . , q} be any block of J . Let x = x(J) be the solution cor-
responding to J . Then, there exist dual variables ξi ∈ ∂fi(xi), p ≤ i ≤ q, such that
Σqi=pξi = 0.

Proof. Let Σ denote Σqi=p. By Algorithm 2.3, we have xi = xi(J) = µB for all
i ∈ B. By (2.2) we have Σ∂fi(xi) = Σ∂fi(µB) = ∂(Σfi)(µB) = ∂FB(µB). Since
µB minimizes FB and, by Condition A, µB ∈ I, we have 0 ∈ ∂FB(µB). Hence ξi,
p ≤ i ≤ q, may be so chosen so that ξi ∈ ∂fi(xi) and Σξi = 0.

Theorem 2.5. The PAV Algorithm 2.3 computes an optimal solution to Prob-
lem P.

Proof. The proof of the algorithm proceeds by showing that for each partition
J , there exist ξi = ξi(J) and νi = νi(J) satisfying (2.4), (2.5), and (2.6). Hence, at
termination, all the optimality conditions (2.3)–(2.6) are satisfied and the solution
x(J) obtained is optimal. Throughout the proof, the dual variables ξi and νi, 1 ≤
i ≤ n, stated in Proposition 2.1 will be chosen according to the following selection
criterion, which ensures that they will automatically satisfy (2.4) and (2.6) but not
necessarily (2.5). Let J be any partition and B = {p, p + 1, . . . , q} be any block of
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J . Then xi = xi(J) = µB , p ≤ i ≤ q. We choose ξi ∈ ∂fi(xi), p ≤ i ≤ q, such that
Σqi=pξi = 0. By Lemma 2.4 such ξi exist. We also let νi = −Σij=pξj = Σqj=i+1ξj ,
p ≤ i ≤ q. Clearly, ξi satisfy (2.4). Then, νq = −Σqj=pξj = 0. Also, since νq = 0, (2.6)
is automatically satisfied for i = q if q < n. However, (2.5) may not be satisfied.

We prove the theorem by induction on distinct partitions. For the initial partition
each {i} is a block, xi = µi, and 0 ∈ ∂f(xi). We let ξi = 0, i ∈ N , and, by the selection
criterion, νi = 0 for all 1 ≤ i ≤ n − 1. Thus (2.4)–(2.6) hold. During any step with
the (current) partition J, ξi and νi satisfy (2.4) and (2.6) by their selection criterion.
We therefore assume that (2.5) holds for νi for partition J , and, if J ′ is the next
partition, we produce ξ′i = ξi(J

′) and ν′i = νi(J
′) so that (2.5) also holds for ν′i. Let

B1 = {p, p+ 1, . . . , q} and B2 = {q + 1, q + 2, . . . , r} be two consecutive blocks of J .
If µB1

≤ µB2
, then B1, B2 ∈ J ′ = J , and we let ξ′i = ξi and ν′i = νi. Then (2.5)

holds for ν′i. Now suppose that µB1
> µB2

. Then, J ′ = J\{B1, B2} ∪ {B1 ∪ B2} is
obtained from J by merging B1 and B2, and B = B1 ∪ B2. We need to show the
existence of ξ′i and ν′i satisfying (2.5). We let ξ′i = ξi unless p ≤ i ≤ r. This gives
ν′i = νi unless p ≤ i ≤ r, by the selection criterion. Hence we need only produce ξ′i,
p ≤ i ≤ r, such that ν′i ≥ 0 for p ≤ i ≤ r. We consider several cases. For convenience,
we use the notation F, F1, F2,M,M1, and M2 instead of FB , FB1

, FB2
, µB , µB1

, and
µB2

, respectively. Then, by assumption, M1 > M2.
Case i. M1 > M > M2. We choose any ξ′i, p ≤ i ≤ r, satisfying its definition.

Since M1 > M , by (2.1), we have ξ′k ≤ ξk, p ≤ k ≤ q. Hence, ν′i = −Σik=p ξ
′
k ≥

−Σik=p ξk = νi ≥ 0 for p ≤ i ≤ q. Again, since M > M2, we have ξ′k ≥ ξk for
q < k ≤ r. Hence, ν′i = Σrk=i+1 ξ

′
k ≥ Σrk=i+1ξk = νi ≥ 0, q < i ≤ r. (ν′r = νr = 0.)

Case ii. M1 = M > M2. Since ∂fk(M1) = ∂fk(M) is a compact interval, we
denote it by [δk, δk], p ≤ k ≤ r. Then ξk ≥ δk, p ≤ k ≤ q, since ξk ∈ ∂fk(M1). Again,
since M1 > M2, we have δk ≥ ξk, q < k ≤ r. Hence, Σrk=q+1δk ≥ Σrk=q+1 ξk = 0. Now

0 ∈ ∂F (M), and hence Σrk=pδk ≤ 0, which gives Σqk=pδk ≤ −Σrk=q+1δk ≤ 0. Again,

Σqk=p ξk = 0. Hence, clearly, we can find δk, p ≤ k ≤ q, satisfying δk ≤ δk ≤ ξk and

Σqk=pδk = −Σrk=q+1δk. We choose ξ′k = δk, p ≤ k ≤ q, and ξ′k = δk, q < k ≤ r.

Then, for p ≤ i ≤ q, we have ν′i = −Σik=pξ
′
k = −Σik=pδk ≥ −Σik=p ξk = νi ≥ 0. Since

M > M2, we have δk ≥ ξk, q < k ≤ r. Hence, as in Case i, for q < i ≤ r we have
ν′i = Σrk=i+1 ξ

′
k = Σrk=i+1δk ≥ Σrk=i+1 ξk = νi ≥ 0.

Case iii. M > M1 > M2. Let λ ∈ ∂F2(M1). Since 0 ∈ ∂F2(M2) and M1 > M2, by
(2.1) we have λ ≥ 0. Again, since 0 ∈ ∂F1(M1), by (2.2) we have λ = λ+0 ∈ ∂F (M1).
Now 0 ∈ ∂F (M) and M > M1, hence λ ≤ 0. Thus λ = 0 and 0 ∈ ∂F2(M1). Hence
M1 is a minimizer of F2. By (2.2), there exist ηk ∈ ∂fk(M1), q < k ≤ r, such that
Σrk=q+1 ηk = 0. Since M > M1, for any ξ′ consistent with the definition, we have
ξ′k ≥ ξk, p ≤ k ≤ q. Similarly, M > M1 yields ξ′k ≥ ηk, q < k ≤ r. Consequently, we
have the inequality

r∑
k=p

ξ′k ≥
q∑

k=p

ξk +
r∑

k=q+1

ηk.

Since Σqk=p ξk = νq = 0, Σrk=q+1ηk = 0 and Σrk=pξ
′
k = ν′r = 0, we conclude that both

sides of the above inequality are zero. Hence, we must have ξ′k = ξk, p ≤ k ≤ q, and
ξ′k = ηk, q < k ≤ r. Now the first set of equations at once shows that ν′i = νi ≥ 0,
p ≤ i ≤ q. Since M > M2, we have ξ′k = ξk, q < k ≤ r. Then, as in Case i, we obtain
ν′i ≥ νi ≥ 0, q < i ≤ r.

The remaining cases, M1 > M2 = M and M1 > M2 > M , may be treated
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similarly.

3. Minimal and maximal extended solutions. Let I = [a, b], which is a
closed interval in the extended real line [−∞,∞]. A vector x = (x1, x2, . . . , xn) is
called an extended monotone vector if xi ∈ I and x1 ≤ x2 ≤ · · · < xn. Note that
a monotone vector is extended monotone. In this section, we obtain two extended
monotone vectors u and v which provide the lower and upper bounds on all optimal
solutions to P. Furthermore, subvectors formed by components of u and v give ex-
tremal optimal solutions to certain subproblems of P. We call u and v, respectively,
the minimal and maximal extended solutions to P and develop PAV algorithms to
compute them.

Let B ⊂ N . If SB is the set of all minimizers of convex function FB(x) =
Σi∈B fi(x) defined for x ∈ I = (a, b), then, by Proposition 2.2, SB 6= ∅. Define
µ
B

= inf SB and µB = supSB . Note that µ
B

(respectively, µB) may equal the
endpoint a (respectively, b) of I and, thus, not be an element of I. By the convexity
of FB , we have SB = [µ

B
, µB ] ∩ I. When B = {i}, i ∈ N , the above defines the

corresponding quantities µ
i

and µi for fi = F{i}. If µ
B

(respectively, µB) is in I, then
it is the smallest (respectively, largest) minimizer of FB . The proof of the following
proposition uses Condition A and is similar to that of Proposition 2.2. It is left to
the reader.

Proposition 3.1 (bounds on optimal solutions). Let B ⊂ N . Then,

a ≤ min
{
µ
i

: i ∈ B
}
≤ µ

B
≤ max

{
µ
i

: i ∈ B} < b,

a < min
{
µi : i ∈ B} ≤ µB ≤ max

{
µi : i ∈ B} ≤ b.

Furthermore, Problem P has at least one optimal solution, and any optimal solution
x = (x1, x2, . . . , xn) satisfies

a ≤ min
{
µ
i

: i ∈ N} ≤ xi ≤ max
{
µi : i ∈ N} ≤ b, for all 1 ≤ i ≤ n.

If x = (x1, x2, . . . , xn) is an extended monotone vector, we define ind(x) (respec-
tively, ind(x)) to be the largest (smallest) index i ∈ N such that xi = a (respectively,
xi = b) if such an index exists, and 0 (respectively, n + 1), otherwise. We define
the minimal (respectively, maximal) optimal solution to a problem to be a solution
that is the smallest (respectively, largest) in each coordinate among all the optimal
solutions to the problem. Clearly, such solutions, if they exist, are unique. We define
a Subproblem SP(c, d), indexed by two integers c and d in N , as follows.

Subproblem SP(c, d). Find xi ∈ I, c ≤ i ≤ d, so as to

minimize
d∑
i=c

fi(xi)

subject to xc ≤ xc+1 ≤ · · · ≤ xd.

Clearly, P = SP(1, n). The following theorem establishes existence and properties
of extremal extended solutions. These results and some others to follow are intuitively
obvious but their proofs, requiring essentially basic convexity arguments, are tedious.
We leave them to the reader. A sample proof of Theorem 3.2, part 3, appears in the
appendix. (The third author may be contacted for a copy of the original technical
report [3], which includes all the proofs.) If X is the set of all optimal solutions to
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P, then u and v in the following theorem are defined by ui = inf{xi : x ∈ X} and
vi = sup{xi : x ∈ X}.

Theorem 3.2 (minimal and maximal extended solutions). There exist two
unique extended vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) for Problem P
(which are called, respectively, the minimal and maximal extended solutions) with the
following properties, where p = ind(u) and q = ind(v):

1. a ≤ ui < b, a < vi ≤ b, and ui ≤ vi for all i.
2. If x = (x1, x2, . . . , xn) is any optimal solution to P, then ui ≤ xi ≤ vi for

all i.
3. i. 0 ≤ p ≤ n, µ

i
= ui = a for 1 ≤ i ≤ p, and µ

p+1
≥ up+1 > a if p < n.

ii. 1 ≤ q ≤ n+ 1, µi = vi = b for q ≤ i ≤ n, and µq−1 ≤ vq−1 < b if q > 1.
4. i. (up+1, up+2, . . . , un) is the minimal optimal solution to Subproblem

SP(p + 1, n). If p = 0 (equivalently, ui ∈ I, i ∈ N), then u is the min-
imal optimal solution to P.
ii. (v1, v2, . . . , vq−1) is the maximal optimal solution to Subproblem SP(1,
q − 1). If q = n + 1 (equivalently, vi ∈ I, i ∈ N), then v is the maximal
optimal solution to P.

5. i. ui minimizes fi for max{p+ 1, q} ≤ i ≤ n.
ii. vi minimizes fi for 1 ≤ i ≤ min{p, q − 1}.
iii. If p + 1 ≤ q − 1, then (up+1, up+2, . . . , uq−1) and (vp+1, vp+2, . . . , vq−1)
are, respectively, the minimal and maximal optimal solutions to Subproblem
SP(p+ 1, q − 1).

6. A monotone vector x = (x1, x2, . . . , xn) is an optimal solution to P if and
only if the following three conditions are satisfied: xi minimizes fi (equiv-
alently, a < xi ≤ µi) for 1 ≤ i ≤ min{p, q − 1}; if p + 1 ≤ q − 1, then
(xp+1, xp+2, . . . , xq−1) is an optimal solution SP(p + 1, q − 1); and xi mini-
mizes fi (equivalently, µ

i
≤ xi < b) for max{p+ 1, q} ≤ i ≤ n.

Note that, by convexity of fi, the limits stated in part 1 of the next proposition
exist. We leave its simple proof to the reader.

Proposition 3.3. In the following four statements, 1⇒ 2⇔ 3⇒ 4.

1. lim{fi(x) : x ↓ a} = lim{fi(x) : x ↑ b} =∞ for all i.
2. µ

i
, µi ∈ I, and are, respectively, the minimal and maximal minimizers of

fi = F{i} for all i.
3. µ

B
, µB ∈ I, and are, respectively, the minimal and maximal minimizers of

FB for all B ⊂ N .
4. ui, vi ∈ I for all i, and u and v are, respectively, the minimal and maximal

optimal solutions to P.

A special case of the statement 3 ⇒ 4 of the above proposition is established by
Strömberg [17] for his distance function. We now state another PAV algorithm.

Algorithm 3.4 (the PAV algorithm for determining u = u(J) and v = v(J)).

1. The steps of the algorithm to compute u(J) are identical to those of the PAV
algorithm (Algorithm 2.3) with the following changes: Replace µi, µ{i}, µB ,
µB− , µB+ , x(J), and xi(J) by µ

i
, µ{i}, µB , µB− , µB+ , u(J), and ui(J), respec-

tively. (Note that some of the values of µ
i
, µ
B

, etc., may equal the endpoint
a of I. If a = −∞, use a sufficiently small number for a in computer imple-
mentation.)

2. The steps of the algorithm to compute v(J) are identical to those of the PAV
algorithm (Algorithm 2.3) with the following changes: Replace µi, µ{i}, µB ,
µB− , µB+ , x(J), and xi(J) by µi, µ{i}, µB , µB− , µB+ , v(J), and vi(J), respec-
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tively. (Note that some of the values of µi, µB , etc., may equal the endpoint
b of I. If b =∞, use a sufficiently large number for b in computer implemen-
tation.)

Note that the final (optimal) partitions J obtained in statements 1 and 2 above
are not necessarily identical.

The remainder of this section is devoted to validating the algorithm. We omit
the proof of the next proposition, as it is similar to that Proposition 3.1.

Proposition 3.5. Let Bi, 1 ≤ i ≤ m, by any nonempty disjoint subsets of N ,
and let B = ∪{Bi : 1 ≤ i ≤ m}. Then

a ≤ min
{
µ
Bi

: 1 ≤ i ≤ m} ≤ µ
B
≤ max

{
µ
Bi

: 1 ≤ i ≤ m} < b,

a < min
{
µBi : 1 ≤ i ≤ m} ≤ µB ≤ max

{
µBi : 1 ≤ i ≤ m} ≤ b.

We say that (L,U) is a split of a block B if L and U are nonempty disjoint sets
of consecutive indices in B such that L∪U = B. Clearly, there exists a unique index
p in B such that L = {i ∈ B : i ≤ p} and U = {i ∈ B : i > p}; L and U are, indeed,
subblocks of B with p ∈ L and p+ 1 ∈ U .

Lemma 3.6. Let (L,U) be a split of a block B in any partition of the PAV
Algorithm 3.4. Then µ

L
> µ

U
and µL > µU .

Proof. There exists p ∈ B such that L = {i ∈ B : i ≤ p} and U = {i ∈ B : i > p}.
We prove the first inequality by induction on successive distinct partitions; the proof
for the second is similar. We fix the index p and consider a succession of blocks to
which p belongs as the partitions change. Initially, each element of N forms a block.
Hence, there exists a first partition J0 in which p and p+ 1 belong to the same block
B0, say. Let (L0, U0) be the split of B0 with p ∈ L0 and p + 1 ∈ U0. Then L0 and
U0 were merged to obtain B0 when J0 was formed. According to the PAV criterion,
µ
L0
> µ

U0
holds. For any sequence of subsequent partitions which have B0 as a block,

the above strict inequality, of course, continues to hold.
Now suppose that J1 and J2 are any two consecutive partitions with corresponding

distinct blocks B1 and B2 to which p belongs. Then B2 is obtained from B1 by a
merge operation. Let (L1, U1) be the split of B1 such that p ∈ L1 and p + 1 ∈ U1.
Let (L2, U2) denote the corresponding split of B2. To prove by induction, we assume
that µ

L1
> µ

U1
holds and show that µ

L2
> µ

U2
. Suppose that B2 = B1 ∪ C, where

C (B+ in the algorithm) is the successor block of B1 merged with B1. (The proof
when C is the predecessor block of B1, i.e., when B− in the algorithm, is similar.)
Then clearly, L2 = L1 and U2 = U1 ∪ C. Also, µ

B1
> µ

C
by the merge criterion of

the algorithm. By Proposition 3.5, we have µ
B1
≤ max{µ

L1
, µ
U1
}. By hypothesis,

µ
L1

> µ
U1

, hence, the above inequality gives µ
B1
≤ µ

L1
. Hence, µ

C
< µ

B1
≤ µ

L1
.

Again, since U2 = U1 ∪ C, Proposition 3.5 shows that

µ
U2
≤ max

{
µ
U1
, µ
C

}
< µ

L1
= µ

L2
,

which is the required result.
The simple proof of the next lemma is left to the reader.
Lemma 3.7. There exist σ, σ ∈ I such that, for any B ⊂ N with µ

B
= a (respec-

tively, µB = b), every point in (a, σ] (respectively, [σ, b)) is a minimizer of FB.
Theorem 3.8. The PAV Algorithm 3.4 computes the extended minimal and

maximal solutions u = u(J) and v = v(J) to Problem P as obtained in Theorem 3.2.
Proof. We first show that u ≤ x for any optimal solution x of P. Let J be the final

partition obtained by Algorithm 3.4 when computing u. Suppose that, for some index
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k, we have xk < uk. Let B = {p, p+1, . . . , q} be the last block of J such that for some
j ∈ B we have xj < uj . Then, by the PAV algorithm, ui = up = µ

B
for all i ∈ B and

xi ≤ xj < uj = up for all i with p ≤ i ≤ j. Let L be the set of all indices i such that
p ≤ i ≤ n and xi = xp. We then have uq+1 ≥ up if q < n. (Note that uq+1 = up is a
possibility.) Again, by the choice of B, we have xq+1 ≥ uq+1 if q < n. Consequently,
xq+1 ≥ up > xp, if q < n, and hence, L has the form L = {p, p + 1, . . . , r}, where
r ≤ q. Thus L ⊂ B. Clearly, xr+1 > xr = xp < up.

Define y = (y1, y2, . . . , yn) by yi = xi for 1 ≤ i < p and r < i ≤ n, and
yi = min{up, xr+1} = λ, say, for p ≤ i ≤ r. Then y is a monotone vector and is
feasible to P. Also, xp < λ ≤ up = µ

B
. If L 6= B, then (L,U), where U = B\L,

is a split of B. By Lemma 3.6, we have µ
L
> µ

U
. By Proposition 3.5, we have

µ
L

= max{µ
L
, µ
U
} ≥ µ

B
. Hence xp < λ ≤ µ

L
. Since a < xp, this shows that µ

L
∈ I.

Hence, µ
L

is the smallest minimizer of FL, and, by convexity of FL, we conclude that
FL(λ) − FL(xp) < 0. Similarly, if L = B, then xp < λ ≤ µ

B
. Again, since µ

B
is the

smallest minimizer of FB , by convexity of FB , we find that FB(λ)−FB(xp) < 0. Now

n∑
i=1

fi(yi)−
n∑
i=1

fi(xi) = FL(λ)− FL(xp) < 0,

in both the cases, L 6= B and L = B. It follows that x is not an optimal solution
to P. This contradiction shows that xi ≥ ui for all i.

Let u′ denote the u of Theorem 3.2. We wish to show that u′ = u, where u
is as in this theorem, obtained by Algorithm 3.4. As shown above, u ≤ x for any
optimal x to P. Hence, u ≤ u′. Let r = ind(u′). Then, by Theorem 3.2, we have
µ
i

= u′i = a, 1 ≤ i ≤ r. Since u ≤ u′, we have ui = u′i = a, 1 ≤ i ≤ r. Now
we show that ui = u′i, r + 1 ≤ i ≤ n. Now let J be the final partition obtained
by Algorithm 3.4 as applied to the computation of u. As pointed out earlier, some
of µ

i
, µ
B

, etc. used in Algorithm 3.4 may equal a. Since a 6∈ I, these quantities
are not a minimizer of fi, FB , etc., as in that algorithm. Hence, the conclusions of
Theorem 2.5 cannot be applied. We now show that the same partition J is obtained
by using suitable minimizers of fi, FB , etc. in the algorithm so that Theorem 2.5 can
be applied. Let B be the set of all blocks of N , including {i} for i ∈ N . Define
θ = min{µ

B
: B ∈ B, µ

B
> a}. Then θ > a. Now let σ be as in Lemma 3.7 and

a < c < min{σ, θ}. Then, by that lemma, c is a minimizer of FB when µ
B

= a.
In Algorithm 3.4 we replace µ

B
by c whenever µ

B
= a. In particular, we replace

each µ
i

= a, 1 ≤ i ≤ r, by c. Note that µ
B
> a if and only if µ

B
> c. It follows

that the conditions such as µ
B1
≤ µ

B2
or µ

B1
≥ µ

B2
in the algorithm hold with

the original values of µ
B

if and only if they hold after replacement by c as stated.
Hence, in the latter case the algorithm gives the same terminal partition J and, by
Theorem 2.5, gives the optimal solution s = (s1, s2, . . . , sr, ur+1, . . . , un) to P, where
si = c, 1 ≤ i ≤ r. By the definition of u′ as an infimum, we conclude that u′ ≤ s.
This, together with u ≤ u′ obtained earlier, gives u′i = ui, r+1 ≤ i ≤ n. Thus u = u′.
The proof for v is similar.

4. Problem P with integer constraint. In this section, we consider Problem
P with the integer restriction on the variables. We develop PAV algorithms to compute
its optimal solution and also its extremal extended integer solutions. It will be seen
that all the results are applicable when the variables are restricted to take values in a
mesh (discrete set of points) in I. Due to integer constraints, the optimality conditions
of Proposition 2.1 cannot be applied; hence, we adopt a different approach. We
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approximate each convex function fi by a piecewise linear convex function f0
i , which

agrees with fi at integer points. Similar ideas have been used earlier by Minoux [11].
Let D denote the set of all integers in I. We consider the following problem.
Problem Q. Find yi ∈ D, i ∈ N , so as to

minimize

n∑
i=1

fi(yi)

subject to y1 ≤ y2 ≤ · · · ≤ yn.

If f is convex on I, then an element λ in D that minimizes f over D is called
an integer minimizer of f over I. Without the qualifier “integer,” a minimizer or a
continuous minimizer of f is simply some µ in I that minimizes f over I. An optimal
solution to Problem Q is referred to as an integer optimal solution.

Our first proposition links the existence of an integer minimizer of a convex func-
tion with its (continuous) minimizer. Its simple proof is left to the reader.

Proposition 4.1. Suppose that f is a real convex function over I = (a, b). If
D 6= ∅ and I is bounded, then f has an integer minimizer. If I is unbounded, then
D 6= ∅, and in the following two statements, 1 ⇒ 2. If I = (−∞,∞), then 2 ⇒ 1.
Thus, if I = (−∞,∞), then 1⇔ 2.

1. f has a (continuous) minimizer in I.
2. f has an integer minimizer in I.

Note that 2 in the above proposition does not necessarily imply 1. As an example,
consider I = (0, 2) or (0,∞), and f(x) = x on I. Then f has no continuous minimizers
in I but has the integer minimizer 1.

Throughout this section we assume that the following Condition B holds.
Condition B. D 6= ∅, and each fi, i ∈ N , has an integer minimizer λi in I.
Analogous to µB , FB has an integer minimizer λB as in the following proposition,

which may be proved just like Proposition 2.2.
Proposition 4.2. For any B ⊂ N , FB has an integer minimizer λB in I with

min{λi : i ∈ B} ≤ λB ≤ max{λi : i ∈ B}.

Furthermore, Problem Q has an integer optimal solution y = (y1, y2, . . . , yn) with

min{λi : i ∈ N} ≤ yi ≤ max{λi : i ∈ N}, i ∈ N.

Let I0 be the smallest interval containing D. Then I0 ⊂ I. For each function
f on I, define a function f0 on I0 by f0(y) = f(y) for all y ∈ D and by linear
interpolation between every two consecutive integers in D. Since fi is convex, so is
f0
i . Now FB = Σi∈Bfi, for any B ⊂ N . It is easy to see that F 0

B = Σi∈Bf0
i . Since each

f0
i is convex and linear between any two consecutive integers in D, so is F 0

B . Clearly,
if λ ∈ D, then λ is an integer minimizer of FB on I if and only if λ is a continuous
minimizer of F 0

B on I0. Now we state our algorithm for solving Problem Q.
Algorithm 4.3 (the PAV algorithm for determining an integer optimal solution

y = y(J) to Problem Q). The steps of the algorithm are identical to those of the PAV
Algorithm 2.3 with the following changes: substitute integer minimizer(s) for mini-
mizers(s) everywhere in the algorithm. Also substitute λ for µ and y for x everywhere
(thus, µi, µB , xi(J), etc. become λi, λB , yi(J), etc.).

Theorem 4.4. The PAV Algorithm 4.3 computes an integer optimal solution
y = y(J) to Problem Q.
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Proof. In what follows, we consider fi as a special case F{i} of FB . Con-
sider Problem P0: Find xi ∈ I0, i ∈ N , so as to minimize Σni=1f

0
i (xi) subject to

x1 ≤ x2 ≤ · · · ≤ xn. Algorithm 4.3 as applied to Q and P0 give the same results
because functions FB and F 0

B agree on D. Since integer λB used in the algorithm
is a continuous minimizer of F 0

B on I0, by Theorem 2.5, the algorithm computes a
continuous optimal solution y to P 0, which has integer components. Clearly, it is an
optimal solution to Q.

Now we establish a result that can be applied to the least squares distance func-
tion.

Theorem 4.5. Suppose that each FB is symmetric around some continuous
minimizer µB and, in particular, so is each fi = F{i} around some minimizer µi.
Then an integer optimal solution to Problem Q is obtained by rounding (to the nearest
integer) a continuous optimal solution to Problem P given by Algorithm 2.3 when
minimizers µB and µi stated above are used for computation in that algorithm.

Proof. Let λB denote an integer minimizer of FB . Clearly, under the assumption
of symmetry, λB is obtained by rounding µB to the nearest integer. We now show that
the final (optimal) partition J obtained by Algorithm 2.3 is also an optimal partition
for the integer Problem Q. We do this by comparing the steps of Algorithms 2.3
and 4.3. The condition µB1

> µB2
in Algorithm 2.3 implies the condition λB1

≥ λB2
,

since λB is obtained by rounding µB . Now Algorithm 4.3 merges blocks B1 and B2

if λB1 > λB2 . But, if it also unnecessarily merged these blocks when λB1 = λB2 , that
will still lead to optimality. Also, µB1 ≤ µB2 implies λB1 ≤ λB2

. Thus the steps
of Algorithm 2.3 imply those of Algorithm 4.3 with an insignificant change when
λB1

= λB2
. This proves that J is optimal for Q. Now, Algorithm 4.3 computes the

final (optimal) solution by letting yi(J) = λB , i ∈ B, where B is a block of J . Since
λB is rounded µB , the conclusion of the theorem follows.

If fi(xi) = wi(ci − xi)
2, wi > 0, then fi is symmetric around µi = ci. Also,

FB(x) = WB(µB − x)2, where WB = Σi∈B wi and µB = Σi∈B(wiµi)/WB . Thus FB
is symmetric around µB . Thus Theorem 4.6 applies to give a result of Goldstein and
Kruskal [7]: an optimal solution of the integer isotonic regression problem is obtained
by rounding the unique optimal solution of the continuous isotonic regression problem.
Note that the integer problem does not, in general, have a unique solution.

As in section 3, we now obtain the extended minimal and maximal integer solu-
tions, z and t, respectively, to Problem Q. These provide the lower and upper bounds
on all optimal solutions to Problem Q, and subvectors formed by components of z
and t give optimal solutions to certain subproblems of Q.

If TB is the set of all integer minimizers of the convex function FB , then, by
Proposition 4.2, TB 6= ∅. Define λB = inf TB and λB = supTB . Then λB (respec-
tively, λB) is either an integer or −∞ (respectively, +∞). Note that λB (respectively,
λB) equals the endpoint a (respectively, b) of I if and only if a = −∞ (respectively,
b =∞). By convexity of FB , we have TB = [λB , λB ] ∩D. When B = {i}, i ∈ N , the
above defines the corresponding quantities λi and λi for fi = F{i}. If λB (respectively,

λB) is in I, then it is the smallest (respectively, largest) integer minimizer of FB . A
proposition analogous to Proposition 3.1 may be stated and proved for λB , λB , and
an integer solution to Q. A vector y = (y1, y2, . . . , yn) is called an extended integer
monotone vector if y1 ≤ y2 ≤ · · · ≤ yn and each yi is an integer, −∞ or +∞. Just
like Subproblem SP(c, d), we define a Subproblem SQ(c, d), indexed by c, d ∈ N , as
follows.
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Subproblem SQ(c, d). Find yi ∈ D, c ≤ i ≤ d, so as to

minimize
d∑
i=c

fi(yi)

subject to yc ≤ yc+1 ≤ · · · ≤ yd.
Clearly, Q = SQ(1, n). The following theorem is similar to Theorem 3.2, but note the
one difference regarding p and q. If a (respectively, b) is finite, then p = 0 (respectively,
q = n+ 1).

Theorem 4.6 (minimal and maximal extended integer solutions). There ex-
ist two unique extended integer vectors z = (z1, z2, . . . , zn) and t = (t1, t2, . . . , tn)
for Problem Q with the following properties, where p = ind(z), if a = −∞, and 0
otherwise, and where q = ind(t), if b =∞, and n+ 1 otherwise.

1. a ≤ zi < b, a < ti ≤ b, and zi ≤ ti for all i.
2. If y = (y1, y2, . . . , yn) is any optimal solution to Q, then zi ≤ yi ≤ ti for all i.
3. i. 0 ≤ p ≤ n, λi = zi = a = −∞ for 1 ≤ i ≤ p, and λp+1 ≥ zp+1 > a if
p < n.
ii. 1 ≤ q ≤ n + 1, λi = ti = b = ∞ for q ≤ i ≤ n and λq−1 ≤ tq−1 < b if
q > 1.

4. i. (zp+1, zp+2, . . . , zn) is the minimal optimal solution to SQ(p + 1, n). If
p = 0 (equivalently, zi ∈ D, i ∈ N), then z is the minimal optimal solution
to Q.
ii. (t1, t2, . . . , tq−1) is the maximal optimal solution to SQ(1, q−1). If q = n+1
(equivalently, ti ∈ D, i ∈ N), then t is the maximal optimal solution to Q.

5. i. zi is a continuous minimizer of fi for max{p+ 1, q} ≤ i ≤ n.
ii. ti is a continuous minimizer of fi for 1 ≤ i ≤ min{p, q − 1}.
iii. If p + 1 ≤ q − 1, then (zp+1, zp+2, . . . , zq−1) and (tp+1, tp+2, . . . , tq−1)
are, respectively, the minimal and maximal optimal solutions to Subproblem
SQ(p+ 1, q − 1).

6. A monotone integer vector y = (y1, y2, . . . , yn) is an optimal solution to Q
if and only if the following three conditions are satisfied: yi is a continuous
minimizer of fi (equivalently, −∞ = a < yi ≤ λi) for 1 ≤ i ≤ min{p, q − 1};
if p + 1 ≤ q − 1, then (yp+1, yp+2, . . . , yq−1) is an integer optimal solution
to SQ(p + 1, q − 1); and yi is a continuous minimizer of fi (equivalently,
λi ≤ yi < b =∞) for max{p+ 1, q} ≤ i ≤ n.

Both z and t may be easily computed by an algorithm similar to Algorithm 3.4,
which uses λB and λB instead of µ

B
and µB in computations. The proof of Theo-

rem 4.6 and the algorithm is similar to that in section 3.

Appendix. Proof of Theorem 3.2, part 3.
For convenience, we let Σ stand for Σni=1 below unless otherwise stated. Suppose

that x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are in X. Let x ∧ y = (x1 ∧ y1, x2 ∧
y2, . . . , xn ∧ yn) and x∨ y = (x1 ∨ y1, x2 ∨ y2, . . . , xn ∨ yn), where xi ∧ yi = min{xi, yi}
and xi∨yi = max{xi, yi} denote, respectively, the pointwise minimum and maximum
of x and y. Since x and y are monotone vectors, so are x ∧ y and x ∨ y, as may be
easily verified. We first show that both x ∧ y and x ∨ y are in X. We have

fi(xi ∧ yi) + fi(xi ∨ yi) = fi(xi) + fi(yi), i ∈ N.
This follows by considering the two cases xi ≤ yi and xi > yi. Hence, Σfi(xi ∧ yi) +
Σfi(xi ∨ yi) = 2θ, where θ = Σfi(xi) = Σfi(yi) is the optimal objective value of P.
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But Σfi(xi ∧ yi) ≥ θ and Σfi(xi ∨ yi) ≥ θ, since x ∧ y and x ∨ y are feasible to P.
We conclude that each of these sums equals θ, and thus x ∧ y and x ∨ y are in X. It
follows by induction that the pointwise minimum and maximum of a finite number of
elements in X are also in X.

From part 1 of this theorem, ui < b for all i, and hence 0 ≤ p ≤ n. Since a < up+1,
we can choose numbers α, β so that a < α ≤ ui < β < b for p+ 1 ≤ i ≤ n. Let ε > 0.
Then, by continuity of fi on [α, β], there exists ρ > 0, sufficiently small, such that
ui + ρ ≤ β and |fi(w)− fi(t)| < ε/n for all p+ 1 ≤ i ≤ n, whenever w, t ∈ [α, β] and
|w − t| ≤ ρ. Now let s = (s1, s2, . . . , sp, up+1, . . . , un) be a monotone vector with a <
si ≤ µi, 1 ≤ i ≤ p. Then there exists xi ∈ X such that a = ui < xii ≤ s1, 1 ≤ i ≤ p,
and a < ui ≤ xii ≤ ui + ρ, p+ 1 ≤ i ≤ n. Let z = x1 ∧ x2 ∧ · · · ∧ xn. As shown above,
z ∈ X. Clearly, then, a < zi ≤ xii ≤ s1 for 1 ≤ i ≤ p, and ui ≤ zi ≤ xii ≤ ui + ρ
for p + 1 ≤ i ≤ n. Since zi ≤ s1 ≤ si ≤ µi, 1 ≤ i ≤ p, by convexity of fi, we have
fi(zi) ≥ fi(si), 1 ≤ i ≤ p. Again, since zi, ui ∈ [α, β] and |zi−ui| ≤ ρ for p+1 ≤ i ≤ n,
we have fi(ui) ≤ fi(zi) + ε/n, p+ 1 ≤ i ≤ n. Hence A = Σpi=1fi(si) ≤ Σpi=1fi(zi) and
B = Σni=p+1fi(ui) ≤ Σni=p+1fi(zi) + ε. Thus, A + B ≤ Σfi(zi) + ε ≤ θ + ε. Since ε
is arbitrary, we conclude that s ∈ X. Let t = (t1, t2, . . . , tp, up+1, . . . , un) be another
monotone vector with a < ti < si ≤ µi, 1 ≤ i ≤ p. Then, as shown above, t ∈ X.
Consequently, Σpi=1fi(ti) = Σpi=1fi(si). Again, since ti < si ≤ µi, by convexity, we
must have fi(ti) ≥ fi(si), 1 ≤ i ≤ p. It follows that fi(ti) = fi(si), 1 ≤ i ≤ p, which
in turn equals the minimum value of fi, showing that (a, µi]∩I is the set of minimizers
of fi, 1 ≤ i ≤ p. Thus, µ

i
= ui = a and si minimizes fi for 1 ≤ i ≤ p.

To show that µ
p+1
≥ up+1, assume the contrary: that µ

p+1
< up+1. Define

a monotone vector ŝ = (s1, s2, . . . , sp+1, up+2, . . . , un), where a < si ≤ µi, 1 ≤
i ≤ p, µ

p+1
≤ sp+1 < up+1, and sp+1 ≤ µp+1. This is clearly possible, since

µ
p+1

≤ µp+1. Again, since µ
p+1

≤ sp+1 ≤ µp+1, we find that sp+1 minimizes

fp+1, and, thus, fp+1(sp+1) ≤ fp+1(up+1). Since sp ≤ sp+1 < up+1, we have that
s = (s1, s2, . . . , sp, up+1, . . . , un) is a monotone vector. Again, as shown earlier, s is
optimal to P, and consequently, ŝ is also optimal to P. Hence, by the definition of
up+1 as an infimum, we have up+1 ≤ sp+1, a contradiction. We proved part i; proof
for part ii is similar.
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Abstract. A central drawback of primal-dual interior point methods for semidefinite programs
is their lack of ability to exploit problem structure in cost and coefficient matrices. This restricts
applicability to problems of small dimension. Typically, semidefinite relaxations arising in combina-
torial applications have sparse and well-structured cost and coefficient matrices of huge order. We
present a method that allows us to compute acceptable approximations to the optimal solution of
large problems within reasonable time.

Semidefinite programming problems with constant trace on the primal feasible set are equivalent
to eigenvalue optimization problems. These are convex nonsmooth programming problems and can
be solved by bundle methods. We propose replacing the traditional polyhedral cutting plane model
constructed from subgradient information by a semidefinite model that is tailored to eigenvalue prob-
lems. Convergence follows from the traditional approach but a proof is included for completeness. We
present numerical examples demonstrating the efficiency of the approach on combinatorial examples.
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1. Introduction. The development of interior point methods for semidefinite
programming [19, 31, 1, 46] has increased interest in semidefinite modeling techniques
in several fields such as control theory, eigenvalue optimization, and combinatorial
optimization. In fact, interior point methods proved to be very useful and reliable
solution methods for semidefinite programs of moderate size. However, if the problem
is defined over large matrix variables or a huge number of constraints, interior point
methods grow terribly slow and consume huge amounts of memory. The most efficient
methods of today [15, 23, 2, 32, 45, 29] are primal-dual methods that require, in each
iteration of the interior point method, the factorization of a dense matrix of order
equal to the number of constraints and one to three factorizations of the positive
semidefinite matrix variables within the line search. For a typical workstation this
restricts the number of constraints to 2,000 and the size of the matrix variables to
500 if reasonable performance is required. For larger problems time and memory
requirements are prohibitive. It is important to realize that either the primal or the
dual matrix is generically dense even if cost and coefficient matrices are very sparse.
Very recently, a pure dual approach was proposed in [4] which offers some possibilities
to exploit sparsity. It is too early to judge the potential of this method.

In combinatorial optimization, semidefinite relaxations were introduced in [27].
At that time they were mainly considered a theoretical tool for obtaining strong
bounds [11, 28, 40]. With the development of interior point methods, hopes soared
high that these relaxations could be of practical value. Within a short time several ap-
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proximation algorithms relying on semidefinite programming were published, most of
them based on the approach by Goemans and Williamson [8]. On the implementation
side [14, 16, 20] cutting plane approaches for semidefinite relaxations of constrained
quadratic 0-1 programming problems proved to yield solutions of high quality. How-
ever, as mentioned above, they were very expensive to compute even for problems of
small size (a few hundred 0-1 variables). Problems arising in practical applications
(starting with a few thousand 0-1 variables) were out of reach. We believe that the
method proposed in this paper will open the door to problems of this size.

Although combinatorial applications are our primary concern we stress that the
method is not restricted to this kind of problem. In fact, it will be a useful alternative
to interior point methods whenever the number of constraints or the order of the
matrices is quite large.

We transform a standard dual semidefinite program into an eigenvalue optimiza-
tion problem by reformulating the semidefinite constraint as a nonnegativity con-
straint on the minimal eigenvalue of the slack matrix variable and lifting this con-
straint into the cost function by means of a Lagrange multiplier. The correct value
of the Lagrange multiplier is known in advance if the primal feasible matrices have
constant trace. (This is the case for the combinatorial applications we have in mind.)

In this paper we develop a bundle method for solving the problem of minimizing
the maximal eigenvalue of an affine matrix function with an additional linear objective
term. These functions are well known to be convex and nonsmooth. A very general
method for optimizing nonsmooth convex functions is the bundle method; see, e.g.,
[21, 42, 17, 18]. In each step the function value and a subgradient of the function is
computed for some specific point. A cutting plane model of the function is formed us-
ing the collected subgradients. The minimizer of the cutting plane model, augmented
by a regularization term, yields the new point. In the case of eigenvalue optimization,
the subgradient is formed by means of an eigenvector for the maximal eigenvalue.
Extremal eigenvalues and associated eigenvectors of large symmetric matrices can
be computed efficiently by Lanczos methods (see, e.g., [9]). Lanczos methods need
a subroutine that computes the product of the matrix with a vector. This allows
exploitation of any kind of structure present in the matrix.

The polyhedral cutting plane model used in traditional bundle algorithms is up-
dated by new subgradient information so as to approximate well the subdifferential,
and thus the function itself, in the vicinity of the current point. For eigenvalue
optimization problems the subdifferential is generated by a semidefinite set, in par-
ticular by the intersection of a simple affine constraint and a face of the semidefinite
cone. This suggests using, instead of the traditional polyhedral cutting plane model,
a semidefinite cutting plane model that works with an approximation of this face
of the semidefinite cone. This specialization of the cutting plane model is the main
contribution of the paper.

The semidefinite bundle approach allows for an intriguing interpretation in terms
of the original semidefinite program. The cutting plane model requires that the dual
slack matrix of the semidefinite program is positive semidefinite only with respect to a
subspace of vectors; thus it may be interpreted as a relaxation of the dual semidefinite
program. In general the optimal solution of this relaxed semidefinite problem will
produce an indefinite dual slack matrix. One or more of the negative eigenvalues and
corresponding eigenvectors of the slack matrix are used to update the subspace in
order to improve the relaxation, and the process is iterated.

This process trivially provides the optimal solution if the subspace grows to the full
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space. However, we show that, during the algorithm, generically the dimension of the
subspace is bounded by (roughly) the square root of the number of constraints. If this
is still considered too large, the introduction of an aggregate subgradient guarantees
convergence for restricted bundle sizes. In the extreme the bundle may consist of one
new eigenvector for the maximal eigenvalue only.

In contrast, the “classical” algorithms of Cullum, Donath, and Wolfe [6] and Polak
and Wardi [38] require in each iteration the computation of all eigenvectors to eigen-
values within an ε-distance of the maximal eigenvalue. Thus, close to the optimal
solution, this number is at least as large as the multiplicity of the maximal eigenvalue
in the optimal solution. In the quadratically convergent algorithm of Overton [35],
each step is computed from a complete spectral decomposition of the matrix and a
guess of the exact multiplicity of the maximal eigenvalue in the optimal solution. In
recent work [33, 34] Oustry reinterprets the algorithm of Overton within the frame-
work of the U-Lagrangian introduced in [26] and embeds it in a first-order method to
ensure global convergence. Again, for global convergence the approach relies on the
spectrum of all eigenvalues within ε-distance of the maximal eigenvalue and makes
use of the entire spectral information to obtain local quadratic convergence.

Because of the restricted bundle size quadratic convergence is out of reach for
our algorithm; it is a first-order method only. In principle, convergence follows from
the traditional approach (see, e.g., [21]) but we include a proof for completeness. We
also present a primal-dual interior point code for solving the quadratic semidefinite
programming problems associated with the semidefinite cutting plane models and
discuss efficiency aspects. The properties of the algorithm are illustrated on several
combinatorial examples.

In section 2 some basic properties of semidefinite programs are stated. Then we
transform semidefinite programs into eigenvalue optimization problems. Section 3
introduces the bundle method. The algorithm and the proof of convergence is given
in section 4. The quadratic semidefinite subproblems arising in the bundle method
can be solved by interior point methods, as explained in section 5. Section 6 gives
an outline of the implementation and briefly discusses the computation of the maxi-
mal eigenvalue and an associated eigenvector. Numerical examples for combinatorial
problems are presented in section 7. We conclude the paper with a summary and pos-
sible extensions and improvements in section 8. For the convenience of the reader, an
appendix explaining the notation and the symmetric Kronecker product is included
at the end of the paper.

2. Semidefinite programs and eigenvalue optimization. We denote the
set of symmetric matrices of order n by Sn, which we regard as a space isomorphic

to R(n+1
2 ). As a scalar product of A,B ∈ Sn (or more general, A,B ∈ Rm×n) we

use 〈A,B〉 = tr(BTA), where the trace is the sum of the diagonal elements of a
square matrix. We will often use the same symbol for the canonical scalar product of
vectors a, b ∈ Rm, 〈a, b〉 = bTa; the appropriate space will be clear from the context.
The subset of positive semidefinite matrices S+

n is a full-dimensional, nonpolyhedral
convex cone in Sn and defines a partial order on the symmetric matrices byA � B ⇐⇒
(A−B) ∈ S+

n . Positive definite matrices are denoted by A ∈ S++
n or A � 0.

Consider the standard primal-dual pair of semidefinite programs,

(P) qquad
max 〈C,X〉
s.t. AX = b

X � 0.
(D)

min bT y
s.t. Z = ATy − C

Z � 0.
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Here A : Sn → Rm is a linear operator and AT : Rm → Sn is its adjoint operator,
defined by 〈AX, y〉 =

〈
X,ATy〉 for all X ∈ Sn and y ∈ Rm. They are of the form

AX =

 〈A1, X〉
...

〈Am, X〉

 and ATy =
m∑
i=1

yiAi

with Ai ∈ Sn, i = 1, . . . ,m. C ∈ Sn is the cost matrix, b ∈ Rm the right-hand-side
vector.

We assume some constraint qualification to hold, so that these problems satisfy
strong duality in the sense that for any optimal solution X∗ of (P) and any optimal
solution (y∗, Z∗) of (D) we have

X∗Z∗ = 0.(2.1)

The following assumption allows a simple reformulation of the dual (D) as an
eigenvalue optimization problem. We assume that

AX = b implies trX = a(2.2)

for some constant a > 0. In this case we can add trX = a as a redundant constraint
to the primal problem and obtain the following dual equivalent to (D)

min aλ+ bT y s.t. Z = ATy + λI − C � 0.

Now a > 0 implies X 6= 0 at the optimum, so any optimal Z of this dual is singular.
Therefore, all dual optimal solutions Z satisfy 0 = λmax(−Z), leading to

λ = λmax(C −ATy).

Thus, we have shown that (D) is equivalent to miny aλmax(C − ATy) + bT y. For
notational convenience we assume a = 1 and deal with the following problem:

min
y∈Rm

λmax(C −ATy) + bT y.(E)

The eigenvalue problem (E) is a convex, nonsmooth optimization problem. It is well
studied in the literature. Here we only recall some basic facts. The function

λmax(X) = max{〈W,X〉 : trW = 1,W � 0}

is differentiable if and only if the maximal eigenvalue has multiplicity 1. When op-
timizing eigenvalue functions, the optimum is generically attained at matrices whose
maximal eigenvalue has multiplicity larger than 1. In this case one has to consider
the subdifferential of λmax at X,

∂λmax(X) = {W � 0 : 〈W,X〉 = λmax(X), trW = 1}

(see, e.g., [35]). In particular, for any v ∈ Rn belonging to the eigenspace of the
maximal eigenvalue of X, W = vvT is contained in the subdifferential of λmax at X.
For the function of interest,

f(y) = λmax(C −ATy) + bT y,
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the subdifferential of f at y can be derived by standard rules (see [17]),

∂f(y) =
{
b−AW :

〈
W,C −ATy〉 = λmax(C −ATy), trW = 1,W � 0

}
.

Observe that the set of all subgradients is bounded.
Remark 2.1. Even though our assumption (2.2) might look artificial, it does hold

for semidefinite programs arising from quadratic 0-1 optimization. It also holds for
many other semidefinite programs derived as relaxations of combinatorial optimization
problems; see, for instance, [1, 12, 24].

3. The bundle method. In this section we develop a new method for mini-
mizing f . We use two classical ingredients, the proximal point idea and the bundle
concept. The new contribution lies in the way that we derive the new iterate from
the “bundle” of subgradient information collected from previous iterates. Since our
approach builds on several subtle ideas, we proceed in small steps and explain first
how we derive a minorant of f from local information.

3.1. Minorizing f by f̂ . Our first goal is to obtain a minorant f̂ of f which
approximates f in the neighborhood of the current iterates reasonably well, and which
is easier to handle than f . Introducing the function

L(W, y) :=
〈
C −ATy,W〉+ bT y

we can express f(y) as

f(y) = max{L(W, y) : W � 0, trW = 1}.
This formulation shows that lower approximations of f can be obtained by constrain-
ing W to a subset of all semidefinite matrices with trW = 1.

We propose the following choice for this subset. Let P ∈ Rn×r with PTP = Ir,
and W ∈ S+

n with trW = 1 be two matrices. We restrict W to be contained in the
set

Ŵ =
{
αW + PV PT : α+ trV = 1, α ≥ 0, V � 0

}
.(3.1)

The (convex) minorant f̂ , defined through P and W, now reads

f̂(y) := max{L(W, y) : W ∈ Ŵ}.
By definition, we have f̂(y) ≤ f(y) ∀y. If, for some ŷ ∈ Rn, vvT ∈ Ŵ for some

eigenvector v to λmax(C − ATŷ), then f̂(ŷ) = f(ŷ). This is, e.g., the case if v is a
column of P or v is contained in the range space of P .

The intuitive idea behind our specific choice of Ŵ is as follows: the matrix P
contains subgradient information from the current point ŷ, and perhaps from previ-
ous iterates. We explain below, in detail, how we propose to select and update the
matrix P . For computational efficiency, we would like to keep the number r of columns
of P small, independent of the multiplicity of the largest eigenvalue. Therefore we
collect indispensable subgradient information, which has to be removed from P, in an
aggregate subgradient. This aggregation is the final ingredient of our model of f . The
matrix W plays the role of an aggregate subgradient. Again, we will discuss below
how W is updated during the algorithm. The main point here is that instead of
optimizing over all semidefinite matrices W, we constrain ourselves to a small subset.

Remark 3.1. If we set W = 0 and use for the matrix P a set of eigenvectors for
the r largest eigenvalues at ŷ, we would end up with a model closely related to the
approach from [6]. In this case it would be important to select r at least as large as the
multiplicity of the largest eigenvalue. In our present approach this is not necessary.
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3.2. Proximal point idea. The next goal is to minimize f̂ instead of f . Since
f̂ is built from local information from a few previous iterates, this model function is
unlikely to be reliable for points far from the current iterate. Therefore we use the
proximal point idea and add a penalty term for the displacement from the current
point. Thus, we determine a new candidate y from the current iterate ŷ by solving
the following convex problem, referred to as the augmented model. (Here u > 0 is
some fixed real weight.)

min
y
f̂(y) +

u

2
‖y − ŷ‖2 .

We note that this minimization problem corresponds to the Lagrangian relaxation of
min{f̂(y) : ‖y − ŷ‖2 ≤ s2}. Thus we replace the original function f by its minorant f̂
and minimize locally around ŷ. The weight u controls (indirectly) the radius s of

the sphere around ŷ, over which we minimize. Substituting the definition of f̂ , this
problem is the same as

min
y

max
W∈Ŵ

L(W, y) +
u

2
‖y − ŷ‖2 .(3.2)

This problem can be simplified, because y is unconstrained. Note that

L(W, y) =
〈
C −ATŷ,W〉+ bT ŷ + 〈b−AW, y − ŷ〉 .

Therefore, we obtain

min
y

max
W∈Ŵ

L(W, y) +
u

2
‖y − ŷ‖2

= max
W∈Ŵ, b−AW+u(y−ŷ)=0

L(W, y) +
u

2
‖y − ŷ‖2

= max
W∈Ŵ

〈
C −ATŷ,W〉+ bT ŷ − 1

2u
〈AW − b,AW − b〉 .

The first equality follows from interchanging min and max (see Corollary 37.3.2 of
[41]) and using first-order optimality for the inner minimization with respect to y,

y = ŷ +
1

u
(AW − b).(3.3)

The final problem is a semidefinite program with (concave) quadratic cost function.
We will discuss in section 5 how problems of this kind can be solved efficiently. Its
optimal solution W k+1 gives the new trial point y by (3.3).

Remark 3.2. The choice of the weight u is somewhat of an art. There are several
clever update strategies published in the literature; see, for instance, [21, 42].

3.3. One iteration of the algorithm. The main ingredients of our approach
have now been explained, so we can give a formal description of a general iteration k
of the algorithm. To be consistent with the notation of the algorithm given in section
4, let us denote by xk what was called ŷ in section 3.2. The algorithm may have to
compute several trial points yk+1, yk+2, . . . while keeping the same xk = xk+1 = · · ·
if progress is not considered satisfactory (null step). For each yk+1 the function is
evaluated and a subgradient (eigenvector) is computed. This information is added

to Ŵk to form an improved model Ŵk+1. Therefore, we assume that the current
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“bundle” P k = P contains an eigenvector of λmax(C − ATyk) in its span (yk may
or may not be equal to xk). Other than that, P need only satisfy PTP = Ir. The

minorant of f in iteration k is denoted by f̂k:

f̂k(y) := max
W∈Ŵk

L(W, y).

Here Ŵk represents the current approximation to the set of all semidefinite matrices
of trace one; see (3.1). It will be convenient to introduce also the regularized version

of f̂k. We define

fk(y) := f̂k(y) + u
2

∥∥y − xk∥∥2
.

The new trial point yk+1 is obtained by minimizing fk(y) with respect to y. As
described above, this can be done as follows. First, solve by interior point methods
(see section 5)

max
W∈Ŵk

〈
C −ATxk,W〉+ bTxk − 1

2u 〈AW − b,AW − b〉 ,(3.4)

yielding a (not necessarily unique) maximizer W k+1 = α∗W
k

+ P kV ∗(P k)T . Next,
use (3.3) to compute

yk+1 = xk + 1
u (AW k+1 − b).(3.5)

To finish an iteration, we have to decide whether enough progress is made to perform
a serious step or not; i.e., whether we are going to set xk+1 = yk+1 or xk+1 = xk, and

how to update P k and W
k
.

If P k does not yet use the maximum number of columns allowed, then the update
process is simple: orthogonalize the new eigenvector with respect to P k, add it as a
new column to form P k+1, and continue. In general, however, P k will already use the
maximum number of columns and so we have to make room for the new subgradient
information. Instead of simply eliminating some columns of P k we can do better by
exploiting the information available in α∗ and V ∗.

Let QΛQT be an eigenvalue decomposition of V ∗. Then the “important” part
of the spectrum of W k+1 (the important subspace within the space spanned by P k)
is spanned by the eigenvectors associated with the “large” eigenvalues of V ∗. Thus,
we split the eigenvectors of Q into two parts Q = [Q1Q2] (with corresponding spec-
tra Λ1 and Λ2), Q1 containing as columns the eigenvectors associated with “large”
eigenvalues of V ∗ and Q2 containing the remaining columns,

W k+1 = P kQ1Λ1(P kQ1)T + α∗W
k

+ P kQ2Λ2(P kQ2)T .(3.6)

Now the next P k+1 is computed to contain P kQ1 and at least one eigenvector vk+1

for the maximal eigenvalue of C −ATyk+1,

P k+1 = orth(
[
P kQ1 v

k+1
]
).(3.7)

(The operator orth(.) indicates that we take an orthonormal basis of [P kQ1 v
k+1].)

The next aggregate matrix is built in such a way that W k+1 ∈ Ŵk+1. Since P k+1

contains only the important part of P k, given by P kQ1, we include the remaining

part of P k, given by P kQ2 in W
k+1

:

W
k+1

=
1

α∗ + tr Λ2
(α∗W

k
+ P kQ2Λ2(P kQ2)T ).(3.8)
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Note that W
k+1

is scaled to have trace equal to 1.
Proposition 3.3. Update rules (3.7) and (3.8) ensure that W k+1 ∈ Ŵk+1.
Proof. Let W k+1 be of the form (3.6). By (3.7) there is an orthonormal matrix

Q̄ such that P k+1Q̄ = P kQ1. Let V = Q̄Λ1Q̄
T and α = α∗ + tr Λ2; then V � 0,

α ≥ 0, α+ trV = 1, and W k+1 = P k+1V (P k+1)T + αW
k+1 ∈ Ŵk+1.

We summarize some easy facts, which will be used in the convergence analysis of
the algorithm.

fk(yk+1) ≤ fk(y) ∀y,

since yk+1 is minimizer of fk. Because fk(xk) = f̂k(xk) and f̂k minorizes f , we
obtain

fk(yk+1) ≤ fk(xk) ≤ f(xk).(3.9)

Next let

fk∗ (y) := L(W k+1, y) + u
2

∥∥y − xk∥∥2
.

Using the definition of yk+1 from (3.5) it follows easily that

fk∗ (y) = fk∗ (yk+1) + u
2

∥∥y − yk+1
∥∥2
.(3.10)

Since W k+1 ∈ Ŵk+1, the augmented model of the next iteration will satisfy

fk+1(y) ≥ fk∗ (y) ∀y.(3.11)

Remark 3.4. While the choice for the update of P k is fairly natural, we could use

other update formulas, such as W
k+1

= W k+1 and P k+1 = vk+1. The main properties
guiding the update are that W k+1 ∈ Ŵk+1, ensuring (3.11), and that in yk+1 the
model is now supported by a subgradient of f pushing the model towards f in the
vicinity of the last minimizer.

4. Algorithm and convergence analysis. In the previous section we focused
on the question of doing one iteration of the bundle method. Now we provide a formal
description of the method and point out that except for the choice of the bundle, the
nature of the subproblem, and some minor changes in parameters, the algorithm and
its proof are identical to the algorithm of Kiwiel as presented in [21]. To keep the
paper self-contained we present and analyze a simplified variant for fixed u. We refer
the reader to [21] for an algorithm with variable choice of u.

Algorithm 4.1.
Input: An initial point y0 ∈ Rm, a (normalized) eigenvector v0 for the maximal
eigenvalue of C −ATy0, an ε > 0 for termination, an improvement parameter mL ∈
(0, 1

2 ), a weight u > 0, an upper bound R ≥ 1 on the number of columns of P .

(1) (Initialization) k = 0, x0 = y0, P 0 = v0, W
0

= v0(v0)T .
(2) (Direction finding) Solve (3.4) to get yk+1 from (3.5). Decompose V ∗ into

V ∗ = Q1Λ1Q
T
1 + Q2Λ2Q

T
2 with rank(Q1) ≤ R − 1. Compute W

k+1
using

(3.8).
(3) (Evaluation) Compute λmax(C−ATyk+1) and an eigenvector vk+1. Compute

P k+1 by (3.7).

(4) (Termination) If f(xk)− f̂k(yk+1) ≤ ε then stop.
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(5) (Serious step) If

f(yk+1) ≤ f(xk)−mL(f(xk)− f̂k(yk+1))(4.1)

then set xk+1 = yk+1, continue with step 7. Otherwise continue with step 6.
(6) (Null step) Set xk+1 = xk.
(7) Increase k by 1 and go to step 2.
We prove convergence of the algorithm for ε = 0. If the algorithm stops after a

finite number of iterations, then by (3.9) fk(yk+1) = f(xk), which implies yk+1 = xk,
and thus by (3.5) 0 ∈ ∂f(xk), so xk is optimal. Assume in the following that the
algorithm does not stop. First consider the case when only null steps occur after
some iteration K.

Lemma 4.2. If there is a K ≥ 0 such that (4.1) is violated for all k ≥ K, then

limk→∞ f̂k(yk+1) = f(xK) and 0 ∈ ∂f(xK).
Proof. For convenience, we set x = xK = xK+1 = · · · . Using the relations (3.10),

(3.11), and (3.9), we obtain for all k ≥ K

fk∗ (yk+1) +
u

2

∥∥yk+2 − yk+1
∥∥2

= fk∗ (yk+2) ≤ fk+1(yk+2) ≤ fk+1(xk+1) ≤ f(x).

Therefore, the fk(yk+1) converge to some f∗ ≤ f(x) and
∥∥yk+2 − yk+1

∥∥ → 0 (yk is
bounded by (3.5)). Let gk+1 = b−A(vk+1(vk+1)T ) denote the computed gradient of
f in yk+1 and observe that the linearization f̄ of f in yk+1,

f̄(y; yk+1) = f(yk+1) +
〈
gk+1, y − yk+1

〉
,

minorizes f̂k+1, because (vk+1(vk+1)T ) ∈ Ŵk+1. Thus

0 ≤ f(yk+1)− f̂k(yk+1)

= f̄(yk+1; yk+1)− f̂k(yk+1)

= f̄(yk+2; yk+1)− f̂k(yk+1)− 〈gk+1, yk+2 − yk+1
〉

≤ f̂k+1(yk+2)− f̂k(yk+1) +
∥∥gk+1

∥∥ · ∥∥yk+2 − yk+1
∥∥

= fk+1(yk+2)− fk(yk+1)− u ∥∥yk+2 − x∥∥2
+ u

∥∥yk+1 − x∥∥2

+
∥∥gk+1

∥∥ · ∥∥yk+2 − yk+1
∥∥ .

The convergence of the fk(yk+1), the boundedness of the gradients, and the fact that∥∥yk+2 − yk+1
∥∥→ 0 imply that the last term goes to zero for k →∞. So for all δ > 0,

there is an M ∈ N such that for all k > M

f(yk+1)− δ ≤ f̂k(yk+1) ≤ f(x) <
f(yk+1)−mLf̂

k(yk+1)

1−mL
≤ f(yk+1) +

mL

1−mL
δ,

where “<” follows from (4.1) being violated for all k > K. Thus, the sequences

f(yk+1) and f̂k(yk+1) both converge to f(x). yk+1 is the minimizer of the regularized
function fk. On the one hand, this implies that yk+1 → x. On the other hand,
0 must be contained in the subgradient ∂fk(yk+1) = ∂f̂k(yk+1) + u(yk+1 − x); see

(3.3). Therefore, there is a sequence hk ∈ ∂f̂k(yk+1) of subgradients converging to

zero. The f̂k minorize f , the f̂k(yk+1) converge to f(x), and the yk+1 converge to x;
hence zero must be contained in ∂f(x).
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We may concentrate on serious steps in the following. In order to simplify notation
we will speak of xk as the sequence generated by serious steps with all duplicates
eliminated. By fk (and the corresponding f̂k) we will refer to the function whose
minimization gives rise to xk+1.

The next lemma investigates the case when the f(xk) remain above some value
f(x̃) for some fixed x̃.

Lemma 4.3. If

f(xk) > f(x̃) for some fixed x̃ ∈ Rm and all k,(4.2)

then the xk converge to a minimizer of f .
Proof. First we prove the boundedness of the xk. To this end denote by gk+1 ∈

∂f̂k(xk+1) the subgradient arising from the optimal solution of the minimization prob-
lem for fk, gk+1 = b−AW k+1, and observe that by (3.3)

xk+1 − xk = −g
k+1

u
.(4.3)

Since f̂k minorizes f we obtain

f(xk) ≥ f(x̃) ≥ f̂k(xk+1) +
〈
gk+1, x̃− xk+1

〉
.

Therefore, the distance of xk+1 to x̃ can be bounded by∥∥x̃− xk+1
∥∥2

=
∥∥x̃− xk + xk − xk+1

∥∥2

≤ ∥∥x̃− xk∥∥2
+ 2

〈
x̃− xk, xk − xk+1

〉
+ 2

〈
xk − xk+1, xk − xk+1

〉
=
∥∥x̃− xk∥∥2

+ 2
〈
x̃− xk+1, gk+1/u

〉
≤ ∥∥x̃− xk∥∥2

+ 2
u (f(xk)− f̂k(xk+1)).

For any k > K, a recursive application of the bound above yields

∥∥x̃− xk∥∥2 ≤ ∥∥x̃− xK∥∥2
+ 2

u

∞∑
i=K

(f(xk)− f̂k(xk+1)).(4.4)

By (4.1) the progress of the algorithm in each serious step is at least mL(f(xk) −
f̂k(xk+1)), and together with (4.2) we obtain

∞∑
i=0

(f(xi)− f̂ i(xi+1)) ≤ 1
mL

(f(x0)− f(x̃)).

Therefore, the sequence of the xk remains bounded and has an accumulation point
x̄. By replacing x̃ by x̄ in (4.4) and choosing K sufficiently large, the remaining sum
can be made smaller than an arbitrary small δ > 0, thus proving the convergence
of the xk to x̄. As the xk+1 converge to x̄, the gk+1 converge to zero by (4.3), and

since the sequence (f(xk)− f̂k(xk+1)) must converge to zero as well, we conclude that
0 ∈ ∂f(x̄), i.e., that x̄ is a minimizer of f .

The lemma also implies that f(xk) → inf f if there are no minimizers. We
summarize the discussion in the following theorem.

Theorem 4.4 (see [21]). If the set of minimizers of f is not empty, then the xk

converge to a minimizer of f . In any case f(xk)→ inf f .
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Remark 4.5. We have just seen that the bundle algorithm works correctly even
if P contains only one column. In this case the use of the aggregate subgradient is
crucial.

To achieve correctness of the bundle algorithm without aggregate subgradients,
it suffices to store in P only the subspace spanning the eigenvectors corresponding to
nonzero eigenvalues of an optimal solution W k+1 of (3.2). Using the bound of [36] it is
not too difficult to show that in this case the maximal number of columns one has to
provide is the largest r̄ ∈ N satisfying

(
r̄+1

2

) ≤ m+ 1 plus the number of eigenvectors
to be added in each iteration (this is at least one). In our computational experiments
we found that this upper bound is hardly ever reached. In fact, typical values for the
maximal rank are around half this upper bound.

5. Solving the subproblem. In this section we concentrate on how the mini-
mizer of fk can be computed efficiently. We have already seen in section 3 that this
task is equivalent to solving the quadratic semidefinite program (3.4). Problems of
this kind can be solved by interior point methods; see, e.g., [7, 23]. Dropping the
iteration index k and the constants in (3.4) we obtain for y = xk

min 1
2u 〈AW,AW 〉 − 1

u 〈b,AW 〉 −
〈
C −AT (y),W

〉
s.t. W = αW + PV PT ,

α+ trV = 1,
α ≥ 0, V � 0.

Expanding W = αW + PV PT into the cost function yields

min 1
2u

[〈A(PV PT ),A(PV PT )
〉

+ 2α
〈A(PV PT ),AW〉+ α2

〈AW,AW〉]
− 〈 1

uATb+ C −ATy, PTV P〉− α 〈 1
uATb+ C −ATy,W〉

s.t. α+ trV = 1,
α ≥ 0, V � 0.

Using the svec-operator (see the appendix for a definition and important properties
of svec and the symmetric Kronecker product ⊗s) to expand symmetric matrices
from Sr into column vectors of length

(
r+1

2

)
we obtain the quadratic program (recall

that, for A,B ∈ Sr, 〈A,B〉 = svec(A)T svec(B) and that trV = 〈I, V 〉)

min 1
2 svec(V )TQ11 svec(V ) + αqT12 svec(V ) + 1

2q22α
2 + cT1 svec(V ) + c2α,

α+ sTI svec(V ) = 1,
α ≥ 0, V � 0,

(5.1)

where (after some technical linear algebra)

Q11 =
1

u

m∑
i=1

svec(PTAiP ) svec(PTAiP )T ,(5.2)

q12 =
1

u
svec(PTAT(AW )P ),(5.3)

q22 =
1

u

〈AW,AW〉 ,(5.4)

c1 = − svec(PT (AT( 1
ub− y) + C)P ),(5.5)

c2 = −(
〈

1
ub− y,AW

〉
+
〈
C,W

〉
),(5.6)

sI = svec(I).
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At this point it is advisable to spend some thought on W . The algorithm is designed
for very large and sparse cost matrices C. W is of the same size as C. Initially it
might be possible to exploit the low-rank structure of W for efficient representations,
but as the algorithm proceeds, the rank of W inevitably grows. Thus, it is impossible
to store all the information of W . However, as we can see in (5.2) to (5.6), it suffices to
have available the vector AW ∈ Rm and the scalar

〈
C,W

〉
to construct the quadratic

program. Furthermore, by the linearity of A(·) and 〈C, ·〉 , these values are easily
updated whenever W is changed.

To solve (5.1) we employ a primal-dual interior point strategy. To formulate the
defining equations for the central path we introduce a Lagrange multiplier t for the
equality constraint, a dual slack matrix U � 0 as complementary variable to V, a dual
slack scalar β ≥ 0 as complementary variable to α, and a barrier parameter µ > 0.
The system reads

FU = Q11 svec(V ) + αq12 + c1 − tsI − svec(U) = 0,
Fβ = αq22 + qT12 svec(V ) + c2 − t− β = 0,
F1 = 1− α− sTI svec(V ) = 0,

UV = µI,
αβ = µ.

The step direction (∆α,∆β,∆U,∆V,∆t) is determined via the linearized system

Q11 svec(∆V ) + ∆αq12 −∆tsI − svec(∆U) = −FU ,
qT12 svec(∆V ) + q22∆α−∆t−∆β = −Fβ ,

−∆α− sTI svec(∆V ) = −F1,

(U ⊗sV −1) svec(∆V ) + svec(∆U) = µ svec(V −1)− svec(U),

(β/α)∆α+ ∆β = µα−1 − β.

In the current context we prefer the linearization (U ⊗sV −1) svec(∆V ) + svec(∆U)
because it makes the system easy to solve for ∆V with relatively little computational
work per iteration. The final system for ∆V reads

(5.7)

(
Q11 + U ⊗sV −1 +

(
β

α
+ q22

)
sIs

T
I − q12s

T
I − sIqT12

)
svec(∆V )

= µ svec(V −1)− svec(U)− FU − F1q12 −
(
µα−1 − β − β

α
F1 − q22F1

)
sI .

It is not too difficult to see that the system matrix is positive definite—because
U ⊗sV −1 � 0, it suffices to show that Q11 + q22sIs

T
I − q12s

T
I − sIq

T
12 � 0 using[

Q11 q12
q12 q22

] � 0. The main work per iteration is the factorization of this matrix (with

v ∈ Sr this is
(
r+1

2

)3
/3) and it is not possible to do much better since Q11 has to be

inverted at some point. Because of the strong dominance of the factorization it pays
to employ a predictor corrector approach, but we will not delve into this here.

For V ∈ Sr a strictly feasible primal starting point is

V 0 = I/(r + 1),

α0 = 1/(r + 1),
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and a strictly feasible dual starting point can be constructed by choosing t0 sufficiently
negative such that

U0 =
−1

svec(Q11 svec(V 0) + α0q12 + c1)− t0I � 0,

β0 = αq22 + qT12 svec(V ) + c2 − t0 > 0.

Starting from this strictly feasible primal-dual pair we compute the first µ by
µ = (〈U, V 〉+ αβ)/(r + 1), compute the step direction (∆α,∆β,∆U,∆V,∆t) as indi-
cated above, perform a line search with line search parameter 0 < δ ≤ 1 such that
(α+ δ∆α, β+ δ∆β, U + δ∆U, V + δ∆V, t+ δ∆t) is again strictly feasible, move to this
new point, compute a new µ by

µ = min

{
µold, γ

〈U, V 〉+ αβ

r + 1

}
with γ =

{
1 if δ ≤ 1

5 ,
5
10 − 4

10δ
2 if δ > 1

5 ,

and iterate. We stop if (〈U, V 〉+ αβ)/(r + 1) < 10−7.

6. Implementation. In our implementation of the algorithm we largely follow
the rules outlined in [21]. In particular u is adapted during the algorithm. The first
guess for u is equal to the norm of the first subgradient determined by v0. The
scheme for adapting u is the same as in [21] except for a few changes in parameters.
For example the parameter mL, for accepting a step as serious, is set to mL = 0.2 and
the parameter mR, indicating that the model is so good (progress by the serious step

is larger than mR[f(xk)− f̂k(yk+1)]) that u can be decreased, is set to mR = 0.7.
The stopping criterion is formulated in relative precision,

f(xk)− f̂k(yk+1) ≤ ε · (|f(xk)|+ 1)

with ε = 10−5 in the implementation.
The choice of the upper bound R on the number of columns r of P and the

selection of the subspace merits some additional remarks. Observe that by Remark 4.5
it is highly unlikely that r violates the bound

(
r+1

2

) ≤ m even if the number of columns

of P is not restricted.
(
r+1

2

)
is also the order of the system matrix in (5.7) and is

usually considerably smaller than the size of the system matrix in traditional interior
point codes for semidefinite programming which is of order m. Furthermore, the order
of the matrix variables is r as compared to n for traditional interior point codes. Thus,
if the number of constraints m is roughly of the same size as n and a matrix of order
m is still considered factorizable, then running the algorithm without bounding the
number of columns of P may turn out to be considerably faster than running an
interior point method. This can be observed in practice; see section 7.

For huge n and m primal-dual interior point methods are not applicable, because
X, Z−1, and the system matrix are dense. In this case the proposed bundle approach
allows application of the powerful interior point approach at least on an important
subspace of the problem. The correct identification of the relevant subspace in V ∗ is
facilitated by the availability of the complementary variable U∗. The matrix U∗ helps
to discern between the small eigenvalues of V ∗ (because of the interior point approach
we have V ∗ � 0!). Eigenvectors v of V ∗ that are of no importance for the optimal
solution of the subproblem will have a large value vTU∗v, whereas eigenvectors that
are ambiguous will have both a small eigenvalue vTV ∗v and a small value vTU∗v.

In practice we restrict the number of columns of P to 25 and provide room for at
least five new vectors in each iteration (see below). Eigenvectors v that correspond
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to small but important eigenvalues λ of V ∗(λ < 10−3λmax(V ∗) and λ > 10−2vTU∗v)
are added to W ; important eigenvectors (λ > 10−3λmax(V ∗)) are added to W only if
more room is needed for new vectors.

For large m the computation of (5.2) to (5.6) is quite involved. A central object
appearing in all constants is the projection of the constraint Ai on the space spanned
by P, i.e., PTAiP . Since the Ai are of the same size as X, which we assume to be
huge, it is important to exploit whatever structure is present in Ai to compute this
projection efficiently. In combinatorial applications the Ai are of the form vvT , with
v sparse, and the projection can be computed efficiently. In the projection step, and
in particular in forming Q11, the size of r is again of strong influence. If we neglect

the computation of svec(PTAiP ), the computation of Q11 still requires 2m
((r+1

2 )+1

2

)
flops. Indeed, if m is large, then for small r the construction of Q11 takes longer than
solving the associated quadratic semidefinite program.

The large computational costs involved in the construction and solution of the
semidefinite subproblems may lead to the conviction that this model may not be
worth the trouble. However, the evaluation of the eigenvalue-function is in fact much
more expensive. There has been considerable work on computing eigenvalues of huge,
sparse matrices; see, e.g., [9] and the references therein. For extremal eigenvalues of
symmetric matrices there seems to be a general consensus that Lanczos-type meth-
ods work best. Iterative methods run into difficulties if the eigenvalues are not well
separated. In our context it is to be expected that in the course of the algorithm the
largest eigenvalues will get closer and closer till all of them are identical in the limit.
For reasonable convergence, block Lanczos algorithms, with block size corresponding
to the largest multiplicity of the eigenvalues, must be employed. During the first 10
iterations the largest eigenvalue is usually well separated and the algorithm is fast.
But soon the eigenvalues start to cluster, larger and larger block sizes must be used,
and the eigenvalue problem gets more and more difficult to solve. In order to reduce
the number of evaluations, it seems worthwhile to employ powerful methods in the
cutting plane model. The increase in computation time required to solve the sub-
problem goes hand in hand with the difficulty of the eigenvalue problem because of
the correspondence of the rank of P and the number of clustered eigenvalues.

Iterative methods for computing maximal eigenvectors generically offer approx-
imate eigenvectors for several other large eigenvalues, as well. The space spanned
by these approximate eigenvectors is likely to be a good approximation of the true
eigenspace. If the maximal number of columns for P is not yet attained it may be
worthwhile to include several of these approximate eigenvectors as well.

In our algorithm we use a block Lanczos code of our own that is based on a Fortran
code of Hua (we guess that this is Hua Dai of [47]). It works with complete orthogo-
nalization and employs Chebyshev iterations for acceleration. The choice of the block
size is based on the approximate eigenvalues produced by previous evaluations but is
at most 30. Four block Lanczos steps are followed by 20 Chebyshev iterations. This
scheme is repeated till the maximal eigenvalue is found to the required relative pre-
cision. The relative precision depends on the distance of the maximal to the second
largest eigenvalue but is bounded below by 10−6. As starting vectors, we use the
complete block of eigenvectors and Lanczos-vectors from the previous evaluation.

7. Combinatorial applications. The combinatorial problem we investigate is
quadratic programming in {−1, 1} variables,

max xTCx s.t. x ∈ {−1, 1}n .(MC)
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Table 7.1
Comparison of the interior point (PDIP) and the bundle (B) approach. sol gives the computed

solution value and time gives the computation time.

PDIP-sol PDIP-time B-sol B-time
G1 12083.20 1:18:42 12083.22 4:11
G2 12089.43 1:19:14 12089.45 5:19
G3 12084.33 1:25:30 12084.34 4:38
G4 12111.45 1:23:16 12111.46 3:37
G5 12099.89 1:27:09 12099.91 4:38
G6 2656.16 1:24:53 2656.18 3:57
G7 2489.26 1:32:34 2489.29 7:54
G8 2506.93 1:21:47 2506.95 3:38
G9 2528.73 1:30:36 2528.75 3:51
G10 2485.06 1:24:30 2485.08 3:56
G11 629.16 1:28:41 629.21 45:26
G12 623.87 1:34:55 623.89 31:14
G13 647.13 1:37:52 647.14 18:44
G14 3191.57 2:05:24 3191.58 14:30
G15 3171.56 2:25:53 3171.56 23:20
G16 3175.02 2:18:21 3175.04 16:59
G17 3171.32 2:13:10 3171.35 16:32
G18 1166.01 2:58:22 1166.02 18:32
G19 1082.01 3:07:58 1082.04 12:27
G20 1111.39 3:12:41 1111.40 11:59
G21 1104.28 3:13:53 1104.29 13:35

In the case that C is the Laplace matrix of a (possibly weighted) graph, the problem
is known to be equivalent to the max-cut problem.

The standard semidefinite relaxation is based on the identity xTCx =
〈
C, xxT

〉
.

For all {−1, 1}n vectors, xxT is a positive semidefinite matrix with all diagonal ele-
ments equal to 1. We relax xxT to X � 0 and diag(X) = e and obtain the following
primal-dual pair of semidefinite programs,

(PMC)
max 〈C,X〉
s.t. diag(X) = e

X � 0
(DMC)

min eT y
s.t. C + Z −Diag(y) = 0

Z � 0.

For nonnegatively weighted graphs, a celebrated result of Goemans and Williamson
[8] says that there is always a cut within .878 of the optimal value of the relaxation.

One of the first attempts to approximate (DMC) using eigenvalue optimization
is contained in [39]. The authors use the bundle code of Schramm and Zowe [42]
with a limited number of bundle iterations, and so do not solve (DMC) exactly. Until
now, the only practical algorithms for computing the optimal value were primal-dual
interior point algorithms. However, these are not able to exploit the sparsity of the
cost function and have to cope with dense matrices X and Z−1. An alternative
approach based on a combination of the power method with a generic optimization
scheme of Plotkin, Shmoys, and Tardos [37] was proposed in [22], but seems to be
purely theoretical.

In Table 7.1 we compare the proposed bundle method to our semidefinite primal-
dual interior point code of [14] (called PDIP in what follows) for graphs on n =
m = 800 nodes that were generated by rudy, a machine independent graph gener-
ator written by G. Rinaldi. Table 7.7 contains the command lines specifying the
graphs. Graphs G1 to G5 are unweighted random graphs with a density of 6% (ap-
proximately 19,000 edges). G6 to G10 are the same graphs with random edge weights
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from {−1, 1}. G11 to G13 are toroidal grids with random edge weights from {−1, 1}
(1,600 edges). G14 to G17 are unweighted “almost” planar graphs having as edge set
the union of two (almost maximal) planar graphs (approximately 4,500 edges). G18

to G21 are the same almost planar graphs with random edge weights from {−1, 1}.
In all cases the cost matrix C is the Laplace matrix of the graph divided by 4; i.e.,
let A denote the (weighted) adjacency matrix of G; then

C =
1

4
(Diag(Ae)−A).

For a description of the code PDIP see [14]. The termination criterion requires the
gap between primal and dual optimal solution to be closed to a relative accuracy
of 5 · 10−6.

For the bundle algorithm, (DMC) is transformed into an eigenvalue optimization
problem as described in section 2. In addition, the diagonal of C is removed so that,
in fact, the algorithm works on the problem

min
y∈Rn

nλmax(C̄ −Diag(y)) + eT y

with C̄ = 1
4 (Diag(diag(A)) − A). This does not change problem (PMC) because the

diagonal elements of X are fixed to 1. The offset 1
4e
T (Ae− diag(A)) is added to the

output only and has no influence on the algorithm whatsoever; in particular, it has no
influence on the stopping criterion. As starting vector y0 we choose the zero vector.
All other parameters are as described in section 6.

All computation times, for the interior point code PDIP as well as for the bundle
code, refer to the same machine, a Sun Sparc Ultra 1 with a Model 140 UltraSPARC
CPU and 64 MB RAM. The time measured is elapsed user time and it is given in the
format hh:mm:ss, hours:minutes:seconds. Leading zeros are dropped.

The first column of Table 7.1 identifies the graphs. The second and third refer
to PDIP and contain the optimal objective value produced (these can be regarded as
highly accurate solutions) and the computation time. The fourth and fifth columns
give the same numbers for the bundle code.

On these examples the bundle code is superior to PDIP. Although the examples
do belong to the favorable class of instances having small m and relatively large n,
the difference in computation time is astonishing. Note that the termination criterion
used in the bundle code is quite accurate, except for G11, which seems to be a difficult
problem for the bundle method. This deviation in accuracy is not caused by cancel-
lations in connection with the offset. The difficulty of an example does not seem to
depend on the number of nonzeros but rather on the shape of the objective function.
For toroidal grid graphs the maximum cut is likely to be not unique, thus the objec-
tive function will be rather flat. This flatness has its effect on the distribution of the
eigenvalues in the optimal solution. Indeed, for G11 more eigenvalues cluster around
the maximal eigenvalue than for the other problems. We illustrate this in Table 7.2,
which gives the 30 largest eigenvalues of the solution at termination for problems G1,
G6, G11, G14, and G18.

Table 7.3 provides additional information on the performance of the bundle algo-
rithm on the examples of Table 7.1. The second column gives the accumulated time
spent in the eigenvalue computation, accounting for roughly 90% of the computation
time. Serious displays the number of serious steps, iter gives the total number of itera-
tions, including both serious and null steps. ‖g‖ is the norm of the subgradient arising
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Table 7.2
The 30 maximal eigenvalues after termination of examples G1, G6, G11, G14, and G18.

G1 G6 G11 G14 G18

1 3.1190 3.2240 0.7653 1.0557 1.4175
2 · 3.2239 · · ·
3 · · · · ·
4 · · · · ·
5 · · · · ·
6 · · · · ·
7 · · 0.7653 · ·
8 · · 0.7652 · ·
9 · · 0.7652 · ·

10 · · 0.7652 · 1.4175
11 · · 0.7652 · 1.4155
12 · · 0.7651 · 1.4090
13 3.1190 3.2239 0.7651 1.0557 1.4047
14 3.1135 3.2181 0.7650 1.0515 1.4007
15 3.1020 3.1968 0.7650 1.0500 1.3905
16 3.0928 3.1774 0.7649 1.0490 1.3834
17 3.0772 3.1556 0.7649 1.0450 1.3814
18 3.0594 2.7886 0.7648 1.0432 1.3798
19 2.7214 2.7716 0.7647 1.0398 1.3725
20 2.6964 2.7681 0.7646 1.0379 1.3709
21 2.6858 2.7269 0.7645 1.0358 1.3652
22 2.6834 2.6756 0.7644 1.0341 1.3583
23 2.6682 2.5851 0.7641 1.0331 1.3555
24 2.6649 2.5239 0.7639 1.0284 1.3510
25 2.6468 2.2357 0.7638 1.0266 1.3495
26 2.6274 1.8722 0.7636 1.0239 1.3480
27 2.6035 1.8473 0.7634 1.0231 1.3417
28 2.5137 1.7974 0.7633 1.0211 1.3397
29 2.4840 1.4859 0.7630 1.0180 1.3345
30 2.3281 1.4411 0.7629 1.0175 1.3291

from the last optimal W k+1 before termination. For G11 the norm is considerably
higher than for all other examples. Since the desired accuracy was not achieved
for G11 by the standard stopping criterion it may be worthwhile considering an
alternative stopping criterion taking into account the norm of the subgradient as
well. Column max-r gives the maximal rank of P attained over all iterations. The
rank of P was limited to 25, but this bound never came into effect for any of these
examples. Aggregation was not necessary. Observe that the theoretic bound allows
for r up to 39, yet the maximal rank is only half this number. The last column gives
the time when the objective value was first within 10−3 of the optimum.

For combinatorial applications, high accuracy of the optimal solution is of minor
importance. An algorithm should deliver a reasonable bound fast and its solution
should provide some hint on how a good feasible solution can be constructed. The
bundle algorithm offers both. With respect to computation time, the bundle algorithm
displays the usual behavior of subgradient algorithms. Initially progress is very fast,
but as the bound approaches the optimum there is a strong tailing-off effect. We
illustrate this by giving the objective values and computation times for the serious
steps of example G6 (the diagonal offset is +77 in this example) in Table 7.4. After
one minute the bound is within 0.1% of the optimum. For the other examples see the
last column of Table 7.3.

With respect to a primal feasible solution observe that P kV k∗ (P k)T is a succes-
sively better and better approximation to the primal optimal solution X∗. In case
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Table 7.3
Additional information about the bundle algorithm for the examples of Table 7.1. λ-time gives

the total amount of time spent for computing the eigenvalues and eigenvectors, serious gives the
number of serious steps, iter the total number of iterations including null steps. ‖g‖ refers to the
norm of the gradient resulting from the optimal solution of the last semidefinite subproblem. max-r
is the maximum number of columns used in P (the limit would have been 25). 0.1%-time gives the
time when the bound is within 10−3 of the optimum in relative precision.

λ-time serious iter ‖g‖ max-r 0.1%-time
G1 3:12 22 33 0.1639 18 48
G2 4:04 21 36 0.05035 18 1:02
G3 3:20 21 33 0.04107 19 57
G4 2:38 19 27 0.08235 19 54
G5 3:41 23 39 0.04425 17 46
G6 2:42 21 35 0.0646 18 1:09
G7 5:46 24 65 0.0854 17 57
G8 2:39 23 38 0.1549 17 59
G9 2:59 24 34 0.0711 17 1:04
G10 2:56 23 37 0.02997 17 1:15
G11 42:10 97 172 0.4696 15 17:04
G12 28:47 50 130 0.2579 15 8:19
G13 17:24 43 78 0.218 15 6:17
G14 12:43 41 59 0.1682 18 3:09
G15 20:16 44 89 0.1059 18 3:08
G16 14:35 31 69 0.2246 19 3:11
G17 14:38 41 65 0.2079 18 3:22
G18 16:46 38 98 0.08161 15 4:15
G19 11:24 41 71 0.1571 15 3:34
G20 11:05 42 71 0.08226 15 3:50
G21 12:23 44 80 0.09432 15 3:32

too much information is stored in the aggregate vector AW k
(remember that it is not

advisable to store W
k

itself), P k may be enriched with additional Lanczos-vectors
from the eigenvalue computation. The solution of this enlarged quadratic semidefi-
nite subproblem will be an acceptable approximation of X∗. It is not necessary to
construct the whole matrix X∗. In fact, the factorized form (P k

√
V k∗ )(P k

√
V k∗ )T is

much more convenient to work with. For example, the approximation algorithm of
Goemans and Williamson [8] requires precisely this factorization. A particular xij
element of X∗ is easily computed by the inner product of row i and j of the n × r
matrix P k

√
V k∗ . In principle, this opens the door for branch-and-cut approaches to

improve the initial relaxation. This will be the subject of further work.
Table 7.5 gives a similar set of examples for n = m = 2, 000.
A last set of examples is devoted to the Lovász ϑ-function [27], which yields an

upper bound on the cardinality of a maximal independent (or stable) set of a graph.
For implementational convenience we use its formulation within the quadratic {−1, 1}
programming setting; see [24]. For a graph with k nodes and h edges we obtain a
semidefinite program with matrix variables of order n = k + 1 and m = k + 1 + h
constraints. The examples we consider have more than one thousand nodes and more
than six thousand edges. For these examples, interior point methods are not applicable
because of memory requirements. It should be clear from the examples of Table 7.5
that there is also little hope for the bundle method to terminate within reasonable
time. However, the most significant progress is achieved in the beginning and for the
bundle method memory consumption is not a problem. We run these examples with
a time limit of five hours. More precisely, the algorithm is terminated after the first
serious step that occurs after five hours of computation time.
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Table 7.4
Detailed account of the serious steps of example G6.

iter value time ‖g‖ max-r
0 2861.20
1 2821.75 3 42.02 3
2 2798.60 4 28.83 7
3 2782.99 6 25.94 8
4 2736.11 9 18.58 8
5 2704.98 13 12.69 10
6 2685.84 17 10.05 12
7 2679.95 23 7.46 14
8 2670.10 28 5.992 15
9 2666.07 34 4.173 16
10 2660.31 48 3.268 16
11 2658.65 1:09 0.6295 17
12 2656.66 1:32 0.7753 17
13 2656.42 1:41 0.6636 18
14 2656.31 1:57 0.431 18
15 2656.27 2:14 0.2997 18
16 2656.22 2:45 0.1609 18
17 2656.20 3:01 0.13 18
18 2656.19 3:17 0.09695 18
19 2656.19 3:33 0.07243 18
20 2656.17 3:49 0.05042 18
21 2656.17 3:57 0.0646 18

Table 7.5
Examples for n = m = 2, 000.

B-sol B-time λ-time serious iter ‖g‖ max-r
G22 14135.98 38:11 28:00 26 52 0.0781 23
G23 14145.58 1:19:29 1:01:06 32 107 0.3707 23
G24 14140.88 28:04 21:11 25 40 0.1565 23
G25 14144.30 43:44 32:26 27 59 0.3452 24
G26 14132.93 34:45 26:37 31 48 0.3066 23
G27 4141.68 24:56 18:54 23 37 0.1423 23
G28 4100.81 29:41 21:08 23 39 0.1954 25
G29 4208.94 48:16 37:53 27 65 0.1725 22
G30 4215.42 1:02:39 48:16 27 83 0.1282 22
G31 4116.70 26:11 19:02 24 38 0.1889 24
G32 1567.80 6:20:54 6:09:52 144 312 0.892 15
G33 1544.42 6:04:22 5:53:37 112 305 0.6887 15
G34 1546.82 3:46:31 3:39:26 105 198 0.8369 15
G35 8014.81 4:31:17 3:54:01 61 209 0.2397 22
G36 8006.04 2:56:10 2:31:09 62 115 0.2634 24
G37 8018.68 3:10:01 2:46:35 58 130 0.254 23
G38 8015.01 4:03:53 3:39:24 58 155 0.1937 22
G39 2877.71 1:20:24 1:12:23 50 85 0.2194 20
G40 2864.96 2:42:02 2:30:21 59 158 0.2737 19
G41 2865.29 1:41:33 1:32:50 51 108 0.1954 19
G42 2946.29 1:32:45 1:24:12 59 93 0.1535 20

The graph instances are of the same type as above. The computational results are
displayed in Table 7.6. The new columns n and m give the order of the matrix variable
and the number of constraints, respectively. Observe that the toroidal grid graphs
G48 and G49 are perfect with independence number 1,500; the independence number
of G50 is 1,440 but G50 is not perfect. We do not know the independence number of
the other graphs. Except for G48 and G49, which have θ(G48) = θ(G49) = 1, 500 by
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Table 7.6
Upper bound on the ϑ-function after five hours of computation time.

n m B-sol B-time λ-time serious iter ‖g‖ max-r
G43 1001 10991 308.47 6:02:20 3:40:57 38 104 0.5098 25
G44 1001 10991 310.13 5:06:31 3:14:25 39 88 0.5493 25
G45 1001 10991 309.00 5:10:38 3:19:25 40 87 0.5532 25
G46 1001 10991 309.21 5:35:56 3:31:42 42 99 0.5535 25
G47 1001 10991 310.84 5:24:52 3:10:35 44 100 0.5558 25
G48 3001 9001 1526.53 5:11:31 4:59:57 54 94 0.4062 15
G49 3001 9001 1521.24 5:06:21 4:53:45 53 102 0.3751 15
G50 3001 9001 1536.12 5:17:51 5:01:25 50 124 0.4728 15
G51 1001 6910 455.21 5:07:40 4:29:00 32 118 2.556 25
G52 1001 6917 465.12 5:09:02 4:38:30 41 108 2.683 25
G53 1001 6915 463.86 5:08:36 4:36:34 41 104 2.593 25
G54 1001 6917 466.04 5:02:21 4:32:21 40 98 2.590 25

perfectness, it is hard to judge the quality of the solutions. Tracing the development of
the bounds the last serious steps of examples G43 to G47 and G51 to G54 still produced
improvements of 0.5% to 1%. This and the rather large norm of the subgradient of
G51 and G54 indicate that the values cannot be expected to be “good” approximations
of the ϑ-function. Also note that the size of the subspace required for G48 to G50 is
still well below 25. In examples G51 to G54 the value of α is almost negligible, but
for G43 to G47 the value of α is roughly 1/3 at termination. Thus, for these examples
the restriction to 25 columns became relevant.

The computational results of Table 7.6 demonstrate that the algorithm has its
limits. Nonetheless, the bounds obtained are still useful and the primal approximation
corresponding to the subgradient is a reasonable starting point for primal heuristics.

8. Conclusions and extensions. We have proposed a proximal bundle method
for solving semidefinite programs with large sparse or strongly structured coefficient
matrices. The semidefinite constraint is lifted into the objective function by means of a
Lagrange multiplier a whose correct value is not known in general, except for problems
with fixed primal trace. In the latter case a is precisely the value of the trace. The
approach differs from previous bundle methods in that the subproblem is tailored
for semidefinite programming. In fact the whole approach can be interpreted as
semidefinite programming over subspaces where the subspace is successively corrected
and improved till the optimal subspace is identified. The set of subgradients modeled
by the semidefinite subproblem is a superset of the subgradients used in the traditional
polyhedral cutting plane model. Therefore convergence of the new method is a direct
consequence of previous proofs for traditional bundle methods. It is not yet clear
whether the specialized model admits stronger convergence results. The choice of u
is still very much an open problem of great practical importance.

For (constrained) quadratic {−1, 1}-programming the method offers a good bound
within reasonable time and allows the construction of an approximate primal optimal
solution (of the relaxation) in compact representation. To improve the bound by
a cutting plane approach the algorithm must be able to deal with sign constraints
on the y-variables. In principle it is not difficult to model the sign constraints in
the semidefinite subproblem. However, as a consequence the influence of the sign-
constrained y variables on the cost coefficients of the quadratic subproblem cannot be
eliminated any longer, rendering the method impractical even for a moderate number
of cutting planes. Alternatively, one might consider active set methods, but these
risk destroying convergence. Together with K.C. Kiwiel, we are currently working on
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Table 7.7
Arguments for generating the graphs by the graph generator rudy.

G1 -rnd graph 800 6 8001
G2 -rnd graph 800 6 8002
G3 -rnd graph 800 6 8003
G4 -rnd graph 800 6 8004
G5 -rnd graph 800 6 8005
G6 -rnd graph 800 6 8001 -random 0 1 8001 -times 2 -plus -1
G7 -rnd graph 800 6 8002 -random 0 1 8002 -times 2 -plus -1
G8 -rnd graph 800 6 8003 -random 0 1 8003 -times 2 -plus -1
G9 -rnd graph 800 6 8004 -random 0 1 8004 -times 2 -plus -1
G10 -rnd graph 800 6 8005 -random 0 1 8005 -times 2 -plus -1
G11 -toroidal grid 2D 100 8 -random 0 1 8001 -times 2 -plus -1
G12 -toroidal grid 2D 50 16 -random 0 1 8002 -times 2 -plus -1
G13 -toroidal grid 2D 25 32 -random 0 1 8003 -times 2 -plus -1
G14 -planar 800 99 8001 -planar 800 99 8002 +
G15 -planar 800 99 8003 -planar 800 99 8004 +
G16 -planar 800 99 8005 -planar 800 99 8006 +
G17 -planar 800 99 8007 -planar 800 99 8008 +
G18 -planar 800 99 8001 -planar 800 99 8002 + -random 0 1 8001 -times 2 -plus -1
G19 -planar 800 99 8003 -planar 800 99 8004 + -random 0 1 8002 -times 2 -plus -1
G20 -planar 800 99 8005 -planar 800 99 8006 + -random 0 1 8003 -times 2 -plus -1
G21 -planar 800 99 8007 -planar 800 99 8008 + -random 0 1 8004 -times 2 -plus -1
G22 -rnd graph 2000 1 20001
G23 -rnd graph 2000 1 20002
G24 -rnd graph 2000 1 20003
G25 -rnd graph 2000 1 20004
G26 -rnd graph 2000 1 20005
G27 -rnd graph 2000 1 20001 -random 0 1 20001 -times 2 -plus -1
G28 -rnd graph 2000 1 20002 -random 0 1 20002 -times 2 -plus -1
G29 -rnd graph 2000 1 20003 -random 0 1 20003 -times 2 -plus -1
G30 -rnd graph 2000 1 20004 -random 0 1 20004 -times 2 -plus -1
G31 -rnd graph 2000 1 20005 -random 0 1 20005 -times 2 -plus -1
G32 -toroidal grid 2D 100 20 -random 0 1 20003 -times 2 -plus -1
G33 -toroidal grid 2D 80 25 -random 0 1 20002 -times 2 -plus -1
G34 -toroidal grid 2D 50 40 -random 0 1 20001 -times 2 -plus -1
G35 -planar 2000 99 20001 -planar 2000 99 20002 +
G36 -planar 2000 99 20003 -planar 2000 99 20004 +
G37 -planar 2000 99 20005 -planar 2000 99 20006 +
G38 -planar 2000 99 20007 -planar 2000 99 20008 +
G39 -planar 2000 99 20001 -planar 2000 99 20002 + -random 0 1 20001 -times 2 -plus -1
G40 -planar 2000 99 20003 -planar 2000 99 20004 + -random 0 1 20002 -times 2 -plus -1
G41 -planar 2000 99 20005 -planar 2000 99 20006 + -random 0 1 20003 -times 2 -plus -1
G42 -planar 2000 99 20007 -planar 2000 99 20008 + -random 0 1 20004 -times 2 -plus -1
G43 -rnd graph 1000 2 10001
G44 -rnd graph 1000 2 10002
G45 -rnd graph 1000 2 10003
G46 -rnd graph 1000 2 10004
G47 -rnd graph 1000 2 10005
G48 -toroidal grid 2D 50 60
G49 -toroidal grid 2D 30 100
G50 -toroidal grid 2D 25 120
G51 -planar 1000 100 10001 -planar 1000 100 10002 +
G52 -planar 1000 100 10003 -planar 1000 100 10004 +
G53 -planar 1000 100 10005 -planar 1000 100 10006 +
G54 -planar 1000 100 10007 -planar 1000 100 10008 +

alternative methods for incorporating sign constraints on y [13].

The backbone of the method is an efficient routine for computing the maximal
eigenvalue of huge structured symmetric matrices. Although our own implementation
(based on the code of Hua) seems to work quite well there is certainly much room
for improvement. A straightforward approach to achieve serious speed-ups is to im-
plement the algorithm on parallel machines; see, for instance, [43]. Recently, there
has been renewed interest in the Lanczos method; see [25, 3, 5, 10, 30] and references
therein. Most of these papers are based on the concept of an implicit restart proposed
in [44], which is a polynomial acceleration approach that does not require additional
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matrix vector multiplications. It will be interesting to test these new ideas within the
bundle framework.

Appendix. Notation.
Rn real column vector of dimension n,
Mm,n m× n real matrices,
Sn n× n symmetric real matrices,
S++
n n× n symmetric positive definite matrices,
S+
n n× n symmetric positive semidefinite matrices,
A � 0 A is positive definite,
A � 0 A is positive semidefinite,
I, In identity of appropriate size or of size n,
e vector of all ones of appropriate dimension,
λmax(A) maximal eigenvalue of A,
trA trace of A ∈Mn,n, trA =

∑n
i=1 aii =

∑n
i=1 λi(A),

〈A,B〉 inner product in Mm,n, 〈A,B〉 = tr(BTA),

svec(A)
(
n+1

2

)
-dimensional vector representation of A ∈ Sn,

A⊗sB symmetric Kronecker product of A,B ∈Mn,n,
diag(A) the diagonal of A ∈Mn,n as a column vector,
Diag(v) diagonal matrix with v on its main diagonal.

Sn is isomorphic to R(n+1
2 ) via the map svec(A) defined by stacking the columns of

the lower triangle of A on top of each other and multiplying the off-diagonal elements
with

√
2,

svec(A) :=
[
a11,
√

2a21, . . . ,
√

2an1, a22,
√

2a32, . . . , ann

]T
.

The factor
√

2 for off-diagonal elements ensures that, for A,B ∈ Sn,

〈A,B〉 = tr(AB) = svec(A)T svec(B).

The symmetric Kronecker product ⊗s is defined for arbitrary square matrices A,B ∈
Mn,n by its action on a vector svec(C) for a symmetric matrix C ∈ Sn,

(A⊗sB) svec(C) :=
1

2
svec(BCAT +ACBT ).

Both concepts were first introduced in [2]. Here we use the notation introduced in
[45]. From the latter paper we also cite some properties of the symmetric Kronecker
product for the convenience of the reader.

(1) A⊗sB = B ⊗sA.
(2) (A⊗sB)T = BT ⊗sAT .
(3) A⊗sI is symmetric if and only if A is.
(4) (A⊗sA)−1 = A−1 ⊗sA−1.
(5) (A⊗sB)(C ⊗sD) = 1

2 (AC ⊗sBD +AD ⊗sBC).
(6) If A � 0 and B � 0 then (A⊗sB) � 0.
(7) svec(A)T svec(B) = 〈A,B〉 = tr(AB).
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1. Introduction. We consider the convex constrained minimization problem

f∗ := min {f(x) : x ∈ S} ,(1.1)

where S is a nonempty closed convex set in Rn, f : Rn → R is a convex function, and
for each x ∈ S we can compute f(x) and a subgradient gf (x) ∈ ∂f(x) of f at x. We
assume that the optimal set S∗ := Arg minS f is nonempty.

We show that the proximal bundle method [CoL93, Kiw90, Kiw95, Lem77, Mif82,
ScZ88], [HUL93, section XV.3] finds asymptotically not only some x∞ ∈ S∗, but also
objective subgradients and constraint multipliers involved in optimality conditions for
minS f , and multipliers of objective pieces when f is a max-type function. Until now,
similar results have been known [LPS98] only for subgradient methods with divergent
series stepsizes whose convergence is always slow.

We also complement the results of [Kiw95], which show that the proximal bundle
method applied to Lagrangian duals of convex programs may find primal solutions by
combining partial Lagrangian solutions. In particular, we show that primal recovery
is not harmed by the imposition of dual upper bounds, provided such bounds majorize
a dual optimal solution. We note that “artificial” upper bounds are frequently used to
stabilize other dual methods, and our analysis may justify such heuristic techniques.
This has already been done in [FeK97] for cutting plane methods, i.e., generalized
linear programming [Dan63, section 22]. Primal recovery for conjugate subgradient
bundle methods [Lem75, Wol75] is discussed in [Rzh89, RzK85], and for the ε-steepest
descent bundle method [LSB81] in [Rob86, Rob89] (see also Remark 5.4 of this pa-
per). For subgradient methods, the earliest result of [Zhu77] (mentioned in [Sho79,
section 4.4]) has several extensions [AnW93, LaL89, LPS99, ShC96].
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The dual problem arising in Lagrangian relaxation [Sha79, section 5.3] of a quite
arbitrary nonconvex program (cf. [Fis81, Sho79] for mixed integer programs) may be
solved by several methods for nondifferentiable optimization [Ber95, sections 6.3–6.4],
[HUL93, section XII.4]. We show that, under fairly general assumptions and without
extra cost, the proximal bundle method also finds solutions to a relaxed convexified
version of the primal program [LeR96, MSW76], [Sha79, section 5.3]. Such results
are given in [FeK97] for generalized linear programming [Dan63, section 22], are thus
far missing for the subgradient method, and may be expected (but have not been
established) to hold for the exponential smoothing method of [Ber82, section 5.6]
and [BLSP83], which is restricted to problems with piecewise linear or concave costs
and constraints. For the applications solved via the smoothing method [Ber82, sec-
tion 5.6], [BLSP83], the solution of the relaxed problem can be used to generate a
good suboptimal solution to the original problem. Since the proximal bundle method
can handle more general problems, we hope that our results may stimulate research
on the use of relaxed solutions in other applications.

As a partial justification of our hope, we present numerical results for the unit
commitment (UC) problem [Bar88, DGM+97, Fel97, LPRS96, LJS97, MuK77, ShF94,
ZhG88] in the daily operation of power systems. This large-scale mixed integer pro-
gramming problem determines on/off schedules and power outputs of the generators
so as to minimize the system operating cost over a planning horizon of 24 to 168
hours.

The paper is organized as follows. In section 2 we review briefly the proximal
bundle method of [Kiw90] and its convergence properties. In section 3 we show how
certain affine minorants of f and ıS (the indicator of S) can be used in stopping
criteria and to identify subgradients of f and ıS involved in optimality conditions for
minS f . Their uses for identifying multipliers of objective pieces when f is a max-
type function and multipliers of constraint functions describing S are discussed in
section 4. Applications to Lagrangian decomposition of convex programs are studied
in section 5. Extensions to Lagrangian relaxations of nonconvex problems are given
in section 6. Our results for the UC application are presented in section 7.

Our notation is fairly standard. | · | is the Euclidean norm. ∂εf(·) := {p : f(x) ≥
f(·)−ε+〈p, x− ·〉 ∀x} is the ε-subdifferential of f . dC(·) := infy∈C |·−y| is the distance
function of C ⊂ Rn. “s.t.” abbreviates “such that” or “subject to,” depending on the
context.

2. The proximal bundle method. We may regard our constrained problem
f∗ := minS f (cf. (1.1)) as the unconstrained problem f∗ = min fS with the essential
objective

fS := f + ıS ,(2.1)

where ıS is the indicator function of the feasible set S (ıS(x) = 0 if x ∈ S, ∞ if
x /∈ S). Clearly, fS is convex. Let NS := ∂ıS denote the normal cone operator of S.

The proximal bundle method of [Kiw90] generates a sequence {xk}∞k=1 ⊂ S
converging to some x∞ ∈ S∗ and trial points yk ∈ S for evaluating subgradients
gkf := gf (yk) of f and its linearizations

fk(·) := f(yk) +
〈
gkf , · − yk

〉 ≤ f(·),(2.2)
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starting from an arbitrary point x1 = y1 ∈ S. Iteration k uses the polyhedral model
of f

f̌k := max
j∈Jk

fj with k ∈ Jk ⊂ {1: k}(2.3)

for finding

yk+1 := arg min
{
f̌k(x) + 1

2uk|x− xk|2 : x ∈ S} ,(2.4)

where uk > 0 is a proximity weight. A descent step to xk+1 = yk+1 occurs if f(yk+1) ≤
f(xk) + κvk, where κ ∈ (0, 1) is fixed and

vk := f̌k(yk+1)− f(xk) ≤ 0(2.5)

is the predicted descent (if vk = 0, then xk ∈ S∗ and the method may stop). Otherwise,
a null step xk+1 = xk improves the next model f̌k+1 with fk+1 (cf. (2.3)).

Concerning the proximity weights, we assume for simplicity that, for each k ≥ 1,

uk ∈ [umin, umax] for some fixed 0 < umin ≤ umax <∞,(2.6)

and that uk+1 ≥ uk if xk+1 = xk; i.e., the weight cannot decrease after a null step.
More refined uk-updating techniques are discussed in [Kiw90, Kiw95, Kiw96, LeS97].

It remains to describe the choice of Jk+1. By the optimality condition for (2.4)

0 ∈ ∂ [f̌k(·) + 1
2uk| · −xk|2 + ıS(·)] (yk+1),

there exists

pkf ∈ ∂f̌k(yk+1)(2.7)

such that

pkS := −uk(yk+1 − xk)− pkf ∈ NS(yk+1) := ∂ıS(yk+1),(2.8)

whereas by (2.7), (2.3), and (2.2) there are multipliers νkj , j ∈ Jk, such that

pkf =
∑
j∈Jk

νkj g
j
f ,
∑
j∈Jk

νkj = 1, νkj ≥ 0, νkj
[
f̌k(yk+1)− fj(yk+1)

]
= 0, j ∈ Jk.(2.9)

Let

Ĵk :=
{
j ∈ Jk : νkj > 0

}
.(2.10)

To save storage without impairing convergence, it suffices to choose Jk+1 ⊃ Ĵk∪{k+1}
(i.e., we may drop linearizations fj with νkj = 0 that do not contribute to pkf in (2.9),

and hence have no influence on yk+1 and f̌k(yk+1); cf. (2.7)–(2.8)).
From now on, {xk}, {vk}, etc. denote the sequences generated by the above

method, under the assumptions introduced below (1.1). Note that (cf. (2.1)) fS(xk) =
f(xk) for each k, since by construction (cf. (2.4)) {yk} and {xk} lie in S.

The analysis of [Kiw90, Kiw95] yields the following global convergence result.
Theorem 2.1. The sequence {xk} converges to a solution x∞ of problem (1.1),

i.e., a point x∞ in S∗. Moreover, f(xk) ↓ f(x∞) = f∗ := minS f and vk → 0 as
k →∞.
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Remark 2.2.
(i) The assumption that f is finite on Rn may be weakened as follows. Inspec-

tion of the proofs of [Kiw90, Kiw95] reveals that Theorem 2.1 requires only convexity
and finiteness of f on S and local boundedness of gf (·) ∈ ∂f(·) on S (boundedness
of gf on bounded subsets of S). Indeed, then f is locally Lipschitz continuous on S
(since f(x)− f(y) ≤ 〈gf (x), x− y〉 ≤ |gf (x)||x− y| ∀x, y ∈ S).

(ii) Note that yk+1 (cf. (2.4)) and ξk := f̌k(yk+1) = f(xk) + vk (cf. (2.5)) solve

min 1
2uk|x− xk|2 + ξ over all (x, ξ) ∈ S × R,(2.11a)

s.t. fj(x
k) +

〈
gjf , x− xk

〉
≤ ξ ∀j ∈ Jk.(2.11b)

When S is polyhedral, the quadratic programming (QP) method of [Kiw94] finds
(yk+1, ξk) and multipliers νkj of (2.11b) such that (2.9) holds and |Ĵk| ≤ n + 1
(cf. (2.10)).

3. Optimal objective and constraint subgradients. We shall show that the
aggregate subgradients pkf and −pkS (cf. (2.7)–(2.8)) converge to the optimal subgradient
set

G := ∂f(x∞) ∩ −NS(x∞)(3.1)

of our problem minS f , where x∞ ∈ S∗ is the limit point of {xk} (cf. Theorem 2.1).
Remark 3.1. It is a fact that G does not really depend on x∞, since (cf. [BuF91,

Lemma 2])

G = ∂f(x) ∩ −NS(x) for every x in S∗.(3.2)

Further, G is closed and convex (so are ∂f(x∞) and ∂ıS(x∞)) and nonempty (as will
be seen from Theorem 3.4 below). In general, if ∂f(x) ∩ −NS(x) 6= ∅ then x ∈ S∗,
since 0 ∈ ∂f(x) + NS(x) ⊂ ∂fS(x), and 0 ∈ ∂fS(x) iff x ∈ S∗, but we do not
require that ∂fS = ∂f + ∂ıS , in view of the weakened assumption of Remark 2.2(i).
Thus, G describes subgradients of f and ıS involved in the optimality condition 0 ∈
∂f(x) +NS(x) that characterizes solutions x of minS f .

We shall employ the following aggregate linearizations of f , ıS , and fS (cf. (2.1)):

f̃k(·) := f̌k(yk+1) +
〈
pkf , · − yk+1

〉
, ı̃kS(·) :=

〈
pkS , · − yk+1

〉
, f̃kS := f̃k + ı̃kS ,(3.3)

stemming from (2.7)–(2.8) with ıS(yk+1) = 0. They are described by their gradients

∇f̃k = pkf , ∇ı̃kS = pkS , ∇f̃kS = pk := pkf + pkS = −uk(yk+1 − xk)(3.4)

(cf. (2.8) for the final equality), as well as their linearization errors at xk

ε̃kf := f(xk)− f̃k(xk), ε̃kS := ıS(xk)− ı̃kS(xk), ε̃k := f(xk)− f̃kS(xk).(3.5)

The following preliminary technical result lists their well-known properties [Kiw95].
Lemma 3.2.

(i) f̃k ≤ f , ı̃kS ≤ ıS, f̃kS ≤ fS.

(ii) f̃k =
∑
j∈Jk ν

k
j fj.

(iii) pkf ∈ ∂ε̃k
f
f(xk), pkS ∈ ∂ε̃k

S
ıS(xk), pk ∈ ∂ε̃kfS(xk), with ε̃kf ≥ 0, ε̃kS ≥ 0,

ε̃k = ε̃kf + ε̃kS ≥ 0. Further,

fS(x) ≥ f̃kS(x) = f(xk)− ε̃k +
〈
pk, x− xk〉 ∀x.(3.6)



DUAL APPLICATIONS OF BUNDLE METHODS 701

(iv) −vk = uk|yk+1 − xk|2 + ε̃k = |pk|2/uk + ε̃k ≥ 0.
Proof. (i) (3.3), (2.7), (2.8) with ıS(yk+1) = 0 (since yk+1 ∈ S by (2.4)) and the

subgradient inequality yield f̃k ≤ f̌k and ı̃kS ≤ ıS . By adding these inequalities and

using (cf. (2.2)–(2.3)) f̌k ≤ f , we get f̃kS := f̃k + ı̃kS ≤ f + ıS =: fS .

(ii) Since fj(·) := f(yj) + 〈gjf , · − yj〉 = fj(y
k+1) + 〈gjf , · − yk+1〉, (2.9) and (3.3)

yield

f̃k(·) =
∑
j∈Jk

νkj

[
fj(y

k+1) +
〈
gjf , · − yk+1

〉]
=
∑
j∈Jk

νkj fj(·).

(iii) By (i) and (3.3)–(3.5), f(·) ≥ f̃k(·) = f(xk)− ε̃kf + 〈pkf , ·−xk〉, ıS(·) ≥ ı̃kS(·) =

ıS(xk)− ε̃kS+〈pkS , ·−xk〉, fS(·) ≥ f̃kS(·) = f(xk)− ε̃k+〈pk, ·−xk〉 with ıS(xk) = 0 (since

xk ∈ S) and ε̃k = f(xk)− f̃k(xk)− ı̃kS(xk) = εkf + εkS ; set · = xk to get ε̃kf , ε̃
k
S , ε̃k ≥ 0.

(iv) Using (3.3) and the right-most equalities in (3.4), we have

f̌k(yk+1) = f̃kS(yk+1) = f̃kS(xk) +
〈
pk, yk+1 − xk〉 = f̃kS(xk)− uk|yk+1 − xk|2

and uk|yk+1 − xk|2 = |pk|2/uk, so −vk = f(xk) − f̌k(yk+1) = ε̃k + |pk|2/uk by (2.5)
and (3.5), where ε̃k ≥ 0 by (iii).

We now begin our study of asymptotic properties of the aggregate linearizations
f̃k, ı̃kS , and f̃kS (cf. (3.3)). First, we show that their errors ε̃kf , ε̃kS , and ε̃k (cf. (3.5)),

as well as the gradient pk of f̃kS (cf. (3.4)), vanish asymptotically. In effect, the graph

of f̃kS becomes horizontal, thus confirming via (3.6) the optimality of x∞ := limk x
k

(cf. Theorem 2.1), whereas f̃k and ı̃kS converge to the set of linearizations of f and
ıS at x∞, provided their gradients (cf. (3.4)) pkf and pkS are bounded (i.e., the graphs

of f̃k and ı̃kS do not become vertical). Since pkf is a convex combination of the past

subgradients {gjf}j∈Jk (cf. (2.9)), its boundedness, as well as that of pkS = pk − pkf
(cf. (3.4)), will follow from the boundedness of gkf , which we establish next.

Lemma 3.3.
(i) In the notation of (3.5) and (3.4), we have

ε̃kf → 0, ε̃kS → 0, ε̃k → 0, and pk → 0 as k →∞.
(ii) limk→∞ yk = x∞ (:= limk→∞ xk; cf. Theorem 2.1), and {gkf} is bounded.

Proof. (i) and (ii). By Lemma 3.2(iii), (iv), 0 ≤ ε̃kf , ε̃
k
S , ε̃k ≤ −vk → 0 (cf. The-

orem 2.1). Then |pk|2/uk = uk|yk+1 − xk|2 ≤ −vk (cf. Lemma 3.2(iv)) with uk ∈
[umin, umax] (cf. (2.6)) give pk → 0, yk+1−xk → 0. Hence, yk → x∞, since xk → x∞.
Thus {yk} is bounded, and so is {gkf := gf (yk)}, since gf is locally bounded on
S.

We may now show that pkf and −pkS are bounded and converge to the optimal

subgradient set G (cf. (3.1)) as xk approaches x∞, whereas f̃k and ı̃kS converge to the
corresponding set of “optimal” linearizations of f and ıS at x∞. This fairly abstract
result will form the basis of the more concrete results of sections 4–6.

Theorem 3.4.
(i) {pkf} is bounded and each cluster point of {pkf} lies in ∂f(x∞).

(ii) Let p∞f be a cluster point of {pkf}. Let K ⊂ {1, 2, . . . } be such that pkf
K−→

p∞f . Then p∞f ∈ G. Moreover,

pkS
K−→ p∞S , f̃k(·) K−→ f̃∞(·), and ı̃kS(·) K−→ ı̃∞S (·),
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where

p∞S := −p∞f ∈ NS(x∞), f̃∞(·) := f(x∞) +
〈
p∞f , · − x∞

〉
, ı̃∞S (·) := 〈p∞S , · − x∞〉 .

(iii) {pkS} is bounded and each cluster point of {pkS} lies in NS(x∞).
(iv) dG(pkf )→ 0 and dG(−pkS)→ 0 as k →∞.

Proof. (i) By (2.9), pkf ∈ co{gjf}kj=1. Hence, {pkf} is bounded (so is {gkf} by

Lemma 3.3(ii)). Next, pkf ∈ ∂ε̃kf f(xk) (Lemma 3.2(iii)) with xk → x∞ and ε̃kf → 0

(Lemma 3.3(i)) imply that each cluster point of {pkf} lies in ∂f(x∞), since the ap-
proximate subdifferential mapping (x, ε)→ ∂εf(x) is closed [HUL93, section XI.4.1].

(ii) Using (3.3), the facts that ε̃kf := f(xk)−f̃k(xk)→0 (cf. (3.5) and Lemma 3.3(i))

and f(xk) ↓ f(x∞) (cf. Theorem 2.1), and our assumption pkf
K−→ p∞f , we obtain

f̃k(·) = f(xk)− ε̃kf +
〈
pkf , · − xk

〉 K−→ f(x∞) +
〈
p∞f , · − x∞

〉
=: f̃∞(·).

By (i), p∞f ∈ ∂f(x∞). Next, pk − pkf = pkS ∈ ∂ε̃kS ıS(xk) (cf. (3.4) and Lemma 3.2(iii))

with pk → 0, ε̃kS → 0 (cf. Lemma 3.3(i)) yield pkS
K−→ −p∞f ∈ ∂ıS(x∞) by the

closedness of ∂εıS(x). Since ε̃kS := −ı̃kS(xk) → 0 (cf. (3.5) and Lemma 3.3(i)) and

p∞S := −p∞f , we have ı̃kS(·) = ı̃kS(xk) +
〈
pkS , · − xk

〉 K−→ ı̃∞S (·).
(iii) By (i), (ii), {pkS = pk − pkf} is bounded, since pk → 0 and {pkf} is bounded.

If {pkS} has a cluster point p∞S , then by (i), (ii), {pkf} has a cluster point p∞f s.t.
p∞S = −p∞f ∈ NS(x∞).

(iv) This follows from (i)–(iii) and the continuity of dG (e.g., pickK s.t. dG(pkf )
K−→

lim supk dG(pkf ) and, using (i), (ii), pkf
K−→ p∞f ∈ G to get dG(pkf )

K−→ dG(p∞f )
= 0).

The full strength of Theorem 3.4 will be exploited later. The remainder of this
section is devoted to two simple, but quite useful, results related to Lemma 3.3 and
Theorem 3.4.

The usual stopping criteria of proximal bundle methods (cf. [Kiw90, ScZ88],
[HUL93, section XV.3]) tend to work quite well in most cases, but they do not
guarantee that, for a given ε > 0, f(xk) ≤ f∗ + ε upon termination. The following
result may be used for developing alternative stopping criteria when S is bounded, as
happens in many applications.

Lemma 3.5. Suppose the feasible set S is bounded. Let f̃kmin := minS f̃
k
S for all

k ≥ 1. Then f̃kmin ≤ minS f̃k ≤ f∗ for all k, and f̃kmin → f∗ as k →∞.

Proof. The inequalities f∗ ≥ minS f̃k ≥ f̃kmin follow from (cf. Lemma 3.2(i))

f(x) ≥ f̃k(x) = f̃kS(x)− ı̃kS(x) ≥ f̃kS(x) for each x in S(3.7)

(since ı̃kS(x) ≤ ıS(x) = 0 ∀x ∈ S). Let x̃k ∈ Arg minS f̃
k
S so that f̃kS(x̃k) = f̃kmin ≤

f∗ ≤ f(xk). Set x = x̃k in (3.6) and use the Cauchy–Schwarz inequality together with
ε̃k, |pk| → 0 (cf. Lemma 3.3(i)) and boundedness of {xk}, {x̃k} ⊂ S to get

0 ≤ f(xk)− f̃kmin = f(xk)− f̃kS(x̃k) = ε̃k −
〈
pk, x̃k − xk〉 ≤ ε̃k + |pk||x̃k − xk| → 0.

However, f(xk) ↓ f∗ (Theorem 2.1), so the preceding relation gives f̃kmin → f∗.
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Remark 3.6. When S is bounded, we may compute the lower bounds on f∗:

f̃klow := max
{

min
S
f̃k, f̃

k−1
low

}
for k ≥ 1, with f̃0

low := −∞.(3.8)

Since f̃klow ↑ f∗ (cf. Lemma 3.5), whereas f(xk) ↓ f∗ (Theorem 2.1), for any ε > 0

there is k s.t. f(xk) − f̃klow ≤ ε, implying f(xk) ≤ f∗ + ε. This validates a stopping

criterion of the form f(xk) − f̃klow ≤ ε. Note that it is better to use f̃k instead of f̃kS
in (3.8), since f̃k ≥ f̃kS on S (cf. (3.7)). Conversely, if the computation of minS f̃k is

difficult, but it is easier to find minS̃ f̃
k
S for some “simpler” bounded set S̃ ⊃ S, then

minS̃ f̃
k
S may replace minS f̃k in (3.8) (since minS̃ f̃

k
S ≤ f∗ and minS̃ f̃

k
S → f∗ by the

proof of Lemma 3.5 with S replaced by S̃); in fact it may be more efficient to use
f̃klow := max{minS̃ f̃

k
S ,minS̃ f̃k, f̃

k−1
low }.

Having the feasible set S bounded is useful both for stopping criteria (cf. Re-
mark 3.6) and for preventing “too long” steps away from S∗, especially at early it-
erations, when f̌k is a poor model of f . In some applications (cf. Example 4.5 and
Remarks 5.3(ii) and 6.3(ii)), one wants to find minS̆ f for an unbounded set S̆, but
one can find a bounded set S̄ that intersects Arg minS̆ f . Then it is natural to solve,

instead of the original problem minS̆ f , its restricted version minS f with S = S̆ ∩ S̄,
since Arg minS f ⊂ Arg minS̆ f and S is bounded. In other words, one imposes “artifi-
cial” constraints given by S̄ on the original problem minS̆ f to ensure boundedness of
the feasible set S. In view of Theorem 3.4, this raises the question about the relation-
ship of the optimal subgradient set G (cf. (3.1)) for minS f to the optimal subgradient
set of minS̆ f . A simple answer is given below.

Lemma 3.7. Suppose minS f is a restriction of the original problem minS̆ f in

the sense that S = S̆∩ S̄ for two convex sets S̆ and S̄. Let S̆∗ := Arg minS̆ f . Suppose

S̆∗ ∩ int S̄ 6= ∅. Then the solution sets S∗ of minS f and S̆∗ of minS̆ f satisfy ∅ 6=
S∗ ⊂ S̆∗, and together with (3.2), i.e.,

G = ∂f(x) ∩ −NS(x) for every x in S∗,

we have

G = ∂f(x) ∩ −NS̆(x) for every x in S̆∗.

Thus G is the common optimal subgradient set of both minS f and minS̆ f .

Proof. Clearly, S̆∗∩ int S̄ ⊂ S∗ ⊂ S̆∗. Let x̆ ∈ S̆∗∩ int S̄ and Ğ := ∂f(x̆)∩−NS̆(x̆).

By [BuF91, Lemma 2] applied to minS̆ f , Ğ = ∂f(x) ∩ −NS̆(x) ∀x ∈ S̆∗. However,

NS̄(x̆) = {0} and NS̆(x̆) = NS̆(x̆) +NS̄(x̆) = NS(x̆), so Ğ = ∂f(x̆)∩−NS(x̆). Hence,

by [BuF91, Lemma 2] applied to minS f , Ğ = ∂f(x)∩−NS(x) ∀x ∈ S∗. For x = x∞,
we get Ğ = G (cf. (3.1)).

Remark 3.8. Under the assumptions of Lemma 3.7, NS̆ may replace NS in
Theorem 3.4; then G = ∂f(x∞)∩−NS̆(x∞) characterizes “optimal” subgradients for

both minS f and minS̆ f . In general, if S̆∗ 6= ∅ then it suffices to choose S̄ “large
enough” but compact to have S bounded as well. A useful illustration is given in
Example 4.5.

4. Particular cases. By using elementary subdifferential calculus, we now spe-
cialize the results of section 3 to the cases where we have explicit representations of
f as a finite-max-type function and of S as the solution set of finitely many nonlin-
ear inequalities and linear equalities. (The readers mainly interested in Lagrangian
relaxation may skip this section.)
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4.1. Minimax objective multipliers. In this subsection we assume that the
objective f has the finite max form

f(x) = max
i∈I

hi(x) ∀x,

where |I| <∞ and each hi : Rn → R is convex. Let

Λ :=
{
λ ∈ R|I|+ :

∑
i∈I λi = 1

}
and, for each x,

I(x) := {i ∈ I : hi(x) = f(x)},

Λ(x) := {λ ∈ Λ : λi = 0 if i /∈ I(x)},

so that

∂f(x) =
{∑

i∈I λi∂hi(x) : λ ∈ Λ(x)
}
.(4.1)

The (possibly empty) set of optimal multipliers associated with any x

Λ∗(x) :=
{
λ ∈ Λ(x) :

(∑
i∈I λi∂hi(x)

)
∩ −NS(x) 6= ∅

}
(4.2)

has the following properties (cf. [LPS98, Prop. 5.8]).
Lemma 4.1.

(i) For each x, x ∈ S∗ iff Λ∗(x) 6= ∅, and Λ∗(x) is compact and convex.
(ii) For each x̄ ∈ S∗ (e.g., x̄ = x∞; cf. Theorem 2.1), Λ∗(x̄) = Λ∗(x) ∀x ∈ S∗.

(iii) Under the assumptions of Lemma 3.7, define Λ̆∗(x) via (4.2) with S̆ replac-
ing S. Then Λ∗(x) = Λ̆∗(x) ∀x ∈ S∗ so that also Λ̆∗(x) is independent of x ∈ S∗.

Proof. (i) x ∈ S∗ ⇔ ∂f(x) ∩−NS(x) 6= ∅ ⇔ Λ∗(x) 6= ∅, using (4.1) in (4.2). The
compactness and convexity of Λ∗(x) follow from those of Λ(x) and ∂hi(x), i ∈ I.

(ii) Suppose λ ∈ Λ∗(x̄). Using (4.1) in (4.2), we get f∗ = f(x̄) =
∑
i λihi(x̄) and

f∗ := min
x∈S
{f(x) := maxi hi(x)} = min

x∈S

∑
i
λihi(x),

so for each x in S∗ := Arg minS f , λi = 0 if hi(x) < f(x) = f∗; thus λ ∈ Λ(x) and x
minimizes

∑
i λihi over S, i.e., (

∑
i λi∂hi(x)) ∩ −NS(x) 6= ∅, and hence λ ∈ Λ∗(x).

Therefore, Λ∗(x̄) ⊂ Λ∗(x). By a symmetric argument, Λ∗(x̄) ⊃ Λ∗(x), so Λ∗(x̄) =
Λ∗(x).

(iii) Let x ∈ S∗. Since ∂f(x) ∩ −NS(x) = ∂f(x) ∩ −NS̆(x) (Lemma 3.7), (4.1)–

(4.2) yield Λ∗(x) ⊂ Λ̆∗(x). Since NS̆(x) ⊂ NS(x) from S̆ ⊃ S, (4.2) gives Λ̆∗(x) ⊂
Λ∗(x).

Even with limited access to the subdifferential ∂f , estimates of optimal multipliers
may be produced as follows. By (4.1), for each k, the subgradient gkf of f obtained

at yk has the form

gkf =
∑
i∈I

λki g
k
hi with λk ∈ Λ(yk), gkhi ∈ ∂hi(yk), i ∈ I.(4.3)
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The corresponding linearizations of the component functions hi at yk are given by

hki (·) := hi(y
k) +

〈
gkhi , · − yk

〉 ≤ hi(·), i ∈ I.(4.4)

Using the weights {νkj }j∈Jk (cf. (2.9)), we define the kth aggregate multiplier

λ̃k :=
∑
j∈Jk

νkj λ
j .(4.5)

This is similar to the aggregate linearization f̃k =
∑
j∈Jk ν

k
j fj (Lemma 3.2(ii)).

Hence, to prepare for the convergence analysis of {λ̃k}, it will be convenient to express
each fj as a combination of the component linearizations {hji}i∈I and then f̃k as a
combination of the following aggregate linearizations of the component functions hi:

h̃ki (·) :=

{∑
j∈Jk(νkj λ

j
i/λ̃

k
i )hji (·) if λ̃ki > 0

hki (·) otherwise

}
, i ∈ I.(4.6)

Basic properties of such linearizations are given in the following.
Lemma 4.2.

(i) fk =
∑
i∈I λ

k
i h

k
i .

(ii) λ̃k ∈ Λ, h̃ki ∈ co{hji}j∈Jk , and h̃ki ≤ hi for all i ∈ I, and f̃k =
∑
i∈I λ̃

k
i h̃

k
i .

(iii) ∇h̃ki ∈ ∂ε̃ki hi(xk), where ε̃ki := hi(x
k)− h̃ki (xk) ≥ 0, i ∈ I.

Proof. (i) Use (2.2) and (4.3)–(4.4) with hi(y
k) = f(yk) if λki > 0.

(ii) Since (cf. (2.9))
∑
j ν

k
j = 1 with νkj ≥ 0 and (cf. (4.3)) λj ∈ Λ, λ̃k ∈ Λ by

(4.5) and the convexity of Λ. Next, λ̃ki =
∑
j ν

k
j λ

j
i in (4.6) yields h̃ki ∈ co{hji}j∈Jk ,

and hence h̃ki ≤ hi by (4.4). Finally, use Lemma 3.2(ii), (i) and (4.6) to get

f̃k =
∑
j∈Jk

νkj fj =
∑
j∈Jk

νkj
∑
i∈I

λjih
j
i =

∑
i∈I

∑
j∈Jk

νkj λ
j
ih
j
i =

∑
i∈I

λ̃ki h̃
k
i .

(iii) By (ii), hi(·) ≥ h̃ki (·) = hi(x
k)− ε̃ki + 〈∇h̃ki , · − xk〉, i ∈ I.

We may now show that the sequence of aggregate multipliers {λ̃k}, constructed
via (4.5) and (4.3), converges to the optimal multiplier set Λ∗(x∞) as {xk} converges
to x∞.

Theorem 4.3.
(i) {λ̃k} is bounded and all its cluster points lie in Λ.

(ii) Each cluster point of {λ̃k} lies in Λ∗(x∞).
(iii) dΛ∗(x∞)(λ̃

k)→ 0 as k →∞.

Proof. (i) By Lemma 4.2(ii), {λ̃k} ⊂ Λ, a compact set.
(ii) We first show that, for each i ∈ I, {∇h̃ki } is bounded. Since h̃ki ∈ co{hji}j∈Jk

by Lemma 4.2(ii), we have ∇h̃ki ∈ co{∇hji}j∈Jk with ∇hji = gjhi ∈ ∂hi(yj) by (4.3)

and (4.4). Hence {∇h̃ki } is bounded (so is {yk} by Lemma 3.3(ii), and ∂hi is locally
bounded).

Next, let λ̃∞ be a cluster point of {λ̃k}. Then, by the boundedness of {∇h̃ki },
there are K ⊂ {1, 2, . . . } and ∇h̃∞i , i ∈ I, such that λ̃k

K−→ λ̃∞, ∇h̃ki K−→ ∇h̃∞i , i ∈ I.
By (i), λ̃∞ ∈ Λ. Using (3.3), Lemma 4.2(ii) and Theorem 3.4(ii), we get

pkf = ∇f̃k =
∑

i
λ̃ki∇h̃ki K−→

∑
i
λ̃∞i ∇h̃∞i =: p∞f ∈ −NS(x∞).(4.7)
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Next, by Lemma 4.2(ii), since
∑
i λ̃

k
i = 1 and f̃k =

∑
i λ̃

k
i h̃

k
i , we have

f(xk)− f̃k(xk) =
∑

i
λ̃ki [f(xk)− h̃ki (xk)]

=
∑

i
λ̃ki {[f(xk)− hi(xk)] + [hi(x

k)− h̃ki (xk)]},
(4.8)

where λ̃ki ≥ 0 and f ≥ hi ≥ h̃ki , i ∈ I, so that all the bracketed terms of (4.8)
are nonnegative. Further, we have (cf. Theorem 2.1) xk → x∞, f(xk) ↓ f(x∞),
and (cf. Lemma 3.3(i)) ε̃kf := f(xk) − f̃k(xk) → 0, in (4.8). Hence if λ̃∞i > 0,

then hi(x
k)

K−→ hi(x
∞) = f(x∞) by continuity of hi; i.e., i ∈ I(x∞), and hi(x

k) −
h̃ki (xk)

K−→ 0, so ε̃ki := hi(x
k)− h̃ki (xk)

K−→ 0 with ∇h̃ki ∈ ∂ε̃ki hi(xk) (Lemma 4.2(iii))

yield ∇h̃∞i ∈ ∂hi(x∞) by the closedness of ∂εhi(x). Otherwise, λ̃∞i = 0. Therefore,
we have λ̃∞ ∈ Λ(x∞) and

p∞f :=
∑

i
λ̃∞i ∇h̃∞i ∈

∑
i
λ̃∞i ∂hi(x

∞).

Combining this with (4.7) yields λ̃∞ ∈ Λ∗(x∞) (cf. (4.2)).
(iii) Use (i), (ii), and the continuity of dΛ∗(x∞) (cf. the proof of Theorem

3.4(iv)).
Remark 4.4. Under the assumptions of Lemma 4.1(iii), Λ̆∗(x∞) may replace

Λ∗(x∞) in Theorem 4.3; i.e., Λ∗(x∞) is the set of optimal multipliers for both minS f
and minS̆ f . This is useful if constraints are appended to S̆ in order to make S
bounded.

Example 4.5. Let S = Rn+ and f(·) = max
|I|
i=1

〈
ai, ·〉+ bi, where ai is column i of

A ∈ Rn×|I|, b ∈ R|I|. Let e := (1, . . . , 1)T ∈ R|I|. Then, by linear programming (LP)
duality, for any x̄ ∈ S∗,

Λ∗(x̄) = Arg max
{
bTλ : Aλ ≥ 0, eTλ = 1, λ ≥ 0

}
,(4.9)

and if Aλ̌ > 0, eT λ̌ = 1 for some λ̌ ≥ 0, then for any x ∈ S,

x̄i ≤ [f(x)− bT λ̌]/(Aλ̌)i, i = 1: n.

Such bounds may be used for choosing S = S̄ = {x : 0 ≤ x ≤ xup} with xup > x̄; also
in this case every cluster point of {λ̃k} solves the dual problem in (4.9).

Remark 4.6. Following Remark 2.2(i), note that Theorem 4.3 holds if, for each
i ∈ I, hi is finite convex on S, and gkhi := ghi(y

k) ∈ ∂hi(yk) for all k with ghi(·) locally
bounded on S.

4.2. Constraint multipliers. In this subsection we assume that the feasible
set S is represented as

S = {x : ci(x) ≤ 0, i ∈ I, 〈ai, x〉 = bi, i ∈ Ī},(4.10)

where ci : Rn → R is convex, i ∈ I := {1: m̌}, (ai, bi) ∈ Rn+1, i ∈ Ī := {m̌+ 1: m̌+
m̄}. We shall need the following additional assumption.

Assumption 4.7 (strong Slater constraint qualification). The vectors {ai}i∈Ī are
linearly independent and there exists a point x̌ ∈ S such that maxi∈I ci(x̌) < 0.

For each x ∈ S, let

I(x) := {i ∈ I : ci(x) = 0},
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Σ(x) :=
{
µ ∈ R|I|+ × R|Ī| : µi = 0, i ∈ I \ I(x)

}
,(4.11)

so that

NS(x) =

∑
i∈I

µi∂ci(x) +
∑
i∈Ī

µia
i : µ ∈ Σ(x)

 .(4.12)

The (possibly empty) set

Σ∗(x) =
{
µ ∈ Σ(x) : ∂f(x) ∩ −

(∑
i∈I µi∂ci(x) +

∑
i∈Ī µia

i
)
6= ∅
}

(4.13)

of optimal multipliers associated with any x ∈ S has the following properties.
Fact 4.8 (cf. [LPS98, Prop. 5.2]). x ∈ S∗ iff x ∈ S and Σ∗(x) 6= ∅. Further, for

each x̄ ∈ S∗, Σ∗(x̄) = Σ∗(x) ∀x ∈ S∗, and Σ∗(x̄) is compact and convex.
In view of (4.12), we assume that each pkS ∈ NS(yk+1) (cf. (2.8)) has the form

pkS =
∑
i∈I

µki g
k+1
ci +

∑
i∈Ī

µki a
i with µk ∈ Σ(yk+1), gk+1

ci ∈ ∂ci(yk+1), i ∈ I.(4.14)

Thus µk is the multiplier of the current subproblem (2.4). We shall show that µk may
serve as an estimate of optimal multipliers. At first sight, the current setting differs
from the preceding one, which employed explicit aggregation for constructing the
objective multiplier estimate λ̃k (cf. (4.5)) and related it to the aggregate objective
linearization f̃k. Yet there are many similarities, since µk may be related to the
aggregate constraint linearization ı̃kS via the linearizations of the constraints ci at
yk+1 (cf. (4.14))

ck+1
i (·) := ci(y

k+1) +
〈
gk+1
ci , · − yk+1

〉 ≤ ci(·), i ∈ I.(4.15)

Indeed, we have the following counterparts of Lemma 4.2(ii), (iii).
Lemma 4.9.

(i) ı̃kS(·) =
∑
i∈I µ

k
i c
k+1
i (·) +

∑
i∈Ī µ

k
i (
〈
ai, ·〉− bi).

(ii) gk+1
ci ∈ ∂ε̃k

i
ci(x

k) with ε̃ki := ci(x
k)− ck+1

i (xk) ≥ 0, i ∈ I.

Proof. (i) Since (cf. (2.4)) yk+1 ∈ S, (4.10)–(4.11) and (cf. (4.14)) µk ∈ Σ(yk+1)
imply that µki ci(y

k+1) = 0, i ∈ I,
〈
ai, yk+1

〉
= bi, i ∈ Ī. Hence (3.3) and (4.14)–(4.15)

give

ı̃kS(·) :=
〈
pkS , · − yk+1

〉
=
∑
i∈I

µki
〈
gk+1
ci , · − yk+1

〉
+
∑
i∈Ī

µki
〈
ai, · − yk+1

〉
=
∑
i∈I

µki
[
ci(y

k+1) +
〈
gk+1
ci , · − yk+1

〉]
+
∑
i∈Ī

µki
(〈
ai, ·〉− bi)

=
∑
i∈I

µki c
k+1
i (·) +

∑
i∈Ī

µki
(〈
ai, ·〉− bi) .

(ii) By (4.15), ci(·) ≥ ci(xk)− ε̃ki +
〈
gk+1
ci , · − xk〉, i ∈ I.

We now show that the subproblem multipliers µk of (4.14) converge to the set
of optimal multipliers Σ∗(x∞) (cf. (4.13)) as xk approaches x∞. Our proof is similar
to that of Theorem 4.3. The main technical complication is that we must first use
Assumption 4.7 to ensure boundedness of µk, whereas the boundedness of λ̃k was
automatic.
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Theorem 4.10.
(i) {µk} is bounded.

(ii) Each cluster point of {µk} lies in Σ∗(x∞).
(iii) dΣ∗(x∞)(µ

k)→ 0 as k →∞.

Proof. (i) For each i ∈ I, by (4.14), {gk+1
ci ∈ ∂ci(yk+1)} is bounded (so is {yk}

by Lemma 3.3(ii), and ∂ci is locally bounded). Suppose {µk} is not bounded. Pick

K ⊂ {1, 2, . . . } s.t. |µk| K−→ ∞, µ̄k := µk/|µk| K−→ µ̄∞, gk+1
ci

K−→ g∞ci , i ∈ I (using the

boundedness of {µ̄k} and {gk+1
ci }). Clearly, 0 6= µ̄∞ ∈ R|I|+ × R|Ī|, since |µ̄k| = 1 and

µk ∈ R|I|+ ×R|Ī| by (4.14), (4.11). Further, dividing the equality in (4.14) by |µk|, we
get

pkS/|µk| =
∑
i∈I

µ̄ki g
k+1
ci +

∑
i∈Ī

µ̄ki a
i K−→

∑
i∈I

µ̄∞i g
∞
ci +

∑
i∈Ī

µ̄∞i a
i =: ḡ∞;(4.16)

in fact ḡ∞ = 0, since |µk| K−→∞ and {pkS} is bounded (Theorem 3.4(iii)). Next, using
xk ∈ S with (cf. (4.10))

〈
ai, xk

〉
= bi, i ∈ Ī, in Lemma 4.9(i) gives

−ı̃kS(xk) =
∑
i∈I

µki
[−ck+1

i (xk)
]

=
∑
i∈I

µki
{[−ci(xk)

]
+
[
ci(x

k)− ck+1
i (xk)

]}
,(4.17)

where µki ≥ 0 and (cf. (4.15)) ck+1
i (xk) ≤ ci(x

k) ≤ 0, i ∈ I, so that all the bracketed
terms in (4.17) are nonnegative. Further, we have −ı̃kS(xk) =: ε̃kS → 0 by Lemma 3.3(i)

and xk → x∞ by Theorem 2.1. Hence if µ̄∞i > 0, then (since µki
K−→ ∞) (4.17)

yields ci(x
k)

K−→ ci(x
∞) = 0 by continuity of ci, and ci(x

k) − ck+1
i (xk)

K−→ 0, so

ε̃ki := ci(x
k) − ck+1

i (xk)
K−→ 0 with gk+1

ci ∈ ∂ε̃k
i
ci(x

k) (Lemma 4.9(ii)) give g∞ci ∈
∂ci(x

∞) by the closedness of ∂εci(x); otherwise, µ̄∞i = 0. Therefore, using ḡ∞ = 0 in
(4.16),

〈
ai, x∞

〉
= bi =

〈
ai, x̌

〉
for i ∈ Ī (x∞, x̌ ∈ S), the subgradient inequality, and

maxi∈I ci(x̌) < 0 (Assumption 4.7), we get

0 = 〈ḡ∞, x̌− x∞〉 =
∑
i∈I

µ̄∞i
[
ci(x

∞) +
〈
g∞ci , x̌− x∞

〉] ≤∑
i∈I

µ̄∞i ci(x̌) ≤ 0

and µ̄∞i = 0, i ∈ I. Thus (cf. (4.16)) 0 = ḡ∞ =
∑
i∈Ī µ̄

∞
i a

i, so by Assumption 4.7, we

also have µ̄∞i = 0, i ∈ Ī, contradicting µ̄∞ 6= 0. Hence {µk} must be bounded.
(ii) Let µ∞ be a cluster point of {µk}. Then, by the boundedness of {gk+1

ci } (cf. the

proof of (i)), there are K ⊂ {1, 2, . . . } and g∞ci such that µk
K−→ µ∞, gk+1

ci

K−→ g∞ci ,

i ∈ I. By (4.14), we have µ∞ ∈ R|I|+ × R|Ī| (since µk ∈ R|I|+ × R|Ī| by (4.11)) and

pkS =
∑
i∈I

µki g
k+1
ci +

∑
i∈Ī

µki a
i K−→

∑
i∈I

µ∞i g
∞
ci +

∑
i∈Ī

µ∞i a
i =: p∞S .

Then pkS
K−→ p∞S and (cf. Lemma 3.3(i)) pkf + pkS =: pk → 0 give pkf

K−→ −p∞S ∈
∂f(x∞) by Theorem 3.4(i). Next, using the argument of (i) yields g∞ci ∈ ∂ci(x∞) and
ci(x

∞) = 0 if µ∞i > 0, i ∈ I. Therefore, combining the preceding relations, we have

−∂f(x∞) 3 p∞S :=
∑
i∈I

µ∞i g
∞
ci +

∑
i∈Ī

µ∞i a
i ∈
∑
i∈I

µ∞i ∂ci(x
∞) +

∑
i∈Ī

µ∞i a
i

and (cf. (4.11)) µ∞ ∈ Σ(x∞), i.e., µ∞ ∈ Σ∗(x∞) (cf. (4.13)).
(iii) This follows from (i), (ii), and the continuity of dΣ∗(x∞).
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Remark 4.11.
(i) Following Remark 2.2(i), note that Theorem 4.10 holds if, for each i ∈ I, ci

is finite convex on S, and gkci = gci(y
k) ∈ ∂ci(yk) ∀k with gci(·) locally bounded on S.

(ii) The linear independence part of Assumption 4.7 is not really necessary: it
suffices to assume that {ai}i∈Īk is linearly independent for all k, where Īk = {i ∈ Ī :
µki 6= 0}. Then in the proof of Theorem 4.10(i) we may pick K s.t. Īk is constant
∀k ∈ K. Note that {ai}i∈Īk is linearly independent if (2.11) is solved by an active-
set method [Kiw89]. Similarly, we may remove Assumption 4.7 if, for each k and
i ∈ I, ci is polyhedral, gk+1

ci = gci(y
k+1), where gci(·) ∈ ∂ci(·) is finite-valued, and

Ik = {i ∈ I : µki > 0} is s.t.
∑
i∈Ik µig

k+1
ci +

∑
i∈Īk µia

i = 0, µi ≥ 0, i ∈ Ik, implies

µi = 0, i ∈ Ik ∪ Īk.

5. Lagrangian decomposition. In this section we consider the special case
where problem (1.1) (i.e., minS f) is the Lagrangian dual problem of the following
primal convex optimization problem:

ψmax
0 := max ψ0(z) s.t. ψj(z) ≥ 0, j = 1: n, z ∈ Z,(5.1)

where ∅ 6= Z ⊂ Rm̄ is compact and convex, and each ψj is closed (upper semi-
continuous) and concave with domψj ⊃ Z. The Lagrangian of (5.1) has the form
ψ0(z) + 〈x, ψ(z)〉, where ψ := (ψ1, . . . , ψn) and x is a multiplier. Suppose that, at
each multiplier x in the dual feasible set S̆ := Rn+, the dual function

f(x) := max{ψ0(z) + 〈x, ψ(z)〉 : z ∈ Z}(5.2)

can be evaluated by finding a partial Lagrangian solution

z(x) ∈ Z(x) := Arg max{ψ0(z) + 〈x, ψ(z)〉 : z ∈ Z}.(5.3)

Thus f is finite convex and has a subgradient mapping gf (·) := ψ(z(·)) on S̆. In

view of Remark 2.2(i), we suppose that ψ(z(·)) is locally bounded on S̆ (e.g., f is
the restriction to S̆ of a convex function finite on an open neighborhood of S̆, or
infZ minnj=1 ψj > −∞, or ψ is continuous on Z). Assuming nonemptiness of the dual

optimal set S̆∗ := Arg minS̆ f (e.g., Slater’s condition ψ(ž) > 0 for some ž ∈ Z), we
consider the following two choices:

S := S̆ := Rn+ or S := {x : 0 ≤ x ≤ xup} with xup > x̄ for some x̄ ∈ S̆∗.(5.4)

For the second choice, minS f is a restricted version of the classical dual problem
minS̆ f in the sense of Lemma 3.7.

We shall use the partial Lagrangian solutions and their constraint values

zk := z(yk) and gkf := ψ(zk)(5.5)

for generating and analyzing the following estimates of solutions to (5.1). Using the
weights {νkj }j∈Jk (cf. (2.9)), we define the kth aggregate primal solution by

z̃k :=
∑
j∈Jk

νkj z
j .(5.6)

This construction is related to the aggregate linearization f̃k =
∑
j∈Jk ν

k
j fj (Lemma

3.2(ii)). By expressing each fj in terms of ψ0(zj) and ψ(zj), below we derive bounds
on ψ0(z̃k) and ψ(z̃k) that will be used in our subsequent asymptotic analysis.
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Lemma 5.1.
(i) fk(·) = ψ0(zk) +

〈·, ψ(zk)
〉
.

(ii) z̃k ∈ Z, ψ0(z̃k) ≥ f(xk) − ε̃k −
〈
pk, xk

〉
, ψ(z̃k) ≥ pkf , where pkf ≥ pk if

S = Rn+.
Proof. (i) Use (cf. (2.2)) fk(·) = f(yk) + 〈gkf , · − yk〉, (5.2), (5.3), and (5.5).

(ii) We have (cf. (2.9))
∑
j∈Jk ν

k
j = 1 with νkj ≥ 0. Hence z̃k ∈ co{zj}j∈Jk ⊂ Z,

ψ0(z̃k) ≥ ∑j ν
k
j ψ0(zj), ψ(z̃k) ≥ ∑j ν

k
j ψ(zj) by convexity of Z and concavity of ψ0,

ψ. Next, using Lemma 3.2(ii), (i) with ψ(zj) =: gjf (cf. (5.5)) and (2.9), we get

f̃k(·) =
∑

j
νkj fj(·) =

∑
j
νkj
[
ψ0(zj) +

〈·, ψ(zj)
〉]

=
∑

j
νkj ψ0(zj) +

〈
pkf , ·

〉
with pkf =

∑
j ν

k
j ψ(zj). The above equality, f̃kS := f̃k+ ı̃kS (cf. (3.3)), ı̃kS(0) ≤ ıS(0) = 0

(cf. Lemma 3.2(i) and (5.4)), and (3.6) imply∑
j
νkj ψ0(zj) = f̃k(0) = f̃kS(0)− ı̃kS(0) ≥ f̃kS(0) = f(xk)− ε̃k −

〈
pk, xk

〉
.

Finally, if S = Rn+ then (cf. (3.4)) pkS ∈ NS(yk+1) gives pkS ≤ 0, and hence (cf. (3.4))
pkf = pk − pkS ≥ pk. Combining the preceding relations gives the conclusion.

Let Z∗ denote the solution set of the primal problem (5.1). We now show that the
aggregate primal solution z̃k converges to Z∗ as xk approaches the dual solution x∞.
Our proof is deceptively simple thanks to the “heavy” machinery of Theorem 3.4 and
the subtle content of Lemma 3.7. Note that nonemptiness of Z∗ and several standard
duality relations are demonstrated in a constructive way.

Theorem 5.2.
(i) {z̃k} is bounded and all its cluster points lie in Z.

(ii) f(xk) ↓ f(x∞), ε̃k +
〈
pk, xk

〉→ 0 as k →∞, and lim infk minni=1(pkf )i ≥ 0.

(iii) Let z̃∞ be a cluster point of {z̃k}. Then z̃∞ ∈ Z∗. Further, ψmax
0 = f(x∞)

and z̃∞ ∈ Z(x∞) (cf. (5.3)).
(iv) dZ∗(z̃

k)→ 0, and f(xk) ↓ ψmax
0 as k →∞.

Proof. (i) By Lemma 5.1(ii), {z̃k} lies in Z, which is compact by our assumption.
(ii) By Theorem 2.1 and Lemma 3.3(i), f(xk) ↓ f(x∞), ε̃k +

〈
pk, xk

〉 → 0. By
Theorem 3.4(i), (ii), (5.4), and Remark 3.8, {pkf} is bounded and its cluster points lie
in G ⊂ −NS̆(x∞) ⊂ Rn+.

(iii) By (i), z̃∞ ∈ Z. Using (ii) in Lemma 5.1(ii) gives ψ0(z̃∞) ≥ f(x∞), ψ(z̃∞) ≥
0 by closedness of ψ0, ψ. Since ψ0(z̃∞) ≤ ψmax

0 ≤ f(x∞) by weak duality, z̃∞ must
solve (5.1) and ψ0(z̃∞) = ψmax

0 = f(x∞). Further, ψ(z̃∞) ≥ 0 and x∞ ≥ 0 yield
ψ0(z̃∞) + 〈x∞, ψ(z̃∞)〉 ≥ f(x∞), so z̃∞ ∈ Z(x∞) by (5.2)–(5.3), using z̃∞ ∈ Z.

(iv) This follows from (i), (iii), and the continuity of dZ∗ .
Remark 5.3.

(i) Given ε > 0, the method may stop if

ψ0(z̃k) ≥ f(xk)− ε and ψi(z̃
k) ≥ −ε, i = 1: n.

Then ψ0(z̃k) ≥ ψmax
0 −ε from f(xk) ≥ ψmax

0 (weak duality), so z̃k ∈ Z is an ε-solution
of (5.1). This stopping criterion will be satisfied for some k (cf. Lemma 5.1(ii) and
Theorem 5.2(ii)).

(ii) If ψ(ž) > 0 for some ž ∈ Z, then for any x̄ ∈ S̆∗ := Arg minRn
+
f and x ≥ 0,

x̄i ≤ [f(x)− ψ0(ž)]/ψi(ž), i = 1: n,



DUAL APPLICATIONS OF BUNDLE METHODS 711

(since ψ0(ž) + 〈x̄, ψ(ž)〉 ≤ f(x̄) ≤ f(x) by (5.2)). Such bounds may be used for
choosing xup > x̄ in (5.4).

(iii) For Example 4.5, we may identify ψ0(z) = bT z, ψ(z) = Az, Z = {z ∈ R|I|+ :

eT z = 1}, Z(x) = Λ(x), Z∗ = Λ∗(x̄) in (4.9), zk = λk, and hence z̃k = λ̃k.
Remark 5.4. Consider the equality constrained version of (5.1):

ψmax
0 := max ψ0(z) s.t. ψ(z) := Az = 0, z ∈ Z,(5.7)

where A ∈ Rn×m̄. Then S̆ := Rn and (cf. (5.4)) S := S̆ or S := {x : xlow ≤ x ≤ xup}
with xlow < x̄ < xup for some x̄ ∈ S̆∗. Clearly, Lemma 5.1 holds with ψ(z̃k) = pkf
(where pkf = pk if S = Rn), and Theorem 5.2 holds with (5.1) replaced by (5.7),

pkf → 0 in (ii), and ψ(z̃∞) = 0 in (iii) (use NS̆(x∞) = {0} in the proof of (ii) and

ψ(z̃k) = pkf → 0 for (iii)). Next, we may use the stopping criterion of Remark 5.3

augmented by ψ(z̃k) ≤ εe. For the alternative stopping criterion ε̃k ≤ ε, |pkf | ≤ δ,
[Rob89] gives conditions on (5.7) under which, for each η > 0, there exist ε, δ > 0
s.t. upon termination max{dS̆∗(xk), dZ∗(z̃

k)} ≤ η. In fact [Rob86, Rob89] replace
compactness of Z by other conditions on ψ0 and A for the ε-steepest descent bundle
method [LSB81], but the analysis of [Rob89] carries over to our setting; it also carries
over when ψ0 and Z have separable forms (cf. (6.2)).

6. Lagrangian relaxation of nonconvex problems. In this section we no
longer assume that the primal problem (5.1) is convex, but we retain the remaining
assumptions of section 5; in particular, {ψj}nj=0 are finite and closed (upper semicon-
tinuous) on the compact set Z.

Since problem (5.1) may be nonconvex, consider its relaxed convexified version

ψrel
0 := max

(νj ,zj)Mj=1

M∑
j=1

νjψ0(zj)

(6.1)

s.t.

M∑
j=1

νjψ(zj) ≥ 0,

M∑
j=1

νj = 1, zj ∈ Z, νj ≥ 0,

where M := n + 1. An interpretation of (6.1) stemming from [BLSP83] is that we
choose decisions zj and their probabilities νj that solve the problem max{Eψ0(z) :
Eψ(z) ≥ 0}, where E denotes expected value; in other words, the feasible set is ex-
panded to include all randomized decisions. (In contrast to separable programming,
the points zj are not fixed.) Alternative interpretations are given in [Las70, sec-
tion 3.4], [Sha79, section 5.3], and [MSW76, LeR96]. Both (5.1) and (6.1) have the
same dual function (5.2), and hence the same dual problem and optimal Lagrange
multipliers (if any). Further, ψmax

0 ≤ ψrel
0 = infS f [MSW76].

We shall need the following specialization of Lemma 5.1, using Ĵk (cf. (2.10)).
Lemma 6.1.

(i)
∑
j∈Ĵk ν

k
j ψ0(zj) ≥ f(xk)− ε̃k −

〈
pk, xk

〉
,
∑
j∈Ĵk ν

k
j ψ(zj) = pkf .

(ii) If νkj > 0, then ψ0(zj) +
〈
xk, ψ(zj)

〉
= f(xk) + vk − 〈gjf , yk+1 − xk〉.

Proof. (i) This follows from the proof of Lemma 5.1(ii).
(ii) By Lemma 5.1(i), (2.9) with (cf. (5.5)) gjf := ψ(zj), and (2.5), we have

ψ0(zj) +
〈
yk+1, ψ(zj)

〉
= fj(y

k+1) = f̌k(yk+1) = f(xk) + vk.

Subtract 〈gjf , yk+1 − xk〉 to get the conclusion.
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Since (cf. (5.4)) S is polyhedral, we assume that |Ĵk| ≤ M , where Ĵk := {j :
νkj > 0} and M := n + 1 (cf. Remark 2.2(ii)). Let Z̃∗ denote the solution set of the

relaxed primal problem (6.1). It turns out that (νkj , z
j)j∈Ĵk is a “natural” estimate of

a relaxed solution, except that we may have |Ĵk| < M , whereas points in Z̃∗ have the
form (νj , z

j)Mj=1. Fortunately, this difficulty is just notational, since we may always

arrange for Ĵk to have precisely M elements by splitting any (νkj , z
j) into several

elements with suitably adjusted weights. Specifically, let us relabel (νkj , z
j)j∈Ĵk as

follows: Denote (νkj , z
j)j∈Ĵk as (ν̂kj , ẑ

jk)jkj=1, where jk = |Ĵk|; if jk < M , divide ν̂kjk
by (M − jk + 1) and set (ν̂kj , ẑ

jk) = (ν̂kjk , ẑ
jkk), j = jk + 1: M . We now show that

(ν̂kj , ẑ
jk)Mj=1 converges to Z̃∗. (Without this relabeling, the corresponding result for

(νkj , z
j)j∈Ĵk would be more cumbersome to state and prove.)

Theorem 6.2.
(i) {(ν̂kj , ẑjk)Mj=1} lies in a compact set.

(ii) f(xk) ↓ f(x∞), ε̃k +
〈
pk, xk

〉→ 0 as k →∞, and lim infk minni=1(pkf )i ≥ 0.

(iii) Let (ν̂j , ẑ
j)Mj=1 be a cluster point of {(ν̂kj , ẑjk)Mj=1}. Then (ν̂j , ẑ

j)Mj=1 ∈ Z̃∗.
Further, f(x∞) = ψrel

0 and ẑj ∈ Z(x∞), j = 1: M .
(iv) dZ̃∗((ν̂

k
j , ẑ

jk)Mj=1)→ 0, and f(xk) ↓ ψrel
0 as k →∞.

Proof. (i) By construction (cf. (2.9)),
∑
j ν̂

k
j = 1, ν̂kj > 0, ẑjk ∈ Z, a compact set.

(ii) The proof of Theorem 5.2(ii) remains valid.
(iii) By (i),

∑
j ν̂j = 1, ν̂j ≥ 0, ẑj ∈ Z, j = 1: M . Next, by construction

M∑
j=1

ν̂kj ψ0(ẑjk) =
∑
j∈Ĵk

νkj ψ0(zj) and

M∑
j=1

ν̂kj ψ(ẑjk) =
∑
j∈Ĵk

νkj ψ(zj),

so using (ii) and the upper semicontinuity of ψ0, ψ in Lemma 6.1(i) gives

M∑
j=1

ν̂jψ0(ẑj) ≥ f(x∞) and
M∑
j=1

ν̂jψ(ẑj) ≥ 0.

In particular, (ν̂j , ẑ
j)Mj=1 is feasible in (6.1). Since also

∑
j ν̂jψ0(ẑj) ≤ ψrel

0 ≤ f(x∞)

by weak duality, (ν̂j , ẑ
j)Mj=1 solves (6.1) and f(x∞) = ψrel

0 . Finally, fix i ∈ {1: M}.
If (ν̂ki , ẑ

ik) corresponds to (νkj , z
j) in Lemma 6.1(ii), then (cf. Theorem 2.1 and

Lemma 3.3(ii))

ψ0(ẑik) +
〈
xk, ψ(ẑik)

〉
= f(xk) + vk −

〈
gjf , y

k+1 − xk
〉
→ f(x∞)

yields ψ0(ẑi) +
〈
x∞, ψ(ẑi)

〉 ≥ f(x∞), i.e., ẑi ∈ Z(x∞) by (5.2)–(5.3).
(iv) This follows from (i), (iii), and the continuity of dZ̃∗ .
Remark 6.3.

(i) Given ε > 0, the method may stop if∑
j∈Ĵk

νkj ψ0(zj) ≥ f(xk)− ε and
∑
j∈Ĵk

νkj ψi(z
j) ≥ −ε, i = 1: n.

Then
∑
j∈Ĵk ν

k
j ψ0(zj) ≥ ψrel

0 − ε from f(xk) ≥ ψrel
0 (weak duality), so (νkj , z

j)j∈Ĵk
is an ε-solution of the relaxed primal problem (6.1). This stopping criterion will be
satisfied for some k (cf. Lemma 6.1(i) and Theorem 6.2(ii)).
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(ii) If
∑
j ν̌jψ(žj) > 0 for some ν̌j ≥ 0, žj ∈ Z,

∑
j ν̌j = 1, then for any x ≥ 0,

x̄i ≤
[
f(x)−

∑
j
ν̌jψ0(žj)

]/∑
j
ν̌jψi(ž

j) for i = 1: n and each x̄ ∈ S̆∗

(since
∑
j ν̌j [ψ0(žj) +

〈
x̄, ψ(žj)

〉
] ≤ f(x̄) ≤ f(x)). Such bounds may be used for

choosing xup > x̄ in (5.4).
(iii) The method will find a solution in finite time if f is polyhedral (e.g., Z is

finite) and either κ = 1 or certain technical conditions are satisfied [Kiw91].
(iv) Extensions to cases where approximate maximizers of (5.2) are used for

estimating f(x) or where Z is not compact are easily developed as in [Kiw95].
If, as frequently happens in applications, (5.1) has the separable form

max ψ0(z) :=
m∑
i=1

ψ0i(zi) s.t. ψj(z) :=
m∑
i=1

ψji(zi) ≥ 0, j = 1: n,(6.2a)

z := (z1, . . . , zm) ∈ Z := Z1 × · · · × Zm,(6.2b)

with each Zi ⊂ Rmi compact and ψji : Zi → R upper semicontinuous, then the
preceding results may be specialized as follows. Letting

fi(x) := max {ψ0i(zi) + 〈x, ψ·i(zi)〉 : zi ∈ Zi} ,(6.3)

zi(x) ∈ Zi(x) := Arg max {ψ0i(zi) + 〈x, ψ·i(zi)〉 : zi ∈ Zi} ,(6.4)

where ψ·i := (ψ1i, . . . , ψni), we have f =
∑m
i=1 fi in (5.2), and z(·) = (z1(·), . . . , zm(·))

in (5.3). The relaxed problem (6.1) becomes

max

m∑
i=1

M∑
j=1

νijψ0i(z
j
i ) s.t.

m∑
i=1

M∑
j=1

νijψ·i(z
j
i ) ≥ 0,

M∑
j=1

νij = 1, zji ∈ Zi, νij ≥ 0.

(6.5)

To exploit the additive structure of f =
∑m
i=1 fi, we may use the models (cf. (2.3))

f̌k :=
m∑
i=1

f̌ki with f̌ki := max
j∈Jk

i

f ji

constructed from the linearizations f ji (·) := ψ0i(z
j
i ) + 〈·, ψ·i(zji )〉 of fi, where zj :=

z(yj). The sets Jki are selected [Kiw90, Kiw95] by finding Lagrange multipliers νkij ≥ 0,

j ∈ Jki , i = 1: m, of the corresponding extension of (2.11)

min 1
2u

k|x− xk|2 +
m∑
i=1

ξi over all (x, ξ) ∈ S × Rm(6.6a)

s.t. ψ0i(z
j
i ) +

〈
x, ψ·i(z

j
i )
〉
≤ ξi ∀j ∈ Jki , i = 1: m,(6.6b)

such that
m∑
i=1

|Ĵki | ≤ n+m,
∑
j∈Ĵk

i

νkij = 1, i = 1: m,(6.7a)

where

Ĵki := {j ∈ Jki : νkij > 0}, i = 1: m.(6.7b)
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Choosing Jk+1
i ⊃ Ĵki ∪{k+1} suffices for Theorem 2.1 (see [Kiw90, Kiw95] for details).

Then
∑
i

∑
j ν

k
ijψ0i(z

j
i ) and

∑
i

∑
j ν

k
ijψ·i(z

j
i ) replace the left sides of the estimates

of Lemma 6.1(i). The relabeling that preceded Theorem 6.2 may be extended as

follows. By (6.7), jki := |Ĵki | ≤ n+ 1, i = 1: m. Denote (νkij , z
j
i )j∈Ĵk

i
as (ν̂kij , ẑ

jk
i )

jki
j=1;

if jki < M , divide ν̂k
ijk
i

by (M − jki + 1) and set (ν̂kij , ẑ
jk
i ) = (ν̂k

ijk
i

, ẑ
jki k
i ), j = jki + 1: M ,

i = 1: m. The following extension of Theorem 6.2 has an analogous proof, which is
omitted.

Theorem 6.4. The sequence {(ν̂kij , ẑjki )j=1: M
i=1: m } is bounded and converges to the

solution set of (6.5). Further, each of its cluster points {(ν̂ij , ẑji )j=1: M
i=1: m } solves (6.5),

and ẑji ∈ Zi(x
∞), i = 1: m, j = 1: M . Finally, the optimal value of (6.5) equals

f(x∞).
Remark 6.5.

(i) Remark 6.3 extends naturally to the separable case.
(ii) The QP subproblem (6.6) has at most n+ 2m constraints if, for each k, one

chooses Jk+1
i = Ĵki ∪ {k + 1}, i = 1: m (cf. (6.7a)).

(iii) As in [Ber82, p. 370], we note that (6.7) yields

|{i : |Ĵki | > 1}| ≤ n and |{i : |Ĵki | = 1}| ≥ m− n.
In particular, if m > n and Zi ⊂ {0, 1}mi ∀i, then

∑
j∈Ĵk

i
νkijz

j
i /∈ Zi for at most n

indices i. This suggests that for m� n it should be possible to devise heuristic rules
for modifying the relaxed solution of (6.5) to obtain a feasible solution of (6.2) with
value relatively close to the optimal value of (6.5). Some supporting evidence will be
given in the next section.

7. Application to the unit commitment problem.

7.1. Unit commitment model. Our mathematical model of the UC problem
is given by

min
u,p

F (u, p) :=

I∑
i=1

{
T∑
t=1

uitCi(pit) + Si(ui)

}
(7.1a)

s.t.
I∑
i=1

uitpit ≥ Dt,
I∑
i=1

uitri(pit) ≥ Rt, t = 1: T,(7.1b)

uitpi ≤ pit ≤ uitpi, t = 1: T, i = 1: I, ui ∈ Ui, i = 1: I,(7.1c)

where I is the number of units, T is the number of time periods, Dt and Rt are
the demand and reserve in period t, and for each unit i, Ci is a convex cost-power
generation function, Si is the startup/shutdown cost, uit = 1 (0) if unit i is operating
(shutdown, resp.) at time t, pit is the output power in period t, pi and pi are the
minimum and maximum output powers,

ri(pit) := min{pi − pit, p∆
i }(7.2)

is the reserve function, where p∆
i is the maximum increase in power, ui = (ui1, . . . , uiT )

is the schedule, and Ui represents minimum up/down times and required on/off con-
straints.

Our UC problem is an instance of (6.2) with n = 2T , m = I + 1, zi = (ui, pi),

ψ0i(zi) = −∑T
t=1 uitCi(pit)−Si(ui), ψti(zi) = uitpit, ψT+t,i(zi) = uitri(pit), t = 1: T ,
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Zi = {zi : uitpi ≤ pit ≤ uitpi, t = 1: T, ui ∈ Ui}, i = 1: I, ψ0m(zm) = 0, ψtm(zm) =
−Dtzm, ψT+t,m(zm) = −Rtzm, t = 1: T , Zm = {1}. Then (cf. (6.3)–(6.4))

fi(x) = − min
ui∈Ui

{
T∑
t=1

uit min
pi≤pit≤pi

[Ci(pit)− xtpit − xT+tri(pit)] + Si(ui)

}
(7.3)

may be evaluated by finding a minimizer zi(x) = (ui(x), pi(x)) of (7.3) via dynamic
programming, for i = 1: I, whereas fm(x) = −〈x, (D,R)〉.

7.2. Obtaining a primal feasible solution. In view of Theorem 6.4, we may
suppose that, for k large enough, νkij and zji = (uji , p

j
i ), j ∈ Ĵki , i = 1: I, form a

relaxed solution to (7.1) treated as an instance of (6.2). Thus we may use the relaxed
schedules ũki =

∑
j∈Ĵk

i
νkiju

j
i , and the interpretation of ũkit ∈ [0, 1] as the probability

of unit i to be on-line at time t, in various ways to generate feasible solutions to the
original problem (7.1). An important observation is that, in view of Remark 6.5(iii),
for problems with many more units than time periods, only relatively few ũkit can be
fractional.

The next subsection gives computational results for four simple heuristics, which
are only sketched below; their detailed descriptions can be found in [Fel97, FeK97].

First, we note that, due to (7.2), if the schedules ui ∈ Ui, i = 1: I, satisfy

I∑
i=1

uitpi ≥ Dt +Rt and
I∑
i=1

uitp
∆
i ≥ Rt for t = 1: T,(7.4)

then we may solve T continuous optimization problems in p to obtain a feasible
solution to (7.1). Conversely, any feasible solution to (7.1) must satisfy (7.4).

Our first heuristic PFS1 works as follows. For successive t = 1: T , it attempts
to satisfy inequalities (7.4) by turning on units i available for startup at time t in
order of decreasing probabilities ũkit, while respecting the requirement ui ∈ Ui. In our
second randomized heuristic PFS2, unit i is turned on with probability ũkit by “tossing
a coin,” whereas in the third heuristic PFS3, unit i is turned on (off) with probability
ũkit if there is a schedule uji , j ∈ Ĵki , where the unit is turned on (off, resp.) at time t.
The fourth heuristic PFS4 is a randomized extension of PFS1, in which free units
(not turned on at time t) are sampled for startup/shutdown with probability ũkit.

It may be interesting to relate our heuristics to the heuristic of [ZhG88], which
works. Starting from an approximate minimizer x̆ = xk of fS , until ψ(z(x̆)) ≥ 0
do: pick ̆ ∈ Arg minnj=1 ψj(z(x̆)) and increase x̆̆ until ψ̆(z(x̆)) ≥ 0. Thus exact
coordinate descent on f is made until the partial Lagrangian solution becomes feasible.
However, since ψ(z(·)) may be discontinuous, no guarantee of success is available,
and in practice quite complicated inexact line-searches must be made “intelligently”
[ZhG88, p. 768].

7.3. Computational results. In this subsection we report on our preliminary
numerical experience.

Table 7.1 gives some details of our test problems. The final two problems are
fairly large. We used x1 = 0, xup = 100e, κ = 0.1. The maximum number of
stored subgradients was 2T + 3 in the aggregate case with subproblems (2.11), and
2T+2I+3 in the disaggregate case with subproblems (6.6). Tables 7.2–7.3 compare the
quality of primal feasible solutions generated via the various heuristics by presenting
percentages of approximation to the best known values of Table 7.1, with stars
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Table 7.1
Test problems and their best known dual and primal values.

Case I T Best dual Best primal Gap (%) Origin
Bard 10 24 5.409528e+05 5.433704e+05 0.44 [Bar88]
Greece 10 24 5.608615e+05 5.658277e+05 0.88 [KBP96]
Irina 10 24 4.719926e+04 4.729448e+04 0.20 [Ris96]
Durham 12 24 2.797602e+04 2.798166e+04 0.02 [ChS86]
Shaw 16 24 1.098853e+06 1.098978e+06 0.01 [Sha95]
Pacific 19 24 1.887889e+06 1.891327e+06 0.18 [LJS97]
Ohio 20 24 1.859801e+05 1.860323e+05 0.04 [FaV86]
EPRI 48 48 2.843720e+06 2.853591e+06 0.35 [ZWC+77]
Emod 48 168 9.909559e+06 9.973104e+06 0.64 scaled EPRI
Bard168 100 168 3.760644e+07 3.767200e+07 0.17 scaled Bard

Table 7.2
Relative primal and dual errors (in %) of the disaggregate bundle.

Case Iter Dual error PFS1 PFS2 PFS3 PFS4
Bard 29 2.4e−01 5.7e+00 * * 3.9e−01

47 1.4e−01 5.3e+00 * * 7.3e−01
108 1.4e−03 3.2e+00 * * 1.4e+00
140 1.5e−04 7.4e+00 * * 8.1e−01

Greece 26 5.8e−02 * * * 1.3e−02
38 8.1e−03 * * * 1.3e−02
63 9.8e−04 * * * 1.9e−01
78 4.5e−04 * * * 1.9e−01

Irina 12 3.6e−02 1.8e+00 2.6e−01 2.6e−01 3.2e−01
20 5.4e−03 8.7e−01 2.6e−01 2.6e−01 4.4e−01
29 5.5e−04 1.8e+00 2.6e−01 2.6e−01 4.8e−01
37 1.3e−04 4.5e−01 2.6e−01 2.6e−01 2.6e−01

Durham 33 3.4e−02 2.2e+01 2.6e−02 1.2e−03 8.7e−02
39 3.3e−03 1.8e+01 3.3e−02 1.2e−03 8.3e−02
48 4.3e−04 1.8e+01 2.6e−02 1.2e−03 9.1e−02
55 7.2e−05 1.8e+01 2.6e−02 1.2e−03 1.1e−01

Shaw 19 3.8e−02 * 6.6e−02 2.0e−03 2.0e−02
27 3.0e−03 5.9e+00 4.8e−02 2.0e−03 1.1e−02
34 2.7e−04 6.1e+00 4.8e−02 2.0e−03 1.1e−02
43 2.7e−04 6.1e+00 4.8e−02 2.0e−03 2.9e−02

Pacific 16 8.0e−02 3.0e−02 * * 3.0e−02
37 9.0e−03 1.1e−01 * * 3.0e−02
60 5.8e−03 1.1e−01 * * 3.0e−02
69 5.3e−03 1.1e−01 * * 1.1e−01

Ohio 15 2.2e−02 2.3e−01 * * 9.0e−02
20 6.5e−03 2.1e−01 * * 3.6e−02
28 2.2e−03 2.1e−01 * * 1.5e−02
44 5.4e−05 2.3e−01 1.5e−02 9.5e−03 6.3e−02

EPRI 14 5.5e−02 5.1e+00 * * 2.5e−01
27 4.6e−03 3.8e+00 * * 1.1e−02
50 3.5e−04 4.0e+00 * * 2.5e−01
75 0.0e+00 4.6e+00 * * 2.5e−01

Emod 35 5.1e−02 5.2e+00 * * 1.6e+00
70 4.1e−03 4.5e+00 * * 1.2e+00
95 6.0e−04 5.9e+00 * * 1.5e+00

113 9.1e−05 6.4e+00 * * 1.5e+00
Bard168 53 2.1e−01 1.5e+00 * * 2.2e−01

90 1.4e−01 1.3e+00 * * 2.9e−01
272 6.0e−03 2.0e+00 * * 1.4e−01
652 1.2e−03 1.6e+00 * * 8.0e−02
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Table 7.3
Relative primal and dual errors (in %) of the aggregate bundle.

Case Iter Dual value PFS1 PFS2 PFS3 PFS4
Bard 38 2.6e−01 2.6e+00 * * 2.0e+00

70 1.7e−01 2.6e+00 * * 7.2e−01
218 3.7e−03 3.5e+00 * * 8.0e−01
258 2.0e−03 2.8e+00 * * 6.4e−01

Greece 43 7.8e−02 * * * 4.6e−02
78 5.1e−03 * * * 9.3e−01

116 8.0e−04 * * * 1.3e+00
169 8.9e−05 * * * 9.3e−01

Irina 19 5.6e−02 8.1e−01 4.1e−01 2.7e−02 7.5e−01
37 6.1e−03 4.6e−01 2.6e−01 2.6e−01 5.0e−01
56 5.5e−04 9.2e−01 2.6e−01 2.6e−01 2.6e−01
83 1.3e−04 1.8e+00 2.6e−01 2.6e−01 3.4e−01

Durham 53 2.4e−02 8.6e+00 3.7e−02 1.2e−03 9.4e−02
70 5.1e−03 1.4e+01 2.6e−02 1.2e−03 1.6e−01
84 4.3e−04 8.6e+00 2.6e−02 1.2e−03 1.8e−01

105 7.2e−05 1.4e+01 2.6e−02 1.2e−03 1.8e−01
Shaw 27 3.7e−02 * 5.7e−02 2.0e−03 7.5e−02

39 2.1e−03 4.8e+00 8.4e−02 2.0e−03 3.6e−01
48 2.7e−04 * 4.8e−02 2.0e−03 1.1e−02
61 2.7e−04 * 4.8e−02 2.0e−03 1.1e−02

Pacific 37 5.6e−02 1.0e−01 * * 2.3e−01
57 5.8e−03 3.0e−02 * * 1.4e−01
80 2.1e−03 3.0e−02 * * 3.0e−02

108 1.6e−03 1.1e−01 * * 3.0e−02
Ohio 19 4.3e−02 1.2e−01 * * 1.0e−01

29 6.6e−03 1.2e−01 6.3e−02 1.5e−02 8.5e−02
54 2.2e−03 1.2e−01 6.3e−02 9.5e−03 7.9e−02

103 5.4e−05 1.2e−01 2.6e−02 9.5e−03 7.9e−02
EPRI 27 4.1e−02 5.8e+00 * * 2.1e−02

52 6.0e−03 4.9e+00 * * 1.1e−02
75 7.0e−04 3.7e+00 * * 3.5e−01

105 0.0e+00 5.5e+00 * * 7.3e−03
Emod 50 5.0e−02 5.9e+00 * * 1.7e+00

76 6.9e−03 3.8e+00 * * 1.1e+00
115 1.8e−03 4.9e+00 * * 1.8e+00
159 1.1e−03 8.2e+00 * * 1.4e+00

Bard168 82 2.5e−01 1.8e+00 * * 8.2e−01
152 1.7e−01 2.0e+00 * * 6.9e−01
740 4.6e−03 2.4e+00 * * 4.3e−01

1037 3.0e−03 2.0e+00 * * 4.6e−01

denoting failures. Since the heuristics are relatively cheap, in practice one might run
all of them to pick the best solution. For each problem, we give results obtained with
the stopping criterion −vk ≤ εopt(1 + |f(xk)|) for successive εopt = 10−3, 10−4, 10−5,
10−6. Usually, when εopt = 10−l is used, upon termination the dual objective value
has l correct digits. We observed the rather surprising phenomenon that higher dual
objective accuracy need not imply better quality of the heuristic primal solutions.
The best primal results are obtained for an intermediate dual accuracy of εopt =
10−4: using a looser precision does not reveal the right schedules, whereas a too tight
precision (εopt = 10−6) discards good schedules. Further, somewhat contrary to our
expectations, the disaggregate version need not deliver better solutions. We also note
the following: PFS3 always produces the best solution when it delivers any feasible
solution; PFS1 is inferior on all problems except Pacific; PFS4 is robust and gives
good solutions in comparison with PFS1 and, when possible, with PFS2–PFS3.
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Table 7.4
Iteration count and CPU timing (in seconds).

Disaggregate Aggregate
Case Iter Mas % Time Iter Mas % Time
Bard 29 71 3.13e−01 38 47 1.64e−01

47 73 5.39e−01 70 49 3.17e−01
108 74 1.26e+00 218 55 1.12e+00
140 74 1.68e+00 258 55 1.33e+00

Greece 26 69 2.76e−01 43 47 1.94e−01
38 69 4.03e−01 78 49 3.64e−01
63 69 6.53e−01 116 50 5.53e−01
78 69 7.96e−01 169 52 8.31e−01

Irina 12 70 1.37e−01 19 51 9.38e−02
20 71 2.27e−01 37 50 1.80e−01
29 71 3.28e−01 56 51 2.78e−01
37 71 4.17e−01 83 52 4.21e−01

Durham 33 69 3.69e−01 53 43 2.47e−01
39 69 4.44e−01 70 44 3.32e−01
48 69 5.46e−01 84 46 4.07e−01
55 69 6.22e−01 105 46 5.17e−01

Shaw 19 69 2.89e−01 27 38 1.60e−01
27 69 4.03e−01 39 39 2.33e−01
34 70 5.14e−01 48 40 2.89e−01
43 69 6.41e−01 61 40 3.69e−01

Pacific 16 57 2.78e−01 37 35 2.79e−01
36 56 5.84e−01 57 34 4.29e−01
61 56 9.89e−01 80 35 6.05e−01
73 56 1.18e+00 108 35 8.28e−01

Ohio 15 70 3.54e−01 19 35 1.78e−01
20 71 4.81e−01 29 34 2.68e−01
28 71 6.59e−01 54 33 4.90e−01
44 71 1.04e+00 103 33 9.33e−01

EPRI 14 68 1.32e+00 27 26 7.97e−01
27 71 2.67e+00 52 24 1.49e+00
50 72 4.93e+00 75 24 2.12e+00
75 72 7.41e+00 105 24 2.97e+00

Emod 35 81 1.92e+01 50 29 5.34e+00
70 82 3.89e+01 76 26 7.80e+00
95 82 5.30e+01 115 24 1.15e+01

113 83 6.33e+01 159 24 1.58e+01
Bard168 53 90 1.18e+02 82 20 1.72e+01

90 90 1.96e+02 152 20 3.21e+01
272 90 5.89e+02 740 30 1.78e+02
652 90 1.43e+03 1037 32 2.57e+02

In Table 7.4 we give the iteration counts and timings obtained on a SUN En-
terprise 4000 machine for the successive stopping criteria, with Mas % being the
percentage of time spent on the master QP subproblems. We see that in terms of
the CPU time, the decrease in the number of iterations required to reach a certain
stopping criterion by using the disaggregate version is offset by the computationally
heavier master problems.

Since the heuristics PFS2–PFS4 are based on sampling, there is a question of sam-
ple size (and hence solution time) versus solution quality. We found that a sample size
of 200 was sufficient in most cases, i.e., after 200 samples usually little improvement
was made. The CPU time requirements of the primal heuristics are quite modest
compared with the time spent on solving the dual problem. For instance, the CPU
times (in seconds) for each heuristic after the termination of the disaggregate version
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for εopt = 10−3 had the following ranges: 0.0003–0.0148 for PFS1, 0.0302–4.0858 for
PFS2, 0.0109–0.9231 for PFS3, 0.0820–8.6980 for PFS4. Note that these times de-
pend heavily on whether or not a heuristic is successful: each time a feasible solution
is found, one has to solve T economic dispatch problems. In general we observe that
the total solution times are dominated by the solution of the dual problem.

Acknowledgments. We thank the Associate Editor and two anonymous referees
for their constructive comments.
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[CoL93] R. Correa and C. Lemaréchal, Convergence of some algorithms for convex minimiza-
tion, Math. Programming, 62 (1993), pp. 261–275.

[Dan63] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press,
Princeton, NJ, 1963.

[DGM+97] D. Dentcheva, R. Gollmer, A. Möller, W. Römisch, and R. Schultz, Solving
the unit commitment problem in power generation by primal and dual methods, in
Progress in Industrial Mathematics at ECMI 96, M. Brøns, M. P. Bendsøe, and
M. P. Sørensen, eds., Teubner, Stuttgart, 1997, pp. 332–339.

[FaV86] B. Fardanesh and F. E. Villaseca, Two-step optimal thermal generation scheduling,
Automatica, 22 (1986), pp. 361–366.

[FeK97] S. Feltenmark and K. C. Kiwiel, Generalized Linear Programming Solves the Relaxed
Primal, Tech. report TRITA/MAT-97-OS11, Dept. of Mathematics, Royal Institute
of Technology, Stockholm, Sweden, August 1997.

[Fel97] S. Feltenmark, On Optimization of Power Production, Ph.D. thesis, Dept. of Mathe-
matics, Royal Institute of Technology, Stockholm, Sweden, 1997.

[Fis81] M. L. Fisher, The Lagrangian relaxation method for solving integer programming prob-
lems, Management Sci., 27 (1981), pp. 1–18.

[HUL93] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algo-
rithms, Springer-Verlag, Berlin, 1993.

[KBP96] S. A. Kazarlis, A. G. Bakirtzis, and V. Petridis, A genetic algorithm solution to
the unit commitment problem, IEEE Trans. Power Systems, 11 (1996), pp. 83–91.

[Kiw89] K. C. Kiwiel, A dual method for certain positive semidefinite quadratic programming
problems, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 175–186.

[Kiw90] K. C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable mini-
mization, Math. Programming, 46 (1990), pp. 105–122.

[Kiw91] K. C. Kiwiel, Exact penalty functions in proximal bundle methods for constrained con-
vex nondifferentiable minimization, Math. Programming, 52 (1991), pp. 285–302.

[Kiw94] K. C. Kiwiel, A Cholesky dual method for proximal piecewise linear programming,
Numer. Math., 68 (1994), pp. 325–340.

[Kiw95] K. C. Kiwiel, Approximations in proximal bundle methods and decomposition of convex
programs, J. Optim. Theory Appl., 84 (1995), pp. 529–548.



720 STEFAN FELTENMARK AND KRZYSZTOF C. KIWIEL

[Kiw96] K. C. Kiwiel, Restricted step and Levenberg–Marquardt techniques in proximal bundle
methods for nonconvex nondifferentiable optimization, SIAM J. Optim., 6 (1996),
pp. 227–249.

[LaL89] T. Larsson and Z. Liu, A Primal Convergence Result for Dual Subgradient Optimiza-
tion with Application to Multicommodity Network Flows, Tech. report, Dept. of
Mathematics, Linköping University, Linköping, Sweden, 1989.

[Las70] S. Lasdon, Optimization Theory for Large Systems, MacMillan, New York, 1970.
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H. Poincaré Anal. Non Linéaire, 6 (1989), pp. 435–447.

[Rzh89] S. V. Rzhevskii, A conditional ε-subgradient method for the simultaneous solution of the
dual and primal problems of convex programming, Kibernetika, (1989), pp. 54–64
(in Russian). English translation in Cybernetics, 25 (1989), pp. 203–218.

[RzK85] S. V. Rzhevskii and A. V. Kuncevich, An application of the ε-subgradient method to
the solution of the dual and primal problems of convex programming, Kibernetika,
(1985), pp. 51–54 (in Russian).

[ScZ88] H. Schramm and J. Zowe, A combination of the bundle approach and the trust region
concept, in Advances in Mathematical Optimization, Math. Res. 45, J. Guddat et al.,
eds., Akademie-Verlag, Berlin, 1988, pp. 196–209.

[Sha79] J. F. Shapiro, Mathematical Programming: Structures and Algorithms, Wiley, New
York, 1979.

[Sha95] J. J. Shaw, A direct method for security-constrained unit commitment, IEEE Trans.
Power Systems, 10 (1995), pp. 1329–1342.

[ShC96] H. D. Sherali and G. Choi, Recovery of primal solutions when using subgradient op-
timization methods to solve Lagrangian duals of linear programs, Oper. Res. Lett.,
19 (1996), pp. 105–113.
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Abstract. Separated continuous linear programs (SCLP) are a type of infinite-dimensional
linear program which can serve as a useful model for a variety of dynamic network problems where
storage is permitted at the nodes. This paper proves the convergence of a general class of algorithms
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1. Introduction. This paper is concerned with a particular form of infinite-
dimensional linear programs called separated continuous linear programs (SCLP), first
introduced by Anderson [1] in an attempt to model job-shop scheduling problems.
This problem is a special case of a more general class of problems known as continuous
linear programs (CLP) first introduced by Bellman [8] in 1953. The problem SCLP
can also be viewed as a useful model for various forms of dynamic network flow
problems where storage is permitted at the nodes. Such problems occur in many real-
life situations, for instance, in the dynamic routing of traffic in a network (see, for
example, Segall [15]) or the closely related problem of routing fluid flows in networks
(see, for example, Weiss [16]).

Separated continuous linear programs may be defined as follows:

SCLP: minimize

∫ T

0

c(t)Tx(t) dt

subject to

∫ t

0

Gx(s) ds+ y(t) = a(t),(1.1)

Hx(t) + z(t) = b(t),(1.2)

x(t), y(t), z(t) ≥ 0, t ∈ [0, T ].

Here x(t), z(t), b(t), and c(t) are bounded measurable functions and y(t) and a(t) are
absolutely continuous functions. The dimensions of x(t), y(t), and z(t) are n1, n2,
and n3, respectively. Thus G is an n2×n1 matrix and H is an n3×n1 matrix. We let
ω(t) denote a complete set of variables for SCLP, i.e., ω(t)T = (x(t)T , y(t)T , z(t)T ).

Ever since the introduction of CLP, the development of an efficient and convergent
algorithm to solve any form of the problem has eluded many people, for instance,
Perold [10, 11] and Anstreicher [7]. The difficulty in the development of algorithms
has been at the very fundamental level of trying to find an improvement step, that
is, a step to construct an improved feasible solution to the problem starting from a
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nonoptimal one. While authors such as Perold [10, 11] and Anstreicher [7] certainly
did describe improvement steps, they worked only under certain “nondegeneracy”
assumptions on the current solution. Therefore, previous researchers studying CLP
did not even begin to answer the question of convergence of an algorithm because
there were no such algorithms.

In 1989 Anderson and Philpott [4] broke the trend and developed an algorithm
aimed at solving a dynamic single-commodity network program (called CNP) un-
der certain practical restrictions on the problem data. This network problem is a
very specialized case of SCLP and hence of CLP. It was the first algorithm for
any class of CLP problems to give a general improvement step (i.e., one which did
not require assumptions about the current solution). Unfortunately, though, it was
later observed that in many instances the algorithm did not converge to an optimal
solution.

Recently, Pullan [12] developed an algorithm aimed at solving SCLP under similar
restrictions on the problem data as for the network problem in [4]. Strictly speaking,
this algorithm is a whole class of algorithms based on a single idea. It is also a
complete departure from previous work in that it was not based on a simplex-like
approach, although such ideas did motivate its development. Moreover, unlike the
algorithm for CNP in [4], this algorithm did appear to converge in every case tried,
although no proof of convergence was given.

Shortly after the development of the algorithm in Pullan [12], Philpott and Crad-
dock [9] utilized the ideas of [12] to produce an algorithm for solving CNP (but
with a direct extension to include SCLP) for which they did prove convergence. The
algorithm is called the adaptive discretization algorithm, a name which accurately
summarizes its properties. It is essentially a discretization algorithm which proceeds
by adding and removing points in the partition used in the current discretization.
However, the precise points entered into the partition are somewhat arbitrary in that
they are always equally spaced between two existing ones. This arbitrary nature is
somewhat against the general philosophy of most previous work on CLP. The aim of
this previous work has been to develop an algorithm that would not discretize arbi-
trarily, with the hope that if such an algorithm were to be found, it would prove to
be more efficient than discretization methods and reveal more information about the
problem.

The algorithm in Pullan [12] for SCLP is such an algorithm that does not
discretize arbitrarily. As predicted, it has also revealed a lot more information
about the problem. This is exemplified by the extensive duality theory developed in
Pullan [14] as a result. The purpose of this paper is to prove that the algorithm
in [12], in its full generality, always converges. This is the first such proof for any
kind of algorithm for solving any class of CLP. Not only that but, as far as this
author is aware, it is only the second convergence proof for an algorithm for solving
any type of infinite-dimensional linear programs, the other being for a continuous
transportation problem in Anderson and Nash [2, Chapter 5]. (Here we make the
distinction between infinite-dimensional linear programs, where there are both an in-
finite number of variables and an infinite number of constraints, and semi-infinite
linear programs, where either the number of variables or the number of constraints
is finite.)

The plan of this paper is as follows. In the next section we summarize the nec-
essary results and algorithm from Pullan [12]. We assume that the reader is already
familiar with this, and we just collect the results together for ease of reference. In
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section 3 we formally state the algorithm for which we prove convergence. The al-
gorithm given includes one completely general step for which we list several possible
alternatives. In section 4 we then prove the convergence of the algorithm. Finally in
section 5, we comment on the implications of this result for future work and discuss
its relationship to the work of Philpott and Craddock [9].

Before we begin, we formally state the assumptions on SCLP under which we will
work in this paper.
Assumption 1.1. The costs, c(t), are piecewise linear; a(t) is piecewise linear

and continuous; and b(t) is piecewise constant on [0, T ]. Also the feasible region for
SCLP is nonempty and bounded.

Here bounded means there exists M <∞ such that for any ω(·) feasible for SCLP,
‖ωi(·)‖∞ ≤M for each i.

This assumption is often satisfied in practical problems (e.g., in both Segall [15]
and Weiss [16]). In addition, Anderson, Nash, and Perold [3] have shown that this
assumption ensures that SCLP has an optimal solution in which x(t) is piecewise
constant on [0, T ] (as does Pullan [13], which, along with Anderson and Philpott [5],
also gives several, more general results of a similar nature).

Finally in this introduction we give the following definition.
Definition 1.1.
1. The breakpoints of a piecewise linear or piecewise constant function are the

discontinuities in either the function or its derivative.
2. We define the initial breakpoint partition to be the smallest partition of [0, T ]

consisting of all the breakpoints of a(·), b(·), and c(·).
3. Let ω(t) be a feasible solution for SCLP such that x(t) is piecewise constant

on [0, T ]. We define the breakpoint partition for ω(t) to be the partition of
[0, T ] consisting of all the breakpoints of ω(t) and the points in the initial
breakpoint partition.

4. Let f be any real valued function. We use the notation f(t−) to denote
lims↑t f(s) and f(t+) to denote lims↓t f(s) when these limits exist.

2. Summary of results from Pullan [12]. In this section we summarize the
results and concepts from Pullan [12] needed for this paper. The key to all the main
results in [12] lies in the study of a special discretization called AP(P ). We will see
that the proof of convergence of the algorithm to follow will also rely on the properties
of this special discretization. We therefore state this discretization and summarize its
important properties.

Let P = {t0, t1, . . . , tm} be any refinement of the initial breakpoint partition.
Given P , define

ui =
ti−1 + ti

2
,

τi =
ti − ti−1

2
.

The variables in the discretization AP(P ) are x̂(ti−1+), x̂(ti−), ŷ(ti), ŷ(ui), ẑ(ti−1+),
and ẑ(ti−) which, as the notation suggests, correspond in some way to the function
values of x, y, and z at ti−1+, ti−, and ui of a feasible solution for SCLP. (This
correspondence is made precise in Definition 2.2 below.) We define the discretization
AP(P ) of SCLP as follows (written in a slightly different form from Pullan [12]):
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AP(P ): minimize

m∑
i=1

(
c(ti−1+)T x̂(ti−1+) + c(ti−)T x̂(ti−)

)
subject to Gx̂(t0+) + ŷ(u1) = a(u1),

Gx̂(ti−) + ŷ(ti)− ŷ(ui) = a(ti)− a(ui), i = 1, . . . ,m,

Gx̂(ti−1+) + ŷ(ui)− ŷ(ti−1) = a(ui)− a(ti−1), i = 2, . . . ,m,

Hx̂(ti−1+) + ẑ(ti−1+) = τib(ti−1+), i = 1, . . . ,m,

Hx̂(ti−) + ẑ(ti−) = τib(ti−), i = 1, . . . ,m,

x̂(ti−1+), x̂(ti−), ŷ(ti), ŷ(ui), ẑ(ti−1+), ẑ(ti−) ≥ 0,

i = 1, . . . ,m,

or, in matrix form,

AP(P ): minimize ĉT ω̂

subject to Âω̂ = b̂,

ω̂ ≥ 0,

for appropriately defined ĉ, Â, and b̂. The most important result about AP(P ) is the
following (see Theorem 3.5 in [12]).
Lemma 2.1. Let P be any refinement of the initial breakpoint partition. Then

V [AP(P )] ≤ V [SCLP].
Here and throughout the paper we use the notation V [LP] to denote the optimal

value of a linear program LP.
The correspondence between feasible solutions of AP(P ) and SCLP is given in

the next definition and following lemma (the latter being an amalgamation of The-
orems 3.4 and 3.7 and Corollary 3.6 in [12]). It is important to note the different
properties of SCLP solutions constructed from solutions to AP(P ), and AP(P ) solu-
tions constructed from solutions to SCLP.
Definition 2.2. Let P = {t0, t1, . . . , tm} be any refinement of the initial break-

point partition. Suppose that ω(t) is feasible for SCLP with x(t) piecewise constant
with breakpoints in P . We say that ω̂ defined by

x̂(ti−1+) = τix(ti−1+),

x̂(ti−) = τix(ti−),

ŷ(ti) = y(ti),

ŷ(ui) = y(ui),

ẑ(ti−1+) = τiz(ti−1+),

ẑ(ti−) = τiz(ti−), i = 1, . . . ,m,

is the natural solution for AP(P ) (constructed from ω(t)). Similarly, suppose now that
ω̂ is any feasible solution for AP(P ); then we say that ω(t)T = (x(t)T , y(t)T , z(t)T )
defined by

x(t) =




1

τi
x̂(ti−1+), t ∈ [ti−1, ui), i = 1, . . . ,m,

1

τi
x̂(ti−), t ∈ [ui, ti), i = 1, . . . ,m,

1

τm
x̂(tm−), t = T,
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and with y(t) and z(t) from the constraints of SCLP (i.e., satisfying (1.1) and (1.2))
is the natural solution for SCLP (constructed from ω̂).
Lemma 2.3. Suppose that ω(t) is feasible for SCLP with x(t) piecewise constant.

Let P be any refinement of the breakpoint partition for ω(t). Then the natural solution
ω̂ for AP(P ) is feasible for AP(P ) and the objective function values of the two solu-
tions are the same in their respective linear programs. Furthermore, if ω̂ is optimal
for AP(P ), then ω(t) is optimal for SCLP.

Conversely, let P = {t0, t1, . . . , tm} be any refinement of the initial breakpoint
partition and suppose that ω̂ is feasible for AP(P ). Then the natural solution ω(t) for
SCLP is feasible for SCLP and the difference in the values of the objective function
is given by

α(ω) ≡ ĉT ω̂ −
∫ T

0

c(t)x(t) dt

=

m∑
i=1

(
(ti − ti−1)2

8

)
(x(ti−)− x(ti−1+))T ċ(ti−).

Having discussed the discretization AP(P ) we now summarize the improvement
step given in Pullan [12], that is, the method whereby a nonoptimal solution for SCLP
can be improved. This step will form the basis of the algorithm to be studied in the
next sections.

Let ω(t) be a feasible solution for SCLP such that x(t) is piecewise constant.
Let P be any refinement of the breakpoint partition for ω(t), and ω̂ be the natural
solution for AP(P ). If ω̂ is optimal for AP(P ), then by Lemma 2.3, ω(t) is optimal
for SCLP. Otherwise we may construct an improved feasible solution ˆ̃ω for AP(P ).
Let δ ≡ ĉT ˆ̃ω − ĉT ω̂ < 0 and ω̃(t) be the natural solution for SCLP constructed from
ˆ̃ω. Choose ε ∈ [0, 1] and set εi = τiε. We may then define a new feasible solution
ω̄ε(t) by

x̄ε(t) =

{
x̃(t), t ∈ [ti−1, ti−1 + εi) ∪ [ti − εi, ti), i = 1, . . . ,m,

x(t) otherwise,

with again ȳε(t) and z̄ε(t) derived from the constraints of SCLP. We refer to this as
patching ω(t) and ω̃(t) together. Not only do we get a new feasible solution (Corol-
lary 4.2 in [12]) but this solution also gives an improvement over ω(t) in objective
function value for appropriately chosen ε (see Corollary 4.4 in [12]).

Theorem 2.4. For ε sufficiently small,
∫ T
0
c(t)T x̄ε(t) dt <

∫ T
0
c(t)Tx(t) dt and

min
ε

∫ T

0

c(t)T x̄ε(t) dt−
∫ T

0

c(t)Tx(t) dt =




δ2

4α
, α < 0 and

δ

2α
< 1,

δ − α otherwise

and occurs at

ε∗ =




δ

2α
, α < 0 and

δ

2α
< 1,

1 otherwise,

where α = α(ω̃) given in Lemma 2.3.
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We refer to patching ω(t) and ω̃(t) together with ε = ε∗ above as patching ω(t)
and ω̃(t) together optimally.

With these preliminaries we now proceed to state a general algorithm based on
these ideas and prove its convergence.

3. The algorithm. We now formally state the algorithm that we will study in
this paper.

0. Let P1 be the initial breakpoint partition and ω(0)(t) be any feasible solution
for SCLP with breakpoints in P1. Let ω̂(0) be the natural solution for AP(P1).
Set n = 1.

1. If ω̂(n−1) is optimal for AP(Pn) then stop as ω(n−1)(t) is optimal for SCLP
(Lemma 2.1).

2. Optimize AP(Pn) to produce ˆ̃ω
(n)

. Let ω̃(n)(t) be the natural solution for
SCLP.

3. Patch ω(n−1)(t) and ω̃(n)(t) together optimally to produce ω̄(n)(t).
4. Perform any other step to produce a feasible solution ω(n)(t) for SCLP whose

objective function value is at least as good as that of ω̄(n)(t).
5. Let Pn+1 be the breakpoint partition for ω(n)(t) (or some refinement of it)

and ω̂(n) the natural solution for AP(Pn+1). Set n = n + 1 and return to
Step 1.

The generality of this algorithm, of course, lies in step 4. Some of the possible choices
for this step are as follows:

• Do nothing.
• Purify ω̄(n)(t); i.e., produce an extreme-point solution without increasing the

value of the objective function. Such a scheme has been given in Anderson
and Pullan [6].
• Some steps of the above algorithm where AP is not optimized but just merely

improved at each stage.
• Optimize DP(Q), where Q is the breakpoint partition for ω̄(n)(t), and set
ω(n)(t) to be the corresponding SCLP solution obtained from this optimal
solution to DP(Q). (See Pullan [12]. DP(P ) is another discretization for
SCLP which is simpler and more obvious than AP(P ). Unlike AP(P ), any
solution to DP(P ) has a natural solution for SCLP with the same objective
function value and vice versa, that is, if P is a refinement of the breakpoint
partition for the SCLP solution.)
• Any combination of the above.

4. Convergence of the algorithm. We now proceed to prove the convergence
of the general algorithm stated in the previous section. Let the partition Pn be given
by

Pn = {t(n)
0 , t

(n)
1 , . . . , t(n)

mn
},

and let ĉ(n) denote the cost vector for AP(Pn). We define the following quantities:

δn = ĉ(n)T ˆ̃ω
(n) − ĉ(n)T ω̂(n−1),

αn = ĉ(n)T ˆ̃ω
(n) −

∫ T

0

c(t)T x̃(n)(t) dt,

fn =

∫ T

0

c(t)T x̄(n)(t) dt−
∫ T

0

c(t)Tx(n−1)(t) dt.
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Using the results from Pullan [12] introduced in section 2 we obtain

αn =

mn∑
i=1

(
(t

(n)
i − t(n)

i−1)2

8

)
(x̃(n)(t

(n)
i −)− x̃(n)(t

(n)
i−1+))T ċ(t

(n)
i −),(4.1)

fn =




δ2n
4αn

, αn < 0 and
δn

2αn
< 1,

δn − αn otherwise.

(4.2)

We now establish some simple results concerning these quantities. First, it is clear
that by definition, δn ≤ 0 for each n and δn = 0 if and only if the algorithm stops at
the nth iteration. The next lemma gives the properties of αn that we will require for
the convergence proof.
Lemma 4.1. We have αn ≤ 0 for each n and αn = 0 if and only if the algorithm

terminates at the (n + 1)th iteration. Also there exists N such that |αn| ≤ N for
all n.

Proof. We have by step 2 of the algorithm and Lemma 2.1,

ĉ(n)T ˆ̃ω
(n)

= V [AP(Pn)]

≤ V [SCLP]

≤
∫ T

0

c(t)T x̃(n)(t) dt.

Hence, by the definition of αn, αn ≤ 0 with equality if and only if ω̃(n)(t) is optimal
for SCLP, in which case the algorithm will terminate at the next iteration.

To show that αn is uniformly bounded, let M be a uniform bound on ‖x(t)‖ for
any feasible solution for SCLP and C be a bound on ‖ċ(t)‖. Then by (4.1),

|αn| =
∣∣∣∣∣
mn∑
i=1

(
(t

(n)
i − t(n)

i−1)2

8

)
(x̃(n)(t

(n)
i −)− x̃(n)(t

(n)
i−1+))T ċ(t

(n)
i −)

∣∣∣∣∣
≤ MC

4

mn∑
i=1

(t
(n)
i − t(n)

i−1)2

≤ MC

4

(
mn∑
i=1

(t
(n)
i − t(n)

i−1)

)2

=
MCT 2

4

and so the result follows.
We now establish the required properties of fn for the convergence proof.
Lemma 4.2. We have fn < 0 for each n and limn→∞ fn = 0.
Proof. The fact that fn < 0 follows from Theorem 2.4. Now by the general nature

of step 4,
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V [SCLP]−
∫ T

0

c(t)Tx(0)(t) dt ≤
∞∑
n=1

∫ T

0

c(t)T (x(n)(t)− x(n−1)(t)) dt

≤
∞∑
n=1

∫ T

0

c(t)T (x̄(n)(t)− x(n−1)(t)) dt

=

∞∑
n=1

fn

by the definition of fn. Hence fn → 0 as n→∞.
We may now prove the convergence result for the algorithm of the previous section.
Theorem 4.3. The algorithm in section 3 converges for any implementation of

step 4; i.e., either the algorithm terminates in a finite number of steps with an optimal
solution or

lim
n→∞

∫ T

0

c(t)Tx(n)(t) dt = V [SCLP].

Proof. Assume that the algorithm does not terminate after a finite number of
steps. We now have two cases to consider: either δn/(2αn) ≥ 1 for only finitely
many n or not. Consider first the case where δn/(2αn) ≥ 1 for only finitely many n.
Then there exists m such that for all n ≥ m, δn/(2αn) < 1. Hence, from (4.2) and
the fact that αn < 0 by Lemma 4.1, we have

fn =
δ2n

4αn
, n ≥ m.

But limn→∞ fn = 0 by Lemma 4.2, and αn is uniformly bounded with respect to n
by Lemma 4.1. Hence limn→∞ δn = 0. Now by the definition of δn we have

δn = ĉ(n)T ˆ̃ω
(n) − ĉ(n)T ω̂(n−1)

= V [AP(Pn)]−
∫ T

0

c(t)Tx(n−1)(t) dt

≤ V [SCLP]−
∫ T

0

c(t)Tx(n−1)(t) dt

≤ 0

by Lemmas 2.1 and 2.3. Hence δn → 0 implies

lim
n→∞

∫ T

0

c(t)Tx(n)(t) dt = V [SCLP].

Now consider the case where δn/(2αn) ≥ 1 for infinitely many n. Let {nk}∞k=1 be
such that δnk

/(2αnk
) ≥ 1. Then from (4.2) we have

fnk
= δnk

− αnk
, k = 1, 2, . . . .

Thus by Lemma 4.2, limk→∞(δnk
− αnk

) = 0. However, δnk
/(2αnk

) ≥ 1 for each k
and so we have δnk

− αnk
≤ αnk

< 0. Hence limk→∞ αnk
= 0. Now by the definition
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of αnk
we have

αnk
= ĉ(nk)T ˆ̃ω

(nk) −
∫ T

0

c(t)T x̃(nk)(t) dt

≤ V [AP(Pn)]−
∫ T

0

c(t)T x̄(nk)(t) dt,

since patching together is done optimally (recall that ω̃(t) is a possible outcome of
the patching together process with ε = 1). Hence, in a way similar to the above, we
now obtain

αnk
≤ V [SCLP]−

∫ T

0

c(t)Tx(nk)(t) dt

≤ 0

by Lemma 2.1 and the general nature of step 4 in the algorithm. Thus we now have

lim
k→∞

∫ T

0

c(t)Tx(nk)(t) dt = V [SCLP].

Finally, the objective function values of ω(n)(t) are strictly monotonic decreasing and
so we have convergence of the whole sequence of objective function values.

5. Remarks. The algorithm discussed in this paper is quite general and cer-
tainly includes all the possibilities mentioned in the final section of Pullan [12]. The
convergence proof in this paper has opened the way for a detailed numerical study
of the various possible implementations of the algorithm. The numerical results in
Anderson and Pullan [6] suggest that the above algorithm performs very well if step 4
includes a purification step.

It is also worth commenting on the algorithm given in Philpott and Craddock [9]
for which convergence was also proved. While this algorithm is not quite a special case
of the algorithm in this paper, it is essentially the algorithm obtained by replacing
step 3 in the algorithm of section 3 by patching together using ε = 1 and by doing
nothing in the general step 4. Thus the two algorithms would coincide when it is
optimal to patch together using ε = 1 at every stage. As the algorithm in Philpott
and Craddock [9] does not always patch together optimally, we would expect the
algorithm in this paper to perform better in the sense of needing fewer iterations.
However, as observed in the numerical results in [9], one implementation of the algo-
rithm in this paper leads to very large discretizations which, therefore, take a very
long time to solve. Consequently this implementation did not compare favorably with
the algorithm in [9]. It is thus desirable to find an operation to include in step 4 that
will tend to reduce the size of the partitions. Given such an operation, it would then
be plausible that we would obtain better numerical results than those in [9]. The
preliminary results obtained by including a purification step in step 4, as mentioned
above, do appear to indicate that such an operation is possible.
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Abstract. We consider set-valued mappings defined on a topological space with closed convex
images in Rn. The measurability of a multifunction is characterized by the existence of a Castaing
representation for it: a countable set of measurable selections that pointwise fills up the graph of
the multifunction. Our aim is to construct a Castaing representation which inherits the regularity
properties of the multifunction. The construction uses Steiner points. A notion of a generalized
Steiner point is introduced. A Castaing representation called regular is defined by using generalized
Steiner selections. All selections are measurable, continuous, resp., Hölder-continuous, or directionally
differentiable, if the multifunction has the corresponding properties. The results are applied to various
multifunctions arising in stochastic programming. In particular, statements about the asymptotic
behavior of measurable selections of solution sets via the delta-method are obtained.

Key words. Steiner center, selections, Castaing representation, stochastic programs, random
sets, delta-theorems
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1. Introduction. Analysis of the behavior of multifunctions includes questions
on existence of selections with some regularity properties. When measurability plays
a role, one of the most celebrated results is the Castaing representation theorem
[7]. It is known (see [22]) that a closed-valued measurable multifunction in a Polish
target space admits a measurable selection. Furthermore, for a multifunction F with
nonempty closed values in a Polish target space (in our case this will be Rn), we can
choose a countable family of measurable selections {fn} that pointwise fills up the
values of the multifunction:

For each x ∈ X, F (x) = cl
(
∪∞
n=1 fn(x)

)
.

Such a countable family is called a Castaing representation for the multifunction. The
existence of such a representation characterizes measurability (see [7]). The terminol-
ogy “Castaing representation” seems to have been introduced in [29]. Besides this
survey, there are several publications dealing with regularity properties of multifunc-
tions [3, 8, 21, 30].

Our aim is to construct a Castaing representation of a multifunction F : X→→ R
n,

defined on a linear metric space X, which inherits its regularity properties. An
overview of the basic facts on how selections inherit measurability, Lipschitz-continuity,
etc., is given in [3]. The reader also can find there a presentation of some special selec-
tions and their properties which are widely studied in the literature. Various results
on continuous selections are presented in the recent monograph [27].
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Although the well-known Steiner selection preserves measurability and continuity
properties of a multifunction, its definition does not provide tools for constructing
a Castaing representation. We shall generalize the definition of a Steiner center by
using an arbitrary probability measure with smooth density on the unit ball. We will
obtain different Steiner points with respect to different measures which will be the
basis of our construction. All generalized Steiner selections will preserve measurability,
continuity, Hölder- or Lipschitz-continuity, and some kind of differentiability.

Several concepts of differentiability of set-valued mappings have been developed
in the literature (see, e.g., [3, 4, 28]). We shall work with the notion of semidiffer-
entiability, which was introduced by Penot [25] and corresponds to the concept of
tangential approximation due to Shapiro [37, 38]. Semidifferentiability plays an im-
portant role in the delta-method, which provides information about the asymptotic
behavior of stochastic processes. In particular, mappings containing feasible and opti-
mal solutions of stochastic programs are of this kind. The existence of a differentiable
selection has been treated in [14, 9, 11]. In [9] another construction of a Castaing
representation is developed that is suitable for applications to delta-theorems. The
construction is based on metric projections and it is sufficient for working with the
delta-method, but the selections of that Castaing representation do not preserve the
regularity properties of the multifunction.

Our results have a specific application to stochastic programming. We shall demon-
strate the existence of a regular Castaing representation for various multifunctions
arising in stochastic programming.

2. Generalized Steiner points. In this section, the notion of a generalized
Steiner point for a convex compact set is introduced. The notion of Steiner center can
be generalized also for some unbounded sets, as shown in [9]. We restrict our inves-
tigations to the case of compact sets in order to simplify the presentation; moreover,
this situation corresponds to all applications we have in mind.

Let C ⊆ Rn be a compact convex set. Furthermore, let the Lebesgue measure of
the unit ball B in Rn be denoted by V and its surface area by S, i.e.,

V =
πn/2

Γ(1 + n
2 )
, S = nV =

2πn/2

Γ(n2 )
.

The surface area S is computed with the n-dimensional spherical Lebesgue measure
(used, for example, as in [5, p. 187, Exercise 13.12]).

Definition 2.1. The Steiner center s(C) is defined in the following way:

s(C) =
1

V
∫
Σ

pσ(p, C) ω(dp),(2.1)

where Σ denotes the unit sphere in Rn, ω is the Lebesgue measure on Σ, and σ(·, C)
is the support function of C.

Recall that the support function σ(·, C) : Rn → R of a closed convex set C ⊆ Rn
is defined by σ(p, C) = supy∈C〈p, y〉.

This point was first introduced by Steiner [41] in 1840 for a C2-convex plane curve
as the barycenter of the curvature measure. A definition using normalized isometry-
invariant measure was introduced by Shephard [40]. The properties of the Steiner
center have been widely investigated in the literature. We refer to the monograph
[36], where the interested reader can find several facts and references on this topic.
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It is easy to see that changing the measure in the formula above could easily
lead to obtaining points that do not belong to the set C. However, there is another
representation of the Steiner point, which we shall use. Following [3], we use the
notation ∂σ(p, C) = {y ∈ C : 〈p, y〉 = σ(p, C)} for the subdifferential of the support
function and m(∂σ(p, C)) for the norm-minimal element in it. The Steiner center can
be expressed equivalently as follows:

s(C) =
1

V
∫
B

m(∂σ(p, C))dp.(2.2)

Let µ denote the normalized Lebesgue measure on B, i.e., dµ = dp
V . We define the set

M = {α : probability measure on B having C1 − density with respect to µ}.
Definition 2.2. A generalized Steiner center Stα(C) of a compact convex set

C ⊆ Rn with respect to the measure α ∈M is defined as follows:

Stα(C) =

∫
B

m(∂σ(p, C))α(dp).(2.3)

It is well-known that
(1) s(C) ∈ C for all compact convex sets C ⊆ Rn;
(2) s(aA + bB) = as(A) + bs(B) for any real numbers a and b and any compact

convex sets A and B.
We shall show that this is true for the generalized Steiner points, too. Let ∇f(x)

denote the gradient of f calculated at x. In order to show some regularity of the gen-
eralized Steiner points a representation using only the values of the support function
instead of its subdifferential is of interest. The equivalence of the two representations
(2.1) and (2.2) known for the Steiner center holds only for isometry-invariant mea-
sures and, therefore, we cannot simply change the measure in (2.1). The following
equivalent representation can be obtained by using a divergence theorem applied to
the Moreau–Yosida approximation of the support function σ(p, C) of C.

Theorem 2.3 (see [9]). It holds that for any convex compact set C and probability
measure α ∈M with a density θ(·)

Stα(C) =
1

V


∫

Σ

pσ(p, C)θ(p)ω(dp)−
∫
B

σ(p, C)∇θ(p)dp

 .(2.4)

The point Stα(C) belongs to C and Stα(aA+ bB) = aStα(A) + bStα(B) for any real
numbers a and b and any compact convex sets A and B.

Throughout the paper we denote the Hausdorff distance between two sets A,B ⊆
R
n by

dH(A,B) = max{e(A,B), e(B,A)}, and e(A,B) = sup
y∈A

d(y,B),

where d(·, A) denotes the distance function associated with a closed set A ⊆ Rn.
Proposition 2.4. The mapping Stα(·) is Lipschitzian with respect to the Haus-

dorff distance with a Lipschitz constant

L̂ =

(
nmax
p∈Σ

θ(p) + max
p∈B

‖∇θ(p)‖
)
,
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where θ(·) stands for the density of the probability measure α ∈M.
Proof. Let us recall that for every p ∈ Σ and for all nonempty, convex, compact

sets A and B it holds that |σ(p,A) − σ(p,B)| ≤ dH(A,B). We deduce the following
chain of inequalities:

‖Stα(A)− Stα(B)‖

=

∥∥∥∥ 1
V

[ ∫
Σ

pσ(p,A)θ(p)ω(dp)−
∫

B

σ(p,A)∇θ(p)dp
]

− 1
V

[ ∫
Σ

pσ(p,B)θ(p)ω(dp)−
∫

B

σ(p,B)∇θ(p)dp
]∥∥∥∥

≤ 1
V

[ ∫
Σ

p|σ(p,A)− σ(p,B)|θ(p)ω(dp) +

∫
B

|σ(p,A)− σ(p,B)|∇θ(p)dp
]

≤ 1
V

[ ∫
Σ

pdH(A,B)θ(p)ω(dp) +

∫
B

dH(A,B)∇θ(p)dp
]

≤ dH(A,B)(nmaxp∈Σ θ(p) + maxp∈B ‖∇θ(p)‖) = L̂dH(A,B).

3. Measurability and Castaing representations. Let the spaceX be equipped
with a σ-algebra A. We use the following definition of measurability (see also [3, 8]).

Definition 3.1. A mapping f : (X,A) → R
n is measurable if for any open set

C ⊆ Rn the preimage f−1(C) = {x ∈ X : f(x) ∈ C} belongs to A. A multifunction
F : (X,A)→→ R

n is measurable if for any open set C ⊆ Rn the preimages F−1(C) =
{x ∈ X : F (x) ∩ C �= ∅} ∈ A.

Recall that f : (X,A) → R
n is called a measurable selection of F if f is measurable

and f(x) ∈ F (x) almost surely. It is known (see [22]) that a closed-valued measurable
multifunction in a Polish target space admits a measurable selection. Furthermore,
for a multifunction F with nonempty closed values in a Polish target space, we can
choose a Castaing representation of it—a countable family of measurable selections
{fn} such that

for each x ∈ X, F (x) = cl
( ∪∞

n=1 fn(x)
)
.

The existence of such a representation characterizes measurability (cf., e.g., [8]). In
this section we shall construct Castaing representations of a multifunction F : X→→ R

n

with convex compact images, which preserves regularity properties of F using gener-
alized Steiner selections.

Lemma 3.2 (see [9]). Let C be a convex compact set. The set of generalized
Steiner points D = {Stα(C) : α ∈M} is dense in C.

Definition 3.3. The function fα : X → R
n, defined by f(x) = Stα

(
F (x)

)
, is

said to be a generalized Steiner selection of F with respect to the measure α.
Theorem 3.4. Let F : X→→ R

n be a measurable multifunction with nonempty
compact convex images. Then F admits a representation by countably many general-
ized Steiner selections {fn} such that

for each x ∈ X, F (x) = cl
( ∪∞

n=1 fn(x)
)
.

Proof. We consider the set of functions C1
d = {f ∈ C1(B,R+) :

∫
B
fµ(dp) = 1}. By

modification of standard arguments in functional analysis, it can be shown that there
is a countable set {θi}∞i=1, which is dense in C1

d with respect to the supremum-norm.
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Consider the probability measures {αi}∞i=1 with densities {θi}∞i=1 on B. We denote
the Steiner selection with respect to the measure αi by fi. We shall show that the
union of selections {fi}∞i=1 is the Castaing representation we are looking for.

Let a point (x, y) ∈ graphF and δ > 0 be given. By virtue of Lemma 3.2, there
is a measure α ∈ M such that ‖Stα

(
F (x)

) − y‖ ≤ 1
2δ. Let θ be the density of this

measure. Further, we set κ := maxy∈F (x) ‖y‖. There exists a density θδ such that

supy∈B
|θ(y)− θδ(y)| ≤ δ

2κ . Taking the Steiner point with respect to the measure αδ
with this density, we obtain

‖Stα
(
F (x)

)− Stαδ

(
F (x)

)‖ ≤ ‖ ∫
B

m(∂σ(p, C))
(
θ(p)− θδ(p)

)
µ(dp)‖

≤ δ
2κκ

∫
B

µ(dp) = 1
2δ.

Consequently, ‖Stαδ

(
F (x)

) − y‖ ≤ δ and this proves the assertion since δ is arbit-
rary.

4. Regularity properties of multifunctions and their generalized Steiner
selections. The goal of this section is to show that the representation constructed
in Theorem 3.4 preserves regularity properties of the multifunction. We shall show
that all selections are measurable, continuous, Hölder- or Lipschitz-continuous, or
directionally differentiable whenever the multifunction is so.

Suppose that X is a metric space with a metric ρ. We shall use the following
notions of continuity for multifunctions.

A multifunction F : X→→ R
n is called continuous at a point x̄ if

for all ε > 0 there is a δ > 0 such that dH(F (x), F (x̄)) ≤ ε for all x : ρ(x̄, x) < δ.

Furthermore, a multifunction is called Hölder-continuous of order k around x̄ ∈ X if
there exist a constant L and a neighborhood U of x̄ such that

dH(F (x1), F (x2)) ≤ Lρ(x1, x2)
k for all x1, x2 ∈ U,

If k = 1, then the multifunction is called Lipschitz-continuous at this point.
A multifunction will be called Hölder-stable of order k at x̄ ∈ X if there exist a

constant L and a neighborhood U of x̄ such that

dH(F (x), F (x̄)) ≤ Lρ(x, x̄)k for all x ∈ U.
If k = 1, then such a multifunction is called Lipschitz-stable at that point.

From now on we assume that the multifunction F under consideration has nonempty
compact convex images.

Theorem 4.1. Let a multifunction F be continuous, resp., Hölder-continuous,
or Hölder-stable of order k at a point x̄ with a constant L. Then each generalized
Steiner selection fα is continuous, resp., Hölder-continuous, or Hölder-stable of order
k at this point with a constant:

L̂ =

(
nmax
p∈Σ

θ(p) + max
p∈B

‖∇θ(p)‖
)
L,

where θ is the density of the measure α. Moreover, all generalized Steiner selections
are measurable whenever F is measurable.

Proof. Let us observe that a generalized Steiner selection fα is a composition of
two mappings: Stα ◦ F . The assertion follows by virtue of Proposition 2.4.
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Results about existence of Lipschitz-continuous selections are given in [2, 3, 9, 11],
including the case of F (x) being unbounded sets. An interesting result on existence
of a Lipschitz-continuous selection through any given point of the graph of the mul-
tifunction is contained in [11].

The Hölder-continuity of the generalized Steiner selections can be extended to
multifunctions with unbounded images in the same way as [3] or [9]. We do not
provide those considerations in order to concentrate on the main goal of this paper:
the existence of a regular Castaing representation.

Let us now discuss the relation between differentiability of a multifunction and its
generalized Steiner selections. For the purpose of this investigation we need to assume
that X is a linear metric space. We denote the graph of F by graphF .

The following notions of differentiability of set-valued mappings will be used.
Definition 4.2. A mapping F : X→→ R

n is called radially differentiable at a
point (x̄, ȳ) ∈ graphF in direction h ∈ X if the limit

F ′(x̄, ȳ;h) = lim
tn↓0

t−1
n [F (x̄+ tnh)− ȳ]

exists in the sense of Kuratowski–Painlevé convergence.
Recall that

lim inf
n→∞ An =

{
z : lim sup

n→∞
d(z,An) = 0

}
, lim sup

n→∞
An =

{
z : lim inf

n→∞ d(z,An) = 0
}
.

A sequence of closed sets {An}, An ⊆ R
n, converges to some A ⊆ R

n in the sense
of Kuratowski–Painlevé if and only if the sequence of distance functions converges
pointwise (cf. [3]), i.e.,

A = lim
n→∞An if and only if d(y,A) = lim

n→∞ d(y,An)

or, equivalently,

lim inf
n→∞ An = A = lim sup

n→∞
An.

Definition 4.3 (see [25]). A mapping F : X→→ R
n is called semidifferentiable at

a point (x̄, ȳ) ∈ graphF in direction h ∈ X if for any sequence hn → h the limit

DF (x̄, ȳ;h) = lim
tn↓0,hn→h

t−1
n [F (x̄+ tnhn)− ȳ]

exists in the sense of Kuratowski–Painlevé.
Various differentiability concepts are compared in [4, 28]. Semidifferentiability

generates a derivative that forms a continuous multifunction with respect to the di-
rection (see [4]), i.e., limhn→hDF (x, y;hn) = DF (x, y;h), where the limit is taken
with respect to the Kuratowski–Painlevé convergence. The derivatives above build
some cone-approximation of the graph of the multifunction. Continuous tangential
approximations of set-valued mappings are considered also in [37, 38]. It has been
shown in [4] that such tangential approximations, if they exist, coincide with the
semiderivatives.

Theorem 4.4 (see [9]). Suppose that a multifunction F : X→→ R
n is Lipschitz-

stable at all x ∈ X and semidifferentiable at all points (x, y) such that y ∈ bdF (x).
Here bd stands for the boundary of F (x). Let F (x) be polyhedra for all x ∈ X. Then
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the generalized Steiner selection f of F is Hadamard directionally differentiable at
all points x ∈ X. Moreover, the directional derivative of f is given by the following
formula:

f ′(x;h) =
1

V
[ ∫

Σ

pσ(p,DF (x, yp;h))θ(p)ω(dp)−
∫

B

σ(p,DF (x, yp;h))∇θ(p)dp
]
,(4.1)

where yp ∈ ∂σ(p, F (x)).
Differentiability properties of the classical Steiner selection are investigated in

[9, 11, 14].
Corollary 4.5. Let F : X→→ R

n be Lipschitz-stable, semidifferentiable at any
point (x, y) with y ∈ bdF (x), and let F (x) be polyhedra for all x ∈ X. Then F
admits a Castaing representation by Hadamard directionally differentiable Steiner
selections {fn}. Moreover, if F is semidifferentiable at (x, fn(x)), then f ′n(x;h) ∈
DF (x, fn(x);h) for all h ∈ X.

Proof. The statement follows from Theorem 3.4 and Theorem 4.4, having in mind
that all generalized Steiner selections are measurable by their continuity. In case F is
semidifferentiable at (x, fn(x)), the inclusion f ′n(x;h) ∈ DF (x, fn(x);h) follows from
the definition of the semiderivative.

Now, we would like to formulate a statement relating the radial differentiability
of a set-valued mapping with the existence of a Castaing representation with direc-
tionally differentiable selections.

Corollary 4.6. Suppose that a multifunction F : X→→ R
n is radially differ-

entiable into a direction h at all points (x̄, y) ∈ graphF : y ∈ bdF (x̄), F (x) are
polyhedra for all x ∈ X, and it satisfies the following condition on Lipschitz behavior:
There exist constants L > 0 and δ > 0 such that

dH(F (x̄), F (x̄+ th)) ≤ Lt whenever t ∈ (0, δ).(LB)

Then F admits a Castaing representation by generalized Steiner selections {fn} which
are directionally differentiable in the direction h at x̄. Moreover, if F is directionally
differentiable at (x̄, fn(x̄)), then f

′
n(x̄;h) ∈ F ′(x̄, fn(x̄);h), and the directional deriva-

tive satisfies formula (4.1). If F is Lipschitzian at x̄ and directionally differentiable
into all directions, then fn are Hadamard directionally differentiable at x̄.

Proof. Under the assumption (LB), we follow the same line of argument as
in the proof of Theorem 4.4, considering all limits for the fixed direction h. In
this way, we obtain directional differentiability of all generalized Steiner selections
into the direction h at the point x̄. Under the stronger assumption that F is Lips-
chitzian, the proof is the same as the previous corollary. We have to take into account
that directional differentiability, together with Lipschitz-continuity, implies semidif-
ferentiability [28]. The formula and the inclusion of the directional derivative follow
analogously.

These statements are of interest when dealing with the delta-method as we shall
see in the last section.

5. Feasible and optimal solutions of stochastic programs. In this section
we shall discuss some nontrivial applications for the existence of a regular Castaing
representation. We apply the results of the previous section to mappings expressing
optimal solutions of stochastic programs subjected to perturbations.

While working with stochastic optimization models, one assumes that the under-
lying probability measure is given. In practical situations this is rarely the case; one
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usually works with some approximations or statistical estimates. These circumstances
motivate the stability investigations of stochastic programs with respect to perturba-
tions of the probability distributions. We shall consider two basic types of stochastic
models: stochastic programs with recourse and stochastic programs with probabilistic
constraints.

In order to discuss stability with respect to the probability measure, we need to
work with a suitable metric space. Let (X, d) be a separable linear normed space and
P(X) be the set of all Borel probability measures on X. We denote

M(X) :=
{
µ ∈ P(X) :

∫
X
d(x, y)µ(dx) <∞

}
,

D(µ, ν) :=
{
η ∈ P(X ×X) : η ◦ π−1

1 = µ, η ◦ π−1
2 = ν

}
,

using π1 and π2 as the canonical first and second projections, respectively. The L1-
Wasserstein metric W1 is defined as follows:

W1(µ, ν) := inf
{∫

X×X
d(x, y)η(dx, dy) : η ∈ D(µ, ν)

}
for all µ, ν ∈M(X).

Furthermore, let ‖f‖L be the usual Lipschitz-norm:

‖f‖L = ‖f‖∞ + sup
x,y∈Y

|f(x)− f(y)|
‖x− y‖ .

It is known (cf. [15]) that (M(X),W1) is a metric space. Quantitative stability
of stochastic programs with respect to perturbations of probability measures is inves-
tigated in [16, 17, 31, 32, 33, 34]. We shall utilize some of the results presented in
those papers.

5.1. Stochastic recourse programs. Let us consider a two-stage stochastic
program with linear recourse and random right-hand side:

min{g(x) +Qµ(Ax) : x ∈ C},(5.1)

Qµ(χ) =

∫
Rm

Q̃(θ − χ)µ(dθ),(5.2)

Q̃(z) = min{q�y :Wy = z, y ≥ 0},(5.3)

where g : Rn → R is a convex function, C ⊆ Rn is a nonempty closed convex set, and
µ is a Borel probability measure on Rm. Furthermore, q ∈ Rs, A is an n×m matrix,
andW is an s×m matrix. We make use of the general assumptions (A1)–(A3), which
are common in the literature, in order to make the problem well defined.

(A1) W (Rs+) = Rm (complete recourse),

(A2) MD := {u ∈ Rm :W�u ≤ q} �= ∅ (dual feasibility),

(A3)

∫
Rm

‖z‖µ(dz) < +∞ (finite first moment).

Having in mind linear programming theory, observe that (A1) and (A2) imply
Q̃(z) to be finite for all z ∈ Rm. Due to (A3) the integral of Q̃(z) is also finite [18, 42].
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The model is derived from an optimization problem with uncertain data, where
some statistical information about the random data is available. The decision x of the
first stage has to be made here and now before observing some realization of θ. It is
supposed to solve the problem

inf{g(x) : x ∈ C,Ax = θ}.
After observing a realization of θ we fix a second-stage decision y (called recourse
action) in order to overcome the deviation θ−Ax. The matrix W determines the rule
to react and q the costs of our reaction. Assumption (A1) means that we are able
to overcome any deviation. To choose y properly, we minimize its costs. To choose x
properly, we minimize the sum of the first-stage costs and the expected second-stage
costs, caused by the corrective action y. Further details and fundamental properties
of two-stage stochastic programs can be found in [18, 26, 42].

We consider the multifunction assigning to each probability measure µ the set of
optimal solutions of the problem (5.1), i.e.,

ψ(µ) = argmin{g(x) +Qµ(Ax) : x ∈ C}.
Two-stage stochastic programs hardly have a unique solution. This fact has mo-

tivated the attempt to avoid the assumption on the multifunction to be a singleton
at certain points in our investigations. The next example gives an impression on how
restrictive this assumption is.

Example (see [33]). g(x) = 0, A = (1, 0), C = [0, 1] × [0, 1], q = (1, 1), W =
(1,−1). Let µ be the uniform distribution on [–1/2,1/2]. Then

ψ(µ) = argmin{Qµ(Ax) : x ∈ [0, 1]× [0, 1]}
= argmin

{∫
R

|ω − x1|µ(dω) : x ∈ [0, 1]× [0, 1]

}
= {(0, x2) : x2 ∈ [0, 1]} = kerA ∩ C.

One can see that even for very simple examples the solution set is not a singleton.
Under an assumption that Qµ is a strictly, resp., strongly convex function we have
the uniqueness of Aψ(Qµ), but we cannot expect that kerA = {0}.

Proposition 5.1. Let g be a convex quadratic function and C a polyhedron.
Given µ ∈ M(R), let ψ(µ) be nonempty and let the function Qµ be strongly convex
on an open neighborhood of the set A(ψ(µ)). Then the mapping ψ admits a Castaing
representation of generalized Steiner selections which are Hölder-stable of order 1/2
at the point µ ∈ (M(X),W1).

Proof. According to Theorem 2.7 in [31], under the assumption of the theorem,
there are constants L > 0 and δ > 0 such that

dH(ψ(µ), ψ(ν)) ≤ L W1(µ, ν)
1/2

whenever ν ∈ M(R),W1(µ, ν) < δ. Hence, we can apply Theorem 4.1 and conclude
that each generalized Steiner selection is Hölder-stable of order 1/2 at the point µ.
Consequently, our construction of Theorem 3.4 yields a Castaing representation of ψ
with the stated property.

We consider also general perturbations of the recourse function without referring
to metrics for probability measures. The following setting of a perturbed problem is
relevant:

inf{g(x) +Q(Ax) : x ∈ C},
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where Q : Rm → R is a convex function, considered to be a perturbation (resp., ap-
proximation) of the expected recourse function Qµ. Resorting to convex perturbations
is motivated by the fact that, given (A1) and (A2), Qµ is convex for any probability
measure with finite first moment (cf. [18, 42]). Then the definition space (X) of the
mapping ψ changes to a functional space:

ψ(Q) = argmin{g(x) +Q(Ax) : x ∈ C}.
Setting Y = A(C), we consider two functional spaces as definition spaces: the space
C1,1(Y,R) of all real-valued continuously differentiable functions with locally Lipschitz
derivative, defined on Y, and the space C0,1(Y,R) of all real-valued locally Lipschitz
functions, defined on Y . Both spaces are metrizable (cf. [10]). We suppose here that
the set C is bounded and endow the space C0,1(Y,R) with the usual Lipschitz-norm.
We work with the corresponding norm-convergence in C1,1(Y,R).

In the following, we always consider the restriction of the solution set mapping ψ
to the cone of convex functions in one of the spaces above. One more piece of notation
is that

φ(y) = argmin{g(x) : x ∈ C,Ax = y} (y ∈ Y ).

Proposition 5.2. Let ψ(Qµ) be nonempty and Qµ be strongly convex on some
open neighborhood of Aψ(Qµ). Assume, in addition, that there is a constant L > 0
and a neighborhood U of ȳ with ȳ = Aψ(Qµ) such that

d(φ(ȳ), φ(y)) ≤ L‖ȳ − y‖ for all y ∈ Y ∩ U.(i)

Then ψ admits a Castaing representation by generalized Steiner selections which are
Lipschitz-stable at the point Qµ ∈ C0,1(Y,R). Moreover, if g is linear or convex
quadratic and C is a polyhedron, then the assumption (i) is satisfied.

Proof. We refer here to Theorem 2.3 and Remark 2.4 in [10]. Under the assumption
of the proposition, there are constants L̂ > 0 and δ > 0 such that

dH(ψ(Qµ), ψ(Q)) ≤ L̂‖Qµ −Q‖L
for any convex function Q ∈ C0,1(Y,R) such that ‖Q−Qµ‖L < δ, which means that
the mapping ψ is locally Lipschitz-stable at Qµ. Consequently, according to Theo-
rem 4.1 each generalized Steiner selection is Lipschitz-stable at that point. Applying
the construction of a Castaing representation by Steiner selections according to The-
orem 3.4 we accomplish the goal of the proposition.

A result similar to Theorem 2.3 in [10] is shown in [33]. We can use it and obtain
a similar statement to the above proposition. Here we have chosen to present only
one of them to illustrate existence of a Castaing representation for the solution set
mapping, which has Lipschitz behavior.

Restricting the solution set mapping ψ to the cone K of convex functions in one
of the spaces above has an impact on the notions of differentiability. Considering
the semiderivative at a point (Qµ, x) in a certain direction v̄, we assume that the
arguments of ψ lie in K. Hence, we consider only sequences v → v̄ such that Qµ+tv ∈
K for all v. Consequently, the directions v are elements of the closure of the radial
tangent cone to K at the point Qµ. We denote the radial tangent cone to K at the
point Qµ by

T rK(Qµ) = {λ(Q−Qµ) : λ ≥ 0, Q ∈ K}.
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Proposition 5.3. Assume that ψ : K ⊂ C0,1(Y,R)→→ R
n and that ψ(Qµ) is

nonempty. Let Qµ be strictly convex on some open neighborhood of A(ψ(Qµ)) and
twice continuously differentiable at χ∗ : A(ψ(Qµ)) = {χ∗}. Let g be convex quadratic,
C be a polyhedron, and v ∈ T rK(Qµ). Then ψ is radially differentiable at (Qµ, x) ∈
graphF in direction v and

ψ′(Qµ;x)(v) = lim
t→0+

1

t
(ψ(Qµ + tv)− x)

= argmin

{
1

2
〈∇2g(x)y, y〉+ 1

2
〈∇2Qµ(Ax)Ay,Ay〉+ v′(Ax;Ay) : y ∈ S(x)

}
.

Moreover, ψ admits a Castaing representation by Steiner selections fi which are di-
rectionally differentiable at Qµ in the direction v and it holds that

f ′i(Qµ; v) ∈ ψ′(Qµ; fi(Qµ))(v).

Proof. The first statement of the proposition, i.e., the directional differentiability
of ψ and the formula of the derivative, is proved by Theorem 4.1 in [10]. The second
statement follows from the first by virtue of our Corollary 4.6.

Now we come to the semidifferentiability of the solution set mapping and its
consequences. We consider the restriction of ψ to the space C1,1(Y,R).

Proposition 5.4. Assume ψ(Qµ) to be nonempty, g a quadratic function, and
C a polyhedron. Let Qµ be strongly convex on some open neighborhood of A(ψ(Qµ))
and twice continuously differentiable at χ∗ : A(ψ(Qµ)) = {χ∗}. Let x ∈ ψ(Qµ).
Then ψ admits a Castaing representation by Steiner selections. All selections are
Hadamard directionally differentiable at (Qµ, x), and the directional derivatives of the
selections belong to the semiderivative of ψ, which is given by the formula of the
previous proposition.

Proof. The semidifferentiability of ψ and the formula for the semiderivative are
proved by Theorem 4.7 in [10]. As in the proof of Proposition 5.2 we obtain that
ψ is also Lipschitz-stable at Qµ. Thus, we can apply Corollary 4.5, which states
the existence of the Castaing representation with the desired differentiability
property.

5.2. Stochastic programs with probabilistic constraints. We shall be con-
cerned with the following stochastic problem:

min{g(x) : x ∈ Rn, µ({z ∈ Rs : x ∈ H(z)}) ≥ p},(5.4)

where g : Rn → R is a convex function, p ∈ (0, 1) is a probability (or reliability)
level, µ ∈ P(Rs), and H : Rs → R

n is a measurable mapping. It is assumed that the
constraint x ∈ H(z) is satisfied with a probability p.

Let B be a subset of the Borel σ-algebra on Rs. The B-discrepancy of two measures
is defined by

αB(µ, ν) = sup
B∈B

|µ(B)− ν(B)|, µ, ν ∈ P(Rs).

The preimages H−1(x) = {z ∈ Rs : x ∈ H(z)} are Borel sets because H is measur-
able. Consequently, we can use the subset BH = {H−1(x), x ∈ Rn} as a subset of
discrepancy and denote ᾱ := αBH

.
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A special case of the BH -discrepancy is the Kolmogorov distance on P(Rs) defined
by

α(µ, ν) = sup
y∈Rs

|Fµ(y)− Fν(y)|, µ, ν ∈ P(Rs),

where Fµ is the distribution function of µ.
In the setting of the previous section, recourse problems preserve the same set of

feasible points when the measure is subjected to perturbations. In the models with
probabilistic constraints the solution changes because the feasible set changes when the
measure is perturbed. Stability investigations of probabilistically constrained models
are mainly concerned with changes that affect the feasible set. The feasible set can be
expressed in the following way:

{x ∈ Rn : µ(H−1(x)) ≥ p}.(5.5)

Mostly investigated is the case of a mapping H given by linear inequalities, i.e.,

H(z) = {x ∈ C : Ax ≥ z}, z ∈ Rs,
where A is an s × n-matrix and C ⊆ R

n is a closed set, often supposed to be a
polyhedron. Then we deal with the problem

min{g(x) : x ∈ C, Fµ(Ax) ≥ p},(5.6)

where Fµ is the distribution function of the probability measure µ ∈ P(Rs).
We assume µ to be r-concave for some r ∈ (−∞, 0). Recall that r-concavity is

introduced in the following way. Let the generalized mean function mr be defined on
R+ × R+ × [0, 1] as

mr(a, b, λ) =




(λar + (1− λ)br)1/r if r �= 0, ab > 0,
0 if ab = 0,

aλb1−λ if r = 0,
max{a, b} if r = ∞,
min{a, b} if r = −∞.

The measure µ ∈ P(Rs) is called r-concave if the inequality µ(λB1 +(1−λ)B2) ≥
mr(µ(B1), µ(B2), λ) holds for all λ ∈ [0, 1] and all Borel subsets B1, B2 of Rs such
that λB1 + (1− λ)B2 is a Borel set.

Due to r-concavity of µ, the problem (5.6) represents a convex program.
We shall consider the following mapping Φ : P(Rs) × (0, 1) → R

n defined by
setting

Φ(µ, p) := {x ∈ C : p− Fµ(Ax) ≤ 0}.
Proposition 5.5. Assume that µ is r-concave and C is a convex compact set.

Suppose that the mapping Φ(µ, ·) is Lipschitzian at a certain point p0. Then Φ has
a Castaing representation by generalized Steiner selections {fi} such that there exist
constants δ > 0 and Li > 0, and it holds that

|fi(ν, p0)− fi(µ, p0)| ≤ Liᾱ(ν, µ)(5.7)

whenever ᾱ(ν, µ) ≤ δ.
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Proof. The set of feasible points is convex and compact under the assumptions
of the proposition. Hence, the Steiner points are well defined. In Proposition 5.3 of
[32] a kind of pseudo-Lipschitzian behavior is shown for Φ under local assumptions on
Φ(µ, ·). Applying this result we obtain that for all x ∈ Φ(µ, p0) there is a neigborhood
Vx and δx > 0, Lx > O such that

dH(Φ(ν, p0) ∩ Vx,Φ(µ, p0) ∩ Vx) ≤ Lxᾱ(ν, µ) for all µ and ν such that ᾱ(ν, µ) ≤ δx.

The set Φ(µ, p0) is compact; therefore, we can choose a finite number of those neigh-
borhoods that cover the whole feasible set Φ(µ, p0). Let us denote these neighborhoods
by V1, V2, . . . , Vk and the corresponding constants by δ1, δ2, . . . , δk, resp., L̄1, L̄2, . . . , L̄k.
We set L = maxi L̄i and δ = mini δi for i = 1, . . . , k. Then for each x ∈ Φ(µ, p0) let
x ∈ Vj for some j ∈ {1, 2, . . . , k}. We have

d(x,Φ(ν, p0)) ≤ d(x,Φ(ν, p0) ∩ Vj) ≤ dH(Φ(ν, p0) ∩ Vj ,Φ(µ, p0) ∩ Vj) ≤ Lᾱ(ν, µ)

whenever ᾱ(ν, µ) ≤ δ. In the same way we obtain that for all x ∈ Φ(ν, p0), it holds
that

d(x,Φ(µ, p0)) ≤ Lᾱ(ν, µ)

whenever ᾱ(ν, µ) ≤ δ. The latter two inequalities imply that

dH(Φ(ν, p0),Φ(µ, p0)) ≤ Lᾱ(ν, µ)

whenever ᾱ(ν, µ) ≤ δ. Then, following the proof of Theorem 4.1, we can show that
the relation (5.7) is satisfied for each generalized Steiner selection. Applying our usual
technique of Theorem 3.4 we obtain the assertion.

Determining the probability level p is a significant modeling decision. Therefore,
it is natural to investigate changes of the feasible set when this level changes.

Proposition 5.6. Let µ be r-concave and its distribution function Fµ be locally
Lipschitzian. Furthermore, let p0 be a given probability level and C be a convex com-
pact set. Assume that for all x ∈ Φ(µ, p0) it holds that if Fµ(Ax) = p0, then the Clarke
subdifferential of Fµ(A·) at x and the normal cone to C at x have an empty inter-
section. Then Φ(µ, ·) has a Castaing representation by generalized Steiner selections
which are Lipschitzian at p0.

Proof. The set of feasible points is convex and compact under the assumptions of
the proposition. Therefore, the Steiner points are well defined. Furthermore, we can
apply Proposition 2.1 in [34] and obtain that Φ(µ, ·) is pseudo-Lipschitzian at (x, p0)
for any x ∈ Φ(µ, p0). Since the images Φ(µ, p) are compact, it follows as in the proof
of the previous proposition that Φ(µ, ·) is Lipschitzian at those points. Consequently,
according to Theorem 4.1 each generalized Steiner selection is Lipschitz-continuous
at p0. Applying the construction of a Castaing representation by Steiner selections
according to Theorem 3.4, we accomplish our goal.

Now, we focus our attention on sets of optimal solutions. Following the notation of
the previous section, we understand that ψ(µ) designates the set of global solutions to
(5.6), and ψU (ν) refers to the localized solution set of this problem, where ν ∈ P(Rs)
is a perturbation of µ and U ⊆ Rn is a neighborhood of ψ(µ).

Proposition 5.7. Assume that
(i) ψ(µ) is nonempty and bounded;
(ii) ψ(µ)∩argmin{g(x) : x ∈ C} = ∅;
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(iii) there is x̄ ∈ C : Fµ(Ax̄) > p (Slater condition);
(iv) F rµ is strongly convex on some open convex neighborhood V of Aψ(µ), where

r ∈ (−∞, 0) is chosen such that µ is r-concave.

Then there exist a neighborhood U of ψ(µ) and δ > 0 such that setting ψ̂ : U → R
n

as ψ̂(ν) = ψU (ν), where U = {ν ∈ P(Rs) : α(µ, ν) < δ}; it holds that the mapping

ψ̂ admits a Castaing representation by Steiner selections which are Hölder-stable of
order 1/2 at µ.

Proof. We apply Theorem 4.3 of [17]. Under the assumption of the proposition,
there are constants L > 0, δ > 0 and some neighborhood U of ψ(µ) such that

dH(ψ(µ), ψU (ν)) ≤ Lα(µ, ν)1/2(5.8)

for any probability measure ν ∈ U . Using the notation ψ̂ for the restriction of the
solution set mapping to the mapping of local minimizers the above inequality means
that ψ̂ is locally Hölder-stable of order 1/2 at µ. Consequently, according to Theo-
rem 4.1 each generalized Steiner selection is locally Hölder-stable of order 1/2 at that
point. Applying the construction of a Castaing representation by Steiner selections
we obtain the result.

The assumptions of the above proposition are commented on in [16] and illustrated
by examples. Condition (i) is satisfied, for example, if C is a polytope. The conditions
(ii) and (iii) mean that the probability level p is not chosen too low and too high,
respectively. From the modeling point of view both conditions show the significance of
the choice of the reliability level p. Assumption (iv) is decisive for obtaining a growth
condition of the objective function around the original solution set.

As a conclusion, following [16], we formulate a large deviation result for the se-
lections of the constructed Castaing representation when estimating µ by empirical
measures. Let ξ1, ξ2, . . . , ξn, . . . be independent identically distributed Rs-valued ran-
dom variables having common distribution µ, and let µn = 1

n

∑n
i=1 δξi denote the

empirical measure of ξ1, ξ2, . . . , ξn.
Corollary 5.8. Under the conditions of the previous proposition, let L and δ be

the constants involved in the inequality (5.8) and the statement. Let L̂j = (nmaxp∈B

θj(p)+maxp∈B ‖∇θj(p)‖)L, where θj designates the density of the jth measure applied
to calculate the generalized Steiner points. Then for any selection fj of the Castaing

representation of ψ̂ and all ε > 0 it holds that

lim sup
n→∞

1

n
logP (‖fj(µ)− fj(µn)‖ ≥ ε) ≤ −2min

{
δ2, ε4L̂j

−4
}
.

Proof. According to Theorem 4.1, the generalized Steiner selections fj will have a

constant L̂j = (nmaxp∈B θj(p)+maxp∈B ‖∇θj(p)‖)L of Hölder-stability. The assertion
follows from Corollary 4.29 in [16], the construction of the Castaing representation,
and Theorem 4.1.

6. Asymptotic behavior of random sets. One way to obtain information
about the asymptotic behavior of random elements is the so-called delta-method.
Delta-theorems are concerned with the asymptotic distribution of functions of random
elements, when those elements satisfy a central limit formula.

Theorem 6.1 (see [39]). Let f : (X,B(X)) → R
n be measurable and Hadamard

directionally differentiable at some point x̄ ∈ X. Suppose that X is a Banach space
and tn(xn − x̄) are some random elements of X converging in distribution to some
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element h, written

t−1
n (xn − x̄) D→ h,

while tn ↓ 0 and h is a random element in some separable subspace of X. Then

t−1
n (f(xn)− f(x̄)) D→ f ′(x̄;h).

Here
D→ denotes convergence in distribution. Recall that convergence in distri-

bution of a sequence of random elements xn : (Ω,A, P ) → X means the weak∗

convergence of the measures µn = P ◦ x−1
n that these elements induce on the space

X. A sequence of probability measures µn on a metric space X weakly∗ converges to
µ (cf. [6]) if

lim
n→∞

∫
g(x) µn(dx) =

∫
g(x) µ(dx)

for all bounded uniformly continuous functions g : X → R.
Convergence in distribution of set-valued mappings is considered in [35]. The first

generalized delta-theorem for set-valued mappings was formulated by King [19]. It is
the following statement.

Theorem 6.2 (see [19]). Let F : (X,B(X))→→ R
n be a closed-valued measurable

multifunction defined on a separable complete metric space X. Suppose that xn satisfy
a generalized central limit formula with limit x̄, i.e., there is a sequence {tn}, tn ≥ 0,
monotonically decreasing to 0 and a limit element h such that

t−1
n (xn − x̄) D→ h

as random variables in X. Assume, additionally, that F is almost surely semidiffer-
entiable at (x̄, ȳ) for some ȳ ∈ F (x̄) with respect to the measure µ induced by h. Then
F (xn) satisfy the generalized central limit formula

t−1
n (F (xn)− ȳ) D→ DF (x̄, ȳ;h)

as random closed sets in Rn or, equivalently,

d(·, t−1
n [F (xn)− ȳ]) D→ d(·, DF (x̄, ȳ;h))

as stochastic processes on Rn.
Here semidifferentiability almost surely means that the convergence of the differ-

ential quotients holds for all directions, except for a set of µ-measure 0.
In general, the distribution of a random set does not determine the distributions

of its measurable selections (cf., e.g., [1]). The results of this section will contribute
to the investigations of this matter.

Corollary 6.3. Assume that the random elements xn ∈ X satisfy a generalized
central limit formula with limit x̄, i.e.,

t−1
n (xn − x̄) D→ h

as random variables in X, where tn ↓ 0. In addition to the assumptions of Theo-
rem 4.4, suppose that F is semidifferentiable at all points (x̄, y) ∈ graph F . Then
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for any point ȳ ∈ F (x̄), the random sets F (xn) satisfy the generalized central limit
formula

t−1
n (F (xn)− ȳ) D→ DF (x̄, ȳ;h)

and F admits a Castaing representation {fk} by generalized Steiner selections such
that all fk satisfy the generalized central limit formula

t−1
n [fk(xn)− fk(x̄)] D→ f ′k(x̄;h) ∈ DF (x̄, fk(x̄);h).

Proof. The proof follows from Theorem 6.1, Theorem 6.2, and Corollary 4.5.
Let us return again to the solution set mapping of the recourse problem, which

assigns to each approximation Q ∈ C1,1(Y,R) of the recourse function the set of
optimal solutions of the approximate problem.

Supposed we have some approximations (resp., estimates) Qn, n = 1, 2, . . . , of
Qµ that satisfy a generalized central limit formula in the above functional space. The
application of our investigations leads to the following consequences for the delta-
method.

Corollary 6.4. Assume the conditions of Proposition 5.4. Suppose that Qn, n =
1, 2, . . . , satisfy the functional central limit formula

t−1
n [Qn −Qµ] D→ ζ in C1,1(D,R)

for some monotonically decreasing sequence tn ↓ 0. Given a point x̄ ∈ ψ(Qµ), then ψ
satisfies the generalized central limit formula

t−1
n [ψ(Qn)− x̄] D→ Dψ(Qµ, x̄; ζ)

as random sets in F(Rn). Moreover, ψ admits a Castaing representation {fi}∞i=1 of
Steiner selections such that all fi satisfy the central limit formula

t−1
n [fi(Qn)− fi(Qµ)] D→ f ′i(Qµ; ζ) ∈ Dψ(Qµ, fi(Qµ); ζ)

as random variables on Rn.
Proof. The assertion follows by Corollary 6.4 and Proposition 5.4.
Investigating the asymptotic behavior of solution sets of stochastic programs is

beyond the scope of this paper. The last statements have been included for the sake
of giving an application of the results of this paper and yielding nontrivial statements.
For investigations on the asymptotic behavior of stochastic programs the interested
reader is referred to [13, 24, 20, 39] and the references therein.

Let us mention some of the results published on convergence in distribution of
measurable selections of multifunctions. Interesting results are given in [1] by Artstein
in a different setting. The primary object there is a given probability distribution on
some compact subset of a complete separable metric space. The problem of which
distributions on the space are induced by selections of random sets with the given
probability distribution is investigated. Relevant results are given by King [19] and
Lachout [23]. In Theorem 4.3 in [19] a generalized central limit formula for all mea-
surable selections is established under the assumption that the multifunction is upper
Lipschitzian, F (x̄) = {ȳ}, and DF (x̄, ȳ;h) is single-valued almost everywhere. In [23],
the values F (x) are supposed to be compact and F (x̄) = {ȳ} to be a singleton. The
statement is that the measurable selections f of F do not satisfy the central limit
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formula themselves, but there are subsequences for which the formula holds. Those
assumptions, in particular the assumption about F (x) being singleton, are too strong
for the applications we were aiming at. As mentioned, stochastic programs very sel-
dom have unique solutions and, therefore, we are interested in statements that are
applicable to solution sets.

Acknowledgments. The author wishes to express her gratitude to Werner
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[13] J. Dupačová and R. J.-B. Wets, Asymptotic behaviour of statistical estimators and of optimal
solutions of stochastic optimization, Ann. Statist., 16 (1988), pp. 1517–1549.

[14] S. Gautier and R. Morchadi, A selection of convex-compact-valued multifunctions with re-
markable properties: The Steiner selection, Numer. Funct. Anal. Optim., 13 (1992), pp.
513–522.

[15] C. R. Givens and R. M. Shortt, A class of Wasserstein metrics for probability distributions,
Michigan Math. J., 31 (1984), pp. 231–240.

[16] R. Henrion, The Approximate Subdifferential and Parametric Optimization, Habilitation-
schrift, Humboldt-Universität zu Berlin, Berlin, 1997.

[17] R. Henrion and W. Römisch, Metric regularity and quantitative stability in stochastic pro-
grams with probabilistic constraints, Math. Programming, 84 (1999), pp. 55–88.

[18] P. Kall, Stochastic Linear Programming, Springer-Verlag, Berlin, 1976.
[19] A. J. King, Generalized delta theorems for multivalued mappings and measurable selections,

Math. Oper. Res., 14 (1989), pp. 720–736.
[20] A. J. King and R. T. Rockafellar, Asymptotic theory for solutions in statistical estimation

and stochastic programming, Math. Oper. Res., 18 (1993), pp. 148–162.
[21] E. Klein and A. C. Thompson, Theory of Correspondences, Including Applications to Math-

ematical Economics, John Wiley, New York, 1984.
[22] K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Pol.

Sci., 13 (1965), pp. 397–403.
[23] P. Lachout, On multifunction transforms of probability measures, Ann. Oper. Res., 56 (1995),

pp. 241–250.
[24] G. Pflug, Asymptotic stochastic programs, Math. Oper. Res., 20 (1996), pp. 769–789.
[25] J.-P. Penot, Differentiability of relations and differential stability of perturbed optimization

problems, SIAM J. Control Optim., 22 (1984), pp. 529–551.



REGULAR REPRESENTATIONS OF MULTIFUNCTIONS 749

[26] A. Prekopa, Stochastic Programming, Math. Appl. 324, Kluwer, Dordrecht, the Netherlands,
1995.

[27] D. Repovs and P. V. Semenov, Continuous Selections of Multivalued Mappings, Math. Appl.
455, Kluwer, Dordrecht, the Netherlands, 1998.

[28] R. T. Rockafellar, Proto-differentiability of set-valued mappings and its application in op-
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Abstract. Let F be a compact subset of the n-dimensional Euclidean space Rn represented by
(finitely or infinitely many) quadratic inequalities. We propose two methods, one based on successive
semidefinite programming (SDP) relaxations and the other on successive linear programming (LP)
relaxations. Each of our methods generates a sequence of compact convex subsets Ck (k = 1, 2, . . . )
of Rn such that
(a) the convex hull of F ⊆ Ck+1 ⊆ Ck (monotonicity),
(b) ∩∞

k=1Ck = the convex hull of F (asymptotic convergence).
Our methods are extensions of the corresponding Lovász–Schrijver lift-and-project procedures with
the use of SDP or LP relaxation applied to general quadratic optimization problems (QOPs) with
infinitely many quadratic inequality constraints. Utilizing descriptions of sets based on cones of
matrices and their duals, we establish the exact equivalence of the SDP relaxation and the semi-
infinite convex QOP relaxation proposed originally by Fujie and Kojima. Using this equivalence, we
investigate some fundamental features of the two methods including (a) and (b) above.
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trix inequality, bilinear matrix inequality, semi-infinite programming, global optimization
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1. Introduction. Consider a maximization problem with a linear objective func-
tion cTx:

maximize cTx subject to x ∈ F,(1.1)

where c denotes a constant vector in the n-dimensional Euclidean space Rn and
F a subset of Rn. We can reduce a more general maximization problem with a
nonlinear objective function f(x) to a maximization problem having a linear objective
function represented by a new variable, xn+1, if we replace f(x) by xn+1 and then
add the inequality f(x) ≥ xn+1 to the constraint. Thus (1.1) covers such a general
optimization problem. Throughout the paper we assume that F is compact. Then
the problem (1.1) has a global maximizer whenever the feasible region F is nonempty.

For any compact convex set C containing F , the maximization problem

maximize cTx subject to x ∈ C(1.2)

serves as a convex relaxation problem, which satisfies the properties that
(i) the maximum objective value ζ of the problem (1.2) gives an upper bound

for the maximum objective value ζ∗ of the problem (1.1), i.e., ζ ≥ ζ∗, and
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(ii) if a maximizer x̂ ∈ C of (1.2) lies in F , it is a maximizer of (1.1).
Since the objective function of (1.1) is linear, we know that if we take the convex hull
c.hull(F ) (defined as the intersection of all the convex sets containing F ) for C in
(1.2), then

(i)′ ζ = ζ∗, and
(ii)′ the set of the maximizers of (1.2) forms a compact convex set whose extreme

points are maximizers of (1.1).
Therefore, if we solve the relaxation problem (1.2) with a convex feasible region C
which closely approximates c.hull(F ), we can expect to get not only a good upper
bound ζ for the maximum objective value ζ∗ but also an approximate maximizer of
the problem (1.1). We can further prove that for almost every c ∈ Rn (in the sense of
measure), any maximizer x′ ∈ C = c.hull(F ) of (1.2) is an extreme point of c.hull(F ),
which also lies in F ; hence x′ is a maximizer of (1.1). This follows from a result due
to Ewald, Larman, and Rogers [5] for consequences of related results; see also [17].
Furthermore, for many representations of various convex sets C, given x̂ ∈ C, we can
very efficiently find x∗, an extreme point of C, such that cTx∗ ≥ cT x̂.

Indeed, the relaxation technique mentioned above has been playing an essential
role in practical computational methods for solving various problems in the fields of
combinatorial optimization and global optimization. It is often used in hybrid schemes
with the branch-and-bound and branch-and-cut techniques in those fields. See, for
instance, [2].

The aim of this paper is to present a basic idea on how we can approximate the
convex hull of F . This is a quite difficult problem, and also too general. Before making
further discussions, we at least need to provide an appropriate (algebraic) representa-
tion for the compact feasible region F of the problem (1.1) and the compact convex
feasible region C of the relaxation problem (1.2). We employ quadratic inequalities
for this purpose.

Let Sn and Sn+ ⊂ Sn denote the set of n × n symmetric matrices and the set of
n× n symmetric positive semidefinite matrices, respectively. Given Q ∈ Sn, q ∈ Rn,
and γ ∈ R, we write a quadratic function on Rn with the quadratic term xTQx, the
linear term 2qTx, and the constant term γ as p(·; γ, q,Q):

p(x; γ, q,Q) ≡ γ + 2qTx+ xTQx ∀x ∈ Rn.

Then the set Q of quadratic functions on Rn and the set Q+ of convex quadratic
functions are defined as

Q ≡ {p(·; γ, q,Q) : Q ∈ Sn, q ∈ Rn and γ ∈ R}
and

Q+ ≡ {p(·; γ, q,Q) : Q ∈ Sn+, q ∈ Rn and γ ∈ R},
respectively. We also write p(·) ∈ Q (or Q+) instead of p(·; γ, q,Q) ∈ Q (or Q+)
if Q ∈ Sn, q ∈ Rn, and γ ∈ R are irrelevant. Throughout the paper, we assume
that the feasible region F of the problem (1.1) is represented by a set of quadratic
inequalities such that

F = {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ PF },
where PF denotes a set of quadratic functions, i.e., PF ⊆ Q, and we will derive convex
relaxations, C, represented by convex quadratic inequalities such that

C = {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ PC},
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where PC denotes a set of convex quadratic functions, i.e., PC ⊆ Q+. We allow cases
where PF and/or PC involve infinitely many quadratic functions. Thus (1.1) or (1.2)
(or both) can be a semi-infinite quadratic optimization problem (QOP). Here we use
the word “semi-infinite” for optimization problems having a finite number of scalar
variables and possibly an infinite number of inequality constraints.

There are some reasons why we have chosen quadratic inequalities for the rep-
resentation of both problems, the maximization problem (1.1) that we want to solve
and its convex relaxation problem (1.2). First, quadratic inequalities form a class
of relatively easily manageable nonlinear inequalities, yet they have enough power
to describe any compact feasible region F in Rn. Indeed, if F is closed, then its
complement Rn\F is open so that it can be represented as the union of the open balls

{x ∈ Rn : (x− x′)T (x− x′) < ε(x′)} with ∃ε(x′) > 0

over all x′ ∈ G for some G ⊆ Rn\F ; hence

F = {x ∈ Rn : (x− x′)T (x− x′) ≥ ε(x′) ∀x′ ∈ G}.
We also know that any single polynomial inequality can be converted into a system
of quadratic inequalities; for example,

x2
1x2 + 2x1x

2
2 − 5 ≤ 0

can be converted into

x3 − x1x2 ≤ 0, −x3 + x1x2 ≤ 0 and x1x3 + 2x2x3 − 5 ≤ 0.

See [23, 24].
Second, we know that we can solve some classes of maximization problems hav-

ing linear objective functions and a convex-quadratic-inequality constrained feasible
region C efficiently. Among others, we can apply interior-point methods [1, 16] to the
problem (1.2) when either PC is finite or PC is infinite, but its feasible region C is
described as the projection of a set characterized by linear matrix inequalities in the
space Sn of n× n symmetric matrices onto the n-dimensional Euclidean space Rn.

Third, and also most importantly, we can apply the semidefinite programming
(SDP) relaxation, which was originally developed for 0-1 integer programming prob-
lems by Lovász and Schrijver [12] and later extended to nonconvex quadratic optimiza-
tion problems [6, 18, 19], to the entire class of maximization problems having a linear
objective function and finitely or infinitely many quadratic inequality constraints. See
also [1, 8, 9, 13, 15, 23, 24, 29].

In addition to the reasons above, we should mention that the maximization prob-
lem with a linear objective function and quadratic inequality constraints involves
various optimization problems such as 0-1 integer linear (or quadratic) program-
ming problems which, in principle, include all combinatorial optimization problems
[1, 9, 18]. Linear complementarity problems [4], bimatrix games, and bilinear matrix
inequalities [14, 20] are also included as special cases.

For some optimization problems, some of the semidefinite programming (SDP)
relaxations we provide may be solved in polynomially many iterations (of an interior-
point method or an ellipsoid algorithm) approximately. Such conclusion requires, in
the case of the ellipsoid method, the existence of a certain polynomial-time separation
oracle for the underlying convex cone constraint (see [9]). In the case of interior-
point algorithms (whose efficiency in the theory and practice of SDP has been well
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established), we need to have an efficiently computable self-concordant barrier for the
feasible solutions set or at least for the underlying cone constraints (see [16]).

Some of the most exciting activities in combinatorial optimization are currently
centered around the applications of SDP to combinatorial optimization problems (see
[7]). Such activity in theory and practice is fueled by theoretical results establish-
ing that certain simple SDP relaxations of a combinatorial optimization problem
can be effectively utilized in developing polynomial-time approximation algorithms
with worst-case approximation-ratio guarantees much better than those previously
proven using linear programming or other techniques. (See Goemans [7], Goemans
and Williamson [8], Nesterov [15], and Ye [29].) Also outstanding are the results
on the stable set problem establishing the fact that SDP techniques can be used in
optimizing over a relaxation of the stable set polytope which is contained in the poly-
tope defined by the clique inequalities. (Note that it is NP-hard to optimize over the
latter-mentioned polytope, whereas Grötschel, Lovász, and Schrijver [9] and Lovász,
and Schrijver [12] were able to utilize polynomial-time methods to achieve a better
goal, as far as the proof of approximate optimality of some feasible solutions of the
stable set problem is concerned.)

Given an initial approximation C0 of F , i.e., a compact convex set C0 containing
F , both of the methods, proposed in this paper, generate a sequence of compact
convex subsets Ck (k = 1, 2, . . . ) of Rn such that

(a) c.hull(F ) ⊆ Ck+1 ⊆ Ck (monotonicity),
(b) ∩∞

k=1Ck = c.hull(F ) (asymptotic convergence).

It should be noted that the compactness of each Ck and property (b) imply that

(c) if F = ∅, then ∩k∗k=1Ck = ∅ for some finite number k∗ (detecting infeasibility).

To generate Ck+1 at each iteration, the SDP relaxation and the linear program-
ming (LP) relaxation play an essential role, and the entire method may be regarded
as an extension of the Lovász–Schrijver lift-and-project procedure for 0-1 integer pro-
gramming problems to semi-infinite nonconvex quadratic optimization problems, with
the use of the SDP relaxation in the first method and the LP relaxation in the sec-
ond method. The LP relaxation, referred to above, is essentially the same as the
reformulation-linearization technique developed for nonconvex quadratic optimiza-
tion problems by Sherali and Alameddine [21]; see also [2, 22]. However, we should
caution the reader that the methods presented here are mostly conceptual in the gen-
eral settings, because we need to solve a semi-infinite SDP (or a semi-infinite LP) at
each iteration. For such a task, an efficient practical algorithm may not be currently
available.

In their paper [6], Fujie and Kojima proposed the semi-infinite convex QOP re-
laxation for nonconvex quadratic optimization problems and showed that the semi-
infinite convex QOP relaxation is not stronger than the SDP relaxation in general,
but the two relaxations are essentially equivalent under Slater’s constraint qualifica-
tion. We establish the exact equivalence between the two relaxations for semi-infinite
nonconvex quadratic optimization problems without any constraint qualification. Us-
ing this equivalence, we derive some fundamental features of our methods including
(a) and (b) above. One of the common themes in this paper is the usage of cones of
matrices (and duality) in our constructions. This was also one of the themes of [12].
The other themes of this paper are the successive applications of SDP relaxations and
LP relaxations. We call the related procedures the successive SDP relaxation method
and the successive semi-infinite LP relaxation method, respectively.

Section 2 is devoted to preliminaries, where we provide some basic definitions
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and properties on quadratic inequality representations for closed subsets of Rn, the
homogeneous form of quadratic functions, the SDP relaxation, etc. In section 3, we
present our first method in detail as well as the main results, including the features (a)
and (b). After we present some fundamental characterizations of the SDP relaxation
in section 4, we give proofs of the main results in section 5. In section 6, we apply our
method to 0-1 semi-infinite nonconvex quadratic optimization problems. Incorporat-
ing the basic results on the lift-and-project procedure given by Lovász and Schrijver
[12] for 0-1 integer convex optimization problems, we show that our method termi-
nates in at most (n + 1) iterations either to generate the convex hull of the feasible
region or to detect the emptiness of the feasible region, where n denotes the number
of 0-1 variables of the problem. Section 7 contains our second method, which is based
on semi-infinite LP relaxations. We establish the same theoretical properties as we
do for the successive SDP relaxation method. In section 8, we present two numerical
examples showing the worst-case behavior of some of our procedures. In particular,
we know from the second example that the best of our procedures requires infinitely
many iterations to generate the convex hull of F in the worst case.

2. Preliminaries.

2.1. Semi-infinite quadratic inequality representation. In this subsection,
we discuss some representations of a closed subset F of Rn in terms of (possibly
infinitely many) quadratic inequalities. If p(·; γ, q,Q) ∈ Q, and p(x; γ, q,Q) ≤ 0
holds for all x ∈ F , we say that p(x; γ, q,Q) ≤ 0 is a quadratic valid inequality for
F and that p(·; γ, q,Q) induces a quadratic valid inequality for F . A quadratic valid
inequality p(x; γ, q,Q) ≤ 0 for F is

linear if Q = O,
rank-1 quadratic if p(x) = (aTx− α)(aTx− β) for ∃a ∈ Rn, ∃α ∈ R

and ∃β ∈ R such that α ≤ aTx ≤ β ∀x ∈ F ,
rank-2 quadratic if p(x) = −(aTx−α)(bTx−β) for ∃a ∈ Rn, ∃b ∈ Rn, ∃α ∈ R

and ∃β ∈ R such that aTx ≤ α and bTx ≤ β ∀x ∈ F ,
spherical if p(x) = (x− d)T (x− d)− ρ for ∃d ∈ Rn and ∃ρ > 0,
ellipsoidal if p(x) = (x−d)TQ(x−d)−ρ for ∃Q ∈ Sn++, d ∈ Rn and ∃ρ > 0,
convex quadratic if Q ∈ Sn+,

respectively. It should be noted that if a quadratic valid inequality p(x; γ, q,Q) ≤ 0
for F is rank-2, then the rank of the matrix Q is at most 2 but that the converse is
not necessarily true.

We say that F has a (semi-infinite) quadratic inequality representation P ⊆ Q if

F = {x ∈ Rn : p(x; γ, q,Q) ≤ 0 ∀p(·; γ, q,Q) ∈ P}

holds. To designate the underlying representation P of F , we often write F (P) instead
of F . Whenever F is a closed proper subset of Rn, F has infinitely many represen-
tations. We allow the cases where P consists of infinitely many quadratic functions.
Hence p(x) ≤ 0 ∀p(·) ∈ P can be a semi-infinite system of quadratic inequalities. If
P ⊆ Q is a quadratic inequality representation of F and if p(·) ∈ c.cone(P), then
p(x) ≤ 0 is a quadratic valid inequality, where c.cone(P) denotes the closed convex
cone generated by P. Hence if P ⊆ P ′ ⊆ c.cone(P), then P ′ is a quadratic inequality
representation of F ; F (P) = F (P ′) = F (c.cone(P)). A quadratic inequality repre-
sentation P of F is finite if it consists of a finite number of quadratic functions, and
infinite otherwise. If F is a compact convex subset of Rn, it has a quadratic inequal-
ity representation; in fact, the set of all the linear (rank-2 quadratic or spherical)
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valid inequalities for F forms an inequality representation of F . If, in addition, F is
polyhedral, we can take a finite linear inequality representation.

Let C be a compact subset of Rn. We use the following symbols:

PL(C) = the set of p(·)’s that induce linear valid inequalities for C,

P1(C) = the set of p(·)’s that induce rank-1 quadratic valid inequalities for C,

P2(C) = the set of p(·)’s that induce rank-2 quadratic valid inequalities for C,

PS(C) = the set of p(·)’s that induce spherical valid inequalities for C,

PE(C) = the set of p(·)’s that induce ellipsoidal valid inequalities for C,

PC(C) = the set of p(·)’s that induce convex quadratic valid inequalities for C,

P	(C) = the set of p(·)’s that induce all quadratic valid inequalities for C.

By definition, we see that(PL(C) ∪ P1(C) ∪ PS(C) ∪ PE(C)
) ⊂ PC(C) ⊂ P	(C),

PS(C) ⊂ PE(C) and
(PL(C) ∪ P1(C)

) ⊂ P2(C) ⊂ P	(C).

Note that if C is convex, then the equality

C = {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ P}
holds with each P = PL(C),P1(C),P2(C),PS(C),PE(C),PC(C),P	(C). Among
these, P	(C) is the strongest quadratic inequality representation of C.

2.2. Homogeneous form of quadratic functions—lifting to the space of
symmetric matrices. We introduce a different description of quadratic functions,
which we call the homogeneous form. This form leads us to a lifting of a quadratic
function defined on the Euclidean space to the space of symmetric matrices and to
the SDP relaxation (or to the semi-infinite LP relaxation in section 4.2). For every
quadratic function p(·; γ, q,Q) ∈ Q, we connect the variable vector x ∈ Rn to the
(1 + n)× (1 + n) rank-1 positive semidefinite matrix(

1 xT

x xxT

)
=

(
1
x

)
(1,xT ) ∈ S1+n

+

and the triplet of the constant γ ∈ R, q ∈ Rn, and Q ∈ Sn to the (1 + n) × (1 + n)

symmetric matrix
(
γ qT

q Q

) ∈ S1+n. Then we have the identity

p(x; γ, q,Q) = (1,xT )

(
γ qT

q Q

)(
1
x

)
=

(
γ qT

q Q

)
•
(
1 xT

x xxT

)
∀x ∈ Rn.

Thus, if P ⊆ Q is a quadratic inequality representation of F , then

P ≡
{(

γ qT

q Q

)
: p(·; γ, q,Q) ∈ P

}

provides an equivalent representation of F ;

F (P) =

{
x ∈ Rn : P •

(
1 xT

x xxT

)
≤ 0 ∀P ∈ P

}
.

Now we have two kinds of description for a quadratic function on Rn: the usual
form p(·; γ, q,Q) = γ + 2qTx+ xTQx and the homogeneous form introduced above.
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The former is used in section 5, where we prove our main results, while the latter is
suitable for the compact description of the SDP relaxation in section 2.3 and the proof
of its equivalence to the semi-infinite convex QOP relaxation in section 4. We will use
both forms in parallel, choosing whichever is convenient to us in a given situation. It
should be noted that the correspondence

p(·; γ, q,Q) ∈ Q ⇐⇒
(
γ qT

q Q

)
∈ S1+n

is not only one-to-one but also linear. To save notation, we identify the set Q of
quadratic functions with the set S1+n of (1 + n) × (1 + n) symmetric matrices and
any subset of Q with the corresponding subset of S1+n. Specifically, we write P =(
γ qT

q Q

) ∈ P whenever p(·; γ, q,Q) ∈ P and identify the set of (1 + n) × (1 + n)
symmetric matrices {(

γ qT

q Q

)
: γ ∈ R, q ∈ Rn, Q ∈ Sn

}

with the set Q of quadratic functions from Rn to R.

2.3. SDP relaxation. Let P be a semi-infinite quadratic inequality represen-
tation of F :

F (P) = {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ P}

=

{
x ∈ Rn : P •

(
1 xT

x xxT

)
≤ 0 ∀P ∈ P

}
.

The SDP relaxation F̂ (P) of F (P) with the quadratic inequality representation P is
given by

F̂ (P) ≡

x ∈ Rn :

∃X ∈ Sn such that

(
1 xT

x X

)
∈ S1+n

+ and

γ + 2qTx+Q •X ≤ 0 ∀p(·; γ, q,Q) ∈ P




=


x ∈ Rn :

∃X ∈ Sn such that

(
1 xT

x X

)
∈ S1+n

+ and

P •
(
1 xT

x X

)
≤ 0 ∀P ∈ P


 .

If x ∈ F (P) and P ∈ P, then X = xxT satisfies that(
1 xT

x X

)
=

(
1
x

)
(1,xT ) ∈ S1+n

+ and P •
(
1 xT

x X

)
≤ 0.

This implies that x ∈ F̂ (P) and F (P) ⊆ F̂ (P). We also see that F̂ (P) is convex.
Hence c.hull(F (P)) ⊆ F̂ (P). The SDP relaxation was originally proposed for combi-
natorial optimization problems and 0-1 integer programming problems [12], and later
extended to quadratic optimization problems. See [1, 6, 8, 9, 15, 19, 18, 23, 24, 29].

3. Main results. Now we are ready to describe our method for approximat-
ing a quadratic-inequality-constrained compact feasible region F of the minimization
problem (1.1). Before running the method, we need to fix a semi-infinite quadratic
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inequality representation PF of F , and choose an initial approximation C0 of the con-
vex hull of F , i.e., a compact convex set which contains c.hull(F ). Starting from C0,
the method generates a sequence of compact convex sets Ck (k = 0, 1, 2, . . . ), which
we expect to converge to c.hull(F ). At each iteration, we choose a semi-infinite quad-
ratic inequality representation Pk of the kth approximation Ck of c.hull(F ). Since
c.hull(F ) ⊆ Ck, the union (PF ∪ Pk) forms a semi-infinite quadratic inequality rep-
resentation of F . We then apply the SDP relaxation to (PF ∪ Pk) to generate the
next iterate Ck+1 = F̂ (PF ∪ Pk). It should be emphasized that during none of the
iterations do we modify or strengthen the representation PF directly. We only utilize
the semi-infinite quadratic inequality representation of the compact convex set Ck
that has been computed in the previous iteration.

Successive SDP Relaxation Method.
Step 0: Let k = 0.
Step 1: If Ck = ∅ or Ck = c.hull(F ), then stop.
Step 2: Choose a semi-infinite quadratic inequality representation Pk for Ck.
Step 3: Let

Ck+1 = F̂ (PF ∪ Pk)(3.1)

=



x ∈ Rn :

∃X ∈ Sn such that

(
1 xT

x X

)
∈ S1+n

+

and

P •
(
1 xT

x X

)
≤ 0 ∀P ∈ PF ∪ Pk




.

Step 4: Let k = k + 1, and go to Step 1.
We state two convergence theorems below. We choose the spherical inequality

representation PS(Ck) for Ck at Step 2 of each iteration in the first theorem, while
we choose the rank-2 quadratic inequality representation P2(Ck) for Ck at Step 2 of
each iteration in the second theorem. Their proofs will be given in section 5.

Theorem 3.1. Assume that PF is a semi-infinite quadratic inequality represen-
tation of a compact subset F of Rn, and that C0 ⊇ F is a compact convex subset
of Rn. If we choose Pk = PS(Ck) at Step 2 of each iteration in the successive SDP
relaxation method, then the monotonicity property (a) and the asymptotic convergence
property (b) stated in the introduction hold.

Theorem 3.2. Under the same assumptions as in Theorem 3.1, if we choose
Pk = P2(Ck) at Step 2 of each iteration in the successive SDP relaxation method,
then (a) and (b) remain valid.

We know that if P ⊂ Q and P ′ ⊂ Q are semi-infinite quadratic inequality rep-
resentations of Ck and if P ⊂ P ′, then F̂ (P ′) ⊆ F̂ (P). Hence, even if we replace
“Pk = PS(Ck)” in Theorem 3.1 by “Pk ⊇ PS(Ck)” (or “Pk = P2(Ck)” in Theo-
rem 3.2 by “Pk ⊇ P2(Ck)”), the properties (a) and (b) remain valid. In particular,
(a) and (b) remain valid when we choose any of PE(Ck), PC(Ck), and P	(Ck) for Pk.

If we take the linear representation PL(Ck) of Ck at every iteration, then we can
prove that

C1 = F̃ (PF ∪ P0) = F̃ (PF ) ∩ C0 and Ck+1 = F̃ (PF ) ∩ Ck = C1 (k = 1, 2, . . . ).

(See Lemma 4.1.) Hence (b) does not follow in general.
In section 8, we will give two numerical examples. The first example shows that

the rank-1 quadratic inequality representation Pk = P1(Ck) is not strong enough
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to ensure (b). The second example shows that even when we choose the strongest
quadratic inequality representation P	(Ck) of Ck for Pk at every iteration, not only
does the convergence “Ck → c.hull(F )” require infinitely many iterations, but its
speed also becomes extremely slow in the worst case.

4. Fundamental characterization of successive convex relaxation.

4.1. Semi-infinite convex QOP relaxation and its equivalence to SDP
relaxation. The semi-infinite convex QOP relaxation of F (P) with the semi-infinite
quadratic inequality representation P is defined as

F̃ (P) ≡ {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ c.cone(P) ∩Q+}

=

{
x ∈ Rn : P •

(
1 xT

x xxT

)
≤ 0 ∀P ∈ c.cone(P) ∩Q+

}
.

We observe that

F (P) =

{
x ∈ Rn : P •

(
1 xT

x xxT

)
≤ 0 ∀P ∈ c.cone(P)

}
⊆ F̃ (P)

and that the set F̃ (P) is a closed convex set. Hence F (P) ⊆ c.hull(F (P)) ⊆ F̃ (P).
The semi-infinite convex QOP relaxation was introduced by Fujie and Kojima

[6]. It was called the relaxation using convex-quadratic valid inequalities for F (P) in
their paper [6]. The following basic properties of the relaxation are essentially due to
them.

Lemma 4.1. Let PF be a semi-infinite quadratic inequality representation of a
closed set F ⊂ Rn.

(i) Let P be a set of convex quadratic valid inequalities for F , i.e., P ⊆ PC(F ).
Then

F̃ (PF ∪ P) ⊆ F̃ (P) = {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ P}.
(ii) Let P be a set of linear valid inequalities for F , i.e., P ⊆ PL(F ). Then

F̃ (PF ∪ P) = F̃ (PF ) ∩ {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ P}.
(iii) Let x′ �∈ c.hull(F ). Suppose that p(x′; γ, q,Q) ≥ 0 for some p(·; γ, q,Q) ∈ PF

with a positive definite Q. Then x′ �∈ F̃ (PF ).
Proof. Part (i) follows directly from the definition of the semi-infinite convex

QOP relaxation. Now we show (ii). Let C = {x ∈ Rn : p(x) ≤ 0 ∀p(·) ∈ P}. Then
we see that

F̃ (PF ∪ P) ⊆ F̃ (PF ) ∩ F̃ (P) = F̃ (PF ) ∩ C.

Hence it suffices to show that F̃ (PF )∩C ⊆ F̃ (PF ∪P). Let p(·) ∈ c.cone(PF ∪P)∩Q+.
Then there exist p(·)i ∈ PF (i = 1, 2, . . . , �), p(·)j ∈ P (j = �+1, . . . ,m), and positive
numbers λi (i = 1, 2, . . . ,m) such that

p(·) =
∑
i=1

λip(·)i +
m∑

j=+1

λip(·)i ∈ Q+.

Since p(·)j ∈ P (j = �+ 1, . . . ,m) are linear functions, we see that

∑
i=1

λip(·)i ∈ c.cone(PF ) ∩Q+; hence,

∑
i=1

λip(x)i ≤ 0 ∀x ∈ F̃ (PF ).
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Moreover,

m∑
j=+1

λip(·)i ∈ c.cone(P) ∩Q+; hence,

m∑
j=+1

λip(x)i ≤ 0 ∀x ∈ C.

Therefore,

p(x) =

∑
i=1

λipi(x) +

m∑
j=+1

λipi(x) ≤ 0 ∀x ∈ F̃ (PF ) ∩ C.

This proves (ii). Finally we will show (iii). Since x′ �∈ F , there is a p′(·) ∈ PF such
that p′(x′) > 0. Hence, if ε > 0 is sufficiently small, we obtain that

εp(·)′ + p(·) ∈ c.cone(PF ) ∩Q+ and εp′(x′) + p(x′) > 0.

This implies x′ �∈ F̃ (PF ), and proves (iii).
When P is finite and F (P) satisfies Slater’s constraint qualification, Fujie and Ko-

jima [6] showed that the semi-infinite convex QOP relaxation is essentially equivalent
to the SDP relaxation in the sense that F̃ (P) coincides with the closure of F̂ (P). The
theorem below shows the exact equivalence between them, without any constraint
qualification, for more general semi-infinite quadratic inequality representation cases.
Since F̃ (P) is closed, one of the consequences of the next theorem is that F̂ (P) is
always closed. Note that we can assume without loss of generality that P is a closed
convex cone, since every closed set F admits such a representation.

Theorem 4.2. Let P be a closed convex cone, giving a semi-infinite quadratic
inequality representation of a closed subset F of Rn; F (P) = {x ∈ Rn : p(x) ≤
0 ∀p(·) ∈ P}. Then its SDP relaxation and its semi-infinite convex QOP relaxation
coincide with each other; F̂ (P) = F̃ (P).

Proof. Using the dual cone

P∗ = {V ∈ S : V •U ≥ 0 ∀U ∈ P}

of P, we can express the sets F̂ (P) and F̃ (P) as follows:

F̂ (P) =

{
x ∈ Rn : ∃X ∈ Sn such that

(
1 xT

x X

)
∈ (−P∗) ∩ S1+n

+

}

and

F̃ (P) =

{
x ∈ Rn :

(
1 xT

x xxT

)
∈ − (P ∩Q+)

∗
}

=

{
x ∈ Rn :

(
1 xT

x xxT

)
∈ −

[
P∗ +

(
0 0T

0 Sn+

)]}
.

For the last identity above, we have used the fact that for any pair of closed convex
cones K1 and K2 in Rm, we have (K1 ∩ K2)

∗ = K∗
1 +K∗

2.

First let x ∈ F̂ (P). Then there exists an X ∈ Sn such that(
1 xT

x X

)
∈ (−P∗) ∩ S1+n

+ .
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Consider the identity(
1 xT

x xxT

)
= −

[(−1 −xT

−x −X

)
+

(
0 −0T
−0 X − xxT

)]
.

The first matrix on the right-hand side is in P∗ and in the second matrix of the
right-hand side, we have X − xxT ∈ Sn+ since it is the Schur complement of 1 in

the symmetric, positive semidefinite matrix
(

1 xT

x X

)
. We have proved x ∈ F̃ (P) and

hence F̂ (P) ⊆ F̃ (P).

For the converse, let x ∈ F̃ (P); that is, there exists some H ∈ Sn+ such that

(
1 xT

x xxT +H

)
∈ −P∗.

The matrix (
1 xT

x xxT +H

)

is positive semidefinite if and only if (H + xxT − xxT ) = H is. But the latter was
already established. So, (

1 xT

x xxT +H

)
∈ (−P∗) ∩ S1+n

+ .

Therefore x ∈ F̂ (P), and F̃ (P) ⊆ F̂ (P) is proved.

4.2. Semi-infinite LP relaxation. In section 7, we will also need an analog of
the above theorem for our successive semi-infinite LP relaxation method. For every
semi-infinite quadratic inequality representation P of a compact subset F of Rn, let
us define

F̂L(P) ≡
{
x ∈ Rn : ∃X ∈ Sn such that P •

(
1 xT

x X

)
≤ 0 ∀P ∈ P

}

and

F̃L(P) ≡ {x ∈ Rn : γ + 2qTx ≤ 0 ∀p(·; γ, q,Q) ∈ c.cone(P) ∩ L}
of Sherali and Alameddine [21]. Here, L denotes the set of linear functions on Rn:

L ≡ {p(·; γ, q,Q) ∈ Q : Q = O}.

The next result can be obtained by following the steps of the proof of Theorem 4.2.

Corollary 4.3. Let P be a closed convex cone, giving a semi-infinite quadratic
inequality representation of a closed subset F of Rn; F (P) = {x ∈ Rn : p(x) ≤
0 ∀p(·) ∈ P}. Then F̂L(P) = F̃L(P).

Proof. We observe that

F̂L(P) =

{
x ∈ Rn : ∃X ∈ Sn such that

(
1 xT

x X

)
∈ −P∗

}
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and

F̃L(P) =

{
x ∈ Rn :

(
1 xT

x xxT

)
∈ − (P ∩ L)∗

}

=

{
x ∈ Rn :

(
1 xT

x xxT

)
∈ −

[
P∗ +

(
0 0T

0 Sn
)]}

.

Since it is easy to see that ∃X ∈ Sn such that
(

1 xT

x X

) ∈ −P∗ if and only if

(
1 xT

x xxT

)
∈ −

[
P∗ +

(
0 0T

0 Sn
)]

,

the proof is complete.

4.3. Invariance under one-to-one affine transformation. Let f(x) = Ax+
b be an arbitrary one-to-one affine transformation on Rn, where A is an n × n non-
singular matrix and b ∈ Rn.

Then

f(F̂ (P)) = f(F̃ (P)) = {y ∈ Rn : p′(y) ≤ 0 ∀p′(·) ∈ c.cone(P ′) ∩Q+},
f(F̂L(P)) = f(F̃L(P)) = {y ∈ Rn : p′(y) ≤ 0 ∀p′(·) ∈ c.cone(P ′) ∩ L},

where P ′ ≡ {p(f−1(·)) : p(·) ∈ P} forms a semi-infinite quadratic inequality repre-
sentation of f(F (P)). This means that the semi-infinite SDP and LP relaxations are
invariant under the one-to-one affine transformation f(x) = Ax+ b.

We also see that

PU (f(C)) = {p(f−1(·)) : p(·) ∈ PU (C)}

holds, where U ∈ {L, 1, 2, E, C, �}. Therefore, PL(C), P1(C), P2(C), PE(C),
PC(C), and P	(C) are invariant under one-to-one affine transformations on Rn. If in
addition A is a scalar multiple of an orthogonal matrix, then the above identity also
holds for U = S; hence PS(C) is invariant under such a one-to-one affine transforma-
tion on Rn.

At each iteration of the successive SDP relaxation method, we observe that

f(Ck+1) = {y ∈ Rn : p′(y) ≤ 0 ∀p′(·) ∈ c.cone(P ′
F ∪ P ′

k) ∩Q+} ,

where P ′
F ≡ {p(f−1(·)) : p(·) ∈ PF } forms a semi-infinite quadratic inequality repre-

sentation of f(F ) and P ′
k ≡ {p(f−1(·)) : p(·) ∈ Pk} forms a semi-infinite quadratic

inequality representation of f(Ck). Furthermore, if we choose one of the invariant
semi-infinite quadratic inequality representations PL(Ck), P1(Ck), P2(Ck), PE(Ck),
PC(Ck), and P	(Ck) of Ck under any one-to-one affine transformation for Pk, we see
that PU (f(C)) = {p(f−1(·)) : p(·) ∈ PU (C)}; hence the identity above turns out to
be

f(Ck+1) =
{
y ∈ Rn : p′(y) ≤ 0 ∀p′(·) ∈ c.cone(P ′

F ∪ PU (f(Ck))) ∩Q+

}
.

Here U ∈ {L, 1, 2, E, C, �}. Therefore the successive SDP relaxation method is
invariant under any one-to-one affine transformation. The same comment applies to
the successive semi-infinite LP relaxation method, which we will present in section 7.
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5. Proofs of Theorems 3.1 and 3.2. We present three lemmas, Lemma 5.1 in
section 5.1, Lemma 5.2 in section 5.2, and Lemma 5.3 in section 5.4. Lemma 5.1 proves
the monotonicity property (a) in Theorems 3.1 and 3.2 simultaneously. Lemma 5.2
is used to prove Theorem 3.1 in section 5.3, and Lemma 5.3 to prove Theorem 3.2 in
section 5.5.

5.1. Monotonicity. We first establish the monotonicity in general.
Lemma 5.1. Let C0 be a compact convex set containing F . Fix a closed convex

cone S1+n
+ ⊆ K ⊆ S1+n and U ∈ {L, 1, 2, S, E,C, �}. Define

Ck+1 ≡


x ∈ Rn :

∃X ∈ Sn such that

(
1 xT

x X

)
∈ K and

P •
(
1 xT

x X

)
≤ 0 ∀P ∈ PF ∪ PU (Ck)




for k = 1, 2, . . . . Assume that

C0 =


x ∈ Rn :

∃X ∈ Sn such that

(
1 xT

x X

)
∈ K and

P •
(
1 xT

x X

)
≤ 0 ∀P ∈ PU (C0)


 .

Then c.hull(F ) ⊆ Ck+1 ⊆ Ck for all k = 0, 1, 2, . . . .
Proof. Since K ⊇ S1+n

+ , it contains all symmetric rank-1 matrices of the form(
1 xT

x xxT

)
.

Now, as in the arguments in section 2.3, it follows that c.hull(F ) ⊆ Ck for all k =
0, 1, 2, . . . . We will show by induction that Ck+1 ⊆ Ck for all k = 0, 1, . . . . By
the construction of C1 and the assumption imposed on C0, we first observe that
C1 ⊆ C0. Now assume that Ck ⊆ Ck−1 for some k ≥ 1. Then PU (Ck−1) ⊆ PU (Ck),
which implies that PF ∪ PU (Ck−1) ⊆ PF ∪ PU (Ck). Therefore, Ck+1 ⊆ Ck, as
desired.

5.2. Separating hypersphere. The following lemma easily follows from the
separating hyperplane theorem, and the proof is omitted here.

Lemma 5.2. Let C be a compact convex subset of Rn and x′ �∈ C. Then there
exists a hypersphere S ≡ {x ∈ Rn : ‖x−d‖ = η} which strictly separates the point x′

and C such that

‖x′ − d‖ > η > ‖x− d‖ ∀x ∈ C,(5.1)

where d ∈ Rn and η > 0.

5.3. Proof of Theorem 3.1. The monotonicity property (a) follows from Lem-
ma 5.1 by letting K ≡ S1+n

+ and U ≡ S. Let C ≡ ∩∞
k=0Ck. We know by (a) that

c.hull(F ) ⊆ C ⊆ Ck+1 ⊆ Ck (k = 0, 1, . . . ), and that all the sets c.hull(F ), C, and Ck
are compact sets. To prove (b), we have the following left to show: C ⊆ c.hull(F ).
Assume on the contrary that there exists some x′ ∈ C such that x′ �∈ c.hull(F ). Then,
by Lemma 5.2, there exists a hypersphere S ≡ {x ∈ Rn : ‖x − d‖ = η} that strictly
separates the point x′ ∈ C from c.hull(F ) such that

‖x′ − d‖ > η > ‖x− d‖ ∀x ∈ c.hull(F ),
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where d ∈ Rn and η > 0. Let η∗ ≡ sup{‖x − d‖ : x ∈ C}. Obviously, η < η∗ =
‖x∗ − d‖ for some x∗ ∈ C. Since x∗ �∈ c.hull(F ), there is a quadratic function,
p1(·; γ, q,Q) ∈ PF that cuts off x∗; 0 < p1(x

∗; γ, q,Q). Note that if p1(·; γ, q,Q) is
such a quadratic function, then so is αp1(·; γ, q,Q) for any α > 0. Hence we may
assume that the minimum eigenvalue of the matrix Q ∈ Sn is at least (−1). Now
consider a quadratic function p2(·) defined by

p2(x) = (x− d)T (x− d)− (η∗)2 − p1(x
∗; γ, q,Q)/2 ∀x ∈ Rn.

By the definition of η∗, we see that

p2(x) ≤ −p1(x
∗)/2 < 0 ∀x ∈ C.

This means that the open ball B+ ≡ {x ∈ Rn : p2(x) < 0} with the center d and the
radius

√
(η∗)2 + p1(x∗; γ, q,Q)/2 forms a neighborhood of the compact set C. On

the other hand, the sequence {Ck} of compact subsets of Rn satisfies

Ck+1 ⊆ Ck (k = 0, 1, 2, . . . ) and C = ∩∞
k=0Ck.

So, we can find a finite positive number � such that the open ball B+ contains C.
Hence, p2(x) ≤ 0 is a convex quadratic valid inequality for C; p2(·) ∈ P. We also
see that

p1(x
∗; γ, q,Q) + p2(x

∗) = p1(x
∗; γ, q,Q)/2 > 0 and p1(·; γ, q,Q) + p2(·) ∈ Q+.

Thus we have shown that

p1(x
∗; γ, q,Q) + p2(x

∗) > 0 and p1(·; γ, q,Q) + p2(·) ∈ c.cone(PF ∪ P) ∩Q+.

Therefore, x∗ �∈ C+1 = F̃ (PF ∪ P), so that x∗ �∈ C = ∩∞
k=0Ck. This is a contradic-

tion. The theorem is proved.

5.4. A family of inequalities of the convex cone of rank-2 quadratic
valid inequalities for the unit ball. Let B denote the unit ball {x ∈ Rn : ‖x‖ ≤
1}. Let Q be an arbitrary n × n symmetric matrix, and let u ∈ Rn be an arbitrary
vector on the boundary of B; ‖u‖ = 1. We will construct a family of quadratic
valid inequalities, which lie in the convex cone of rank-2 quadratic valid inequalities,
pθ(x) ≤ 0, with a parameter θ ∈ (0, π/8) for the unit ball B satisfying the properties
(i), (ii), and (iii) listed in Lemma 5.3.

We first apply the eigenvalue decomposition to the matrix Q ∈ Sn. We may
assume that the first m eigenvalues are nonnegative and the last n −m eigenvalues
are nonpositive for some nonnegative integer m ≤ n. Then we can write the matrix
Q ∈ Sn as

Q =

m∑
j=1

µjrjr
T
j −

n∑
j=m+1

µjrjr
T
j ,

where ‖rj‖ = 1 (j = 1, 2, . . . , n) and µj ≥ 0 (j = 1, 2, . . . , n), rj (j = 1, 2, . . . , n)
denote eigenvectors of Q, which are orthogonal to each other, and µj (j = 1, 2, . . . ,m)
and −µj (j = m+ 1, . . . , n) denote the eigenvalues corresponding to them.
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For each θ ∈ (0, π/8), we define


aj(θ) ≡ u cos θ + rj sin θ (j = 1, 2, . . . , n),

āj(θ) ≡ u cos θ − rj sin θ (j = 1, 2, . . . , n),

bj ≡ +rj , b̄j ≡ −rj (j = 1, 2, . . . ,m),

bj ≡ −rj , b̄j ≡ +rj (j = m+ 1, . . . , n),

αj(θ) ≡ max{aj(θ)Tx : x ∈ B} = ‖aj(θ)‖ (j = 1, 2, . . . , n),

ᾱj(θ) ≡ max{āj(θ)Tx : x ∈ B} = ‖āj(θ)‖ (j = 1, 2, . . . , n),

βj ≡ max{bTj x : x ∈ B} = ‖bj‖ = 1 (j = 1, 2, . . . , n),

β̄j ≡ max{b̄Tj x : x ∈ B} = ‖b̄j‖ = 1 (j = 1, 2, . . . , n),

λj(θ) ≡ µj
2 sin θ

≥ 0 (j = 1, 2, . . . , n).

(5.2)

Then, ∀θ ∈ (0, π/8) and j = 1, 2, . . . , n, aj(θ), āj(θ), bj(θ), and b̄j(θ) are nonzero
vectors, and {

aj(θ)
Tx− αj(θ) ≤ 0, bTj x− βj ≤ 0,

āj(θ)
Tx− ᾱj(θ) ≤ 0, b̄

T
j x− β̄j ≤ 0

(5.3)

are linear valid inequalities for the unit ball B. For all θ ∈ (0, π/8), define

pθ(x) ≡ −
n∑
j=1

λj(θ)
(
(aj(θ)

Tx− αj(θ))(b
T
j x− βj)(5.4)

+ (āj(θ)
Tx− ᾱj(θ))(b̄

T
j x− β̄j)

)
.

Then pθ(·) ∈ c.cone(P2(B)) for all θ ∈ (0, π/8). In particular, pθ(u) ≤ 0 ∀θ ∈ (0, π/8).
Lemma 5.3.
(i) pθ(·) ∈ c.cone(P2(B)).
(ii) pθ(u) → 0 as θ ∈ (0, π/8) tends to 0.
(iii) The Hessian matrix of pθ(·) coincides with −Q.
Proof. Part (i) was already shown.
(ii) Let j be fixed. It suffices to show that

εj(θ) ≡ λj(θ)(aj(θ)
Tu− αj(θ))(b

T
j u− βj) and

ε̄j(θ) ≡ λj(θ)(āj(θ)
Tu− ᾱj(θ))(b̄

T
j u− β̄j)

converge to zero as θ ∈ (0, π/8) tends to 0. First, we derive that εj(θ) converges to
zero as θ ∈ (0, π/8) tends to 0. We see from (5.2) that

εj(θ) =
µj(cos θ + uTrj sin θ − ‖u cos θ + rj sin θ‖)

2 sin θ
(bTj u− 1)(5.5)

=
µj

(
cos θ + uTrj sin θ − (cos2 θ + 2uTrj sin θ cos θ + sin2 θ)

1
2

)
2 sin θ

× (bTj u− 1).

Since both the numerator and the denominator above converge to zero as θ ∈ (0, π/8)
tends to 0, we calculate their derivatives at θ = 0. The derivative of the numerator
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turns out to be

µj

(
− sin θ + uTrj cos θ +

uTrj(sin
2 θ − cos2 θ)

(2uTrj sin θ cos θ + 1)1/2

)
(bTj u− 1),

which vanishes at θ = 0. On the other hand, the derivative “2 cos θ” of the de-
nominator “2 sin θ” in (5.5) does not vanish at θ = 0. Thus, εj(θ) converges to 0 as
θ ∈ (0, π/8) tends to 0. Similarly, we can prove that ε̄j(θ) converges to 0 as θ ∈ (0, π/8)
tends to 0.

(iii) It follows from the definitions (5.2) and (5.4) that the Hessian matrix of
the quadratic function pθ(·)

= −
n∑
j=1

λj(θ)
aj(θ)b

T
j + bja

T
j (θ) + āj(θ)b̄

T
j + b̄jāj(θ)

T

2

= −
m∑
j=1

µjrjr
T
j +

n∑
j=m+1

µjrjr
T
j

= −Q.

From the lemma above, we see that the cone P2(B) is rich enough to contain
rank-2 quadratic functions with any prescribed Hessian, leading to valid inequalities
that are tight at any given point on the boundary of B.

5.5. Proof of Theorem 3.2. The monotonicity property (a) follows from
Lemma 5.1 by letting K ≡ S1+n

+ and U ≡ 2. To derive (b), it suffices to show
that C ≡ ∩∞

k=0Ck ⊆ c.hull(F ) as in the proof of Theorem 3.1. Assume on the con-
trary that x′ �∈ c.hull(F ) for some x′ ∈ C. By Lemma 5.2, there exists a hypersphere
S ≡ {x ∈ Rn : ‖x− d‖ = η} which strictly separates the point x′ ∈ C and c.hull(F )
such that

‖x′ − d‖ > δ > ‖x− d‖ ∀x ∈ c.hull(F ),

where d ∈ Rn and δ > 0. Let δ∗ ≡ sup{‖x − d‖ : x ∈ C}. Obviously, δ∗ =
‖u− d‖ > δ for some u ∈ C. Since the successive SDP relaxation method using the
rank-2 quadratic representation for Ck at each iteration is invariant under the affine
transformation (x − d)/δ∗ → x′, which maps d to the origin and the hypersphere
S ≡ {x ∈ Rn : ‖x − d‖ = δ∗} onto the unit hypersphere {x′ ∈ Rn : ‖x′‖ = 1}, we
may assume that d = 0 and δ∗ = 1. Thus, we have obtained that

C ⊆ B ≡ {x ∈ Rn : ‖x‖ ≤ 1} and u ∈ C, u �∈ c.hull(F ), ‖u‖ = 1.

Since u �∈ F , there is a quadratic function p1(·; γ, q,Q) ∈ PF that cuts off u;
p1(u; γ, q,Q) > 0. Now, let pθ(·) ∈ P2(B) ∩ Q+ be the quadratic function intro-
duced in section 5.4. See (5.2) and (5.4). By Lemma 5.3, we can choose a θ ∈ (0, π/8)
for which pθ(u) ≥ −p1(u; γ, q,Q)/3 holds. Now we define

αkj = max{aj(θ)Tx : x ∈ Ck}, βkj = max{bj(θ)Tx : x ∈ Ck} (1 ≤ j ≤ n),

ᾱkj = max{āj(θ)Tx : x ∈ Ck}, β̄kj = max{b̄j(θ)Tx : x ∈ Ck} (1 ≤ j ≤ n),

p′k(x) = −
n∑
j=1

λj(θ)
(
(aj(θ)

Tx− αkj )(bj(θ)
Tx− βkj )

+(āj(θ)
Tx− ᾱkj )(b̄j(θ)

Tx− β̄kj )
)
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for k = 0, 1, 2, . . . . By construction, we know that p′k(·) ∈ c.cone(P2(Ck)). Since both
quadratic functions pθ(·) and p′k(·) have the common Hessian matrix −Q,

p1(·; γ, q,Q)+p′k(·)∈c.cone(PF ∪ Pk) ∩ L ⊂ c.cone(PF ∪ Pk) ∩Q+ ∀k=0, 1, 2, . . . .

We will show that

p1(u) + p′k(u) ≥ p1(u)/3 > 0(5.6)

for every sufficiently large k. Then the above two relations imply u �∈ Ck+1 for such
a large k. This contradicts the fact u ∈ C = ∩∞

k=0Ck.

Since the sequence of compact convex subsets Ck (k = 0, 1, 2, . . . ) satisfies

Ck+1 ⊆ Ck (k = 0, 1, 2, . . . ) and ∩∞
k=0 Ck = C ⊆ B = {x : ‖x‖ ≤ 1},

we see that

αkj →α∗
j ≡ max{aj(θ)Tx : x ∈ C} ≤ αj(θ), βkj → β∗

j ≡ max{bj(θ)Tx : x ∈ C} ≤ βj ,

ᾱkj → ᾱ∗
j ≡ max{āj(θ)Tx : x ∈ C} ≤ ᾱj(θ), β̄kj → β̄∗

j ≡ max{b̄j(θ)Tx : x ∈ C} ≤ β̄j

as k → ∞ (j = 2, 3, . . . , n). By continuity, we see then that for every sufficiently large
k

p′k(u) ≥ −p1(u)/3−
n∑
j=1

λj(θ)
(
(aj(θ)

Tu− α∗
j )(bj(θ)

Tu− β∗
j )

+(āj(θ)
Tu− ᾱ∗

j )(b̄j(θ)
Tu− β̄∗

j )
)

≥ −p1(u)/3 + pθ(u)

≥ −2p1(u)/3 (since pθ(u) ≥ −p1(u)/3).

Thus we have shown that (5.6) holds for every sufficiently large k. This completes
the proof of Theorem 3.2.

6. Application to 0-1 semi-infinite, nonconvex quadratic optimization
problems. We briefly recall two of the Lovász–Schrijver procedures for 0-1 integer
programming problems, and relate them to our successive SDP relaxation method.
Let F be a subset of {0, 1}n whose convex hull is to be approximated. In the Lovász–
Schrijver procedures, we assume that a compact convex subset C0 of Rn satisfying
F = C0 ∩ {0, 1}n is given in advance. We define

K0 ≡ {(λ, λxT ) ∈ R1+n : λ ≥ 0, and x ∈ C0}.
Let KI denote the convex cone spanned by the 0-1 vectors in K0:

KI = {(λ, λxT ) ∈ R1+n : λ ≥ 0, and x ∈ c.hull(F )}.
Here the 0th coordinate is special. It is used in homogenizing the sets of interest in
Rn. Clearly

C0 = {x ∈ Rn : (1,xT ) ∈ K0} and c.hull(F ) = {x ∈ Rn : (1,xT ) ∈ KI}.
The closed convex cone K0 serves as an initial relaxation of KI . Given the current
relaxation Kk of KI , first a convex cone M+(Kk,Kk) in the space of (1+ n)× (1+ n)
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symmetric matrices is defined (the lifting operation). Then a projection of this cone
gives the next relaxation N+(Kk) of KI .

Now, we define the lifting operation in general. Let K and T be closed convex
cones in R1+n. A (1 + n) × (1 + n) symmetric matrix, Y , with real entries is in
M+(K, T ) if

(i) Y ∈ S1+n
+ ,

(ii) Y e0 = Diag(Y ),
(iii) uTY v ≥ 0 ∀u ∈ K∗, v ∈ T ∗. (This condition is equivalent to Y K∗ ⊆ T .)
Here, e0 denotes the unit vector with 0th coordinate 1. Item (ii) above serves

an important role in Lovász–Schrijver procedures as well as in some of the SDP
relaxations used by Goemans and Williamson [8], Nesterov [15], and Ye [29]. This
equation is valid simply because for each j for which xj ∈ {0, 1}, the equation x2

j = xj
is valid. Indeed, our general framework applies to any compact set in Rn, and the
equation Y e0 = Diag(Y ) was not utilized in earlier sections (as it is not valid). In
this section, however, the equation is valid and we utilize it. As will be noted in the
proof of Theorem 6.3, the inclusion of this equation will be guaranteed by our choice
of the initial formulation.

The third condition of Lovász–Schrijver procedures is very interesting. They
present a couple of possibilities for the choice of cone T in 0-1 integer programming.
Among them is the cone spanned by all 0-1 vectors with the first component x0 = 1.
This choice, since the cone T ∗ has a very simple set of generators, allows for the
development of polynomial-time algorithms for approximately solving the successive
SDP relaxations as long as the number of iterations of the successive procedure is
O(1). Their result only assumes that a polynomial-time weak separation oracle is
available for K. The key is that since T ∗ has only O(n) extreme rays, it becomes
trivial to check condition (iii) in polynomial time. On the other hand, Lovász and
Schrijver [12] note that the choice T ≡ K is also possible and leads to at least as good
relaxations as the former choice for T . (In many cases the successive relaxations for
T ≡ K are significantly tighter than the successive relaxations with the simpler choice
of T .) In the case of the latter choice, the possibility of polynomial-time solvability
of the first few successive relaxations depends on the availability of polynomial-time
algorithms to check Y K∗ ⊆ K. Our procedure uses T ≡ K.

Now, we describe the projection step.

N+(K) ≡ {Y e0 : Y ∈ M+(K,K)}.
We also define the iterated operators Nk

+(K) as follows: N0
+(K) := K and Nk

+(K) :=

N+(N
k−1
+ (K)) for all integers k ≥ 1. (We use the notation N+(K), whereas N+(K,K)

is used in [12].)
Another procedure studied in [12] uses a weaker relaxation by removing the con-

dition (i) in the lifting procedure. Let M(K,K) and N(K) denote the related sets for
this procedure. We will refer to the first procedure using the lifting M+(K,K) (and
the projection N+) as the N+ procedure. We will call the other (using M(K,K), and
N) the N procedure. Lovász and Schrijver prove the following.

Theorem 6.1.

K ⊇ N+(K) ⊇ N2
+(K) ⊇ · · · ⊇ Nn

+(K) = KI
and

K ⊇ N(K) ⊇ N2(K) ⊇ · · · ⊇ Nn(K) = KI .
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Let us see how our successive SDP relaxation method applies to 0-1 nonconvex
quadratic optimization problems. Consider a 0-1 nonconvex quadratic program:

minimize cTx
subject to x ∈ F ≡ {x ∈ {0, 1}n : p(x) ≤ 0 ∀p(·) ∈ P ′}.(6.1)

We may assume that the set P ′ contains the quadratic functions xi(xi − 1), i =
1, 2, . . . , n. Then we can replace the 0-1 constraint imposed on the variable xi by the
inequality −xi(xi − 1) ≤ 0. Thus by adding the quadratic functions −xi(xi − 1), i =
1, 2, . . . , n, to P ′, we obtain a quadratic inequality representation PF of the feasible
region F . Let C0 ≡ [0, 1]n. Note that F �= C0∩{0, 1}n = {0, 1}n in our general setting
here. However, F = C0 ∩ {0, 1}n has been assumed for some compact convex subset
C0 of Rn in the Lovász–Schrijver procedures discussed above.

Lemma 6.2. Suppose that we take C0 = [0, 1]n and P0 ≡ {xi(xi − 1) : i =
1, 2, . . . , n} ⊂ P2(C0). Then F = C1 ∩ {0, 1}n, where

C1 =


x ∈ Rn :

∃X ∈ Sn such that Y =

(
1 xT

x X

)
∈ S1+n

+ and

P • Y ≤ 0 ∀P ∈ PF ∪ P0


 .

Proof. Let C ′
1 be the semi-infinite convex QOP relaxation of the set F with the

quadratic inequality representation PF ∪ P0:

C ′
1 ≡ {x ∈ Rn : p(x; γ, q,Q) ≤ 0 ∀p(·; γ, q,Q) ∈ c.cone (PF ∪ P0) ∩Q+} .

In view of Theorem 4.2 and Lemma 5.1, we know that

F ⊆ c.hull(F ) ⊆ C1 = C ′
1 ⊆ C0.

Hence it suffices to show that

{x ∈ C1 : xi = 0 or 1, i = 1, 2, . . . , n} ⊆ F.

If F contains all the 0-1 vectors, the inclusion relation above obviously holds. Now
assume that x′ �∈ F is a 0-1 vector. Then there is a quadratic function p1(·, γ, q,Q) ∈
PF such that

p1(x
′, γ, q,Q) > 0.

On the other hand, we know that the quadratic function

p2(x) ≡
n∑
i=1

xi(xi − 1),

with the identity matrix as its Hessian matrix, is a member of c.cone(P0), and that
p2(x

′) = 0. Hence if ε > 0 is sufficiently small, then

εp1(·, γ, q,Q) + p2(·) ∈ c.cone (PF ∪ P0) ∩Q+,

εp1(x
′, γ, q,Q) + p2(x

′) > 0.

This implies that x′ �∈ C ′
1.
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As a consequence of the lemma above, we see that the 0-1 nonconvex quadratic
optimization problem (6.1) is equivalent to the 0-1 convex quadratic optimization
problem

minimize cTx
subject to x ∈ F = C1 ∩ {0, 1}n.(6.2)

Using this observation, we can prove that in the case of 0-1 nonconvex quadratic
optimization problem (6.1), our successive SDP relaxation method converges in (1+n)
iterations.

Theorem 6.3. The successive SDP relaxation method, applied to the 0-1 non-
convex quadratic optimization problem (6.1), using C0 = [0, 1]n as the initial approxi-
mation of c.hull(F ) and Pk = P2(Ck) in each iteration, terminates in at most (1+n)
iterations with C1+n = c.hull(F ).

Proof. We note that by Lemma 6.2, after one iteration of the successive SDP
relaxation method, we obtain the 0-1 convex quadratic optimization problem (6.2)
that can be used with the original Lovász–Schrijver procedure. We only have to note
that the successive SDP relaxation method becomes the Lovász–Schrijver procedure
after the first iteration. For this purpose, we compare conditions (i), (ii), and (iii) of
the Lovász–Schrijver procedure for K = T = Kk to the conditions used to construct
Ck+1 = F̂ (PF ∪ Pk) in the successive SDP relaxation method. Here

Kk ≡ {(λ, λxT ) ∈ R1+n : λ ≥ 0, x ∈ Ck}.
First, we observe that ∃X ′ ∈ Sn such that Y ′ =

(
1 xT

x X′
) ∈ S1+n

+ if and only if ∀λ ≥ 0,

∃X ∈ Sn such that Y =
(
λ λxT

λx X

) ∈ S1+n
+ . Hence (i) is satisfied. For (ii), note that

xi(xi − 1) ∈ PF ∀ i implies the constraint Y e0 ≥ Diag(Y ) and −xi(xi − 1) ∈ PF ∀ i
implies Y e0 ≤ Diag(Y ). Finally, for (iii), note that a linear inequality aTx ≤ α is
valid for Ck if and only if (α,−aT ) ∈ K∗

k (recall Ck = {x ∈ Rn : (1,xT ) ∈ Kk}).
Therefore, we see that

P2(Ck) = c.cone{−uvT : u,v ∈ K∗
k}.

Step (3.1) of the successive SDP relaxation method implies that Y =
(

1 xT

x X

) ∈
−(P2(Ck))

∗. Thus, we conclude by noting that

Y ∈ −(P2(Ck))
∗ if and only if Y • uvT = uTY v ≥ 0 ∀u,v ∈ K∗.

Now, Theorem 6.1 implies that n more steps of the procedure is sufficient.
The above discussion and the results show that our successive SDP relaxation

method generalizes the Lovász–Schrijver N+ procedure by ignoring condition (ii),
which is no longer valid. Our results in the previous sections already showed that
in this full generality, we still have the asymptotic convergence of the method. It is
therefore interesting to investigate the same questions about the weaker procedure N :

• What is the generalization of procedure N?
• Does the generalization of procedure N satisfy the same theoretical properties
as the successive SDP relaxation method?

We answer both of these questions in the next section. As is shown in [12], in
some cases the procedure N+ is significantly better than N . Procedure N is weaker,
but the relaxations given by it are always polyhedral sets (so LP techniques can be
employed) and N+ requires more general techniques. Hence, sometimes procedure N
might be more manageable even if the procedure N+ is not.
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We should expect that the generalization of procedure N should be only using
condition (iii), Y K∗ ⊆ K, in the definition of the lifting. We would also expect that
the generalization should lead to semi-infinite LP (rather than SDP) relaxations. We
show in the next section that the above-mentioned generalization of procedure N
leads to successive semi-infinite LP relaxations and all the analogs of the theoretical
properties established for our successive SDP relaxations can also be established for
the successive semi-infinite LP relaxations.

7. Successive semi-infinite LP relaxation.
Successive Semi-Infinite LP Relaxation Method.
Step 0: Let k = 0.
Step 1: If Ck = ∅ or Ck = c.hull(F ), then stop.
Step 2: Choose a quadratic inequality representation Pk for Ck.
Step 3: Let

Ck+1 = F̂L(PF ∪ Pk)

≡

x ∈ Rn :

∃X ∈ Sn such that

P •
(
1 xT

x X

)
≤ 0 ∀P ∈ PF ∪ Pk




= F̃L(PF ∪ Pk)
≡ {x ∈ Rn : γ + 2qTx ≤ 0 ∀p(·; γ, q,Q) ∈ (c.cone(PF ∪ Pk)) ∩ L} .

(The equalities above follow from Corollary 4.3.)
Step 4: Let k = k + 1, and go to Step 1.
Theorem 7.1. Assume that PF is a semi-infinite quadratic inequality represen-

tation of a compact subset F of Rn, and that C0 ⊇ F is a compact convex subset of
Rn. If we choose Pk = P2(Ck) at Step 2 of each iteration in the successive semi-
infinite LP relaxation method, then the monotonicity property (a) and the asymptotic
convergence property (b) stated in the introduction hold.

Proof. We can apply the same proof as the one given for Theorem 3.2 in section 5.5
to the theorem.

Note that we can define another semi-infinite LP relaxation based on the semi-
infinite convex QOP relaxation. Clearly, if Q ∈ Sn+, then

γ + 2qTx+ xTQx ≤ 0 implies γ + 2qTx ≤ 0 ∀x ∈ Rn.

So, we can define a semi-infinite LP relaxation based on the above observation:

F̂L+ ≡



x ∈ Rn :

∃X ∈ Sn,
(
γ qT

q O

)
•
(
1 xT

x X

)
≤ 0,

∀
(
γ qT

q Q

)
∈ c.cone(P) ∩Q+




and

F̃L+ ≡



x ∈ Rn :

(
γ qT

q O

)
•
(
1 xT

x xxT

)
≤ 0,

∀
(
γ qT

q Q

)
∈ c.cone(P) ∩Q+




.
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In this case, the equivalence F̂L+ = F̃L+ is evident. The convergence of the successive

semi-infinite LP relaxation method using F̂L+ can be established by following the proofs

of Theorems 3.1 and 3.2. Instead, we note F̃L+ ⊆ F̃L. Therefore, Theorem 7.1 also
implies that this particular semi-infinite LP relaxation method has the properties (a)
and (b) mentioned in the theorem.

8. Further discussions on successive convex relaxations.

8.1. Conic quadratic inequality representation. The conic quadratic in-
equality presented below is a generalization of the linear matrix inequality [3, 28] and
the bilinear matrix inequality [14, 20]. It will be shown that any conic quadratic
inequality can be reduced to a semi-infinite system of standard quadratic inequalities
and vice versa.

Let K and K∗ = {v ∈ Rm : v · u ≥ 0 ∀u ∈ K} be a closed convex cone in Rm

and its dual. Here u · v denotes an inner product of u ∈ Rm and v ∈ Rm. For all
u ∈ Rm, we write u !K 0 when −u lies in K. Now we introduce a conic quadratic
inequality :

x = (x1, x2, . . . , xn)
T
,

n∑
i=0

n∑
j=0

gijxixj !K 0 and x0 = 1.(8.1)

Here gij , i = 0, 1, . . . , n, j = 0, 1, . . . , n, are constant vectors in Rm. We may assume
without loss of generality that gij = gji. The inequality (8.1) turns out to be a system
of m usual quadratic inequalities on Rn if we take the nonnegative orthant Rm+ of Rm

for the cone K. The inequality (8.1) turns out to be a quadratic matrix inequality,
which is a generalization of linear and bilinear matrix inequalities [3, 28] if we identify
the space of �× � symmetric matrices with Rm and we take the positive semidefinite
cone S+ of matrices for the cone K, where m = �× (�+ 1)/2 for some � ≥ 1.

We can rewrite the conic quadratic inequality (8.1) as a semi-infinite system of
standard quadratic inequalities in the homogeneous form.

P •
(
1 xT

x xxT

)
≤ 0 ∀P ∈ P(8.2)

for some P ⊆ Q = S1+n. This means that we can easily include any conic quadratic
inequality in the semi-infinite quadratic inequality representation of the feasible region
F of the maximization problem (1.1). To see the equivalence between (8.1) and (8.2)
for some P ⊆ Q = S1+n, we observe that (8.1) can be rewritten as

x = (x1, x2, . . . , xn)
T
,


 n∑
i=0

n∑
j=0

gijxixj


 · v ≤ 0 ∀v ∈ K∗ and x0 = 1.

Therefore, if we define

P (v) ≡



g00 · v g01 · v · · · g0n · v
g10 · v g11 · v · · · g1n · v

...
...

...
...

gn0 · v gn2 · v · · · gnn · v


 ∈ Q = S1+n ∀v ∈ K∗,

P ≡ {P (v) : v ∈ K∗},
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we obtain the desired semi-infinite system (8.2) of standard quadratic inequalities,
which is equivalent to (8.1).

Let F (P) denote the solution set of (8.2) with its quadratic inequality represen-
tation P ≡ {P (v) : v ∈ K∗}. Applying the SDP relaxation to F (P), we obtain
that

F̂ (P) ≡

x ∈ Rn :

∃X ∈ Sn such that Y =

(
1 xT

x X

)
∈ S1+n

+ and

P (v) • Y ≤ 0 ∀v ∈ K∗




=



x ∈ Rn :

∃X ∈ Sn such that Y =

(
1 xT

x X

)
∈ S1+n

+ and
 n∑
i=0

n∑
j=0

gijYij


 · v ≤ 0 ∀v ∈ K∗




=



x ∈ Rn :

∃X ∈ Sn such that Y =

(
1 xT

x X

)
∈ S1+n

+ and

n∑
i=0

n∑
j=0

gijYij !K 0




.

The set in the last line corresponds to the SDP relaxation to the solution set of (8.1).
This implies that we can apply the SDP relaxation directly to the conic quadratic
inequality (8.1) without converting it into the semi-infinite system (8.2) of standard
quadratic inequalities.

Conversely, we can reduce any semi-infinite system of standard quadratic inequal-
ities to a conic quadratic inequality. To show this, consider a semi-infinite system (8.2)
of standard quadratic inequalities in the homogeneous form. We may assume without
loss of generality that P ⊆ S1+n is a closed convex cone. We can rewrite (8.2) as((

1
x

)
(1,xT )

)
!P∗ O,(8.3)

which is a conic quadratic inequality.
Let F denote the solution set of the conic quadratic inequality (8.3) that we have

derived from (8.2) above. Applying the SDP relaxation to F , we obtain that

F̂ ≡
{
x ∈ Rn : ∃X ∈ Sn such that Y =

(
1 xT

x X

)
∈ S1+n

+ and Y !P∗ O

}

=


x ∈ Rn :

∃X ∈ Sn such that Y =

(
1 xT

x X

)
∈ S1+n

+ and

P • Y ≤ 0 ∀P ∈ P


 .

Note that the set in the last line corresponds to the SDP relaxation of the solution
set of the semi-infinite system (8.2) of standard quadratic inequalities.

In view of the discussions above, we know that the conic quadratic inequality
representation is as general as the semi-infinite quadratic inequality representation
and that the SDP relaxations to both representations are equivalent. When we deal
with the semi-infinite convex QOP relaxation, however, the semi-infinite quadratic
inequality representation seems more convenient than the conic quadratic inequality
representation.
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8.2. A counterexample to the convergence for the rank-1 quadratic
inequality representation case. The example below shows that the rank-1 quad-
ratic inequality representation is not strong enough to ensure the convergence of the
successive SDP relaxation method. Let

F ≡ {x = (x1, x2)
T : p0(x) ≤ 0, ‖x‖2 ≤ 1},

S ≡ {a ∈ R2 : a2
1 + a2

2 = 1},
B ≡ {x = (x1, x2)

T ∈ R2 : x2
1 + x2

2 ≤ 1},
C0 ≡ B,

p0(x) ≡ −(x1 − 1)2 − (x2 − 1)2 + 1,

PF ≡ {p0(x)} ∪ P1(B),

where P1(B) denotes the rank-1 quadratic inequality representation of the unit ball,
which consists of all quadratic functions such that (aTx− 1)(aTx+ 1) (a ∈ S). We
see that

c.hull(F ) = {x = (x1, x2)
T ∈ B : x1 + x2 ≤ 1}.

Theorem 8.1. Suppose that we take Pk = P1(Ck) (the rank-1 quadratic in-
equality representation of Ck) in the successive SDP relaxation method applied to the
example above. Then Ck = B (k = 0, 1, 2, . . . ).

Proof. By definition, C0 = B. We will prove C1 = B, which suffices to establish
the theorem. First observe that C1 ⊆ B. Hence it suffices to show B ⊆ C1 or
equivalently for all p(·) ∈ c.cone(PF ) ∩Q+,

p(x̄) ≤ 0 ∀x̄ ∈ B.

Let p(·) ∈ c.cone(PF ∪ Pk) ∩ Q+ and x̄ ∈ B be fixed. Then we can choose λi ≥ 0
(i = 0, 1, . . . , �) and ai ∈ S (i = 1, 2, . . . , �) such that

p(x) = λ0p0(x) +

∑
i=1

λi(a
T
i x− 1)(aTi x+ 1) ∀x ∈ Rn.

If λ0 = 0, then p(x̄) ≤ 0. Now assume that λ0 > 0. In this case, we may further
assume without loss of generality that λ0 = 1; hence, for all x ∈ Rn,

p(x) = p0(x) +

∑
i=1

λi(a
T
i x− 1)(aTi x+ 1)

= xT

(
∑
i=1

λiaia
T
i − I

)
x−

∑
i=1

λi + 2eTx− 1.

It follows from p(·) ∈ Q+ that the Hessian matrix
(∑

i=1 λiaia
T
i − I

)
is positive

semidefinite. Hence if we denote the largest and the smallest eigenvalues of the matrix∑
i=1 λiaia

T
i by µmax and µmin, then 1 ≤ µmin ≤ µmax. We also see that

µmax + µmin = trace

(
∑
i=1

λiaia
T
i

)
=

∑
i=1

λia
T
i ai =

∑
i=1

λi.
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Hence

p(x̄) = x̄T

(
∑
i=1

λiaia
T
i − I

)
x̄−

∑
i=1

λi + 2eT x̄− 1

≤ µmax − 1−
∑
i=1

λi + 2eT x̄− 1

= 2eT x̄− µmin − 2

≤ 2
√
2− 3

< 0.

8.3. A counterexample to the finite termination for the strongest quad-
ratic inequality representation case. The example below shows that in the worst
case, even when we take the strongest quadratic inequality representation P	(Ck) for
Ck at every iteration,

• the successive SDP relaxation method requires infinitely many iterations, and
• the convergence is extremely slow.

For every x = (x1, x2)
T ∈ R2, let

p1(x) ≡ x2
1 + x2

2 − 4,

p2(x) ≡ −(x1 − 1)2 − (x2 − 2)2 + 5,

p3(x) ≡ p2(−x1, x2) = −(x1 + 1)2 − (x2 − 2)2 + 5.

Define

F ≡ {x = (x1, x2)
T ∈ R2 : pi(x) ≤ 0 (i = 1, 2, 3)},

PF ≡ {p1(·), p2(·), p3(·)},
C0 = {x = (x1, x2)

T ∈ R2 : p1(x) ≤ 0}.
Then

c.hull(F ) = {x = (x1, x2)
T ∈ R2 : p1(x) ≤ 0, x2 ≤ 0}

= {x = (x1, x2)
T ∈ R2 : x2

1 + x2
2 ≤ 4, x2 ≤ 0}.

Theorem 8.2. Suppose that we take Pk = P	(Ck) (the strongest quadratic in-
equality representation of Ck) in the successive SDP relaxation method applied to the
example above.

(i) Ck is symmetric with respect to the x2 axis:

(x1, x2)
T ∈ Ck if and only if (−x1, x2)

T ∈ Ck.

(ii) Let

ξk ≡ max{x2 : (0, x2)
T ∈ Ck}.

Then

0 < ξk ≤ 2,(8.4)

0 < ξ̄k+1 ≡ ξk
1 + ξk(1− ξk/4)

≤ ξk+1.(8.5)
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Proof. We will prove (i) and (ii) by induction.
(i) Obviously the assertion is true for k = 0. Assume that Ck is symmetric with

respect to the x2 axis. Then we know that

p(x1, x2) ∈ c.cone(PF ∪ Pk) ∩Q+ if and only if p(−x1, x2) ∈ c.cone(PF ∪ Pk) ∩Q+.

This ensures that Ck+1 is symmetric with respect to the x2 axis.
(ii) By definition, we know that ξ0 = 2. Hence (8.4) holds for k = 0. Assuming

that (8.4) holds, we prove that (8.5) holds. We first observe that

(2, 0)T ∈ c.hull(F ) ⊆ Ck, (0, ξk)
T ∈ Ck and (0, ξ̄k+1)

T ∈ Ck.(8.6)

It suffices to show that (0, ξ̄k+1)
T ∈ Ck+1 or equivalently

p(0, ξ̄k+1) ≤ 0 ∀p(x1, x2) ∈ c.cone(PF ∪ Pk) ∩Q+.

Assume on the contrary that

p(0, ξ̄k+1) > 0 for ∃p(·) ∈ c.cone(PF ∪ Pk) ∩Q+.

Since p(·) ∈ c.cone(PF ∪ Pk) ∩Q+, we can choose λi ≥ 0 (i = 2, 3) and

p′(x) ≡ Q11x
2
1 + 2Q12x1x2 +Q22x

2
2 + 2q1x1 + 2q2x2 + γ ∈ Pk

such that

p(x) =
3∑
i=2

λipi(x) + p′(x) ∈ c.cone(PF ∪ Pk) ∩Q+.

Here we remark that p1(·) can be incorporated into p′(·) since p1(·) ∈ Pk. By the
symmetry with respect to the x2 axis, we see that

p(−x1, x2) =

3∑
i=2

λipi(−x1, x2) + p′(−x1, x2) ∈ c.cone(PF ∪ Pk) ∩Q+.

Thus, defining p̃(x) = (p(x1, x2) + p(−x1, x2))/2, µ = λ2 + λ3, and p′′(x1, x2) =
(p′(x1, x2) + p′(−x1, x2))/2, we obtain that

p̃(0, ξ̄k+1) = p(0, ξ̄k+1) > 0,(8.7)

p′′(x1, x2) = Q11x
2
1 +Q22x

2
2 + q2x2 + γ ∈ Pk,

p̃(x1, x2) = µ(−x2
1 − (x2 − 2)2 + 4) + p′′(x1, x2) ∈ Q+.

It follows from p′′(x1, x2) ∈ Pk and the third inclusion relation of (8.6) that p′′(0, ξ̄k+1)
≤ 0. Hence µ > 0. We may further assume without loss of generality that µ = 1;
redefine p(x) = p(x)/µ, p′′(x) = p′′(x)/µ, . . . , etc.; then all the relations above
remain valid. Since p̃(x1, x2) ∈ Q+, we see that Q11 ≥ 1 and Q22 ≥ 1. By (8.6) and
p′′(x1, x2) ∈ Pk,

0 ≥ p′′(2, 0) = 4Q11 + γ ≥ 4 + γ and 0 ≥ p′′(0, ξk);

hence

p̃(0, 0) = (−02 − 22 + 4) + p′′(0, 0) = γ ≤ −4 and

p̃(0, ξk) = (−02 − (ξk − 2)2 + 4) + p′′(0, ξk) ≤ (4− ξk)ξk.
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Therefore, by the convexity of the quadratic function p̃(x), we obtain that

p̃(0, ξ̄k+1) = p̃

(
ξk − ξ̄k+1

ξk
(0, 0)T +

ξ̄k+1

ξk
(0, ξk)

T

)

≤ ξk − ξ̄k+1

ξk
p̃(0, 0) +

ξ̄k+1

ξk
p̃(0, ξk)

≤ ξk − ξ̄k+1

ξk
(−4) +

ξ̄k+1

ξk
(4− ξk)ξk

=
4ξ̄k+1

ξk
(1 + (1− ξk/4)ξk)− 4

= 0.

This contradicts (8.7).
The above example is simple, yet it illustrates great difficulties for the successive

SDP relaxation method. For example, ξk+1/ξk → 1. Therefore, the convergence is
slower than linear.

Note that, in any dimension, if we take a pair of ball constraints, one convex
(inclusion), the other nonconvex (exclusion), then both of the successive SDP and
semi-infinite LP relaxation methods stop in one iteration, returning the convex hull
of the intersection. Also, in the above example, if we knew that p2(·) affects only
the definition of F in the region x1 ≥ 0 and that p3(·) is only effective in the region
x1 ≤ 0, we could do elementary modifications to the method to speed up convergence
tremendously. This is a good elementary example to illustrate the fact that for such
methods to become more efficient in practice, hybrid approaches including branch-
and-bound and branch-and-cut seem necessary. We make further remarks in the next
section.

9. Concluding remarks. We propose extensions of two fundamental lift-and-
project procedures N and N+ of Lovász and Schrijver [12]. The original procedures
were proposed for 0-1 integer programming problems to compute the convex hull
of feasible (integer) solutions. Our procedure applies to any nonconvex region and
as a result we do not use the key equations, Y e0 = Diag(Y ), used in N and N+

procedures. Therefore, our relaxations are based either on two conditions: Y is
positive semidefinite and Y K∗ ⊆ K (successive SDP relaxation method), or on only
one condition: Y K∗ ⊆ K (successive semi-infinite LP relaxation method). In both
cases we established the properties (a) monotonicity and (b) asymptotic convergence.
The weakest version of our procedures satisfying the properties (a) and (b) uses only
rank-2 quadratic valid inequalities. We showed in section 6 that such inequalities
ensure the condition Y K∗ ⊆ K. Finally, in section 8 we showed that even the strongest
of such relaxation procedures (using all quadratic valid inequalities) uses infinitely
many iterations to converge. In the above sense, the strongest positive result is given
in section 7 by the successive semi-infinite LP relaxation method based on rank-2
valid inequalities.

On the one hand, theoretically speaking, the best results are given in section 7:
the weakest algorithm achieving the strongest results. Moreover, the successive semi-
infinite LP relaxation method is more likely to be practical for a given general problem.
On the other hand, the relative value of SDP relaxations has been quite impressive
so far on some very special problems (e.g., the stable set problem [12]) and less
impressive on others (e.g., the matching problem [25]). Therefore, one interesting
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research direction is to search for interesting classes of nonconvex sets for which the
successive SDP relaxation method is significantly better than the successive semi-
infinite LP relaxation method. For the same reason, (partial) characterizations of
nonconvex sets on which both methods perform comparably are also important.

Our convergence proofs are by contradiction, but the main argument is about
cutting off a point using valid inequalities induced by the underlying construction.
The strongest convergence result (for the weakest algorithm) uses separating hyper-
spheres. In the other proofs, for the bad points, the separating hyperspheres may have
huge radii and converge to hyperplanes. However, for certain points and shapes, the
advantage of using more general convex quadratic inequalities is clear. This discussion
motivates us to suggest another avenue for research. It would be interesting to find
certain invariants and measures of the input of our procedures that lead to nontriv-
ial, descriptive convergence rates for our methods, perhaps only for some interesting
subclass of problems.

Recently, Kojima and Takeda [11] discussed the computational complexity of the
successive SDP and semi-infinite LP relaxation methods. They gave an upper bound
on the number of iterations which the methods require to attain a convex relaxation of
a quadratically constrained compact set F with a given accuracy ε > 0, in terms of ε,
the diameter of the initial relaxation C0, the diameter of F , and some other quantities
characterizing the Lipschitz continuity and the nonconvexity and nonlinearity of the
quadratic inequality representation PF of F .

The major difficulty in implementing the idea of the successive SDP (or semi-
infinite LP) relaxation method in practice is the solution of a continuum of semi-
infinite SDPs (or semi-infinite LPs) to generate a new approximation Ck+1 of the
convex hull of the feasible region F of a nonconvex quadratic program at each itera-
tion. In their succeeding paper [10], the authors propose implementable variants by
introducing two new techniques, a discretization technique for approximating contin-
uum of semi-infinite SDPs (or semi-infinite LPs) by a finite number of standard SDPs
(or LPs) with a finite number of linear inequality constraints, and a localization tech-
nique for generating a convex relaxation of F that is accurate only in certain directions
in a neighborhood of the objective direction c. They established that, Given any posi-
tive number ε, there is an implementable discretized-localized variant of the successive
SDP (or semi-infinite LP) relaxation method which generates an upper bound of the
objective values within ε of their maximum in a finite number of iterations. See also
[27] for a practical implementation of this variant and some numerical results.
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Abstract. Mathematical programs with nonlinear complementarity constraints are reformulated
using better posed but nonsmooth constraints. We introduce a class of functions, parameterized
by a real scalar, to approximate these nonsmooth problems by smooth nonlinear programs. This
smoothing procedure has the extra benefits that it often improves the prospect of feasibility and
stability of the constraints of the associated nonlinear programs and their quadratic approximations.
We present two globally convergent algorithms based on sequential quadratic programming (SQP) as
applied in exact penalty methods for nonlinear programs. Global convergence of the implicit smooth
SQP method depends on existence of a lower-level nondegenerate (strictly complementary) limit
point of the iteration sequence. Global convergence of the explicit smooth SQP method depends
on a weaker property, i.e., existence of a limit point at which a generalized constraint qualification
holds. We also discuss some practical matters relating to computer implementations.

Key words. mathematical programs with equilibrium constraints, bilevel optimization, comple-
mentarity problems, sequential quadratic programming, exact penalty, generalized constraint quali-
fication, global convergence, smoothing method
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1. Introduction. Mathematical programs with equilibrium constraints (MPECs)
form a relatively new and interesting class of optimization problems. The roots of
MPECs lie in game theory and especially in bilevel optimization. MPECs include a
number of significant applications in economics and engineering. See the monograph
[28] for comprehensive theoretical treatment, applications, and references.

The MPEC considered in this paper is a mathematical program with nonlinear
complementarity problem (NCP) constraints:

min
x,y

f(x, y)

subject to g(x, y) ≥ 0,
0 ≤ F (x, y) ⊥ y ≥ 0,

(1)

where f : �n+m → �, g : �n+m → �l, F : �n+m → �m are continuously differen-
tiable and w ⊥ y indicates orthogonality of any vectors w, y ∈ �m. The constraints
g(x, y) ≥ 0 are called the upper-level constraints. By lower-level or equilibrium con-
straints we mean the system 0 ≤ F (x, y) ⊥ y ≥ 0, which constitutes a nonlinear
complementarity problem in y for each fixed x.

We omit equality constraints in the upper level for simplicity, but these can easily
be handled and would be useful for the following case. Lower-level mixed comple-
mentarity constraints [7] can be dealt with quite easily by moving equations and their
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associated variables to the upper level. For example, consider the following lower-level
mixed complementarity constraints

F1(x, y, z) = 0,
0 ≤ F2(x, y, z) ⊥ z ≥ 0,

where F1 : �n+m1+m2 → �m1 , F2 : �n+m1+m2 → �m2 . By renaming the tuple (x, y)
as the upper-level vector and z as the lower-level vector, and moving the equations
F1(x, y, z) = 0 to the upper level, we obtain an MPEC with upper-level constraints
that are specified by nonlinear equalities and inequalities and by lower-level nonlinear
complementarity constraints.

Clearly, the MPEC (1) is equivalent to the smooth nonlinear program (NLP)
obtained by writing the complementarity condition F (x, y) ⊥ y as an inner product
F (x, y)T y = 0. Unfortunately, it has been proved [4] that the Mangasarian–Fromovitz
constraint qualification does not hold at any feasible point of this smooth NLP even if
the usual inequality constraints g(x, y) ≥ 0 are omitted and the lower-level NCP prob-
lem has very fine properties such as strong monotonicity with respect to y. Since this
constraint qualification is almost synonymous with numerical stability of the feasible
set, its failure to hold suggests that well-developed nonlinear programming theory and
numerical methods are not readily applicable to solving this form of MPEC: the fea-
sible set of the smooth NLP is numerically ill posed. See [19, 28] for more discussions
and numerical examples.

Instead we let w = F (x, y) and substitute a nonsmooth equation Φ(y, w) = 0 ∈
�m, constructed using the Fischer–Burmeister functional [9], for example, for the
complementarity problem y, w ≥ 0, yTw = 0:

min
x,y,w

f(x, y)

subject to g(x, y) ≥ 0,
F (x, y)− w = 0,
Φ(y, w) = 0.

(2)

The mapping Φ is then “smoothed” by introducing a parameterization Ψ(y, w, µ)
that is differentiable if the scalar µ is nonzero but coincides with Φ(y, w) when µ = 0.
By a smoothing method we mean an algorithm that solves (1) either by solving an
augmented problem like

min
x,y,w,µ

f(x, y)

subject to g(x, y) ≥ 0,
F (x, y)− w = 0,
Ψ(y, w, µ) = 0,
eµ − 1 = 0,

(3)

where e is Euler’s constant, so that the last constraint requires µ = 0 (cf. [18] for
complementarity problems), or by approximately solving the following problem for a
sequence of values µ = µk → 0:

min
x,y,w

f(x, y)

subject to g(x, y) ≥ 0,
F (x, y)− w = 0,
Ψ(y, w, µ) = 0.

(4)
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The introduction of the smoothing parameter µ has three consequences: Nonsmooth
problems are transformed into smooth problems, except when µ = 0; well-posedness
can be improved in the sense that feasibility and constraint qualifications, hence
stability, are often more likely to be satisfied for all values of µ; and solvability of
quadratic approximation problems is improved. This opens the way to use sequential
quadratic programming (SQP) methods from classical nonlinear programming.

The methods presented in this paper follow some ideas from [8, 12] which try to
use well-developed numerical methods for the solution of smooth nonlinear programs.
In [8], smooth nonlinear programs of the type (4) are formed and assumed to be
solvable by an unspecified (black box) method. Under further conditions, which will
be relaxed in the explicit smoothing method to be presented in section 6, it is shown
that limit points of the sequence of approximate solutions of the parametric nonlinear
programs satisfy generalized Karush–Kuhn–Tucker (KKT) conditions [16] given in
terms of the Clarke generalized derivatives [5]. We call this an explicit smoothing
method because the smoothing parameter is updated separately from the direction-
finding process. In [12] another explicit smoothing method is proposed, which is an
SQP-based method for MPECs with linear complementarity constraints and upper-
level constraints only on x, and limit points satisfying a lower-level nondegeneracy
(strict complementarity) condition are shown to be piecewise stationary points for
(1).

This paper details methods for solving the problems (2) and (3) using SQP in
an �1-exact penalty framework. The first method, implicit smooth SQP, applies to
(3); Theorem 5.10 assumes lower-level nondegeneracy at limit points amongst other
conditions to ensure that limit points of the iteration sequence are piecewise stationary
points of (1). The term implicit means that the smoothing parameter is included as
one of the variables of the problem formulation and updated at each iteration using
the QP solution, like the other variables. This convergence result is not surprising
given that lower-level nondegeneracy at a feasible point of (1) implies locally that the
problem is a smooth nonlinear program.

To move beyond the realm of standard nonlinear programming, we present the
explicit smooth SQP method that is aimed at solving the problem (2) by solving a
sequence of problems (4), where we expect µ = µk → 0 and limit points of the iteration
sequence to satisfy generalized KKT conditions of (2). Perhaps the most novel result
is Theorem 6.4, which extends global convergence theory for exact penalty methods
in nonlinear programming to MPECs by using a generalized constraint qualification
at limit points of the iteration sequence. Explicit smooth SQP can be viewed as an
implementation of the smoothing method of [8] though the convergence analysis of
the new method is more demanding.

Our main goal is to explore convergence conditions and analysis for smooth SQP
methods. Given this and the length of the paper, a numerical investigation will be
pursued in a future publication.

We mention that the development of numerical methods for the solution of MPECs
is at a less advanced stage than optimality theory [4, 26, 27, 28, 29, 30, 32, 33, 34,
40, 43]. When the upper-level constraints exclude y, i.e., take the form g(x) ≥ 0, the
implicit function approach may be possible. In this approach it is assumed that y
can be found as a function of x by solving the NCP appearing in the constraints, and
the MPEC is collapsed to the problem of minimizing the nondifferentiable objective
function f(x, y(x)) subject to g(x) ≥ 0. This nonsmooth problem can be tackled
by bundle methods as proposed in [23, 24, 33, 34] or using another nonsmooth opti-



782 HOUYUAN JIANG AND DANIEL RALPH

mization method such as Shor’s R-algorithm as implemented in SolvOpt [25]; see [7]
for some computational comparisons. However, with mixed upper-level constraints,
i.e., involving y and possibly x, the implicit programming approach transforms an
MPEC into a problem with nondifferentiable constraints in addition to a nonsmooth
objective, a format which has not been seriously studied with regard to computational
methods.

Some methods which can be extended to handle mixed upper-level constraints
include the penalty interior-point algorithm (PIPA) [28]; smoothing methods [8, 12],
which are related to the interior-point approach; and piecewise sequential quadratic
programming (PSQP) [28, 29, 37]. Apart from this paper, the only implementations
of these algorithms we know of that handle joint upper-level constraints are discussed
in [19]. PIPAs converge globally under suitable conditions, at least in the implicit
case [28], while the PSQP method exhibits local superlinear convergence under the
uniqueness of multipliers and some second-order sufficient conditions, but surprisingly
without requiring a strict complementarity condition. Some preliminary numerical
experiments have been carried out for the PIPA and PSQP [28, 29, 19], and smoothing
methods [8, 12]. See also [7] for a comparison of PIPA with implicit programming
methods. The theoretical results and numerical experience show some promise for
these methods. We also refer the reader to [24, 33, 34, 41] for other numerical methods
and applications of MPECs.

The rest of the paper is organized as follows. In the next section, we review
first-order optimality theory for nonsmooth programs using the Clarke calculus. In
section 3, we reformulate the MPEC (1) into equivalent (in the sense of global op-
tima, local optima, generalized stationarity, or piecewise stationarity as the case may
be) but generally better-posed nonsmooth programs by means of functions introduced
there. Constraint qualifications for the reformulated nonsmooth programs are studied
in section 4. In section 5, we present implicit smooth SQP for solving the reformu-
lation (3) and give details of global convergence under lower-level nondegeneracy at
limit points. In section 6, we propose explicit smooth SQP and establish its global
convergence to generalized KKT points under generalized constraint qualifications;
the analogs of the various results developed in section 5 are given here. Section 7
briefly gives concrete examples of smoothing functions from the literature.

A word about notation: For a locally Lipschitz real-valued function f and a
vector-valued locally Lipschitz function H, ∂f and ∂H denote the Clarke general-
ized subgradient and the Clarke generalized Jacobian, respectively; see [5]. For a
continuously differentiable real-valued function f and a vector-valued continuously
differentiable function H, we use ∇f and F ′ to indicate the gradient of f and the
Jacobian of H. If x1 and x2 are two vectors with the same dimension, then xT1 x2

denotes the inner products of these two vectors. By ‖ · ‖, we mean the Euclidean
norm. �n denotes the real Euclidean space of column vectors of length n; for u ∈ �n
and v ∈ �m, (u, v) denotes the column vector [uT vT ]T in �n+m.

2. Preliminaries on nonsmooth programming. Consider the nonsmooth
program (NSP):

min
u

f(u)

subject to g(u) ≥ 0,
h(u) = 0,

(5)

where f : �n → �, g : �n → �l, and h : �n → �m are locally Lipschitz.
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Definition 2.1. The point u∗ is said to be a generalized stationary point of
(5) if there exists a KKT multiplier vector (λg, λh) ∈ �l+m such that the following
generalized Karush–Kuhn–Tucker (GKKT) conditions hold:

∂f(u∗)− ∂g(u∗)Tλg + ∂h(u∗)Tλh � 0,
0 ≤ g(u∗) ⊥ λg ≥ 0,
h(u∗) = 0,

where ∂ denotes the Clarke generalized gradient for a scalar function and the Clarke
generalized Jacobian for a vector-valued function [5].

If f , g, and h happen to be smooth at u∗, then the GKKT conditions reduce to
the usual KKT condition:

∇f(u∗)− g′(u∗)Tλg + h′(u∗)Tλh = 0,
0 ≤ g(u∗) ⊥ λg ≥ 0,
h(u∗) = 0.

In this case, u∗ is called a stationary point or a KKT point of (5).
For convenience, we may assume that in the above NSP, the first l1 (l1 ≤ l)

inequality constraints are active and the rest are inactive at u∗, i.e.,

gi(u
∗) = 0, 1 ≤ i ≤ l1,

gi(u
∗) > 0, i > l1.

Let

G(u) =




g1(u)
...

gl1(u)
h1(u)
...

hm(u)




.

Associated with the above NSP, we recall some well-known regularity conditions under
which a local solution is a generalized stationary point [16].

Generalized Linear Independence Constraint Qualification (GLICQ). Each ele-
ment of the generalized Jacobian ∂G(u∗) [5] has full row rank.

Generalized Mangasarian–Fromovitz Constraint Qualification (GMFCQ). (i) there
exists d ∈ �n such that for all elements (A1, . . . , Al1 , B1, . . . , Bm) ∈ ∂G(u∗),

ATi d > 0 for i = 1, . . . , l1,
BTj d = 0 for j = 1, . . . ,m;

(ii) for any element of (A1, . . . , Al1 , B1, . . . , Bm) ∈ ∂G(u∗), (B1, . . . , Bm) has full
row rank.

Generalized Constant Rank Constraint Qualification (GCRCQ). There is a neigh-
borhood of u∗ such that for any u in this neighborhood, the rank of each element of
the generalized Jacobian ∂G(u) is invariant.

We mention that the above three constraint qualifications are slightly stronger
than those given in [16] to keep notation simple. When (5) is defined by smooth
(continuously differentiable) functions, the GLICQ and GMFCQ reduce to the clas-
sical LICQ and MFCQ (see [28, 31]); and, as in the smooth case, the GLICQ implies
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the GMFCQ. However, the CRCQ usually used in the smooth case [17] is stronger
than the smooth version of the GCRCQ in that the former requires constant rank of
submatrices of rows of the Jacobian G′(u) for u near u∗. (We mention an example
to distinguish these two CRCQs: let g(u1, u2) = (u1 + u2, (u1 + u2)

2) and observe
that the rank of g′(u1, u2) is always 1, whereas the rank of g′2(u1, u2) is either 0 if
(u1, u2) = (0, 0), or 1 otherwise.)

Under these generalized CQs, Hiriart-Urruty [16] proved the optimality conditions
in the following proposition. These optimality conditions also hold under the next
assumption.

Piecewise Affine Constraint Condition (PACC). Both g and h are piecewise affine.
See [40, section 2.1] for discussion of generalized stationarity which includes the PACC.

Proposition 2.2. Suppose u∗ is a local minimizer of the nonsmooth program
(5) and one of the GCRCQ, GLICQ, GMFCQ, or PACC holds at u∗. Then u∗ is
a generalized stationary point of (5). Furthermore, if f , g, and h are smooth at u∗,
then u∗ is a stationary point or a KKT point of (5).

3. Equivalent reformulations of MPECs. As explained in section 1, the
smooth nonlinear programming reformulation of the MPEC (1) is numerically ill
posed. The strategy we use in this article is to approximate the MPEC by well-
behaved nonlinear programming problems (NLP). To this end, we introduce a class of
smoothing functions on which some properties are imposed as we proceed. Suppose
the function ψ : �3 → � satisfies the following assumptions:

(A1) ψ is locally Lipschitz and directionally differentiable on �3, and ψ is contin-
uously differentiable at every point (a, b, c) with c �= 0.

(A2) ψ(a, b, 0) = 0 if and only if a ≥ 0, b ≥ 0, ab = 0.
Section 7 contains standard examples, all of which satisfy the assumptions (A1)–

(A2) and the assumptions (A3)–(A5) to be introduced in what follows.
Let φ : �2 → � and the parametric function φc : �2 → � be defined for any

(a, b) ∈ �2 and c ∈ � by

φ(a, b) = ψ(a, b, 0)

and

φc(a, b) = ψ(a, b, c).

Clearly, φ0 ≡ φ. By means of the functions φ and ψ, we define two nonsmooth
programs:

min
x,y,w

f(x, y)

subject to g(x, y) ≥ 0,
F (x, y)− w = 0,
φ(yi, wi) = 0, i = 1, . . . ,m,

(6)

and

min
x,y,w,µ

f(x, y)

subject to g(x, y) ≥ 0,
F (x, y)− w = 0,
ψ(yi, wi, µ) = 0, i = 1, . . . ,m,
eµ − 1 = 0.

(7)
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It is easy to see that (6) and (7) are (2) and (3), respectively, with

Ψ(y, w, µ) =




ψ(y1, w1, µ)
...

ψ(ym, wm, µ)




and

Φ(y, w) =




φ(y1, w1)
...

φ(ym, wm)


 = Ψ(y, w, 0).

Since differentiability of φ and ψ is not assumed at (a, b) and (a, b, c), respectively, (6)
and (7) are nonsmooth programs in general. On the other hand, by the assumption
(A1), when µ �= 0, the functions involved in (7) are smooth at (x, y, w, µ), which is a
nice property to be used in the subsequent analysis. Next we give some relationships
between the MPEC (1) and the nonsmooth programs (6) and (7).

Proposition 3.1. Under the assumptions (A1) and (A2), the following state-
ments are equivalent.

(i) (x, y) is a feasible point (local solution, global solution) of (1).
(ii) (x, y, w) with w = F (x, y) is a feasible point (local solution, global solution)

of (6).
(iii) (x, y, w, µ) with w = F (x, y) and µ = 0 is a feasible point (local solution,

global solution) of (7).

Proof. Given that eµ − 1 = 0 has a unique solution µ = 0 and the assumption
(A2) is satisfied, it is clear that all three statements are equivalent regarding feasible
points. The equivalence with respect to local solutions or global solutions is an obvious
consequence.

Since f , g, and F are smooth, it can be shown, by Proposition 2.3.3 of [5] and
its Corollary 1, that (x∗, y∗, w∗) is a generalized stationary point of (6) if and only
if there exists a KKT multiplier vector (λg, λF , λΦ) ∈ �l+2m such that the following
GKKT conditions hold:

( ∇f(x∗, y∗)
0

)
−
(

g′(x∗, y∗)T

0

)
λg +

(
F ′(x∗, y∗)T

−I

)
λF

+

(
0

∂Φ(y∗, w∗)

)
λΦ � 0,

0 ≤ g(x∗, y∗) ⊥ λg ≥ 0,
F (x∗, y∗)− w∗ = 0,
Φ(y∗, w∗) = 0,

(8)

where 0 denotes appropriate zero vectors or matrices and I ∈ �m×m is the identity
matrix. Similarly, (x∗, y∗, w∗, µ∗) is a generalized stationary point of (7) if and only
if there exists a KKT multiplier vector (λg, λF , λΨ, λµ) ∈ �l+2m+1 such that the
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following GKKT conditions hold:

( ∇f(x∗, y∗)
0

)
−
(

g′(x∗, y∗)T

0

)
λg +


 F ′(x∗, y∗)T

−I
0


λF

+

(
0

∂Ψ(y∗, w∗, µ∗)

)
λΨ +

(
0

eµ
∗

)
λµ � 0,

0 ≤ g(x∗, y∗) ⊥ λg ≥ 0,
F (x∗, y∗)− w∗ = 0,
Ψ(y∗, w∗, µ∗) = 0,

eµ
∗ − 1 = 0.

(9)

Note in (9) that µ∗ = 0.
The assumption (A1) ensures the inclusion

Πab∂ψ(a, b, 0) ⊇ ∂φ(a, b)

for any (a, b) ∈ �2, where Πab denotes the projection operator on �3: Πab(α, β, 0) =
(α, β); see Proposition 2.3.16 in [5]. We introduce another assumption to ensure that
these sets are in fact identical.

(A3) Πab∂ψ(a, b, 0) = ∂φ(a, b) for any (a, b) ∈ �2, where φ(a, b) is defined as
ψ(a, b, 0).

A direct consequence of the assumption (A3) is that

Πab∂Ψ(y, w, 0) = ∂Φ(y, w) ∀(y, w) ∈ �2m.

Proposition 3.2. Under the assumptions (A1)–(A2), if (x∗, y∗, w∗) is a general-
ized stationary point of (6), then (x∗, y∗, w∗, 0) is a generalized stationary point of (7).
Conversely, if (A3) holds as well as (A1)–(A2), and if (x∗, y∗, w∗, 0) is a generalized
stationary point of (7), then (x∗, y∗, w∗) is a generalized stationary point of (6).

Proof. Suppose (x∗, y∗, w∗) is a generalized stationary point of (6); then there
exists a KKT multiplier vector (λg, λF , λΦ) such that (8) holds. Let λµ be an element
of −∂µΨ(y

∗, w∗, µ∗)λΦ with µ∗ = 0. It follows from the remark before the assumption
(A3) that (λg, λF , λΦ, λµ) is a KKT multiplier satisfying (9); i.e., (x∗, y∗, w∗, 0) is
a generalized stationary point of (7). Conversely, if (x∗, y∗, w∗, 0) is a generalized
stationary point of (7), it is easy to see from the assumption (A3) and the GKKT
conditions (8) and (9) that (x∗, y∗, w∗) is a generalized stationary point of (6).

By Propositions 3.1 and 3.2, (6) and (7) are completely equivalent in the sense
that global solutions, local solutions, generalized stationary points, and feasible points
correspond to one another. However, it is not yet clear what relationships the opti-
mality condition of the MPEC (1) and the nonlinear programming problems (6) and
(7) have.

Let z∗ = (x∗, y∗) be a feasible point of the MPEC (1). Let F be the feasible set
of (1), i.e.,

F = {z = (x, y) : g(z) ≥ 0, 0 ≤ F (z) ⊥ y ≥ 0}.
Denote by T (z∗,F) the tangent cone to F at z∗: T (z∗,F) is the set of limit points
of sequences { zk−z∗τk

}, where {zk} ⊆ F converges to z∗ and τk ↓ 0.
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Definition 3.3. A point z∗ ∈ F is said to be a primal stationary [28] or B-
stationary [40] point of the MPEC (1) if the following condition holds:

∇f(z∗)T d ≥ 0 ∀d ∈ T (z∗,F).

A decomposition or disjunction technique was very useful in establishing optimal-
ity conditions for MPECs in [28]. For any feasible point z∗ ∈ F , define

α(z∗) = {1 ≤ i ≤ m : Fi(z
∗) = 0 < y∗i },

β(z∗) = {1 ≤ i ≤ m : Fi(z
∗) = 0 = y∗i },

γ(z∗) = {1 ≤ i ≤ m : Fi(z
∗) > 0 = y∗i },

(10)

and the family of index sets

A(z∗) = {(J ,K) : J ⊇ α(z∗), K ⊇ γ(z∗), J ∩ K = ∅, J ∪ K = {1, 2, . . . ,m}}.

For each partition J ∪ K of {i : 1 ≤ i ≤ m}, let

F(J ,K) = {z : g(z) ≥ 0,
Fi(z) = 0 ≤ yi ∀i ∈ J ,
Fi(z) ≥ 0 = yi ∀i ∈ K }.

Using the family of sets {F(J ,K) : (J ,K) ∈ A(z∗)}, the feasible set F of (1) can be
locally decomposed at any feasible point z∗ ∈ F , and hence stationarity conditions
for (1) defined in [28] can be characterized in terms of traditional nonlinear programs
associated with each F(J ,K), which has the form of a standard nonlinear programming
feasible region. The disjunctive approach can be carried over to constraint stability.

Piecewise Constraint Qualification at a Point z∗ ∈ F . For each (J ,K) ∈ A(z∗),
the above representation of F(J ,K) satisfies a standard smooth constraint qualification
at z∗ (for example, the MFCQ, LICQ, or CRCQ).

We now state a disjunctive first-order optimality condition studied in [28], where it
was called “primal-dual stationarity”; we call it “piecewise stationarity” to distinguish
it from generalized stationarity, which also has a primal-dual flavor.

Definition 3.4. A point z∗ = (x∗, y∗) is a piecewise stationary point of the
MPEC (1) if it is feasible and, for each (J ,K) ∈ A(z∗), there exist KKT multipliers
ξ ∈ �l, η ∈ �m, and π ∈ �m such that

∇xf(x∗, y∗)− g′x(x
∗, y∗)T ξ − F ′

x(x
∗, y∗)T η = 0,

∇yf(x∗, y∗)− g′y(x
∗, y∗)T ξ − F ′

y(x
∗, y∗)T η − π = 0,

0 ≤ g(x∗, y∗) ⊥ ξ ≥ 0,
Fi(x

∗, y∗) = 0, 0 ≤ y∗i ⊥ πi ≥ 0 ∀i ∈ J ,
0 ≤ Fi(x

∗, y∗) ⊥ ηi ≥ 0, y∗i = 0 ∀i ∈ K.

(11)

The next result is essentially due to [28].
Proposition 3.5. Let z∗ = (x∗, y∗). If z∗ is a piecewise stationary point of the

MPEC (1), then it is primal stationary for (1). Conversely, if z∗ is primal station-
ary for (1) and a piecewise constraint qualification holds at z∗, then z∗ is piecewise
stationary for (1).

The idea of strict complementarity of a solution of a complementarity problem is
adapted to nonfeasible points of the MPEC (1).
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Definition 3.6. A point (x, y) ∈ �n+m is said to be lower-level nondegenerate
if yi �= Fi(x, y) for i = 1, . . . ,m. A point (x, y, w) ∈ �n+2m is said to be lower-level
nondegenerate if yi �= wi for i = 1, . . . ,m.

Suppose z∗ = (x∗, y∗) is feasible for the MPEC (1). Then lower-level nonde-
generacy of (x∗, y∗) is equivalent to the strict complementarity condition: for any i
(1 ≤ i ≤ m), either y∗i > 0 = Fi(x

∗, y∗) or y∗i = 0 < Fi(x
∗, y∗). Lower-level non-

degeneracy of (x∗, y∗) is also equivalent to lower-level nondegeneracy of (x∗, y∗, w∗)
with w∗ = F (x∗, y∗) and to the family of index sets A(z∗) reducing to a singleton,
i.e., A(z∗) = {(α(z∗), γ(z∗))}. If the function Φ is continuously differentiable at such a
feasible lower-level nondegenerate point (x∗, y∗, w∗), then piecewise stationarity of (6)
at (x∗, y∗, w∗) coincides with the classical KKT conditions.

The next result shows that stationarity conditions on the MPECs (1), (6), and (7)
coincide at lower-level nondegenerate points. To this end, we impose another condition
on the function ψ.

(A4) If ψ(a, b, 0) = 0 and (p, q, r) ∈ ∂ψ(a, b, 0), then

p2 + q2 > 0, pq ≥ 0,

and

p = 0, q �= 0 if a > 0,
p �= 0, q = 0 if b > 0.

Proposition 3.7. Suppose (x∗, y∗) is a lower-level nondegenerate feasible point
of the MPEC (1). Assume that the assumptions (A1)–(A4) are satisfied. Then the
following statements are equivalent.

(i) (x∗, y∗) is a piecewise stationary point of the MPEC (1).
(ii) (x∗, y∗, w∗) is a (generalized) stationary point of (6), where w∗ = F (x∗, y∗).
(iii) (x∗, y∗, w∗, µ∗) is a (generalized) stationary point of (7), where w∗ = F (x∗, y∗),

µ∗ = 0.
Proof. (i) =⇒ (ii). Let J = α(z∗) and K = γ(z∗). (J ,K) is the unique element

of A(z∗) since β(z∗) = ∅. It follows that there exist multipliers ξ ∈ �l, η ∈ �m, and
π ∈ �p such that (11) holds.

Let λg = ξ, λF = −η. We now define a vector λΦ. For i ∈ J = α(z∗) and
(Ai, Bi) ∈ ∂φ(y∗i , w

∗
i ), the assumption (A4) implies that Ai = 0, Bi �= 0. Therefore,

(λΦ)i =
(λF )i
Bi

is well defined for any i ∈ α(z∗). Similarly, (λΦ)i =
(−π)i
Ai

is well defined
with (Ai, Bi) ∈ ∂φ(y∗i , w

∗
i ) for any i ∈ γ(z∗) by the assumption (A4).

By the assumption (A4), it is easy to verify that (λg, λF , λΦ) is a KKT multiplier
such that the GKKT conditions (8) hold, i.e., such that (x∗, y∗, w∗) is a generalized
stationary point of (6).

(ii) =⇒ (i). Suppose there exists a KKT multiplier (λg, λF , λΦ) ∈ �l+2m such
that (8) holds at (x∗, y∗, w∗). Let(

A
B

)
∈ ∂Φ(y∗, w∗).

Clearly A = diag(A1, . . . , An) and B = diag(B1, . . . , Bn) are diagonal matrices. Since
z∗ = (x∗, y∗) is lower-level nondegenerate, y∗i �= w∗

i for i = 1, . . . ,m and β(z∗) = ∅.
By the assumptions (A3) and (A4), Ai = 0 for i ∈ α(z∗) and Bi = 0 for i ∈ γ(z∗).
Moreover, it can be shown from (8) that −λF + BλΦ = 0, i.e., λF = BλΦ. Let
ξ = λg, η = −λF = −BλΦ, and π = −AλΦ. We immediately obtain that (ξ, η, π) is



SMOOTH SQP METHODS FOR MPECs 789

a KKT multiplier such that (11) holds for the given (J ,K) such that J = α(z∗) and
K = γ(z∗). Since z∗ is a lower-level nondegenerate feasible point, (J ,K) is the only
element in A(z∗). This proves that (i) holds.

The desired results follow from Proposition 3.2.
We next study the relationship between the piecewise stationary point and the

generalized stationary point of (6) or (7) under the assumptions (A1)–(A3).
Suppose (x∗, y∗) is a piecewise stationary point of the MPEC (1). It turns out

that (dx, dy) = 0 ∈ �n+m is a local solution of the MPEC

min
dx,dy

∇f(x∗, y∗)T (dx, dy)

subject to g′(x∗, y∗)(dx, dy) + g(x∗, y∗) ≥ 0,
0 ≤ y∗ + dy ⊥ F (x∗, y∗) + F ′(x∗, y∗)(dx, dy) ≥ 0,

or that (dx, dy, dw) = 0 ∈ �n+2m is a local solution of the MPEC

min
dx,dy,dw

∇f(x∗, y∗)T (dx, dy)

subject to g′(x∗, y∗)(dx, dy) + g(x∗, y∗) ≥ 0,
F (x∗, y∗) + F ′(x∗, y∗)(dx, dy)− (w∗ + dw) = 0,
0 ≤ y∗ + dy ⊥ w∗ + dw ≥ 0,

or, by Proposition 3.2, that (dx, dy, dw) = 0 ∈ �n+2m is a local solution of the
nonsmooth program

min
dx,dy,dw

∇f(x∗, y∗)T (dx, dy)

subject to g′(x∗, y∗)(dx, dy) + g(x∗, y∗) ≥ 0,
F (x∗, y∗) + F ′(x∗, y∗)(dx, dy)− (w∗ + dw) = 0,
Φ(y∗ + dy, w∗ + dw) = 0.

(12)

Then, under the GLICQ or GMFCQ at 0 on the last nonsmooth problem (12), which
is equivalent to the GLICQ or GMFCQ at (x∗, y∗, w∗) on the problem (6), we have
that 0 ∈ �n+2m is a generalized stationary point of (12), which is equivalent to saying
that (x∗, y∗, w∗) is a generalized stationary point of (6). Similarly, if the PACC holds
for (6), so that g, F , and φ are affine functions, then piecewise stationarity of (1)
implies generalized stationarity.

The following result summarizes the above discussion.
Proposition 3.8. Suppose the assumptions (A1)–(A3) hold. Suppose (x∗, y∗) is

a piecewise stationary point of the MPEC (1). Assume that the GLICQ, GMFCQ,
or PACC is satisfied at (x∗, y∗, w∗) with w∗ = F (x∗, y∗) for the problem (6). Then
(x∗, y∗, w∗) is a generalized stationary point of the problem (6) and (x∗, y∗, w∗, µ∗)
with µ∗ = 0 is a generalized stationary point of the problem (7).

Remark. The PACC applies in particular when g and F are affine and φ(a, b) =
min{a, b}; see also section 7.

We point out that the converse of the above proposition does not hold in general.
This can be demonstrated by the following example, which also shows that the defini-
tion of generalized stationary points is much weaker than that of piecewise stationary
points.

Example 3.1. Consider the following MPEC:

min
x,y

0.5x2 + 0.5y2 + x− y

subject to 0 ≤ (y − x) ⊥ y ≥ 0.
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This MPEC has a unique piecewise stationary point (−1, 0). Let

ψ(a, b, c) =
√

a2 + b2 + c2 − (a+ b)

and φ(a, b) = ψ(a, b, 0), which is the Fischer–Burmeister functional [9]; see also sec-
tion 7. Clearly, ψ and φ satisfy the assumptions (A1)–(A4). However, (0, 0, 0) is a
generalized stationary point of the problem (6). Note that the feasible point (0, 0) of
this MPEC is lower-level degenerate (strict complementarity fails).

4. Constraint qualifications for MPECs. For a given feasible point z∗ =
(x∗, y∗) of the MPEC (1), let α, β, and γ be the respective index sets α(z∗), β(x∗),
and γ(z∗) defined in (10). The MPEC is said to be R-regular in y at the feasible
point (x∗, y∗) if the submatrix F ′

y(x
∗, y∗)αα of F ′

y(x
∗, y∗) is nonsingular and the Schur

complement

F ′
y(x

∗, y∗)ββ − F ′
y(x

∗, y∗)βαF ′
y(x

∗, y∗)−1
ααF

′
y(x

∗, y∗)αβ

is a P -matrix.
Consider the constraint mapping

H(x, y, w, µ) =




g(x, y)
F (x, y)− w
Ψ(y, w, µ)
eµ − 1


(13)

associated with (7). Let V be an element of the generalized Jacobian of this mapping
at (x∗, y∗, w∗, µ∗) with µ∗ = 0:

V =




g′x(x
∗, y∗) g′y(x

∗, y∗) 0 0
F ′
x(x

∗, y∗) F ′
y(x

∗, y∗) −I 0
0 A B C
0 0 0 1


 ,

where (A,B,C) ∈ ∂Ψ(y∗, w∗, µ∗) and A and B are appropriate diagonal matrices.
Then the submatrix V̄ of V corresponding to the equilibrium constraints (i.e., the
equality constraint functions F (x, y) − w, Ψ(y, w, µ), and eµ − 1) is of the following
form:

V̄ =


 F ′

x(x
∗, y∗) F ′

y(x
∗, y∗) −I 0

0 A B C
0 0 0 1


 .(14)

Clearly, the matrix V has full row rank if the following matrix is nonsingular:

U =

(
F ′
y(x

∗, y∗) −I
A B

)
.(15)

The following lemma and proposition can be proved in a standard way in the
literature of nonlinear complementarity problems. See, for example, [42, Proposition
2.1] and also [10, Theorem 9].

Lemma 4.1. Suppose for M,N,E ∈ �m×m, M and N are diagonal matrices such
that MN is positive semidefinite, M2 +N2 is positive definite, and E is a P -matrix.
Then M +NE is nonsingular.
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Proposition 4.2. Suppose the MPEC (1) is R-regular in y at a feasible point
(x∗, y∗) of the MPEC (1). Then under the assumptions (A1)–(A4), the matrix U
defined in (15) is nonsingular.

We now study generalized constraint qualifications for the problems (6) and (7) (or
(2) and (3), respectively) at the feasible point (x∗, y∗, w∗) and (x∗, y∗, w∗, µ∗) under
R-regularity, respectively. Recall that V ∈ ∂H(x∗, y∗, w∗, µ∗). By Proposition 4.2, an
equivalent reduction of the matrix V is the following matrix (reduction of a matrix
under nonsingular transformation):


g′x(x

∗, y∗)− g′y(x
∗, y∗)(U−1)yyF

′
x(x

∗, y∗) 0 0 0
F ′
x(x

∗, y∗) F ′
y(x

∗, y∗) −I 0
0 A B C
0 0 0 1


 ,

where A,B,C, and U are defined in (14) and (15) and (U−1)yy is a submatrix of the
matrix U−1,

U−1 =

(
(U−1)yy (U−1)yw
(U−1)wy (U−1)ww

)
.

By this observation, the following results can easily be verified.
Proposition 4.3. Suppose (x∗, y∗) is a feasible point of the MPEC (1), the

MPEC is R-regular at this point, and the assumptions (A1)–(A4) are satisfied. Let
w∗ = F (x∗, y∗) and µ∗ = 0 and define Ig = {i : gi(x

∗, y∗) = 0} and

Γ = g′x(x
∗, y∗)− g′y(x

∗, y∗)(U−1)yyF
′
x(x

∗, y∗).

Then the following conclusions hold.
(i) The GCRCQ holds for (6) at (x∗, y∗, w∗) and for (7) at (x∗, y∗, w∗, µ∗) if

the row submatrix ΓIg
corresponding to the active indexes of g at (x∗, y∗)

for any U defined in (15) has constant rank around (x∗, y∗). In particular,
the GCRCQ holds for (6) at (x∗, y∗, w∗) and for (7) at (x∗, y∗, w∗, µ∗) if
g(x, y) = g(x) and the matrix g′(x∗)Ig has constant rank around x∗.

(ii) The GLICQ holds for (6) at (x∗, y∗, w∗) and for (7) at (x∗, y∗, w∗, µ∗) if the
row submatrix ΓIg

for any U defined in (15) has full row rank. In particu-
lar, the GLICQ holds for (6) at (x∗, y∗, w∗) and for (7) at (x∗, y∗, w∗, µ∗) if
g(x, y) = g(x) and the matrix g′(x∗)Ig has full row rank.

(iii) The GMFCQ holds for (6) at (x∗, y∗, w∗) and for (7) at (x∗, y∗, w∗, µ∗) if
there exists a vector d ∈ �n such that for any U defined in (15)

ΓIgd > 0.

In particular, the GMFCQ holds for (6) at (x∗, y∗, w∗) and it holds for (7) at
(x∗, y∗, w∗, µ∗) if g(x, y) = g(x), and there exists a vector d ∈ �n such that

(gi)
′(x∗)d > 0 for i ∈ Ig.

5. Implicit smooth SQP.

5.1. Background and the algorithm. By the assumption (A1), the non-
smooth programming problem (7) (or (3)) is smooth for any µ �= 0. This important
feature allows us to use traditional nonlinear programming approaches such as SQP
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methods for solving MPECs. To this end, we introduce a quadratic program (QP)
that approximates (7). For any given (x, y, w, µ) with µ �= 0 and d = (dx, dy, dw, dµ),

min
d∈
n+2m+1

∇f(x, y)T
(

dx
dy

)
+ 1

2d
TWd

subject to g′(x, y)
(

dx
dy

)
+ g(x, y) ≥ 0,

F ′(x, y)
(

dx
dy

)
− dw + (F (x, y)− w) = 0,

Ady +Bdw + Cdµ+Ψ(y, w, µ) = 0,
eµdµ+ eµ − 1 = 0,

(16)

where {(A,B,C)} = ∂Ψ(x, y, µ), which is singleton by the assumption (A1) since
µ �= 0. An exact penalty merit function of (7) is defined by

θρ(x, y, w, µ) = f(x, y) + ρ

[
l∑
i=1

max{−gi(x, y), 0}

+

m∑
j=1

(|Fj(x, y)− wj |+ |ψ(yj , wj , µ)|) + |eµ − 1|
]
,

where ρ is a positive number. If two penalty parameters are used, then we may define
another penalty function

Θ(ρg,ρNCP)(x, y, w, µ) = f(x, y) + ρg
l∑
i=1

max{−gi(x, y), 0}

+ ρNCP


 m∑
j=1

(|Fj(x, y)− wj |+ |ψ(yj , wj , µ)|) + |eµ − 1|

 ,

where ρg and ρNCP are two positive numbers. When ρg = ρNCP = ρ, Θ(ρg,ρNCP)

reduces to the penalty function θρ. It is easy to see that Θ(ρg,ρNCP) is not differentiable
in general but directionally differentiable if ψ is directionally differentiable.

If the QP (16) has a solution d, then its KKT condition can be written as follows:

∇xf
∇yf
0
0


+Wd−




g′x(x, y)
T

g′y(x, y)
T

0
0


λg +




F ′
x(x, y)

T

F ′
y(x, y)

T

−I
0


λF

+




0
AT

BT

CT


λΨ +




0
0
0
eµ


λµ = 0,

0 ≤ g′(x, y)(dx, dy) + g(x, y) ⊥ λg ≥ 0,
F ′(x, y)(dx, dy)− dw + (F (x, y)− w) = 0,
Ady +Bdw + Cdµ+Ψ(y, w, µ) = 0,
eµdµ+ eµ − 1 = 0,

(17)

where (λg, λF , λΨ, λξ) is the corresponding KKT multiplier.
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The existence of solutions to quadratic programs generated in traditional SQP
methods plays a critical role. In particular, SQP fails if one of the associated quadratic
programs is infeasible. In order to overcome QP infeasibility, some modifications have
been introduced; see [1, 2]. Our strategy below is similar to that proposed in [1, 2]
but with several notable differences. A modified quadratic program of (16) is defined
as follows:

min
d∈
n+2m+1,ξ∈
l

∇f(x, y)T (dx, dy) +
1

2
dTWd+ ρ

l∑
i=1

ξi

subject to g′(x, y)(dx, dy) + g(x, y) ≥ −ξ,
F ′(x, y)(dx, dy)− dw + (F (x, y)− w) = 0,
Ady +Bdw + Cdµ+Ψ(y, w, µ) = 0,
eµdµ+ eµ − 1 = 0,
ξ ≥ 0,

(18)

where ρ is a positive penalty parameter. Note that if the constraint submatrix U
given in (15) is invertible, then the second, third, and fourth block-rows of constraints
can be solved for (dy, dw, dµ) in terms of dx. This means that by choice of ξ with
sufficiently large components, the QP (18) is a feasible problem, an observation which
is put to use in the next subsection to show that the modified SQP method is well
defined.

If the modified QP (18) has a solution (d, ξ), then its KKT condition is a modi-
fication of the KKT condition (17):


∇xf
∇yf
0
0


+Wd−




g′x(x, y)
T

g′y(x, y)
T

0
0


λg +




F ′
x(x, y)

T

F ′
y(x, y)

T

−I
0


λF

+




0
AT

BT

CT


λΨ +




0
0
0
eµ


λµ = 0,

ρ ẽ = λg + λξ,
0 ≤ g′(x, y)(dx, dy) + g(x, y) + ξ ⊥ λg ≥ 0,
F ′(x, y)(dx, dy)− dw + (F (x, y)− w) = 0,
Ady +Bdw + Cdµ+Ψ(y, w, µ) = 0,
eµdµ+ eµ − 1 = 0,
0 ≤ ξ ⊥ λξ ≥ 0,

(19)

where ẽ is the vector of all ones in �l and (λg, λF , λΨ, λµ, λξ) is the corresponding
KKT multiplier.

The inequality constraints are perturbed by introducing a vector of artificial vari-
ables ξ ∈ �l. This modification improves the prospect of the feasibility of the modified
QP (18). One may also relax the equality constraints in the QP (16) by introducing
further artificial variables. However, because of the special structure of the MPEC,
we do not change the equality constraints. As shall be seen later, the modified QP
(18) is always feasible under assumptions that are considered mild in the context of
nonlinear complementarity problems.
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Let u = (x, y, w, µ). We propose our first modified SQP method.
Algorithm: Implicit Smooth SQP.

Step 0. (Initialization) Let ρ−1 > 0, δ1 > 0, δ2 > 0, σ ∈ (0, 1), τ ∈ (0, 1). Choose
(x0, y0, w0, µ0) ∈ �n+2m+1 such that µ0 > 0, and a symmetric positive defi-
nite matrix W0 in �(n+2m+1)×(n+2m+1). Set k := 0.

Step 1. (Search direction) Solve the modified QP (18) with (x, y, w, µ) = (xk, yk,
wk, µk), W = Wk, and ρ = ρk−1. Let (d

k, ξk) be a solution of this modified
QP and λk = (λkg , λ

k
F , λ

k
Ψ, λkµ, λ

k
ξ ) be its corresponding multiplier.

Step 2. (Termination check) If a stopping rule is satisfied, terminate. Otherwise,
go to Step 3.

Step 3. (Penalty update) Let

ρ̃k =




ρk−1 if ρk−1 ≥ max
1≤i≤l+2m+1

|λki |,
δ1 + max

1≤i≤l+2m+1
|λki | otherwise.

Define ρgk = ρk−1, ρ
NCP
k = ρ̃k, and

ρk =




ρ̃k if
∑

1≤i≤l
ξki = 0,

ρ̃k + δ2 otherwise.

Step 4. (Line search) Let tk = (τ)ik , where ik is the smallest nonnegative integer
such that i = ik satisfies

Θ(ρg
k
,ρNCP

k
)(u
k + (τ)idk)−Θ(ρg

k
,ρNCP

k
)(u
k) ≤ −σ(τ)i(dk)TWkd

k.

Step 5. (Update) Let uk+1 = uk + tkd
k. Choose a symmetric positive definite

matrix Wk+1 ∈ �(n+2m+1)×(n+2m+1). Set k := k + 1. Go to Step 1.
Remarks.
(i) If the modified QP (18) is replaced by the QP (16) to generate the search

direction in the above algorithm, then our SQP method is very similar to
classical SQP methods for smooth nonlinear programming [15, 36]. The dif-
ference is that here we anticipate nonsmoothness of ψ. If, further, µ is treated
as a parameter rather than a variable, namely, if the last equation in (16) is
omitted at each iteration, then the above-modified SQP method begins to
look like the explicit smoothing SQP method proposed in Fukushima, Luo,
and Pang [12]. See section 6 for an explicit SQP method that has the conver-
gence properties of the explicit smoothing method of Facchinei, Jiang, and
Qi [8].

(ii) Since only inequality constraints are relaxed, we use the merit function
Θ(ρg,ρNCP), which has two (likely different) penalty parameters, unlike θρ used

in the classical SQP methods. The updates for ρ̃, ρg, and ρNCP are to ensure
that the solution of the modified QP (18) is a descent direction of the merit
function Θ(ρg,ρNCP). In the update of ρ, we increase it by a positive constant
δ2 in the case that

∑
ξi > 0 in an attempt to force a decrease in the feasibility

gap of the QP (16) at the next iteration.

5.2. QP subproblems and the penalty function.
Definition 5.1. F is said to be a P0-function with respect to y if for each x ∈ �n,

F (x, ·) is a P0-function; i.e., for any y, ȳ ∈ �m with y �= ȳ, there exists an index i
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such that yi �= ȳi and

(yi − ȳi)(Fi(x, y)− Fi(x, ȳ) ≥ 0.

We introduce a new condition on ψ to extend invertibility of the matrix U in (15)
to infeasible points.

(A5) For c �= 0, if (p, q, r) ∈ ∂ψ(a, b, c), then pq > 0.
Proposition 5.2. Suppose F is a P0-function with respect to y. If the assump-

tions (A1)–(A5) hold, then the matrix given by (15),

U =

(
F ′
y(x, y) −I
A B

)
,

is nonsingular for any (x, y, w, µ) with µ �= 0, where (A,B,C) ∈ ∂Ψ(y, w, µ) =
{Ψ′(y, w, µ)}.

Proof. Since (A,B,C) ∈ ∂Ψ(y, w, µ), both A and B are diagonal matrices with
nonzero diagonal elements. It turns out that nonsingularity of the matrix U is equiv-
alent to nonsingularity of the matrix A + BF ′

y(x, y), or B−1A + F ′
y(x, y). Note that

B−1A is a diagonal positive definite matrix, and F ′
y(x, y) is a P0-matrix. Therefore,

nonsingularity of B−1A+ F ′
y(x, y) follows; see [6]. This completes the proof.

The following result concerns the feasibility of the quadratic programs (16) and
(18).

Proposition 5.3. Suppose F ′
y(x, y) is a P0-matrix, the assumptions (A1)–(A5)

hold, and µ �= 0. Let U be as defined in Proposition 5.2. Then
(i) The modified QP (18) is always feasible.
(ii) The QP (16) has a nonempty feasible set if and only if the following system

is consistent with respect to dx:

[g′x(x, y)− g′y(x, y)(U
−1)yyF

′
x(x, y)]dx

−g′y(x, y)[(U
−1)yy(F (x, y)− w) + (U−1)yw(Ψ(y, w, µ) + Cdµ)] + g(x, y) ≥ 0.

(iii) If d is a solution of (16) or (d, ξ) is a solution of (18), then

dµ = −eµ − 1

eµ

and (dy, dw) is uniquely determined by dx and dµ, i.e.,

(dy, dw) = U−1

( −F ′
x(x, y)dx− F (x, y) + w
−Ψ(y, w, µ)− Cdµ

)
.

The above proposition not only gives a characterization for nonemptiness of the
feasible set of (16), but also shows that a solution of (16) can be found by solving a
reduced QP in the variable x and a system of linear equations (a similar argument
also applies to the modified QP (18)). This fact can be computationally significant
as n is often much smaller than m.

The feasibility of the QP (16) is a serious issue in the context of MPECs. Fukushima
and Pang [13] discussed it from a different angle, namely, for mathematical programs
with linear complementarity constraints. We remark that the P0 property assumed
in our paper is not necessarily required in [13].

The following is a simple yet important consequence of the above proposition for
the case when there are no joint (upper-level) constraints on (x, y).
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Corollary 5.4. Suppose F ′
y(x, y) is a P0-matrix, (A1)–(A5) hold, and µ �= 0.

Assume that g(x, y) = g(x). Then (16) has a nonempty feasible set if and only if
g′(x)dx+ g(x) ≥ 0 is consistent with respect to dx.

The next result on dµ is proved in [18]. It basically says that {µk} is a positive
and monotonically decreasing sequence.

Lemma 5.5. Suppose (x, y, w, µ) ∈ �n+2m+1, µ > 0, and d = (dx, dy, dw, dµ)
solves the QP (16) or (d, ξ) solves the modified QP (18). Then dµ ∈ (−µ, 0) so that

µ+ tdµ ∈ (0, µ)

for any t ∈ (0, 1].
We now study some properties of the exact penalty function Θ(ρg,ρNCP). The

vector u∗ = (x∗, y∗, w∗, µ∗) is said to be a critical point of (or stationary for) the
penalty function Θ(ρg,ρNCP) for the given positive parameters ρg and ρNCP if for any
direction d ∈ �n+2m+1,

Θ′
(ρg,ρNCP)(u

∗; d) ≥ 0.

In the rest of this subsection, we collect some useful properties that shall be
used to improve global convergence of the (modified) implicit smooth SQP in the
next subsection. Since all functions are smooth when µ �= 0, these properties follow
directly from the nonlinear programming results presented in the appendix of the
manuscript of this paper [20]. Moreover, we are mainly concerned with the properties
associated with the modified QP.

Proposition 5.6. Let µ �= 0.
(i) For d ∈ �n+2m+1, Θ′

(ρg,ρNCP) is directionally differentiable at u along the

direction d and Θ′
(ρg,ρNCP)(x, y, w, µ; d) can be easily evaluated.

(ii) If (d, ξ) is a solution of the modified QP (18), ρg = ρ, and ρNCP ≥ max
1≤i≤l+2m+1

|λi|
with λ the KKT multiplier of the modified QP (18), then

Θ′
(ρg,ρNCP)(x, y, w, µ; d) ≤ ∇f(x, y)T (dx, dy)− (λg)

T g′(x, y)(dx, dy)
+(λF )

T (F ′(x, y)(dx, dy)− dw)
+(λΨ)

TΨ′(y, w, µ)(dy, dw, dµ) + λµe
µdµ

and

Θ′
(ρg,ρNCP)(x, y, w, µ; d) ≤ −dTWd.

Proof. When µ �= 0, g(x, , y), F (x, y)−w, Ψ(y, w, µ), and eµ−1 are all continuously
differentiable at (x, y, w, µ). Hence the results follow from [20, Proposition A.1] and
Lemma 5.5.

Proposition 5.7. Let u∗ = (x∗, y∗, w∗, µ∗) be given. Suppose the matrix W ∗ is
symmetric positive definite, F ′

y(x
∗, y∗) is a P0-matrix, and Ψ is smooth at (y

∗, w∗, µ∗).
(i) For given ρg > 0 and all large ρNCP > 0, u∗ is a critical point of Θ(ρg,ρNCP)

if and only if there exists (d, ξ) with d = 0 that is a solution of the modified
QP (18) with u = u∗, W = W ∗, and ρ = ρg.

(ii) If u∗ is a KKT point of (7) and λ is its KKT multiplier, then u∗ is a critical
point of Θ(ρg,ρNCP) with min{ρg, ρNCP) ≥ max1≤i≤l+2m+1 |λi|.

(iii) If u∗ is a critical point of Θ(ρg,ρNCP) for some ρg > 0 and all sufficiently large

ρNCP > 0, and u∗ is feasible for (7), then u∗ is a KKT point of (7).
Proof. The desired results can be proved from Proposition 5.3 of this paper and

Propositions A.3 and A.5 of [20].
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5.3. Global convergence under lower-level nondegeneracy.
Lemma 5.8. Suppose that (x, y, w, µ) ∈ �n+2m+1 with µ �= 0, and suppose that

W ∈ �(n+2m+1)×(n+2m+1) is symmetric positive definite. Suppose (d, ξ) is a solution
of the modified QP (18) and λ is its corresponding KKT multiplier. Then d is a
descent direction of the merit function Θ(ρg,ρNCP) if d �= 0, ρg = ρ, and ρNCP ≥
max1≤i≤l+2m+1 |λi|.

Proof. The lemma follows from the second inequality of (ii) in Proposition
5.6.

Lemma 5.8 shows that solving the modified QP (18) generates a descent direction
of the merit function Θ(ρg,ρNCP) for sufficiently large ρNCP when W is symmetric
positive definite and µ �= 0. Furthermore, the line search in Step 4 is well defined;
i.e., tk can be determined in finitely many steps. Therefore, the implicit smooth SQP
method is well defined when µ �= 0 and W is symmetric positive definite at each step.
Moreover, since the line search chooses the step size tk ∈ (0, 1), Lemma 5.5 can be
used to show that µk+1 > 0 if µk > 0; hence µk �= 0 for each k if µ0 > 0.

To present the global convergence of implicit smooth SQP, we assume the follow-
ing standard conditions.

(B1) There exist two positive numbers α < β such that each of the symmetric
matrices Wk used in implicit smooth SQP satisfies the following condition for all
vectors u of appropriate dimension:

α‖u‖2 ≤ uTWku ≤ β‖u‖2.
(B2) For all large k, ρk = ρ∗ > 0.
Under the assumption (B1) and the feasibility of the modified QP (18) at each

iteration, implicit smooth SQP is well defined. The assumption (B2) can be shown
to hold under some further conditions. As a consequence of the condition (B2), we
obtain that for all sufficiently large k,

ρgk = ρ∗, ρNCP
k = ρNCP

∗ , ξk = 0,

where ρNCP
∗ is a positive constant. We assume that implicit smooth SQP does not

terminate in Step 2. Let {uk} = {(xk, yk, wk, µk)} be generated by implicit smooth
SQP.

Lemma 5.9. Suppose (A1)–(A5) hold, (B1)–(B2) hold, and F is a P0-function
with respect to y. Suppose {uk} is the sequence generated by the algorithm, {(dk, ξk)}
is the sequence of solutions of the modified QP (18), and limk→∞,k∈K uk = u∗ for a
subset K ⊆ {1, 2, . . .}. Then the following conclusions hold.

(i) {dk}k∈K and {ξk}k∈K are bounded.
(ii) Assume Ψ is continuously differentiable near u∗. If d∗, ξ∗, and W ∗ are

accumulation points of the sequences {dk}k∈K , {ξk}k∈K , and {Wk}k∈K , re-
spectively, then (d∗, ξ∗) is a solution of the modified QP (18) with u = u∗,
W = W ∗, and ρ = ρ∗. Furthermore, Θ(ρ∗,ρNCP∗ ) is directionally differentiable
at u∗ and it holds that

Θ′
(ρ∗,ρNCP∗ )(u

∗; d∗) ≤ −(d∗)TW ∗d∗.

(iii) Assume the step size sequence {tk} determined by the Armijo line search
satisfies limk→∞,k∈K tk = 0. Under the smoothness assumption in (ii), we
have

lim sup
k→∞,k∈K

Θ(ρ∗,ρNCP∗ )(u
k + tkd

k)−Θ(ρ∗,ρNCP∗ )(u
k)

tk
≤ Θ′

(ρ∗,ρNCP∗ )(u
∗; d∗).
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Proof. Since g(x, y), F (x, y) − w, Ψ(y, w, µ), and eµ − 1 are smooth at u∗, the
desired results follows from Lemmas A.2 and A.3 of [20].

The condition (B2) may not hold in general. The following additional conditions
ensure that (B2) is satisfied, as shown below. Let H be the function representing the
equality constraints of (7), i.e., H(u) = (F (x, y)− w, Ψ(y, w, µ)) with u = (x, y, w, µ).

(B3) {uk} is bounded.
(B4) The generalized Jacobian ∂H(u∗) has full row rank at any accumulation

point u∗ of {uk}.
(B5) For any accumulation point u∗ of {uk} and any V ∈ ∂H(u∗), there exists

d = (dx, dy, dw, dµ) such that g′(x∗, y∗)(dx, dy) + g(x∗, y∗) > 0 and V d+H(u∗) = 0.

Note that the conditions (B4) and (B5) together are equivalent to the GMFCQ
if u∗ is a feasible point of (7).

We are now ready to establish global convergence of implicit smooth SQP under
the assumption that Ψ is smooth at the accumulation point. We remark that the
smoothness of Ψ at a limit point means that the problem has essentially (asymptoti-
cally) been reduced to smooth nonlinear programming.

Theorem 5.10. Suppose the assumptions (A1)–(A5) hold, the standing assump-
tion (B1) holds, and F is a P0-function with respect to y. Suppose µ0 > 0 and {uk}
is the sequence generated by the algorithm. We obtain the following conclusions.

(i) If (a) the condition (B2) holds, (b) u∗ is an accumulation point of {uk}, and
(c) Ψ is continuously differentiable at u∗, then u∗ is both a critical point of
Θ(ρ∗,ρNCP∗ ) and a (classical or primal or piecewise) stationary point of the
MPEC (7).

(ii) If conditions (B3), (B4), and (B5) hold, then so does (B2).

Proof. (i) Since Ψ is smooth at u∗, all results follow from Theorem A.1 of [20]
and from Proposition 3.7 of this paper.

(ii) This follows from Theorem A.2 in [20] but with some suitable modifica-
tions given that Ψ may be nonsmooth at some accumulation points of the sequence
{uk}.

Remark. In the above theorem, global convergence of implicit smooth SQP re-
quires smoothness of the function Ψ at u∗ = (x∗, y∗, w∗, µ∗). As shall be seen in
section 7, if φ is the Fischer–Burmeister function in Example 7.1, the min function in
Example 7.2, or the Kanzow–Kleinmichel function in Example 7.3, then the smooth-
ness condition on Ψ is satisfied at any lower-level nondegenerate point, i.e., Ψ is
smooth and is in fact twice continuously differentiable.

As already noted, lower-level nondegeneracy at a limit point u∗ often results in
smoothness of the function Ψ at this point, which means that we can apply classical
theory and obtain classical results. Hence superlinear convergence under the lower-
level nondegeneracy condition and the assumption that the stepsize takes the value
1 for all large k would be no surprise though our merit function Θ(ρg,ρNCP) has two
penalty parameters. The unit stepsize assumption is needed in nonlinear programming
due to the well-known Maratos effect, which can prevent superlinear convergence of
an SQP method that uses an exact penalty merit function unless a second-order
correction to the feasibility of the iterate is performed at each iteration. See [11, 36].

In order to study the rate of convergence of implicit smooth SQP, further condi-
tions such as the LICQ, the second-order sufficient condition, careful update rules of
the matrix sequence {Wk}, etc. are needed. We conjecture that superlinear conver-
gence results similar to those of [35, 36] can be obtained.
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6. Explicit smooth SQP. Global convergence of the implicit smooth SQP
method requires the lower-level nondegeneracy condition at an accumulation point.
This assumption is not unusual for convergence of algorithms for MPECs such as PIPA
[28] and also the explicit smoothing SQP method of Fukushima, Luo, and Pang [12],
but it is still rather strong in that it essentially reduces the problem to one of nonlinear
programming, which is not tenable in general.

As an alternative we propose an explicit smooth SQP algorithm for which global
convergence can be established without assuming lower-level nondegeneracy. This
method has a similar computational form to the SQP method of [12], although our
smoothing parameter update has to be carried out more carefully, like the original
smoothing method for MPECs of Facchinei, Jiang, and Qi [8]. Moreover, the method
given here weakens the assumptions needed in [8] as explained in remark (ii) following
Theorem 6.4.

Note that the term explicit refers to the fact that the smoothing parameter µ is
not treated as a variable in the QP subproblem at each iteration, nor is it updated
in the line search that determines the next iterate (xk+1, yk+1, wk+1). In our explicit
smooth SQP method, the smoothing parameter tends to be updated less often than
once per QP solve, unlike the implicit smooth SQP method of the previous section
and the explicit smoothing algorithm of [12].

Recall the definitions of φµ and Φµ from section 3. We approximate the MPEC
(1) by the nonlinear programming problem with µ �= 0,

min
x,y,w

f(x, y)

subject to g(x, y) ≥ 0,
F (x, y)− w = 0,
Φµ(y, w) = 0,

(20)

which is (4) with

Φµ(y, w) =




φµ(y1, w1)
...

φµ(ym, wm)


 = Ψ(y, w, µ).

Obviously, when µ = 0, the above problem reduces to (6). Therefore, our goal is
to find approximate solutions of (6) for each µ �= 0 and then locate a solution or a
generalized stationary point of (6) by driving µ to zero.

Similar to implicit smooth SQP, we want to find an approximate solution of (20)
by solving a sequence of quadratic programs. More precisely, for any given (x, y, w),
µ �= 0, and d = (dx, dy, dw), we define a modified quadratic program (which is a
modified quadratic model of (20) at (x, y) for the fixed µ �= 0 and ρ > 0) as follows:

min
d∈
n+2m,ξ∈
l

∇f(x, y)T (dx, dy) + 1
2d
TWd+ ρ

l∑
i=1

ξi

subject to g′(x, y)(dx, dy) + g(x, y) ≥ −ξ,
F ′(x, y)(dx, dy)− dw + (F (x, y)− w) = 0,
Ady +Bdw +Φµ(y, w) = 0,
ξ ≥ 0,

(21)

where [A B] = Φ′
µ(x, y) and the matrix W ∈ �(n+2m)×(n+2m) is symmetric positive

definite.
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If the modified QP (21) has a solution (d, ξ), then its KKT condition has the
following form:
 ∇xf
∇yf
0


+Wd−


 g′x(x, y)

T

g′y(x, y)
T

0


λg +


 F ′

x(x, y)
T

F ′
y(x, y)

T

−I


λF +


 0

AT

BT


λΦµ = 0,

ρ ẽ = λg + λξ,
0 ≤ g′(x, y)(dx, dy) + g(x, y) + ξ ⊥ λg ≥ 0,
F ′(x, y)(dx, dy)− dw + (F (x, y)− w) = 0,
Ady +Bdw +Φµ(y, w) = 0,
0 ≤ ξ ⊥ λξ ≥ 0,
(22)
where ẽ is the vector of all ones in �l.

We can immediately write down a quadratic model of (20) without the artificial
variable ξ:

min
d∈
n+2m,ξ∈
l

∇f(x, y)T (dx, dy) + 1
2d
TWd

subject to g′(x, y)(dx, dy) + g(x, y) ≥ 0,
F ′(x, y)(dx, dy)− dw + (F (x, y)− w) = 0,
Ady +Bdw +Φµ(y, w) = 0.

(23)

A penalty merit function of (20) is defined by

Θ(ρg,ρNCP,µ)(x, y, w)

= f(x, y) + ρg
l∑
i=1

max{−gi(x, y), 0}+ ρNCP
m∑
j=1

[(|Fj(x, y)− wj |+ |φµ(yj , wj)|)] ,

where ρg and ρNCP are positive numbers.
Before presenting our second method, we give a result for the case µ �= 0, when

the problem (20) is a smooth NLP that is parallel to Proposition 4.3, which deals
with the case µ = 0. This result will not be used directly in the proof of convergence
of the explicit smooth SQP method but gives some idea of when the constraints of
the nonlinear problem (20) are numerically stable.

Proposition 6.1. Suppose (x, y, w) is a feasible point of (20) with µ �= 0, F is a
P0-function with respect to y, and the assumptions (A1)–(A2) and (A5) are satisfied.
Define Ig = {i : gi(x, y) = 0},

Γ = g′x(x, y)− g′y(x, y)(U
−1)yyF

′
x(x, y),

U =

(
F ′
y(x, y) −I
A B

)
, [A B] = Φ′

µ(y, w).

Then the following conclusions hold.
(i) The CRCQ holds for (20) at (x, y, w) if the row submatrix ΓIg corresponding

to the active indexes of g at (x, y) has a constant rank around (x, y, w). In
particular, the CRCQ holds for (20) at (x, y, w) if g(x, y) = g(x) and if the
matrix g′(x)Ig has constant rank around x.

(ii) The LICQ holds for (20) at (x, y, w) if the row submatrix ΓIg
has full row

rank. In particular, the LICQ holds for (20) at (x, y, w) if g(x, y) = g(x) and
if the row submatrix g′(x)Ig has full row rank.
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(iii) The MFCQ holds for (20) at (x, y, w) if there exists a vector d ∈ �n such that
ΓIgd > 0.

In particular, the MFCQ holds for (20) at (x, y, w) if g(x, y) = g(x) and there
exists a vector d ∈ �n such that

g′i(x)d > 0 for i ∈ Ig.
Unlike in section 3, in this section we let u = (x, y, w) and d = (dx, dy, dw)

because µ is regarded as a parameter but not a variable. For the same reason, we use
the subscript k, i.e., µk, to denote the value of the parameter µ at the kth iteration.

Algorithm: Explicit Smooth SQP.
Step 0. (Initialization) Let ρ−1 > 0, δ1 > 0, δ2 > 0, βµ ∈ (0, 1), βε ∈ (0, 1),

σ ∈ (0, 1), τ ∈ (0, 1). Choose u0 = (x0, y0, w0) ∈ �n+2m, and choose µ0 > 0,
ε0 > 0, and a symmetric positive definite matrix W0 ∈ �(n+2m)×(n+2m). Set
k := 0.

Step 1. (Search direction) Solve the modified QP (21) with (x, y, w) = (xk, yk, wk),
µ = µk, W = Wk, and ρ = ρk−1. Let (dk, ξk) be a solution of this QP and
λk = (λg, λF , λΦ, λξ) be its corresponding KKT multiplier.

Step 2. (Termination check) If a stopping rule is satisfied, terminate. Otherwise,
go to Step 3.

Step 3. (Penalty update) Let

ρ̃k =




ρk−1 if ρk−1 ≥ max
1≤i≤l+2m+1

|λki |,
δ1 + max

1≤i≤l+2m+1
|λki | otherwise.

Define ρgk = ρk−1 and ρNCP
k = ρ̃k and

ρk =




ρ̃k if
∑

1≤i≤l
ξki = 0,

ρ̃k + δ2 otherwise.

Step 4. (Line search) Let tk = (τ)ik , where ik is the smallest nonnegative integer
such that i = ik satisfies

Θ(ρg
k
,ρNCP

k
,µk)(u

k + (τ)idk)−Θ(ρg
k
,ρNCP

k
,µk)(u

k) ≤ −σ(τ)i(dk)TWkd
k.

Step 5. (Update) Let

uk+1 = uk + tkd
k,

µk+1 =




βµ µk if ‖dk‖ ≤ εk,

µk otherwise,

εk+1 =




βε εk if ‖dk‖ ≤ εk,

εk otherwise.

Choose a symmetric positive definite matrix Wk+1 ∈ �(n+2m)×(n+2m). Set
k := k + 1 and go to Step 1.
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We next present some results analogous to those in section 5.2. The proofs are
very similar, so we omit all proofs.

Proposition 6.2. Suppose F ′
y(x, y) is a P0-matrix, the assumptions (A1)–(A5)

hold, and µ �= 0. Then (21) has a nonempty feasible set. Moreover, (23) has a
nonempty feasible set if and only if the following system is consistent with respect to
dx:

Γdx+ g(x, y, w, µ) ≥ 0,

where Γ and U are given by Proposition 6.1 and g(x, y, w, µ) is the vector

g(x, y, w, µ) = g(x, y) − g′y(x, y)[(U
−1)yy(F (x, y)− w) + (U−1)ywΦµ(y, w)].

Furthermore, (dy, dw) is uniquely determined by dx, i.e.,

(dy, dw) = U−1

( −F ′
x(x, y)dx− F (x, y) + w

−Φµ(y, w)
)

.

In the case where g(x, y) = g(x), the above consistency condition becomes consistency
with respect to dx:

g′(x)dx+ g(x) ≥ 0.

Proposition 6.3. Let µ �= 0.
(i) Θ′

(ρg,ρNCP,µ) is directionally differentiable at u. Furthermore, if (d, ξ) is a

solution of the modified QP (21), ρg = ρ, and ρNCP ≥ max1≤i≤l+2m |λi| with
λ its KKT multiplier, then

Θ′
(ρg,ρNCP,µ)(x, y, w; d) ≤ ∇f(x, y)T (dx, dy)− (λg)

T g′(x, y)(dx, dy)
+(λF )

T (F ′(x, y)(dx, dy)− dw)
+(λΦµ

)TΦ′
µ(y, w)(dy, dw)

and

Θ′
(ρg,ρNCP,µ)(x, y, w; d) ≤ −dTWd.

(ii) SupposeW is symmetric positive definite. If (d, ξ) is a solution of the modified
QP (21) with d �= 0, then d is a descent direction of the penalty function
Θ(ρg,ρNCP,µ) for ρg = ρ and any ρNCP satisfying the condition in (i).

We need assumptions (B1) and (B2) from section 5.3, although here u = (x, y, w);
i.e., µ is omitted, hence the order of each matrix Wk is n+2m rather than n+2m+1
as in section 5. As before, we can ensure (B2) by assuming conditions (B3)–(B5).
The function H in the conditions (B4) and (B5) now corresponds to the equality
constraints of (6); i.e., H(u) = (F (x, y)− w,Φ(y, w)) = (F (x, y)− w,Ψ(y, w, 0)).

Theorem 6.4. Assume that (A1)–(A5) and (B1) hold and that F is a P0-function
with respect to y. Let µ0 > 0 and {uk}, {µk}, and {εk} be the sequences generated by
the algorithm.

(i) If the assumption (B2) holds and {uk} has a limit point, then

lim
k→∞

µk = 0, lim
k→∞

εk = 0.
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(ii) Let K = {k : ‖dk‖ ≤ εk}. If we assume that the assumption (B2) holds and
{uk}k∈K has an accumulation point u∗ = (x∗, y∗, w∗), then u∗ is a generalized
stationary point of (6). Furthermore, if (x∗, y∗) is lower-level nondegenerate,
then (x∗, y∗) is a (classical or primal or piecewise) stationary point of the
MPEC.

(iii) If conditions (B1), (B3), (B4), and (B5) hold, then so does (B2).

Proof. (i) Obviously {µk} is bounded. Suppose µ∗ is an accumulation point of
{µk}. If µ∗ > 0, then ‖dk‖ ≤ εk occurs only finitely many times. This means that
after finitely many iterations, µk and εk remain unchanged; i.e., for some k0 and all
k ≥ k0, µk = µk0 > 0 and εk = εk0 > 0. In this case, our smoothing method reduces
to the modified SQP method presented in [20, Appendix] for a smooth nonlinear
program (20). By [20, Theorem A.1] and its proof, it follows that some subsequence
of {dk} approaches 0 as k →∞, which implies that ‖dk‖ ≤ εk0 will eventually happen,
which is a contradiction. Therefore, limk→∞ µk = 0. By the update rule in Step 5, it
is also true that limk→∞ εk = 0.

(ii) By the assumption (B2) and the update rule of the penalty parameter, the
KKT multiplier sequence {λk}k∈K is bounded and ξk = 0 for all large enough k since
ρk = ρ∗ for all sufficiently large k. Note that for each k ∈ K, ‖dk‖ ≤ εk. Hence
limk→∞,k∈K dk = 0. By passing to the limit for k ∈ K, it follows from the KKT
condition (22) and the assumption (A3) that u∗ is a generalized stationary point of
(6). From Proposition 3.7, (x∗, y∗) is a piecewise stationary point of the MPEC if
(x∗, y∗) is lower-level nondegenerate.

(iii) This follows, as does part (ii) of Theorem 5.10, by a straightforward extension
of a similar result for the smooth case [20, Theorem A.2].

Remarks.

(i) As discussed in section 5.5, we may find a solution of the modified QP (21)
by solving a reduced QP and some systems of linear equations, which may
reduce the computational cost significantly, especially if the matrices defining
the QP are dense.

(ii) Loosely speaking, the first part of Theorem 6.1 under the assumption (iii) can
be viewed as a generalization of Theorem 5.14(b) of [8] when the assumptions
(A1)–(A5) in [8] are valid and the smoothing function ψ used in (20) has the
form of that defined in Example 7.2 below. To explain further, in [8]: (a) The
upper-level constraints have the form g(x, y) ≡ g(x) ≤ 0; i.e., the MPEC
is an implicit program. (b) The upper-level and lower-level feasible sets are
assumed to be compact, while in our case compactness is not assumed in either
the upper or lower levels (the lower-level feasible set is �m+ , corresponding to
an NCP). (c) The lower-level objective function F is assumed to be uniformly
strongly monotone in [8]; we assume that F is at most a uniform P0-function
in y.
Regarding (b), we should say that nonlinear constraints are allowed in the
definition of a lower-level feasible set in [8]. However, the KKT conditions of
the lower-level variational inequality problem are a parametric mixed comple-
mentarity problem. As mentioned in section 1, this case can be treated as an
MPEC of the form (1) with some additional upper-level equality constraints.

7. Special examples of smoothing functions. In this section we give ex-
amples of the function ψ satisfying the assumptions (A1)–(A5). Hence these special
forms of ψ correspond to particular implementations of smooth SQP methods for
MPECs.
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Example 7.1.

ψ(a, b, c) =
√

a2 + b2 + c2 − (a+ b).

This function is used to propose an SQP method in [12]. Corresponding to ψ is the
function φ(a, b) =

√
a2 + b2 − (a+ b), which is now known as the Fischer–Burmeister

function [9]. The introduction of ψ originates from [21] for handling linear comple-
mentarity problems.

If (a, b, c) �= (0, 0, 0), then ψ is smooth at (a, b, c) with ∇ψ(a, b, c) = (p, q, r) such
that

p =
a√

a2 + b2 + c2
− 1, q =

b√
a2 + b2 + c2

− 1, r =
c√

a2 + b2 + c2
.

If (a, b, c) = (0, 0, 0), then ψ is locally Lipschitz at (a, b, c) and its generalized Jacobian
is the ball [18]

∂ψ(a, b, c) = {(p, q, r) : (p+ 1)2 + (q + 1)2 + r2 ≤ 1}.
Example 7.2.

ψ(a, b, c) =
√
(a− b)2 + c2 − (a+ b).

This function is used to propose a smoothing method in [8]. Corresponding to ψ is
the function φ(a, b) = |a − b| − (a + b) = −2min{a, b}. The introduction of ψ also
originates from [21].

If either a �= b or c �= 0, then ψ is smooth at (a, b, c) with ∇ψ(a, b, c) = (p, q, r)
such that

p =
a− b√

(a− b)2 + c2
− 1, q =

b− a√
(a− b)2 + c2

− 1, r =
c√

(a− b)2 + c2
.

If a = b and c = 0, then ψ is locally Lipschitz at (a, b, c) and its generalized Jacobian
is the intersection of a plane with a box:

∂ψ(a, b, c) = {(p, q, r) : p+ q = −2, p ∈ [−2, 0], q ∈ [−2, 0], r ∈ [−1, 1]}.
Example 7.3.

ψ(a, b, c) =
√
a2 + b2 + λab+ c2 − (a+ b),

φ(a, b) =
√
a2 + b2 + λab− (a+ b),

where λ ∈ [−2, 2) is a parameter. The function φ is introduced in [22] for solving
nonlinear complementarity problems. Apparently, when λ = 0, φ reduces to the
Fischer–Burmeister function (Example 7.1), and when λ = −2, φ reduces to the min
function (Example 7.2).

So we may assume that λ ∈ (−2, 2). If (a, b, c) �= (0, 0, 0), then ψ is smooth at
(a, b, c) and ∇ψ(a, b, c) = (p, q, r) with

p =
a+ λb/2√

a2 + b2 + λab+ c2
−1, q =

b+ λa/2√
a2 + b2 + λab+ c2

−1, r =
c√

a2 + b2 + λab+ c2
.

If (a, b, c) = (0, 0, 0), then ψ is locally Lipschitz at (a, b, c) and its generalized Jacobian
is an ellipsoid:

∂ψ(a, b, c) = {(p, q, r) : α(p+ 1)2 + α(q + 1)2 + β(p− q)2 + r2 ≤ 1},
where α = 2

2+λ , β = 2λ
4−λ2 .
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Example 7.4.

ψ(a, b, c) = λ[
√
a2 + b2 + c2 − (a+ b)]− (1−λ)

4 (
√
a2 + c2 + a)(

√
b2 + c2 + b),

φ(a, b) = λ[
√
a2 + b2 − (a+ b)]− (1− λ)max{a, 0} max{b, 0},

where λ ∈ (0, 1] is a parameter. The function φ is introduced in [3] for solving non-
linear complementarity problems. When λ = 1, φ reduces to the Fischer–Burmeister
function in Example 7.1.

If c �= 0, then ψ is smooth at (a, b, c) and ∇ψ(a, b, c) = (p, q, r) with

p = λ( a√
a2+b2+c2

− 1)− 1−λ
4 ( a√

a2+c2
+ 1)(

√
b2 + c2 + b),

q = λ( b√
a2+b2+c2

− 1)− 1−λ
4 ( b√

b2+c2
+ 1)(

√
a2 + c2 + a),

r = λ c√
a2+b2+c2

− 1−λ
4 [ c√

a2+c2
(
√
b2 + c2 + b) + c√

b2+c2
(
√
a2 + c2 + a)].

If (a, b, c) = (0, 0, 0), then ψ is locally Lipschitz at (a, b, c) and its generalized Jacobian
is the ball

∂ψ(a, b, c) = {(p, q, r) : (p+ λ)2 + (q + λ)2 + r2 ≤ λ2}.

If (a, b) �= (0, 0) and c = 0, then ψ is locally Lipschitz at (a, b, 0) and its Jacobian or
generalized Jacobian is of the form

∂ψ(a, b, 0) =




(p, q, r) :

p = λ( a√
a2+b2

− 1)− 1−λ
4 α(|b|+ b);

q = λ( b√
a2+b2

− 1)− 1−λ
4 β(|a|+ a);

r = − 1−λ
4 [γa(|b|+ b) + γb(|a|+ a)];

α ∈ [0, 2] if a = 0,
α = a

|a| + 1 if a �= 0;

β ∈ [0, 2] if b = 0,
β = b

|b| + 1 if b �= 0;

γa ∈ [−1, 1] if a = 0,
γa = 0 if a �= 0;

γb ∈ [−1, 1] if b = 0,
γb = 0 if b �= 0.

Note that a/|a| is equal to the sign of a for a �= 0.
Part (i) of the next proposition demonstrates that special explicit smooth SQP

methods can be proposed based on these smoothing functions. Its proof is an easy
consequence of the above formulae for ∂ψ(a, b, c). Part (ii), which is evident, says
that the smoothing functions in Examples 7.1, 7.2, and 7.3 satisfy the smoothness
assumption needed for global convergence in Theorem 5.10.
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Proposition 7.1.

(i) Each function ψ defined in Examples 7.1, 7.2, 7.3, and 7.4 satisfies the as-
sumptions (A1)–(A5).

(ii) Each function φ defined in Examples 7.1, 7.2, and 7.3 is twice continuously
differentiable at any nondegenerate point (a, b), i.e., a �= b.

8. Concluding remarks. In this article, mathematical programs with equilib-
rium constraints are reformulated as better posed nonsmooth programs and then,
by means of so-called smoothing functions, approximated by (smooth) nonlinear pro-
grams. Consequently, some techniques that are well known in the context of nonlinear
programming can be used for solving MPECs. In particular, we have developed two
classes of SQP methods. Some global convergence results of these methods have been
established. Numerical experience is yet to be established.

The extent of these convergence results depends critically on the convergence the-
ory available for the corresponding nonlinear programming algorithm. So we expect
that the future application of different nonlinear programming methods in the context
of smoothing for MPECs and other nonsmooth optimization problems will give rise
to different global convergence results.

We have also given concrete examples of smoothing functions motivated by the lit-
erature on complementarity problems. It would be interesting to find other smoothing
functions to satisfy the assumptions (A1)–(A5) and other smoothing functions which
may not satisfy those assumptions but may play similar roles in other algorithms.
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Abstract. This paper develops a simple duality framework for generalized equations defined
by set-valued mappings from a linear space to another. The original problem is related to two
auxiliary problems of the similar form, corresponding to Lagrangian and dual problems in the theory
of convex programming. As in convex programming, the alternative formulations can be used to
obtain information about a given problem and then used to solve it numerically. In particular,
dualization can be used in deriving existence criteria for a given problem indirectly by considering
one of the alternative formulations. Also, a given problem can often be solved more easily by way of a
“dual method.” The strongest results of this paper concern monotone mappings. In this context, the
duality framework yields several new criteria for maximal monotonicity of composite mappings. These
results are useful theoretically as well as in numerical solution of generalized equations. The duality
framework can also be used in problem decomposition since dualization can lead to reformulations
to which operator-splitting methods and other special methods can be applied.
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1. Introduction. A fundamental problem in many branches of applied mathe-
matics is that of finding a point x of a linear space X, such that

(P) 0 ∈ F0(x),

where F0 : X ⇒ X∗ is a set-valued mapping assigning to each point x of X a (possibly
empty) subset F0(x) of an associated dual space X∗. Set-valuedness of F0 allows a
wide range of problems in physics, economics, operations research, and other fields to
be cast in this form. In addition to all systems of equations and inequalities, a typical
example is the case where F0 is the subdifferential mapping of an extended-real-valued
function f0 [39, Chapter 8]. Then 0 ∈ F0(x) means that x is a stationary point of f0,
e.g., a local minimizer. Another example is the variational inequality

x ∈ C, 〈T (x), y − x〉 ≥ 0 ∀y ∈ C,

where T : X → X∗ is single-valued and C is a convex subset of X. This may be
written as (P) by defining F0 = T + NC , where NC is the set-valued normal cone
mapping of C

NC(x) = {x∗ | 〈x∗, y − x〉 ≤ 0 ∀y ∈ C } .

An advantage of the inclusion form 0 ∈ T (x) + NC(x) over the variational form is
that, by using more general definitions of normal cones [39, Chapter 6], it allows gen-
eralizations where C may be nonconvex. For example, if we replace NC by the Clarke
normal cone mapping, we obtain the hemivariational inequality problem studied in
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Goeleven, Stavroulakis, and Panagiotopoulos [18]. The inclusion form is more natural
also when T is set-valued.

Problems of the form (P) have been referred to by many names, each having its
advantages and disadvantages. For example, the names “generalized equation,” “in-
clusion,” and “equation” were used in [27], [6], and [4], respectively. As a compromise
between simplicity and accuracy, we will use the term inclusion. This is not as de-
scriptive as “generalized equation,” and it may be misleading unless clearly defined.
We will use it to refer to problems of the form (P) as well as to relations of the form
x ∈ C. The meaning will be clear from the context. This is similar to using the word
“equation” to refer to both problems and relations. Also, the term inclusion is consis-
tent with the now standard term “differential inclusion,” which refers to generalized
differential equations of the form ẋ(t) ∈ S(x(t)).

A wealth of theory and algorithms for convex programs is built on the notion
of duality. It is thus natural to look for a corresponding theory applicable to a more
general class of problems. The main purpose of this paper is to derive a duality
framework for problems of the general form (P), with emphasis on the case where the
mapping F0 is monotone

x∗1 ∈ F0(x1), x
∗
2 ∈ F0(x2) =⇒ 〈x1 − x2, x

∗
1 − x∗2〉 ≥ 0.

An inclusion involving a monotone mapping will be said to be monotone. Any convex
minimization problem is equivalent to the monotone inclusion where F0 is the sub-
differential mapping of an extended-real-valued objective function. For such problems,
the developed duality scheme reduces to familiar duality relations in the theory of
convex programming. Viewing the duality relations in terms of subdifferentials leads
to a natural duality framework for nonconvex minimization problems as well.

Many authors have presented duality schemes for problems more general than
convex programming. In [19], McLinden generalized the conjugate duality scheme of
Rockafellar [30, 34, 39] to saddle-functions and minimax problems. Mosco [23] and
Gabay [17] studied dual pairs of inclusions for mappings that are sums of general
monotone mappings and subdifferentials of convex functions. Spingarn [42] introduced
a duality framework for general monotone mappings defined on a direct sum of closed
Hilbert spaces. In [38], Rockafellar gave a duality scheme for network-type problems
involving general set-valued mappings. Eckstein and Ferris [16] presented a duality
framework for sums of general monotone mappings. In [4], Attouch and Théra pro-
posed a duality framework for sums of general set-valued mappings from a general
linear space to another. In [28], Robinson extended the Attouch–Théra framework for
mappings in a composite form.

The duality frameworks of [23, 17, 38, 4, 16, 28] may be regarded as general-
izations of the Fenchel–Rockafellar duality for convex programming [30, section 31],
whereas [42] generalizes the complementary duality model presented in [34, Example
12]. What is missing from this list is a general framework corresponding to the con-
jugate duality framework, which is the most general and, in many respects, the most
useful model for convex programming. In the next section, we extend the conjugate
duality scheme to arbitrary set-valued mappings from a linear space to another. This
yields a framework where the original inclusion is related to “Lagrangian” and “dual”
inclusions. It will be shown that our model inherits many of the powerful features
of conjugate duality. Just as the conjugate duality framework may be used to obtain
other duality schemes in convex programming, our framework can easily be used to
derive the duality frameworks mentioned above.
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An important property of the duality scheme is that the original inclusion has
a solution if and only if the Lagrangian inclusion and the dual inclusion have one.
This can be valuable because the mappings in one of the alternative inclusions may
be better behaved, as pointed out by Attouch and Théra in the case of their duality
framework. For example, this idea leads to simple proofs of the Brezis–Crandall–Pazy
theorem [4] and a nonlinear Hille–Yosida theorem [5]. It also gives a simple way to
derive maximality criteria for the sum of monotone mappings [4, 25]. As a broadening
of the Attouch–Théra duality framework, our framework has potential for even a
wider range of applications. Some examples will be supplied in the following sections.

An essential part of our duality framework is the Lagrangian inclusion, which
was not considered explicitly in [4, 28]. In the applications of the next sections, the
Lagrangian inclusion will have the key role in studying various monotone mappings.

A monotone mapping is said to be maximal if its graph is not properly contained
in the graph of another monotone mapping. This is a fundamental property in the
general theory of monotone mappings, and it has an essential role in various existence
criteria for monotone inclusions as well as in their numerical solution. In section 3, we
derive simple maximality criteria for the mappings in a monotone case of the general
duality framework in a reflexive Banach space setting. These will be useful for deriving
more concrete maximality criteria for mappings with special structure.

In section 4, we specialize the general duality scheme to a generalization of the
Fenchel–Rockafellar convex programming model. We obtain simple maximality crite-
ria for mappings in a duality framework associated with inclusions of the form

0 ∈ S(x) +A∗T (Ax),

where S and T are monotone mappings and A is a linear set-valued mapping. Our
maximality results apply in reflexive Banach spaces, and they unify many earlier
results about more special versions of this model. As a corollary, we obtain a general-
ization of the recent maximality results of Rockafellar and Wets [39, Theorem 12.43]
and Robinson [28] for monotone mappings of the form A∗TA. In section 5, we study
finite-dimensional problems of the form

0 ∈ S(x) +D∗
Kh(x)T (h(x)),

where h is a K-convex function and D∗
Kh(x) : U∗ ⇒ X∗ is the adjoint sublinear

mapping of the “K-Jacobian” of h at x [24]. This model generalizes the “compos-
ite model” in convex programming, and it gives a convenient format for numerous
variational problems arising in practice.

Many efficient algorithms for convex programming are obtained by formulating
the dual or Lagrangian problem as an inclusion and applying an algorithm designed
for general monotone mappings. Such derivations are simplified when one has a du-
ality framework directly in terms of the subdifferential mappings or, more generally,
in terms of monotone mappings. Also, this approach yields generalizations of convex
programming algorithms to general monotone inclusions [16, 26]. In the last section,
we state and prove a decomposition principle for monotone inclusions. It shows how
in a certain class of (large-scale) problems, the structure of the dual problem can be
employed to obtain decomposition algorithms. Crucial to most numerical methods for
monotone inclusions is the maximality of the associated mappings, so that the maxi-
mality criteria of section 4 and section 5 will be essential in proving the convergence
of these methods.
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2. Dualization. In dualizing a convex minimization problem, one is dealing
with dual pairs of topological vector spaces. Although our main concern too is with
topological vector spaces, we begin more abstractly, with X a general linear space
that is associated with another linear space X∗, similarly for Y and Y ∗, and so forth.
The way X is related to X∗ is irrelevant in this section, but it might be helpful to
think of them as dual pairs of topological vector spaces. This level of generality is
intended to emphasize the simplicity of the duality framework introduced below.

For any two spaces Y and Z, PY : Y × Z → Y denotes the projection mapping.
We define a formal adjoint P ∗

Y : Y ∗ → Y ∗ × Z∗ of PY by P ∗
Y (y∗) = (y∗, 0). With

a slight misuse of notation we will use the same symbols for the projection and its
adjoint, independent of the space Z. The graph of a set-valued mapping S : X ⇒ X∗

is defined by gphS = {(x, x∗) | x∗ ∈ S(x)}. The domain domS and the range rgeS
of S are the projections of gphS to X and X∗, respectively:

domS = {x ∈ X | S(x) �= ∅} ,
rgeS =

{
x∗ ∈ X∗ ∣∣ S−1(x∗) �= ∅} ,

where S−1 is the inverse of S, defined by S−1(x∗) = {x ∈ X | x∗ ∈ S(x)}.
The duality scheme below is based on partial inversion of mappings on product

spaces.
Definition 2.1. For a mapping F : X × U ⇒ X∗ × U∗, the partial inverses

F (−1,1) : X∗ × U ⇒ X × U∗ and F (1,−1) : X × U∗ ⇒ X∗ × U are given by

F (−1,1)(x∗, u) = {(x, u∗) | (x∗, u∗) ∈ F (x, u)} ,
F (1,−1)(x, u∗) = {(x∗, u) | (x∗, u∗) ∈ F (x, u)} ,

that is

(x∗, u∗) ∈ F (x, u) ⇐⇒ (x, u∗) ∈ F (−1,1)(x∗, u) ⇐⇒ (x∗, u) ∈ F (1,−1)(x, u∗).

We have the obvious relations

(F (−1,1))(−1,1) = (F (1,−1))(1,−1) = F,

(F (−1,1))(1,−1) = (F (1,−1))(−1,1) = F−1,

or more generally, (F (i,j))(k,l) = F (ik,jl) for all i, j, k, l ∈ {−1, 1}, where F (1,1) = F
and F (−1,−1) = F−1.

The idea in generalizing a convex programming duality framework is to express
the primal, Lagrangian, and dual problems in terms of the corresponding subdiffer-
ential mappings and to replace these by more general set-valued mappings. The main
observation of this paper is that doing this for the conjugate duality framework leads
to a very general duality scheme. Therefore, we very briefly outline here the conjugate
duality scheme for convex programming in the finite-dimensional case. The aim is to
interpret the duality relations and optimality conditions in terms of subdifferential
mappings of the functions involved. For general and detailed treatments of conjugate
duality, we refer the reader to [30], [34], and [39, section 12H].

Let X = X∗ = R
n, U = U∗ = R

m, and consider the problem of minimizing an
extended-real-valued convex function f0 on X. We assume that a parameterization of
f0 has been specified, i.e., f0 may be expressed as

f0(x) = f(x, 0),
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for some extended-real-valued convex function f on X × U . The primal problem as-
sociated with f is to find a minimizer x̄ of f0.

The Lagrangian associated with f is the extended-real-valued convex-concave
function l on X × U∗ defined by

l(x, u∗) = inf
u
{f(x, u) + 〈u, u∗〉}.

The Lagrangian problem is to find a saddle-point (x̄, ū∗) of l, with respect to mini-
mizing in x and maximizing in u∗.

The function g on X∗ × U∗ defined by

g(x∗, u∗) = inf
x
{l(x, u∗)− 〈x, x∗〉}

= inf
x,u
{f(x, u)− 〈x, x∗〉+ 〈u, u∗〉} = −f∗(x∗,−u∗)

gives a parameterized family of extended-real-valued concave functions gx∗(u∗) :=
g(x∗, u∗) on U∗. The dual problem is to find a maximizer ū∗ of the dual objective
defined by

g0(u
∗) = g(0, u∗).

The primal, Lagrangian, and dual problems are equivalent to the inclusions

0 ∈ ∂f0(x̄),

(0, 0) ∈ ∂l(x̄, ū∗),(2.1)

0 ∈ ∂g0(ū∗),
respectively [30]. If f is closed, then by [30, Theorem 37.5] the inclusions

(x∗,−u∗) ∈ ∂f(x, u),
(x∗, u) ∈ ∂l(x, u∗),(2.2)

(−x, u) ∈ ∂g(x∗, u∗)
are equivalent. That is, ∂l and ∂g are obtained from ∂f by successive partial inversions
and some sign changes. Because

∂f0 = ∂(fP ∗
X∗) ⊃ PX∗∂fP ∗

X∗(2.3)

and

∂g0 = ∂(gP ∗
U ) ⊃ PU∂gP

∗
U ,(2.4)

by [30, Theorem 23.9], the equivalent conditions

(0,−ū∗) ∈ ∂f(x̄, 0),
(0, 0) ∈ ∂l(x̄, ū∗),

(−x̄, 0) ∈ ∂g(0, ū∗)
guarantee that 0 ∈ ∂f0(x̄) and 0 ∈ ∂g0(ū

∗). The middle inclusion is an abstract
version of the Karush–Kuhn–Tucker (KKT) condition in convex programming [30,
Theorem 36.6]. If one has equality in (2.3), then the KKT condition is also necessary
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for primal optimality; if one has equality in (2.4) it is necessary for dual optimality.
By [30, Theorem 23.9], (2.3) holds as an equality if rgeP ∗

X∗ ∩ ri dom f �= ∅, which
may be expressed equivalently as 0 ∈ riPU (dom f). Similarly, a sufficient condition
for (2.4) to hold as an equality is 0 ∈ riPX∗(dom g).

The generalization of the conjugate duality framework is now straightforward.
We replace ∂f by an arbitrary set-valued mapping F : X × U ⇒ X∗ × U∗ and,
as suggested by the relations (2.2), we define mappings L = F 1,−1 and G = F−1,
corresponding to ∂l and ∂g, respectively. For simplicity, we omit the sign changes
involved in (2.2). The relations (2.3) and (2.4) suggest to define mappings F0 =
PX∗FP ∗

X∗ and G0 = PUGP
∗
U , which correspond to ∂f0 and ∂g0. The generalizations

of the primal, Lagrangian, and dual problems will be obtained from (2.1) by replacing
∂f0, ∂l, and ∂g0 with F0, L, and G0, respectively.

Definition 2.2 (duality framework). Let F0 : X ⇒ X∗ be an arbitrary set-
valued mapping, and assume that a parameterization F : X × U ⇒ X∗ × U∗ of F0

has been specified: F0 = PX∗FP ∗
X∗ . The Lagrangian corresponding to F is defined by

L = F (1,−1). We also define the mappings G = F−1 and G0 = PUGP
∗
U . The problems

(P) 0 ∈ F0(x),

(L) (0, 0) ∈ L(x, u∗),

(D) 0 ∈ G0(u
∗)

are called the primal, Lagrangian, and dual inclusion, respectively.
The parameterization F may be regarded as describing a family of mappings

Fu(x) = PX∗(F (x, u))

from X to X∗, each corresponding to a perturbed primal problem 0 ∈ Fu(x). Dually,
the mapping G gives rise to the family of mappings

Gx∗(u∗) = PU (G(x∗, u∗))

from U∗ to U, each corresponding to a perturbed dual problem 0 ∈ Gx∗(u∗). For a
given F0, there are arbitrarily many ways to introduce a parameterization F, such
that F0 = PX∗FP ∗

X∗ . Any such F defines the same primal inclusion, but the forms of
the Lagrangian and dual inclusions depend crucially on the particular choice.

Any one of the mappings F, L, or G is enough for defining the three problems
uniquely, since the other two may be obtained by partial inversions from the given
one:

(x∗, u∗) ∈ F (x, u) ⇐⇒ (x∗, u) ∈ L(x, u∗) ⇐⇒ (x, u) ∈ G(x∗, u∗).

This reveals the perfect symmetry between the primal and dual inclusions. The dual—
with respect to the parameterization G—of the dual inclusion is the primal inclusion.
It will sometimes be convenient to express both the primal and dual mappings in
terms of the Lagrangian:

F0(x) = {x∗ | ∃u∗ ∈ U∗ : (x∗, 0) ∈ L(x, u∗)}
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and

G0(u
∗) = {u | ∃x ∈ X : (0, u) ∈ L(x, u∗)} .(2.5)

This corresponds to the expressions f0(x) = supu∗ l(x, u∗) and g0(u
∗) = infx l(x, u

∗)
of the primal and dual objectives in the conjugate duality framework.

By the definition of F0, a vector x̄ is a solution of the primal inclusion if and
only if there exists a ū∗ such that (0, ū∗) ∈ F (x̄, 0) or, equivalently, (0, 0) ∈ L(x̄, ū∗).
Dually, a vector ū∗ is a solution of the dual inclusion if and only if there exists an x̄
such that (0, 0) ∈ L(x̄, ū∗). This is formalized in the following theorem corresponding
to the KKT theorem in convex programming.

Theorem 2.3. The solution sets of (P) and (D) are the projections of the so-
lution set of (L) to X and U∗, respectively. In particular, each of the solution sets is
nonempty if and only if the other two are nonempty.

Note that no particular structure is needed for any of the spaces or mappings
above. All the spaces could even be arbitrary sets, as long as the zero elements in X∗

and U have been specified. The relations are based solely on the definitions of partial
inversion and projection, and the perfect duality for the solution sets is achieved
without any conditions.

Consider again the conjugate duality framework in the finite-dimensional case. If
f is closed and F = ∂f, we have by [30, Theorem 37.5] that

L(x, u∗) = {(x∗, u) | (x∗,−u) ∈ ∂l(x, u∗)} ;
and if 0 ∈ riPU (domF ), then F0 = ∂f0 by [30, Theorem 23.9]. In this case Theo-
rem 2.3 gives the generalized KKT theorem for convex programming [30, Corollary
29.3.1]: under the condition 0 ∈ riPU (domF ), x̄ minimizes f0 if and only if there
exists a ū∗ such that (x̄, ū∗) is a saddle-point of l. Similarly, if 0 ∈ riPX∗(domG), we
have G0 = ∂g0 and obtain the dual part. When F is the subdifferential mapping of a
parameterized saddle-function, we obtain a KKT theorem for concave-convex saddle-
point problems, considered in [19]. Without the constraint qualification, gphF0 may
be properly contained in gph ∂f0, so that 0 ∈ F0(x̄) is only a sufficient condition for
optimality of x̄. In any case, Theorem 2.3 is always valid for the inclusions defined
directly in terms of ∂f .

In convex programming, the convex-concave form of the Lagrangian function
causes the solution set of the Lagrangian problem to be a Cartesian product of two
convex sets, namely, the solution sets of the primal and dual problems, respectively.
This means that any pair of primal and dual solutions is a solution of the Lagrangian
problem. This property does not hold for an arbitrary problem triplet, as noted by
McLinden in the case of dual saddle-point problems in [19] and by Spingarn for the
duality framework in [42]. However, we still have relations like

G−1
0 (u) = {u∗ | ∃x : (0, u∗) ∈ F (x, u)} ,

which corresponds to the conjugacy relation between the dual objective and the
optimal-value function of a primal minimization problem.

By allowing general set-valued mappings, our framework goes far beyond the
field of convex programming or saddle-point problems. Some aspects of the general
monotone case will be studied in the following sections. One could also study duality
relations for inclusions where F is the generalized subdifferential mapping for a pos-
sibly nonconvex extended-real-valued function [39, Chapter 8]. This approach opens
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new possibilities for generalizing some convex programming algorithms beyond the
convex case.

Inspired by the Fenchel–Rockafellar duality framework for convex programming
[30, section 31] and its generalization to monotone inclusions [16], we consider the
following example studied in Robinson [28].

Corollary 2.4 (Fenchel–Rockafellar model). Let S : X ⇒ X∗, T : U ⇒ U∗,
A : X ⇒ U , and B : U∗ ⇒ X∗ be set-valued mappings. An x solves

(PFR) 0 ∈ S(x) +B(T (A(x)))

if and only if there is a u∗ such that

(LFR) (0, 0) ∈ [S(x)× T−1(u∗)] + [B(u∗)× (−A(x))],

in which case u∗ solves

(DFR) 0 ∈ −A(S−1(−B(u∗))) + T−1(u∗).

Dually, a u∗ solves (DFR) if and only if there exists an x such that (x, u∗) solves
(LFR), in which case x solves (PFR).

Proof. We parameterize the mapping F0 = S +BTA by

F (x, u) = S(x)× {0}+
⋃

u∗∈T (A(x)+u)

B(u∗)× {u∗}.

Then

(x∗, u∗) ∈ F (x, u) ⇐⇒ x∗ ∈ S(x) +B(u∗), u∗ ∈ T (A(x) + u)

⇐⇒ ∃v ∈ A(x) : x∗ ∈ S(x) +B(u∗), u∗ ∈ T (v + u)

⇐⇒ ∃v ∈ A(x) : x∗ ∈ S(x) +B(u∗), u ∈ T−1(u∗)− v
⇐⇒ x∗ ∈ S(x) +B(u∗), u ∈ T−1(u∗)−A(x),

so that

L(x, u∗) = F (1,−1)(x, u∗) = S(x)× T−1(u∗) +B(u∗)× (−A(x)).

Similarly,

G(x∗, u∗) = L(−1,1)(x∗, u∗) = {0} × T−1(u∗) +
⋃

x∈S−1(x∗−B(u∗))

{x} × (−A(x)),

so that G0 = −AS−1(−B) + T−1. Thus, this model is a special case of the general
duality scheme, and everything follows from Theorem 2.3.

If A and B are at most single-valued, the Lagrangian inclusion above can be
rewritten as

−B(u∗) ∈ S(x) and A(x) ∈ T−1(u∗),

which corresponds to the KKT conditions in [30, Theorem 31.1]. WhenX = X∗ = Rn,
U = U∗ = Rm, and B = A∗, where A is the incidence matrix of a network, we obtain
the network equilibrium model of Rockafellar [38] by setting S = S1 × · · · × Sn and
T = T1 × · · · × Tm, where n is the number of arcs and m is the number of nodes.
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When X = U, X∗ = U∗, and A and B are the identity mappings on X and X∗,
respectively, we obtain the duality framework of Attouch and Théra [4] for the sum
of set-valued mappings. As noted in [4], the underlying relations in the Singer–Toland
duality scheme as well as in the Clarke–Ekeland least dual action principle can be
viewed as special cases of this model.

By Theorem 2.3, the existence of solutions to an inclusion can be guaranteed by
proving the existence of a dual solution. In the dual inclusion of Corollary 2.4, one
is dealing with the inverses of the original mappings. As pointed out by Attouch and
Théra, this can be very useful since the inverses may behave better than the mappings
themselves; see, for example, [4, 5].

The above model can be written compactly in terms of the following notation. For
any mappings S11 : X1 ⇒ X∗

1 , S12 : X2 ⇒ X∗
1 , S21 : X1 ⇒ X∗

2 , and S22 : X2 ⇒ X∗
2 ,

we define the mapping [
S11 S12

S21 S22

]
: X1 ×X2 ⇒ X∗

1 ×X∗
2

by [
S11 S12

S21 S22

]
(x1, x2) = (S11(x1) + S12(x2))× (S21(x1) + S22(x2)).

The proof of Corollary 2.4 shows that the Fenchel–Rockafellar model corresponds to
the general duality framework with

F0 =
[
I B

] [S 0
0 T

] [
I
A

]
,

F =

[
I B
0 I

] [
S 0
0 T

] [
I 0
A I

]
,

L =

[
S 0
0 T−1

]
+

[
0 B
−A 0

]
=

[
S B
−A T−1

]
,

G =

[
I 0
−A I

] [
S−1 0
0 T−1

] [
I −B
0 I

]
,

G0 =
[−A I

] [S−1 0
0 T−1

] [−B
I

]
.

A straightforward generalization of this model is obtained by replacing the mappings[
S 0
0 T

]
,

[
S 0
0 T−1

]
,

[
S−1 0
0 T−1

]

by R, R(1,−1), and R−1, respectively, where R : X × U ⇒ X∗ × U∗ is a general
set-valued mapping.

Corollary 2.5. Let R : X × U ⇒ X∗ × U∗, A : X ⇒ U , and B : U∗ ⇒ X∗ be
set-valued mappings. An x solves

(PH) 0 ∈ [I B
]
R(x,Ax)

if and only if there is a u∗ such that

(LH) (Bu∗,−Ax) ∈ R(1,−1)(x, u∗),
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in which case u∗ solves

(DH) 0 ∈ [−A I
]
R−1(−Bu∗, u∗).

Dually, a u∗ solves (DH) if and only if there exists an x such that (x, u∗) solves (LH),
in which case x solves (PH).

Proof. As suggested by the preceding discussion, we introduce the parameteriza-
tion

F =

[
I B
0 I

]
R

[
I 0
A I

]
.

Much as in the proof of Corollary 2.4, it follows that

L = R(1,−1) +

[
0 B
−A 0

]

and

G =

[
I 0
−A I

]
R−1

[
I −B
0 I

]
,

so that G0(u
∗) =

[−A I
]
R−1(−Bu∗, u∗). The result now follows from Theorem

2.3.
The Lagrangian inclusion in the above model may be regarded as a generalized

Hamiltonian system, where the mapping R(1,−1) corresponds to the gradient of the
Hamiltonian and A and B play the role of differential operators. Problem (PH) cor-
responds to minimization problems of the form

minimize f(x,Ax),

where A : X → U is linear and f is an extended-real-valued function on the product
space X × U ; see [34, p. 28]. As pointed out in [34], such problems can be viewed
as problems of minimizing the function f over the subspace gphA of X × U . In this
sense, the following model due to Spingarn [42, section 3] (only monotone mappings
were considered in [42]) is more general.

Corollary 2.6 (Spingarn’s model). Let H = A⊗B be an orthogonal decompo-
sition of a Hilbert space H into closed subspaces A and B, and let T : H ⇒ H be a
set-valued mapping. Let S = T−1, and define T0 : A ⇒ A and S0 : B ⇒ B by

gphT0 = {(x, yA) | y ∈ T (x), x ∈ A} ,
gphS0 = {(y, xB) | x ∈ S(y), y ∈ B } ,

where yA is the projection of y to A and xB is the projection of x to B. An x solves

(PS) 0 ∈ T0(x)

if and only if there is a y such that

(LS) x ∈ A, y ∈ B, y ∈ T (x),

in which case y solves

(DS) 0 ∈ S0(y).
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Dually, a y solves (DS) if and only if there exists an x such that (x, y) solves (LS),
in which case x solves (PS).

Proof. This can be written in the format of Definition 2.2 by setting X = X∗ = A,
U = U∗ = B, and

F (x, u) = {(yA, yB) | y ∈ T (x+ u)} .

Indeed, (PS) is equivalent to finding an x ∈ X such that (0, u∗) ∈ F (x, 0) for some
u∗ ∈ U∗, which means that 0 ∈ F0(x), where F0 = PX∗FP ∗

X∗ . The problem (LS) is
equivalent to finding x ∈ X and u∗ ∈ U∗ such that (0, u∗) ∈ F (x, 0), which means
that (0, 0) ∈ L(x, u∗). Similarly, (DS) can be written as 0 ∈ G0(u

∗) for the mapping
G0 = PUGP

∗
U , where G = F−1. Thus, everything follows from Theorem 2.3.

Whereas the general model of Definition 2.2 corresponds to the conjugate duality
scheme, Spingarn’s model corresponds to the complementary duality model for convex
programming [34, Example 12]. In our model the expressions for F0 and G0 are
more explicit than the expressions for the corresponding mappings T0 and S0 and
the parameter u may have practical significance representing data perturbations. For
applications such as those considered below, our model seems to be more convenient.
However, there are applications in the derivation of numerical algorithms for monotone
inclusions for which Spingarn’s model is more suitable [42].

A reader familiar with [34] has probably recognized the similarity of the above
examples with some of the examples of the conjugate duality framework, considered
in [34, section 5]. A model corresponding to the ordinary convex programming model
will be studied at the end of section 5, as a special case of the “composite model,”
which is yet another instance of the general duality framework.

3. Monotonicity in duality. In this section X and U are reflexive Banach
spaces with duals X∗ and U∗, respectively. We will use the inner-product notation
for the pairing between a space and its dual. The product spaces X ×U, X ×U∗, etc.
are reflexive Banach spaces with the obvious duals and pairings.

An important example of a monotone mapping is the subdifferential ∂f of a
convex function f . If f is closed, then ∂f is maximal [33]. Of specific interest is the
indicator function δC of a convex set C ⊂ X:

δC(x) =

{
0 if x ∈ C,
∞ if x /∈ C.

The closedness of δC is equivalent to the closedness of C, which thus implies the
maximality of the normal cone mapping NC = ∂δC of C. Another important class
of monotone mappings arises from saddle-functions; see [32]. If l is a convex-concave
function on X × U∗, then the mapping ∂̃l defined by

∂̃l(x, u∗) = ∂xl(x, u
∗)× ∂u∗ [−l](x, u∗)

is monotone. If l can be expressed as l(x, u∗) = infu{〈u, u∗〉 + f(x, u)} for a closed
convex function f, then ∂̃l is maximal monotone.

The following two results are our main tools for studying maximal monotonicity
in the duality framework.

Lemma 3.1. For a mapping F : X × U ⇒ X∗ × U∗, the monotonicity and
maximality of F, F (−1,1), F (1,−1), and F−1 are equivalent.
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Proof. Monotonicity of F means that

〈(x1, u1)− (x2, u2), (x
∗
1, u

∗
1)− (x∗2, u

∗
2)〉 ≥ 0 ∀(xi, ui, x∗i , u∗i ) ∈ gphF.(3.1)

This can be written in terms of F (−1,1) and the pairing between X ×U∗ and X∗×U
as

〈(x∗1, u1)− (x∗2, u2), (x1, u
∗
1)− (x2, u

∗
2)〉 ≥ 0 ∀(x∗i , ui, xi, u∗i ) ∈ gphF (−1,1),

which means that F (−1,1) is monotone. Maximality of F means that if (x1, u1, x
∗
1, u

∗
1)

satisfies the inequality in (3.1) for every (x2, u2, x
∗
2, u

∗
2) ∈ gphF, then (x1, u1, x

∗
1, u

∗
1) ∈

gphF . Writing this in terms of F (−1,1) and the pairing between X ×U∗ and X∗×U,
we see that it is equivalent to the maximality of F (−1,1). The other equivalences are
proved similarly.

The following maximality result for the sum of two monotone mappings was
obtained in Attouch, Riahi, and Théra [3] and Chu [11]. For a set C in a topological
vector space the relative interior riC of C is the interior of C with respect to the
relative topology on cl aff C.

Theorem 3.2. Let T1, T2 : U ⇒ U∗ be maximal monotone. If

0 ∈ ri(domT1 − domT2),

then T1 + T2 is maximal monotone.
In [3], the constraint qualification is written in the form⋃

α>0

α(domT1 − domT2) is a closed subspace,

which is clearly implied by 0 ∈ ri(domT1−domT2). However, by Simons [40, Theorem
23.2] these conditions are actually equivalent. For simplicity, we will use the first
condition, although in practice, the second might be easier to verify. We refer the
reader to [40] for an exposition of various recent results on monotone mappings.

One of the major drawbacks of the above constraint qualification in infinite di-
mensions is that, in general, the relative interior does not obey the same rules as in
finite dimensions [30, section 6] and, more seriously, it may well be empty, even for
convex sets. However, in a product space, we still have

ri(C1 × C2) = riC1 × riC2.

This fact will be used without further mention.
Our main result now follows easily.
Theorem 3.3. Monotonicity and maximality of F, L, and G are equivalent, and

monotonicity of F implies the monotonicity of F0 and G0. If F is maximal monotone,
the following hold:

(a) If 0 ∈ riPU (domF ), then F0 is maximal monotone.
(b) If 0 ∈ riPX∗(domG), then G0 is maximal monotone.

Moreover, PU (domF ) and PX∗(domG) may be expressed as

PU (domF ) = PU (rgeL) = PU (rgeG)

and

PX∗(domG) = PX∗(rgeL) = PX∗(rgeF ).
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Proof. The first facts follow from Lemma 3.1 and from the fact that A∗TA is
monotone for any continuous linear mapping A and monotone T . The expressions for
PU (domF ) and PX∗(domG) follow directly from the definitions of partial inverses.
To finish, it suffices to prove (a) since (b) then follows by symmetry.

Let N0 : U ⇒ U∗ and N : X × U ⇒ X∗ × U∗ denote the normal cone mappings
of {0} and X × {0}, respectively:

N0(u) =

{
U∗ if u = 0,

∅ if u �= 0,
N(x, u) =

{
{0} × U∗ if u = 0,

∅ if u �= 0.

Since N0 is maximal, F0 is maximal if and only if F0×N0 is maximal. Since F0×N0 =
F +N, where both F and N are maximal, Theorem 3.2 implies that F0 is maximal if

(0, 0) ∈ ri(domF − domN) = ri(domF −X × {0}) = ri[X × PU (domF )]

or, equivalently, if 0 ∈ riPU (domF ).
Consider the conjugate duality framework, with F = ∂f . If f is closed, the con-

dition 0 ∈ riPU (domF ) guarantees that F0 is maximal monotone, so gphF0 cannot
be properly contained in gph ∂f0. As noted in the previous section, this implies that
the KKT condition is necessary and sufficient for primal optimality. An analogous
statement applies to the dual problem. The same argument can be used in the case
of saddle-point problems with closed saddle-functions.

Theorem 3.3 allows us to deduce the maximality of F0 and G0 indirectly by
first establishing the maximality of L, then forming expressions for PU (rgeL) and
PX∗(rgeL), and checking whether the conditions in (a) and (b) hold. The simplest
application is the following.

Corollary 3.4. Let F be maximal monotone.
(a) If 0 ∈ int rgeF0, then G0 is maximal monotone.
(b) If 0 ∈ int rgeG0, then F0 is maximal monotone.
Proof. We have

rgeF0 = {x∗ | ∃x, u∗ : (x∗, u∗) ∈ F (x, 0)} ⊂ PX∗(rgeF ) = PX∗(domG),

so that int rgeF0 ⊂ intPX∗(domG). Theorem 3.3(b) now implies (a), and (b) is
verified similarly.

The condition 0 ∈ int rgeF0 is trivially satisfied if rgeF0 = X∗. If F0 is maximal,
this holds if F0 is weakly coercive, i.e., if ‖x∗k‖ is unbounded for any unbounded
sequence (xk, x

∗
k) in gphF0 [43, Corollary 32.35]. This happens in particular when

domF0 is bounded, which is the case in many situations arising in practice. Note that
we cannot weaken the condition 0 ∈ int rgeF0 to 0 ∈ ri rgeF0, since C1 ⊂ C2 does
not, in general, imply riC1 ⊂ riC2.

If F = ∂f, the condition in Theorem 3.3(a) also guarantees the existence of a
dual solution and the condition in (b) guarantees the existence of a primal solution
[30, Corollary 30.5.2]. This is not true in the general monotone case. This is related
to the fact that the solution set to (L) is not, in general, the Cartesian product of the
solution sets to (P) and (D). The following class of mappings, first considered in [8],
behaves much like subdifferentials in this respect.

Definition 3.5. A monotone mapping T is star-monotone if (ū, ū∗) ∈ domT ×
rgeT implies

inf
u∗∈T (u)

〈u− ū, u∗ − ū∗〉 > −∞.
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The following is proved in [25].
Theorem 3.6. Let A : X → U be linear and continuous, and let T : U ⇒ U∗ be

star-monotone. If A∗TA is maximal monotone, then

A∗(rgeT ) ⊂ cl rge(A∗TA)

and

ri coA∗(rgeT ) ⊂ rge(A∗TA).

As shown in [8], strongly monotone mappings and subdifferentials of convex func-
tions are special cases of star-monotone mappings. The following may thus be consid-
ered as a generalization of the existence result [30, Corollary 35.5.2] for the conjugate
duality framework; see also [34, section 7].

Proposition 3.7. If F is star-monotone, any one of the following conditions
guarantees that (P), (L), and (D) are all solvable.

(a) F0 is maximal, and 0 ∈ ri coPX∗(domG).
(b) G0 is maximal, and 0 ∈ ri coPU (domF ).
(c) F is maximal, 0 ∈ riPX∗(domG), and 0 ∈ riPU (domF ).
Proof. By applying Theorem 3.6 to the mapping F0 = PX∗FP ∗

X∗ , we obtain
ri coPX∗(rgeF ) ⊂ rgeF0, where by Theorem 3.3 PX∗(domG) = PX∗(rgeF ). This
proves part (a), and part (b) is verified similarly after noting that star-monotonicity
is preserved under inversion. By Theorem 3.3, condition (c) implies both (a) and
(b).

A major difficulty with star-monotonicity is that it is generally not preserved
under operations such as addition, composition, or partial inversion. As a result, it
may be hard to check in practice for a mapping that has been constructed from other
mappings.

4. The Fenchel–Rockafellar model. In this section we specialize the results
of the previous section to a monotone case of the model of Corollary 2.4. We continue
to assume that all the spaces are reflexive Banach spaces, unless otherwise specified.

We will say that a set-valued mapping A : X ⇒ U is linear if gphA is a linear
subspace of X × U . These mappings were introduced in [1] under the name linear
relation, and they have been studied also in [9] and [7] under the names of linear
operator and linear process, respectively. See also the recent monograph [13]. Linear
set-valued mappings are special cases of sublinear mappings, which are set-valued
mappings whose graphs are convex cones [29, 30, 39].

It is easily seen that sums, compositions, and inverses of linear set-valued map-
pings are linear. The adjoint of A : X ⇒ U is the linear mapping A∗ : U∗ ⇒ X∗ given
by

A∗(u∗) =
{
x∗
∣∣ (x∗,−u∗) ∈ (gphA)⊥

}
= {x∗ | 〈x, x∗〉 = 〈u, u∗〉 ∀(x, u) ∈ gphA} .

Linear set-valued mappings arise naturally as inverses and adjoints of single-valued
linear mappings when these fail to exist as single-valued mappings. More precisely,
consider a linear single-valued mapping A0 from a subspace domA0 ⊂ X to U . Then
the set-valued mapping

A(x) =

{
{A0(x)} if x ∈ domA0,

∅ if x /∈ domA0,
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as well as its set-valued inverse and adjoint are linear. For a linear mapping A : X ⇒ U,
A∗(0) = (domA)⊥, so cl domA = X if and only if A∗(0) = {0}, which is equivalent
to A∗ being at most single-valued. Dually, if A is closed we have A∗∗ = A, and A is
at most single-valued if and only if cl domA∗ = U∗.

Now, consider the model of Corollary 2.4 and assume that S : X ⇒ X∗ and
T : U ⇒ U∗ are monotone, A : X ⇒ U is linear, and B = A∗. Then

F0 = S +A∗TA,

F =

[
I A∗

0 I

] [
S 0
0 T

] [
I 0
A I

]
,

L =

[
S 0
0 T−1

]
+

[
0 A∗

−A 0

]
,

G =

[
I 0
−A I

] [
S−1 0
0 T−1

] [
I −A∗

0 I

]
,

G0 = T−1 + (−A)S−1(−A∗).

The case where X and U are Hilbert spaces and A is continuous has been studied
by Robinson [28]. The finite-dimensional case, with A : X → U single-valued, was
studied in Eckstein and Ferris [16]. The primal inclusion 0 ∈ F0(x) in the Fenchel–
Rockafellar model may be written as

∃x∗ ∈ S(x) : −x∗ ∈ (A∗TA)(x),

and the dual inclusion 0 ∈ G0(u
∗) may be written as

∃u ∈ [(−A)S−1(−A∗)](u∗) : −u ∈ T−1(u∗).

If T = ∂g for a closed convex function g on U, we have T−1 = ∂g∗ and A∗T (Ax) ⊂
∂(gA)(x). If the second formula holds as an equality (see [34, Theorem 19] or Corol-
lary 4.4 below) (P) and (D) can be written in the variational form as

∃x∗ ∈ S(x) : 〈x∗, y − x〉 ≥ (gA)(x)− (gA)(y) ∀y ∈ X

and

∃u ∈ −A(S−1(−A∗(u∗))) : 〈u, v∗ − u∗〉 ≥ g∗(u∗)− g∗(v∗) ∀v∗ ∈ U∗.

This is the duality framework studied by Gabay [17]. When U = X and A = I, we
obtain the duality scheme introduced by Mosco [23].

Under special assumptions, maximality criteria for the mappings F0 and G0 were
given in [23, 17, 16, 28]. Using dualization and the abstract results of the previous
section, the question of the maximality of a composite mapping can be reduced to a
question of the maximality of a sum. This yields the following maximality result for
the Fenchel–Rockafellar model.

Theorem 4.1. All the mappings F, L, G, F0, and G0 are monotone. If S and
T are maximal monotone, A : X ⇒ U is closed, 0 ∈ ri(domS − domA), and 0 ∈
ri(rgeT − domA∗), then F, L, and G are maximal monotone. When this happens,
then also

(a) if 0 ∈ ri[T−1(domA∗)−A(domS)], then

S +A∗TA

is maximal monotone;
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(b) if 0 ∈ ri[S(domA) +A∗(rgeT )], then

T−1 + (−A)S−1(−A∗)

is maximal monotone.
Proof. The Lagrangian may be written as the sum L = F

(1,−1)
1 + F

(1,−1)
2 , where

F1 = S × T, and

F2(x, u) = {(x∗, u∗) | (x∗,−u∗) ∈ NgphA(x,−u)} .

The mapping F1 is monotone since S and T are, and the mapping F2 is monotone by

the monotonicity of NgphA. By Lemma 3.1, F
(1,−1)
1 and F

(1,−1)
2 are monotone, which

implies the monotonicity of L, and Theorem 3.3 then implies the monotonicity of the
other mappings.

Similarly, the maximality of S and T implies that of F
(1,−1)
1 , and the closedness of

A implies the maximality of F2, which by Lemma 3.1 is equivalent to the maximality

of F
(1,−1)
2 . To prove the maximality of L, it suffices by Theorem 3.2 to show that

(0, 0) ∈ ri(domF
(1,−1)
1 − domF

(1,−1)
2 ). Since

domF
(1,−1)
1 − domF

(1,−1)
2 = domS × rgeT − domA× domA∗

= (domS − domA)× (rgeT − domA∗),

this is implied by the conditions 0 ∈ ri(domS − domA) and 0 ∈ ri(rgeT − domA∗).
Maximality of F and G now follows from Theorem 3.3. Parts (a) and (b) follow from
parts (a) and (b) of Theorem 3.3 by noting that PU (rgeL) = T−1(domA∗)−A(domS)
and PX∗(rgeL) = S(domA) +A∗(rgeT ).

In the important special case where A is continuous (and single-valued), we have
domA = X and domA∗ = U∗, so that the conditions in the above result simplify
considerably.

Corollary 4.2. Assume that S and T are maximal monotone, and A : X → U
is continuous. Then F, L, and G are maximal monotone, and

(a) if 0 ∈ ri[domT −A(domS)], then S +A∗TA is maximal monotone;
(b) if 0 ∈ ri[rgeS+A∗(rgeT )], then T−1+(−A)S−1(−A∗) is maximal monotone.
If X and U are finite-dimensional, we can use the calculus of relative interiors in

[30, section 6] to write the above conditions more explicitly1. Using Theorem 6.6 and
Corollary 6.6.2 of [30], we obtain the following result.

Corollary 4.3. Consider the Fenchel–Rockafellar model in the finite-dimension-
al case, and assume that S and T are maximal monotone and A : X → U is single-
valued. Then the mappings F, L, and G are maximal monotone, and

(a) if there is an x ∈ ri domS, such that A(x) ∈ ri domT, then the mapping
S +A∗TA is maximal monotone;

(b) if there is a u∗ ∈ ri rgeT, such that −A∗(u∗) ∈ ri rgeS, then the mapping
T−1 + (−A)S−1(−A∗) is maximal monotone.

If S = ∂f and T = ∂g for convex functions on X and U, respectively, these
conditions become the “strong consistency” conditions for the Fenchel–Rockafellar

1In [22], Minty showed that the domain C of a maximal monotone mapping in Rn is almost
convex, in the sense that it contains the relative interior of its convex hull: C ⊃ ri(coC). Because
aff C = aff(coC), this may be expressed as riC = ri(coC). Consequently, one can easily verify that
the calculus rules for relative interiors of convex sets in [30, section 6] are valid for almost convex
sets as well.
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convex programming model in [30, Theorem 31.2]. As noted earlier, the maximality
of the mappings would imply that equalities hold in (2.3) and (2.4), in which case
the KKT conditions become necessary for optimality; see also [30, Corollary 31.2.1].
Similarly, if S and T are monotone mappings associated with saddle-functions, we
obtain a KKT theorem for McLinden’s saddle-function version [21] of the Fenchel–
Rockafellar model.

If U = X and A = I, we have domA = X and domA∗ = X∗, so that we recover
Theorem 3.2. In the case S = 0, we obtain the following generalization of [39, Theorem
12.43] and [28, Theorem 5].

Corollary 4.4. Let A : X ⇒ U be closed and linear, and let T : U ⇒ U∗

be maximal monotone. The mapping A∗TA is maximal monotone if any one of the
following holds:

(a) 0 ∈ ri(rgeA− domT ) and 0 ∈ ri[T (rgeA)− domA∗];
(b) 0 ∈ ri[rgeA− T−1(domA∗)] and 0 ∈ ri(rgeT − domA∗);
(c) A is continuous and 0 ∈ ri(rgeA− domT ).
Proof. The condition (b) follows from Theorem 4.1(a) by setting S = 0 so

that domS = X. The condition (a) is obtained by applying (b) to (A∗TA)−1 =
A−1T−1(A∗)−1 whose maximality is equivalent to the maximality of A∗TA. When A
is continuous, the conditions (a) and (b) both reduce to (c).

Part (c) above can be applied to partial differential equations in “divergence
form.” As an example, one may consider the case where A = ∇ : H1

0 (Ω) → L2(Ω)n

(n = dimΩ) and T is a monotone mapping from L2(Ω)n to itself, say conductivity.
The mapping ∇ is continuous and has the adjoint ∇∗ = −div : L2(Ω)→ H−1(Ω), the
divergence.

For additional insights on Corollary 4.4, consider the case where T = ∂f for
a convex function f on U and A is closed and single-valued on a dense subspace
domA ⊂ X. Define the convex function h on X by

h(x) =

{
f(A(x)) if x ∈ domA,

∞ if x /∈ domA.

If f is closed and 0 ∈ ri(rgeA− dom f), then ∂h = A∗∂fA by [34, Theorem 19]. If h
is closed, this implies the maximality of A∗∂fA. However, when A is not continuous,
h need not be closed, and thus, without further conditions, we cannot guarantee the
maximality of A∗∂fA. It can be shown that if 0 ∈ ri(dom f∗ − domA∗), then h is
closed, so that A∗∂fA is maximal. A simple example where the closedness of h fails
is obtained by setting f = 0. Then h = δdomA, which is not closed unless domA is.

For general A : X ⇒ U, it is easily shown that we always have ∂(fA) ⊃ A∗∂fA,
where

(fA)(x) = inf
u∈A(x)

f(u).

If f and A are closed, we have (∂f)−1 = ∂f∗, and Corollary 4.4 shows that if 0 ∈
ri(dom ∂f∗ − domA∗) and 0 ∈ ri[∂f∗(domA∗) − rgeA], then A∗∂fA is maximal
monotone, so that the inclusion must hold as an equality. This corresponds to a
composition version of the subdifferential rule in [2, Corollary 2.1] for general Banach
spaces. Similarly, one could use Theorem 4.1 and its corollaries to derive calculus rules
for subdifferentials of closed saddle-functions on reflexive Banach spaces.

When U is a Hilbert space and T is the identity mapping, Corollary 4.4 yields
the following.
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Corollary 4.5. If U is a Hilbert space and A : X ⇒ U is closed and linear, then
the linear mapping A∗A : X ⇒ X∗ is maximal monotone and, in particular, closed.

Proof. By Corollary 4.4, it suffices to show that domA∗− rgeA = U . The closed-
ness of A implies the maximality of NgphA, so that, since NgphA(x, u) = gphA∗ for
any (x, u) ∈ gphA, we have by Rockafellar’s generalization [31, Proposition 1] of
Minty’s lemma that

X∗ × U∗ = rge(NgphA + JX×U ) = gphA∗ + JX×U (gphA),

where JX×U (x, u) = ∂(1/2‖(x, u)‖2). Since ‖(x, u)‖2 = ‖x‖2 +‖u‖2, we have JX×U =
JX × I, where JX(x) = ∂(1/2‖x‖2), so the result follows by projecting on U∗ =
U .

If we choose T = I in the situation discussed after Corollary 4.4, we obtain the
well-known fact that the negative Laplacian −∆ = −div◦∇ is maximal monotone.

5. The composite model. In this section we develop a generalization of the
convex programming composite model that was studied in [24]. From now on all the
spaces are finite-dimensional Euclidean spaces with the usual inner-products. This
enables us to use the strong calculus rules in [30, section 76] for computing relative
interiors of (almost) convex sets.

For a convex cone K ⊂ U, a function h from a subset domh of X to U is said to
be K-convex if domh is convex, and for any x1, x2 ∈ domh

h(α1x1 + α2x2)− α1h(x1)− α2h(x2) ∈ K
whenever α1, α2 ∈ [0, 1] and α1 + α2 = 1. Just as in the extended-real-valued case, it
is easily shown that K-convexity of h is equivalent to the convexity of the K-epigraph

epiK h = {(x, u) | x ∈ domh, h(x)− u ∈ K }
of h. We say that h is K-closed if epiK h is closed. The K-range rgeK h of h is defined
as the projection of epiK h to U . It follows from the definition that h is (clK)-convex
if and only if the extended-real-valued functions 〈u∗, h〉 (x) := 〈u∗, h(x)〉 , with domain
domh, are convex for every u∗ in the polar cone

K∗ = {u∗ ∈ U∗ | 〈u, u∗〉 ≤ 0 ∀u ∈ K }
of K. For x ∈ domh, we define the sublinear mapping D∗

Kh(x) : U∗ ⇒ X∗ by

D∗
Kh(x)(u

∗) =

{
∂ 〈u∗, h〉 (x) if u∗ ∈ K∗,
∅ if u∗ /∈ K∗.

This is the adjoint of the “K-Jacobian” of h. The K-recession cone rcK h of h is the
set of directions in which h is nonincreasing with respect to the partial order induced
by K

rcK h = {y | h(x+ λy)− h(x) ∈ K ∀x ∈ domh, ∀λ ≥ 0} .
The convex programming composite model is the minimization problem

minimize f0 := f + g◦h over dom(f + g◦h),

where f and g are extended-real-valued convex functions on X and U, respectively,
and h is a K-convex function from X to U, such that K ⊂ rcR− g. As pointed out in
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[24], this model subsumes many standard models in convex programming. Note that,
since dom(f + g◦h) = {x ∈ dom f ∩ domh | h(x) ∈ dom g } , any convex constraints
can be represented by restricting the domain of f or h or both. If there exists an
x ∈ ri dom f ∩ ri domh such that h(x) ∈ ri dom g, then by [24, Proposition 23] the
subdifferential of f0 may be expressed as

∂f0(x) = ∂f(x) +D∗
Kh(x)(∂g(h(x))).

A generalization of the optimization model is obtained by replacing ∂f and ∂g in this
formula by general monotone mappings. We will use the notation ∂̃ introduced at the
beginning of section 3.

Proposition 5.1 (composite model). Let S : X ⇒ X∗ and T : U ⇒ U∗ be
maximal monotone, and let h be a K-convex K-closed function from X to U such
that rgeT ⊂ K∗. An x solves

(Pcomp) 0 ∈ S(x) +D∗
Kh(x)(T (h(x)))

if and only if there is a u∗ such that

(Lcomp) (0, 0) ∈ S(x)× T−1(u∗) + ∂̃H(x, u∗),

where H is the saddle-function

H(x, u∗) =

{
〈u∗, h(x)〉 − δK(u∗) if x ∈ domh,

+∞ otherwise.

Proof. We parameterize the mapping F0(x) = S(x) +D∗
Kh(x)(T (h(x))) by

F (x, u) =

[
S(x)

0

]
+

[
D∗
Kh(x)
I

]
(T (h(x) + u)).

For any maximal monotone T and a closed convex set C ⊃ domT, we have T (u) =
T (u) +NC(u) for all u. Thus, the condition rgeT ⊂ K∗ implies T = (T−1 +NK∗)−1,
so that

(x∗, u∗) ∈ F (x, u) ⇐⇒ x∗ ∈ S(x) +D∗
Kh(x)(u

∗), u∗ ∈ (T−1 +NK∗)−1(h(x) + u)

⇐⇒ x∗ ∈ S(x) + ∂ 〈u∗, h〉 (x), h(x) + u ∈ T−1(u∗) +NK∗

⇐⇒
[
x∗

u

]
∈
[

S(x)
T−1(u∗)

]
+

[
∂ 〈u∗, h〉 (x)

NK∗(u∗)− h(x)
]
,

which shows that (Lcomp) is the Lagrangian problem corresponding to (Pcomp). The
result follows from Theorem 2.3.

If T = ∂g for a closed convex function g, the condition rgeT ⊂ K∗ is equivalent
to K ⊂ rcR− g. It is easily checked that this implies the convexity of the composition
g◦h, so that ∂(g◦h) is monotone. The condition rgeT ⊂ K∗ could be replaced by the
weaker condition

(T−1 +NK∗)−1(u) = T (u) ∩K∗ ∀u ∈ rgeh,

which corresponds to the convexity condition for g◦h in [24, section 7]. All the results
in this section can be generalized accordingly, but for simplicity we will consider only
the condition rgeT ⊂ K∗. Note also that neither maximality of S nor K-closedness of



828 TEEMU PENNANEN

h was used in the above proof. However, since the main results of this section require
those properties anyway, we have chosen to simplify things by assuming them from
the start.

The proof of Proposition 5.1 shows that the composite model corresponds to the
general duality framework with F0(x) = S(x) +D∗

Kh(x)(T (h(x))),

F (x, u) =

[
S(x)

0

]
+

[
D∗
Kh(x)
I

]
(T (h(x) + u)),

and

L = S × T−1 + ∂̃H.

Note that since rgeT ⊂ K∗ implies that T−1(u∗) + NK∗(u∗) = T−1(u∗) for all u∗,
the Lagrangian can also be written as

L(x, u∗) =

[
S(x)

T−1(u∗)

]
+

[
∂ 〈u∗, h〉 (x)
−h(x)

]
.

If h = A for a linear A : X → U, we may choose K = {0}, so that K∗ = U∗,
and D∗

Kh(x) = A∗ for any x ∈ domh. In this case the composite model reduces to
the finite-dimensional case of the Fenchel–Rockafellar model. In the general case, the
mappings G and G0 do not have explicit expressions in terms of S, T , and h, but in
practice it may be possible to calculate G0 according to the formula (2.5). That is,
for a fixed u∗ ∈ K∗, one first finds the solutions to the inclusion

0 ∈ S(x) + ∂ 〈u∗, h〉 (x)

and then forms the union of the sets T−1(u∗) − h(x) over all such solutions x. This
approach corresponds to “dual methods” in convex programming, and it might be
useful in numerical solution of monotone inclusions. Such considerations depend on
monotonicity and maximality of the mapping G0. The first step is to guarantee these
properties for F, L, and G.

Proposition 5.2. All the mappings F, L, G, F0, and G0 in the composite model
are monotone; and if ri domS ∩ ri domh �= ∅ and ri rgeT ∩ riK∗ �= ∅, then F, L, and
G are maximal monotone.

Proof. As a sum of two monotone mappings, L is monotone, which by the first
part of Theorem 3.3 implies the monotonicity of the other mappings. The first term in
the expression L = S×T−1 + ∂̃H is maximal if and only if S and T are. The function
H can be expressed as H(x, u∗) = infu{〈u, u∗〉 + δepiK h(x, u)}, where the closedness

of δepiK h is equivalent to the K-closedness of h. Thus, ∂̃H is maximal monotone [32].
Obviously, dom(S × T−1) = domS × rgeT . By [30, Theorem 34.2], the domain

of H is domh × K∗, so that by [30, Theorem 37.4], ri dom ∂̃H = ri domh × riK∗.
Thus, by Theorem 3.2, the conditions ri domS ∩ ri domh �= ∅ and ri rgeT ∩ riK∗ �=
∅ guarantee the maximality of L, which is equivalent to the maximality of F and
G.

Note that since rgeT ⊂ K∗, the condition ri rgeT ∩ riK∗ �= ∅ holds by [30,
Corollary 6.5.2] whenever rgeT is not entirely contained in the relative boundary
K∗ \ riK∗ of K∗.

To derive maximality criteria for F0 and G0 in the composite model, we need
some preliminary results that are of interest on their own. In [8], the following result
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is obtained by invoking Lemma 1′ instead of Lemma 1 in the proof of the third
variation of Theorem 4 and using the remark on page 167; see also [25].

Theorem 5.3 (Brezis–Haraux). Let S be a monotone mapping, and let f be a
convex function such that S + ∂f is maximal. If domS ⊂ dom f, then

ri rge(S + ∂f) = ri(rgeS + rge ∂f).

The following corresponds to the subdifferential chain rule [24, Corollary 22.1(d)].
Theorem 5.4. Let T : U ⇒ U∗ be maximal monotone, and let h be a K-convex

K-closed function from X to U, such that rgeT ⊂ K∗ and ri rgeT ∩ riK∗ �= ∅. If
ri rgeK h ∩ ri domT �= ∅, then the mapping F0 : X ⇒ X∗, defined by

F0(x) = D∗
Kh(x)T (h(x)),

is maximal monotone.
Proof. We have F0 = PX∗FP ∗

X∗ , where F corresponds to the composite model
in the special case S = 0. Hence, by Proposition 5.2, the condition ri rgeT ∩ riK∗ �=
∅ guarantees the maximality of F . To guarantee the maximality of F0, it suffices
by Theorem 3.3(a) to show that riPU (rgeL) = ri(domT − rgeK h), since then the
condition ri rgeK h ∩ ri domT �= ∅ implies 0 ∈ riPU (rgeL).

The closedness of epiK h implies that of K, so that K = K∗∗ = rgeNK∗ . By [30,
Corollary 6.6.2] and [24, Proposition 18] we have

ri(domT − rgeK h) = ri domT − ri rgeK h = ri domT +
⋃

x∈ri domh

(riK − h(x))

=
⋃

x∈ri domh

[ri(rgeT−1 + rgeNK∗)− h(x)].

Since ri rgeT ∩ riK∗ �= ∅, the sum T−1 + NK∗ is maximal, so that the condition
rgeT ⊂ K∗ implies by Theorem 5.3 that

ri(domT − rgeK h) =
⋃

x∈ri domh

[ri rge(T−1 +NK∗)− h(x)]

⊂
⋃

x∈ri dom h
u∗∈K∗

[T−1(u∗) +NK∗(u∗)− h(x)].

By [30, Theorem 23.4], x ∈ ri domh and u∗ ∈ K∗ imply ∂ 〈u∗, h〉 (x) �= ∅, so that

ri(domT − rgeK h) ⊂
⋃

D∗
Kh(x)(u

∗) 	=∅
[T−1(u∗) +NK∗(u∗)− h(x)] = PU (rgeL).

On the other hand, rgeL ⊂ rge[ 0 × T−1] + rge ∂̃H, so that PU (rgeL) ⊂ domT +
PU (rge ∂̃H), where

PU (rge ∂̃H) ⊂
⋃

x∈domh

(K − h(x)) = − rgeK h.

We have thus obtained the inclusions

ri(domT − rgeK h) ⊂ PU (rgeL) ⊂ domT − rgeK h,
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which by [30, Theorem 6.3] imply clPU (rgeL) = cl(domT−rgeK h) and riPU (rgeL) =
ri(domT − rgeK h).

If we choose h(x) = Ax and K = {0}, we have F0 = A∗TA and K∗ = U∗, so that
the conditions rgeT ⊂ K∗ and ri rgeT ∩ riK∗ �= ∅ hold trivially. Since now rgeK h =
rgeA, the above theorem reduces to the finite-dimensional version of Corollary 4.4.

When we combine the mapping F0(x) = D∗
Kh(x)T (h(x)) with other mappings,

the following lemma will be useful.
Lemma 5.5. Let F0 be as in Theorem 5.4. The condition ri rgeK h∩ ri domT �= ∅

holds if and only if there exists an x ∈ ri domh such that h(x) ∈ ri domT . When this
happens,

ri domF0 = {x ∈ ri domh | h(x) ∈ ri domT } .
Proof. By [25, Corollary 11.3], the maximality of T and the condition rgeT ⊂ K∗

imply that K ⊂ rc cl domT . Since domT is almost convex, the first part follows from
[24, Lemma 21]. To obtain the expression for ri domF0, we first note that

domF0 = {x ∈ domh | h(x) ∈ domT, domD∗
Kh(x) ∩ T (h(x)) �= ∅} ,

where domD∗
Kh(x) = {u∗ ∈ K∗ | ∂ 〈u∗, h〉 (x) �= ∅}. Defining

C = {x ∈ domh | h(x) ∈ cl domT } ,
we have domF0 ⊂ C. Thus, by [24, Lemma 21], the condition ri rgeK h∩ ri domT �= ∅
implies

riC = {x ∈ ri domh | h(x) ∈ ri domT } .
By [30, Theorem 23.4], domD∗

Kh(x) = K∗ for any x ∈ ri domh, so that rgeT ⊂ K∗

implies

riC ⊂ domF0 ⊂ C

and, hence, ri domF0 = riC by [30, Theorem 6.3].
The maximality condition for G0 will be stated in terms of the adjoint R∗

Kh :
U∗ ⇒ X∗ of the “K-recession mapping” of h [24]. By [24, Proposition 15], this is the
closure of the mapping

H(u∗) =

{
dom 〈u∗, h〉∗ for u∗ ∈ K∗,
∅ for u∗ /∈ K∗.

Calculus rules for computing K-recession mappings are given in [24, section 7].
Theorem 5.6. Consider the composite model, and assume that ri rgeT∩riK∗ �= ∅

and ri domS ∩ ri domh �= ∅. Then the following hold:
(a) If there exists an x ∈ ri domS ∩ ri domh such that h(x) ∈ ri domT, then F0

is maximal.
(b) Assume that domS ⊂ domh or that S is star-monotone. If 0 ∈ ri(rgeS +

R∗
Kh(rgeT )), then G0 is maximal.
Proof. The condition in (a) guarantees by Theorem 5.4 that the second term in

F0 is maximal and by Lemma 5.5 that the relative interior of its domain intersects
ri domS. Hence, Theorem 3.2 implies the maximality of F0. By Proposition 5.2, F
is maximal, so to prove (b), it suffices by Theorem 3.3(b) to show that domS ⊂
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domh or, alternatively, star-monotonicity of S implies that riPX∗(domG) = ri(rgeS+
R∗
Kh(rgeT )).

By [30, Corollary 6.6.2] and [24, Corollary 11.1]

ri(rgeS +R∗
Kh(rgeT )) = ri rgeS + riR∗

Kh(rgeT )

= ri rgeS +
⋃
{riR∗

Kh(u
∗) | u∗ ∈ ri rgeT } ,

where riR∗
Kh(u

∗) = ri dom 〈u∗, h〉∗. The conditions rgeT ⊂ K∗ and ri rgeT∩riK∗ �= ∅
imply by [30, Corollary 6.5.2] that ri rgeT ⊂ riK∗, so that by [24, Corollary 20.1(b)],
〈u∗, h〉 is a closed convex function for any u∗ ∈ ri rgeT . By Theorem 23.4 and Corollary
23.5.1 of [30], ri dom 〈u∗, h〉∗ = ri dom ∂ 〈u∗, h〉∗ = ri rge ∂ 〈u∗, h〉, so that

ri(rgeS +R∗
Kh(rgeT )) = ri rgeS +

⋃
{ri rge ∂ 〈u∗, h〉 | u∗ ∈ ri rgeT }

=
⋃

u∗∈ri rgeT

(ri rgeS + ri rge ∂ 〈u∗, h〉).

Since ri domS ∩ ri dom ∂ 〈u∗, h〉 �= ∅, S + ∂ 〈u∗, h〉 is maximal by Theorem 3.2. Thus,
the condition domS ⊂ domh and Theorem 5.3 or, alternatively, star-monotonicity of
T and the third variation of [8, Theorem 3] (see also [25, Corollary 11.1]) imply that

ri(rgeS +R∗
Kh(rgeT )) =

⋃
u∗∈ri rgeT

ri rge(S + ∂ 〈u∗, h〉)

⊂
⋃

u∗∈rgeT

rge(S + ∂ 〈u∗, h〉) = PX∗(rgeL).

On the other hand,

PX∗(rgeL) ⊂ rgeS +
⋃

u∗∈rgeT

dom 〈u∗, h〉∗ ⊂ rgeS +R∗
Kh(rgeT ),

so that [30, Theorem 6.3] implies riPX∗(rgeL) = ri(rgeS +R∗
Kh(rgeT )).

As in the proof of [24, Proposition 23], one may show that, under the assumptions
of Proposition 5.2, the condition 0 ∈ ri(rgeS +R∗

Kh(rgeT )) in part (b) is equivalent
to the existence of a ū∗ ∈ ri rgeT such that ri domS ∩ − ri dom 〈u∗, h〉∗ �= ∅, where
〈u∗, h〉∗ is the convex conjugate of 〈u∗, h〉. If h = A for a linear A : X → U and
K = {0}, the conditions of Proposition 5.2 hold trivially and D∗

Kh(x) = R∗
Kh = A∗

for any x ∈ X, so that Theorem 5.6 reduces to Corollary 4.3.
The following corresponds to minimization problems of the form

minimize f(x) subject to h(x) ∈ K.

Again, by restricting dom f or domh, any convex constraints can be represented by
the feasible set {x ∈ dom f ∩ domh | h(x) ∈ K }.

Corollary 5.7. Consider the composite model in the case T = NK . Then x
solves (Pcomp) if and only if there exists a u∗ such that

0 ∈ S(x) + ∂ 〈u∗, h〉 (x),
h(x) ∈ K, u∗ ∈ K∗, 〈u∗, h(x)〉 = 0.

If ri domS ∩ ri domh �= ∅, then F, L, and G are maximal and the following hold:
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(a) If there exists an x ∈ ri domh ∩ ri domS such that h(x) ∈ riK, then F0 is
maximal.

(b) If domS ⊂ domh (or if S is star-monotone) and 0 ∈ ri(rgeS + (rcK h)∗),
then G0 is maximal.

Proof. The first claim follows by noting that u∗ ∈ NK(h(x)) is equivalent to the
given complementarity condition. When h is K-closed, K has to be closed too so that
NK is maximal and rgeT = K∗. The maximality of F, L, and G now follows from
Proposition 5.2, and the maximality condition for F0 is obtained from Theorem 5.6(a).
Part (b) follows from Theorem 5.6(b), since R∗

Kh(K
∗) = rgeR∗

Kh = (rcK h)∗, by [24,
Lemma 3].

The special case K = Rn− was considered in [31, 37]. If S is (at most) single-valued
and there exists an x ∈ ri domh such that h(x) ∈ riK, then by [24, Proposition 24]
the primal inclusion is equivalent to the variational inequality

〈S(x), y − x〉 ≥ 0 ∀y ∈ C,

where C = {x ∈ X | h(x) ∈ K }. When U = X and h = I, it is equivalent to the
complementarity problem

x ∈ K, −S(x) ∈ K∗, 〈S(x), x〉 = 0.

Now that maximality criteria for the composite model have been established, one
can apply proximal point algorithms [35, 36, 15] to the Lagrangian or dual inclusion.
This leads to “multiplier methods” for the composite model [26]. In [16], Eckstein and
Ferris used this approach in a special case of the Fenchel–Rockafellar model, obtaining
efficient numerical algorithms for variational inequalities. As mentioned earlier, since
the general duality framework of section 2 does not depend on monotonicity, it has
potential in deriving numerical methods for nonmonotone variational problems as
well. One could also apply operator splitting methods [14] to the Lagrangian L =
S × T−1 + ∂̃H in Proposition 5.1.

6. Decomposition. This section generalizes the classical decomposition princi-
ple of convex programming and McLinden’s decomposition principle for saddle-point
problems [20]. The setting is finite-dimensional.

Consider the composite model in the separable case: X = X1 × · · · × Xn, S =
S1 × · · · × Sn, h = h1 + · · · + hn, and K = K1 + · · · + Kn, where Si is a monotone
mapping on Xi and hi is a Ki-convex function from Xi to U . The mapping F becomes

F (x, u) =



S1(x1)

...
Sn(xn)

0


+



D∗
K1
h1(x1)
...

D∗
Kn

hn(xn)
I


T

(
n∑
i=1

hi(xi) + u

)
,

and the problems (Pcomp) and (Lcomp) specialize to

(Psep) 0 ∈ Si(xi) +D∗
Ki
hi(xi)T

(
n∑
i=1

hi(xi)

)
∀i = 1, . . . , n,

(Lsep) 0 ∈ Si(xi) +D∗
Ki
hi(xi)(u

∗) ∀i = 1, . . . , n,
0 ∈ T−1(u∗)−∑n

i=1 hi(xi).
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In (Lsep), we have used the fact that T−1 + NK∗ = T−1, since rgeT ⊂ K∗. This
model corresponds to minimization problems of the form

minimize
n∑
i=1

fi(xi) + g

(
n∑
i=1

hi(xi)

)
,

where fi and g are extended-real-valued convex functions. When g is the indicator
function ofK, one obtains a more conventional form to which the convex programming
decomposition principle is usually applied. In the case of saddle-point problems, fi
and g would be saddle-functions in appropriate product spaces, hi would map to the
domain-space of g, and K would be of the form K1×K2 for K1 and K2 in the spaces
of the convex and concave argument of g, respectively.

Again, we are unable to obtain explicit expressions for G or G0 in terms of S,
T , and his. However, the mapping G0 decomposes into a sum that can be expressed
in terms of mappings Gi0 that correspond to independent composite models in the
subspaces Xi.

Proposition 6.1. Consider the composite model in the separable case. If the sets
riK∗

i have a point in common, then G0 may be written as the sum

G0 = T−1 +G1
0 + · · ·+Gn0 ,(6.1)

where, for i = 1, . . . , n, Gi0 is the monotone mapping in the dual inclusion (Di)
corresponding to the parameterization

Fi(xi, u) =

[
Si(xi)

0

]
+

[
D∗
Ki
hi(xi)
I

]
NKi(hi(xi) + u)

of the inclusion

(Pi) 0 ∈ Si(xi) +D∗
Ki
hi(xi)NKi

(hi(xi)).

Proof. The maximality of T and the inclusion rgeT ⊂ K∗ imply T−1 = T−1 +
NK∗ , so that by Proposition 5.1, the expression (2.5) may be written as

G0(u
∗) = T−1(u∗) +

⋃
x

{NK∗(u∗)− h(x) | 0 ∈ S(x) + ∂ 〈u∗, h〉 (x)} .(6.2)

In the separable case we have K∗ = K∗
1 ∩ · · · ∩K∗

n, and if the sets riK∗
i have a point

in common, NK∗ = NK∗
1

+ · · · +NK∗
n

by [30, Corollary 23.8.1]. Hence, (6.2) may be
written as the sum

G0 = T−1 +G1
0 + · · ·+Gn0 ,

where

Gi0(u
∗) =

⋃
x

{
NK∗

i
(u∗)− hi(xi) | 0 ∈ Si(xi) + ∂ 〈u∗, hi〉 (xi)

}
.

Inverting the logic that took us to (6.2), we find that Gi0 corresponds to Fi given
above.

We see that the subproblems (Pi) are exactly in the form of Corollary 5.7. In
the separable case, G0(u

∗) may be evaluated by computing T−1(u∗) and Gi0(u
∗) for

i = 1, . . . , n independently of each other.
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Recently, Burachik, Sagastizábal, and Svaiter [10] obtained bundle methods that
can be used to solve inclusions for general maximal monotone mappings. These meth-
ods require only that one is able to compute a single element in the image of any given
point. Currently, this algorithm seems to be the only “direct” algorithm for general
monotone mappings, i.e., it does not require the computation of resolvants; see also
the paper of Solodov and Svaiter [41], which develops a general algorithmic framework
with potential applications in this direction. Combining the above decomposition prin-
ciple and the algorithm in [10], one obtains implementable decomposition algorithms
for monotone inclusions, much as for convex minimization when using ordinary bundle
methods or other algorithms for nonsmooth convex minimization. The separable form
could also be utilized by applying operator splitting methods [42, 14, 12] for finding a
solution of (D). The convergence of all of these methods depends on the maximality
of the involved mappings, so the maximality results in the previous section may prove
to be useful in this context.
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Abstract. This paper aims at deriving and proving some Lipschitzian-type error bounds for
convex conic problems in a simple way. First, it is shown that if the recession directions satisfy
Slater’s condition, then a global Lipschitzian-type error bound holds. Alternatively, if the feasible
region is bounded, then the ordinary Slater condition guarantees a global Lipschitzian-type error
bound. These can be considered as generalizations of previously known results for inequality systems,
which also follow from general results by Bauschke and Borwein in [SIAM Review, 38 (1996), pp. 367–
426] and Bauschke, Borwein, and Li in a 1997 report. However, the proofs in the current paper are
considerably simpler. Some of the results are generalized to the intersection of multiple shifted cones
(with different shifts). Under Slater’s condition alone, a global Lipschitzian-type error bound does
not hold. It is shown, however, that such an error bound holds for a specific conic region. For linear
systems we establish that the sharp constant involved in Hoffman’s error bound is nothing but the
condition number for linear programming as used by Vavasis and Ye in [Math. Programming, 74
(1996), pp. 79–120].
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1. Introduction. In optimization theory it is often desirable to measure the
distance to the solution set from a certain given point. In general, this distance can
be difficult to assess, since one may not have a complete knowledge about the solution
set. However, if the form of the solution set is explicitly given, then in some cases
it is possible to estimate the distance to the solution set by the so-called constraint
violation, which is computable. This kind of estimation is termed error bound relation.
The first such result was obtained by Hoffman [8] for systems of linear equalities and
inequalities. We shall discuss Hoffman’s error bound in this paper too. A recent
extensive survey on various types of error bound results can be found in Pang [22].

Most papers discussing error bound results assume that the solution set is given
by equations and inequalities, e.g.,

S = {x | fi(x) = 0 for i = 1, . . . ,m and gj(x) ≤ 0 for j = 1, . . . , l}.

For a given point x the amount of constraint violation can be measured by the quantity

v(x) = ‖f(x)‖+ ‖(g(x))+‖,

where f(x) = (f1(x), . . . , fm(x)) and (g(x))+ = ((g1(x))+, . . . , (gl(x))+) with the
notation (y)+ = max(y, 0).

A measure for constraint violation is similar to a penalty function in the sense
that it takes a positive value for points outside the set and zero otherwise. Note that
a measure for constraint violation should be easily computable, such as the case for
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the above defined function v(x). Hoffman’s lemma [8] states that if S �= ∅ and fi and
gj are all affine linear functions, then there is a positive constant κ > 0 such that

dist (x, S) ≤ κv(x)(1.1)

for all x ∈ 	n. This means that the distance to S is of the same magnitude as v(x).
Such a relation is known as a Lipschitzian-type error bound.

In the case that fi and gj are not affine linear, inequality (1.1) does not hold in
general. Early results concerning nonlinear functions are due to Robinson [24] and
Mangasarian [19]. Robinson [24] showed that for inequality systems if all functions are
convex and differentiable, S is bounded, and the Slater condition holds, i.e., there is
a x̂ such that gj(x̂) < 0 for all j, then relation (1.1) holds. Mangasarian [19] removed
the assumption that S is bounded by assuming an additional asymptotic constraint
qualification condition, which, however, can be difficult to verify in general. For an
extensive discussion of the related results we refer to [1] and [2] and the references
therein.

In this paper we consider the convex conic set

F = (b+ L) ∩ K,(1.2)

where b ∈ 	n, L is a subspace of 	n, and K ⊆ 	n is a closed convex cone. Polynomial-
time interior-point algorithms for solving convex optimization problems with a convex
conic feasible set were introduced in a systematic manner by Nesterov and
Nemirovskii [21]. It turns out that many important classes of optimization prob-
lems, such as linear programming and semidefinite programming, can be cast in this
form. The focus of this paper is to discuss how an error bound–type relation can be
established for such problems. Throughout this paper we make the following assump-
tion.

Assumption 1. F �= ∅.
The organization of this paper is as follows. In the next section we prove that

with a proper definition of constraint violation a Lipschitzian-type error bound (1.1)
can be established for general convex conic problems, under various conditions on the
relations between L and K, including Slater-type conditions. In section 3 we discuss
a link between the constant in Hoffman’s error bound and the so-called condition
number for linear programming. Finally, we conclude the paper in section 4.

We use the following notation in this paper. Matrices are denoted by capital
letters, e.g., X. For a given index set I, XI is composed of columns of X whose indices
belong to I. We denote n-dimensional Euclidean space by 	n and its nonnegative
quadrant by 	n+. The space of all symmetric n by n matrices is denoted by Sn×n and
the cone of all symmetric positive semidefinite n by n matrices by Sn×n+ . Vector e
represents a vector of all ones with appropriate dimension. For a vector v ∈ 	n, we
use the capitalized letter V to denote the diagonal matrix that takes v as its diagonal
elements. We use the Euclidean norm ‖v‖ for a vector v and the spectral norm ‖M‖
for a matrix M . A vector a ≥ 0 means that each component of a is nonnegative.

2. Convex conic systems. Consider the convex conic set (1.2). For conve-
nience we further assume that K is a closed, pointed, and solid cone, i.e., K∩ (−K) =
{0} and dim K = n.

The dual of K is

K∗ = {x | xT y ≥ 0 for all y ∈ K}.
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Since K is pointed and solid, K∗ too is a closed, convex, pointed, and solid cone.
An immediate next question is, How can we define a constraint violation function

for F? For this purpose we note the following lemma, due to Moreau (see Theorem
31.5 in [25]).

Lemma 2.1. For any x ∈ 	n there is a unique xp ∈ K and xd ∈ K∗ such that
x = xp − xd and xTp xd = 0.

In fact, xp is simply the projection of x onto K and ‖xd‖ measures the distance
from x to K. A natural definition for the constraint violation for F is now in order.

Definition 2.2. For any x ∈ 	n define

v(x;F) := dist (x, b+ L) + ‖xd‖
as the constraint violation function for F .

It is readily seen that v(x,F) = 0 iff x ∈ F .
It is, however, not immediately clear how the function v(x;F) can be computed.

Below we shall see some examples in which this function is explicitly derived. First
we consider the case K = 	n+, the nonnegative quadrant of 	n. Clearly, x = x++x−,
where x+ = ((x1)+, . . . , (xn)+) and x− = (−(−x1)+, . . . ,−(−xn)+). Obviously, x+ ∈
K, −x− ∈ K, and xT+x− = 0. Therefore, ‖xd‖ = ‖(x)−‖, which is exactly the usual
definition of the violation for nonnegativity constraints.

Another example is K = Sn×n+ , the cone of n by n symmetric positive semidefinite
matrices. Consider a given n by n symmetric matrixX. Following Lemma 2.1 we know
that there are unique positive semidefinite matricesXp andXd such thatX = Xp−Xd

and tr(XpXd = 0). Matrices Xp and Xd can be computed as follows. Let X = QΛQT

with Q as an orthonormal matrix and Λ as a diagonal matrix with eigenvalues of X as
its components. Splitting Λ = Λ++Λ−, where Λ+ and Λ− denote the nonnegative and
nonpositive parts of Λ, respectively, it follows that Xp = QΛ+Q

T , Xd = −QΛ−QT ,
and XpXd = 0. Hence, ‖Xd‖ = ‖Λ−‖.

Finally, we consider another popular convex cone: the second order cone K ∈
	n+1 defined as

K = {(x0, x) | x ∈ 	n and x0 ≥ ‖x‖}.
It can be shown that in this case

‖xd‖ = (‖x‖ − x0)+/
√
2.

In general, Definition 2.2 is only related to the geometry of the object under
consideration.

Consider now an arbitrary point z ∈ 	n. Assume that z �∈ F . The following
problem yields a unique point in F with the shortest Euclidean distance to z:

(Proj)
minimize 1

2‖x− z‖2
subject to x ∈ b+ L,

x ∈ K.
Let this optimal solution be x̄. The Karush–Kuhn–Tucker (KKT) optimality condi-
tion for (Proj) is given as

(KKT)




x̄− z + λ− µ = 0,
x̄Tµ = 0,
x̄ ∈ (b+ L) ∩ K,
µ ∈ K∗,
λ ∈ L⊥.

(2.1)
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Hence,

‖x̄− z‖2 = (x̄− z)T (x̄− z)

= (x̄− z)T (µ− λ)

= −(zp − zd)
Tµ+ (z − x̄)Tλ

≤ zTd µ+ (z − x̄)Tλ

≤ ‖zd‖‖µ‖+ (z − x̄)Tλ,(2.2)

where the first inequality follows from the fact that zp ∈ K and µ ∈ K∗.
Let the projection of z onto the affine subspace b+ L be zl. Then

(z − x̄)Tλ = (z − zl + zl − x̄)Tλ

= (z − zl)
Tλ

≤ ‖z − zl‖‖λ‖
= dist (z, b+ L)‖λ‖.

Substituting this relation into (2.2) we obtain

(dist (z,F))2 = ‖x̄− z‖2 ≤ ‖zd‖‖µ‖+ dist (z, b+ L)‖λ‖.(2.3)

In section 3 we shall discuss how to further bound the errors when K is a polyhedral
cone, which is the situation when the original Hoffman lemma applies. In the rest of
this section we assume that K is a general closed convex cone. In addition to this we
assume that the Slater condition is satisfied.

Assumption 2. (b+ L) ∩ int K �= ∅.
The following lemma is well known. For completeness we provide a short proof.
Lemma 2.3. Suppose that Assumption 2 holds. Then for any y ∈ L⊥ ∩ K∗ with

y �= 0 it must follow that bT y > 0.
Proof. Suppose, for the sake of deriving a contradiction, that there is y �= 0 such

that y ∈ L⊥ ∩ K∗ and bT y ≤ 0.
Consider the hyperplane

Hy = {x | yTx = 0}.
For any x ∈ b+L we have yTx = bT y ≤ 0, while for any x ∈ K, since y ∈ K∗ we have
yTx ≥ 0. This means that Hy separates b+ L and K, yielding a contradiction to the
fact that b+ L intersects with the interior of K.

For fixed x̄ we consider again the system (KKT) in terms of µ and λ. After some
rearranging this yields 


µ− λ = x̄− z,
x̄Tµ = 0,
µ ∈ K∗,
λ ∈ L⊥.

(2.4)

Define

K̄∗ = K∗ ∩ {µ | x̄Tµ = 0},
which is a closed convex cone as well; see Figure 2.1.

Note that x̄ = 0 is a trivial case and can only happen when b = 0.
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p
µ
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��
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ϕ

K̄∗

L⊥

�

�

Fig. 2.1. Subspace L⊥ and the cone K̄∗.

We shall mention another easy case, i.e., if x̄ lies in the interior of K, then K̄ = {0}.
In this case µ = 0 and λ = z − x̄, and therefore

dist (z,F) ≤ dist (z, b+ L)
due to (2.3). In what remains we shall concentrate only on the situation when x̄ �∈
int K.

Remark that for x̄ ∈ K, the cone K̄∗ is known as a face of K∗.
The condition (2.4) is equivalent to

µ ∈ (x̄− z + L⊥) ∩ K̄∗.

The following fact is readily seen using Lemma 2.3.
Lemma 2.4. If Assumption 2 holds, then L⊥ ∩ K̄∗ = {0}.
Now we define the minimum angle between L⊥ and K̄∗ as

� (L⊥, K̄∗) := min{arccos(uT v/(‖u‖‖v‖)) | u ∈ L⊥ \ {0}, v ∈ K̄∗ \ {0}}.
Note that both L⊥ and K̄∗ are closed cones. According to Lemma 2.4, it follows that

� (L⊥, K̄∗) > 0

for any x̄ ∈ (b+ L) ∩ K.
In order to pursue our analysis further, one of the following two mutually exclusive

cases will be considered.
Assumption 3. The set F = (b+ L) ∩ K is compact.
Assumption 4. L ∩ int K �= ∅.
Let us first consider the situation when Assumption 3 holds. In that case we know

that there exists θ > 0 such that for any x̄ ∈ F we always have

� (L⊥, K̄∗) ≥ θ > 0.

Now take µ ∈ (x̄− z + L⊥) ∩ K̄∗. Let the projection of 0 onto x̄− z + L⊥ be p.
Let the angle between µ and µ− p be ϕ. Clearly, θ ≤ ϕ ≤ π/2. Moreover,

‖µ‖ = ‖p‖/ sinϕ ≤ ‖p‖/ sin θ ≤ ‖x̄− z‖/ sin θ.(2.5)
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Denote

κ = 1 + 1/ sin θ.

We are now in a position to prove the following error bound result.
Theorem 2.5. If Assumption 2 and Assumption 3 hold, then

dist (z,F) ≤ κv(z;F)

for all z ∈ 	n.
Proof. By (2.5) we have

‖µ‖ ≤ dist (z,F)/ sin θ ≤ κ dist (z,F).

Using the first equation in (2.4) we also have

‖λ‖ ≤ ‖µ‖+ ‖x̄− z‖ ≤ (1 + 1/ sin θ)dist (z,F) = κ dist (z,F).

Recall relation (2.3). By the above estimations on ‖µ‖ and ‖λ‖, it follows from (2.3)
that

(dist (z,F))2 ≤ κ dist (z,F)(‖zd‖+ dist (z, b+ L))

and consequently

dist (z,F) ≤ κv(z;F).

In the other situation, namely if Assumption 4 holds, then a similar result can be
shown.

Theorem 2.6. If Assumption 4 holds, then for any b ∈ 	n we must have (b +
L) ∩ int K �= ∅. Moreover, there is a constant κ > 0, independent of b, such that

dist (z,F) ≤ κv(z;F),

where F = (b+ L) ∩ K.
Proof. First we show that (b + L) ∩ int K �= ∅ for all b. Suppose otherwise that

there is b with

(b+ L) ∩ int K = ∅.

Then, there will be a hyperplane separating b + L and K, say with 0 �= y ∈ 	n and
c ∈ 	 such that

yT (b+ x) ≤ c for all x ∈ L,

yTx ≥ c for all x ∈ K.

Since K is a closed cone, the above separation implies that yTx ≥ 0 for all x ∈ K and
c = 0. Moreover, we also have yTx = 0 for all x ∈ L. This is in contradiction with
the condition L ∩ int K �= ∅.

Compared with Lemma 2.4, we have now a stronger relation: L⊥∩ K∗ = {0}. This
means that the proof of Theorem 2.5 can remain exactly the same, except that now
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θ > 0 can be taken as the minimum angle between L⊥ and K∗, which is independent
of b.

We remark that both Theorem 2.5 and Theorem 2.6 easily extend to the case
when L is a closed cone.

Theorem 2.7. Suppose that K1 is a closed convex cone and K2 is a closed,
convex, solid, and pointed cone. Furthermore, suppose that (b+K1)∩ int K2 �= ∅ and
(b+K1) ∩ K2 is compact. Then there is a constant κ > 0 such that

dist (z,F) ≤ κ(dist (z, b+K1) + dist (z,K2))

for all z ∈ 	n, where F = (b+K1) ∩ K2.
Proof. We follow similar lines as in the proof of Theorem 2.5. Consider

minimize 1
2‖x− z‖2

subject to x ∈ b+K1,
x ∈ K2.

Let the optimal solution be x̄. Since the Slater regularity condition is assumed, the
KKT optimality condition holds at optimality, yielding



x̄− z − µ1 − µ2 = 0,
(x̄− b)Tµ1 = 0,
x̄Tµ2 = 0,
x̄ ∈ (b+K1) ∩ K2,
µ1 ∈ K∗

1,
µ2 ∈ K∗

2.

Let

K̄∗
1 = K∗

1 ∩ {µ | (x̄− b)Tµ = 0}
and

K̄∗
2 = K∗

2 ∩ {µ | x̄Tµ = 0}.
Both K̄∗

1 and K̄∗
2 are closed convex cones.

Now we claim that

(−K̄∗
1) ∩ K̄∗

2 = {0}.(2.6)

Suppose such is not the case. Then, one should be able to find µ �= 0 satisfying


µ ∈ (−K∗
1) ∩ K∗

2,
(x̄− b)Tµ = 0,
x̄Tµ = 0.

Hence, bTµ = 0. Therefore, µT (b+ x) ≤ 0 for all x ∈ K1 and µTx ≥ 0 for all x ∈ K2.
This implies that {x | µTx = 0} separates b + K1 from K2, contradicting the Slater
condition.

Since −K̄∗
1 and K̄∗

2 are closed convex cones and since, moreover, K̄∗
2 is a solid

pointed cone, we derive from (2.6) that K̄∗
2 can be strictly separated from −K̄∗

1. Due
to compactness of F we may let θ be a positive lower bound on the minimum angle
between this separating hyperplane and K̄∗

2. Then we have

‖µ2‖ ≤ ‖x̄− z‖/ sin θ
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and consequently

‖µ1‖ ≤ (1 + 1/ sin θ)‖x̄− z‖.
Now,

‖x̄− z‖2 = (x̄− z)T (µ1 + µ2)

= (b− z)Tµ1 − zTµ2

≤ dist (z, b+K1)‖µ1‖+ dist (z,K2)‖µ2‖
≤ (1 + 1/ sin θ)(dist (z, b+K1) + dist (z,K2))‖x̄− z‖.

The desired result thus follows.
Similarly, we have the following result, the proof of which is pretty much the same

as that of Theorem 2.6 and Theorem 2.7 and is omitted here.
Theorem 2.8. Suppose that K1 is a closed convex cone and K2 is a closed,

convex, solid, and pointed cone. Furthermore, suppose that K1 ∩ int K2 �= ∅. Then
for any b ∈ 	n there is a constant κ > 0, independent of b, such that

dist (z,F) ≤ κ(dist (z, b+K1) + dist (z,K2))

for all z ∈ 	n, where F = (b+K1) ∩ K2.
When more than two cones are concerned, a similar result holds under Slater’s

condition. First we note the following lemma; see, e.g., [17].
Lemma 2.9. Let K be a convex cone and int K �= ∅. Then, x ∈ int K if and only

if for any 0 �= µ ∈ K∗ it holds that � (x, µ) ≥ θ > 0.
Theorem 2.10. Let Ki be closed convex cones, i = 1, . . . ,m. Suppose that

m⋂
i=1

int Ki �= ∅.

Then there is κ > 0 such that

dist

(
z,

m⋂
i=1

(bi +Ki)
)
≤ κ

m∑
i=1

dist (z, bi +Ki)

for any z ∈ 	n.
Proof. First note that if

⋂m
i=1 int Ki �= ∅, then necessarily

⋂m
i=1(bi +Ki) �= ∅.

Consider

minimize 1
2‖x− z‖2

subject to x ∈ bi +Ki, i = 1, . . . ,m.

For the optimal solution x̄, the KKT condition yields

x̄− z =

m∑
i=1

µi

with µi ∈ K∗
i and (x̄− bi)

Tµi = 0 for i = 1, . . . ,m.
Let

d ∈
m⋂
i=1

int Ki.
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By Lemma 2.9 there exists gi > 0 satisfying

dTµi ≥ gi‖µi‖

for i = 1, . . . ,m.
Let

z − bi = zip − zid

with zip ∈ Ki, zid ∈ K∗
i , and zTipzid = 0 due to Lemma 2.1. Moreover, ‖zid‖ =

dist (z, bi +Ki), i = 1, . . . ,m.
Therefore,

‖x̄− z‖2 = (x̄− z)T
m∑
i=1

µi

=

m∑
i=1

(bi − z)Tµi

= −
m∑
i=1

(zip − zid)
Tµi

≤
m∑
i=1

zTidµi

≤
m∑
i=1

‖zid‖‖µi‖.

On the other hand, since

‖d‖‖x̄− z‖ ≥ dT (x̄− z) =

m∑
i=1

dTµi ≥ gi‖µi‖

for i = 1, . . . ,m, it follows that

‖x̄− z‖2 ≤
m∑
i=1

dist (z,Ki)(‖d‖/gi)‖x̄− z‖,

and so by letting

κ = max
i=1,...,m

‖d‖/gi

it follows that

dist

(
z,

m⋂
i=1

(bi +Ki)
)
≤ κ

m∑
i=1

dist (z, bi +Ki).

Theorem 2.5 can be viewed as an analogue to Robinson’s result for convex in-
equality systems. In the form of convex inequality systems, Theorem 2.6 can be found
in Hu and Wang [11] and Deng and Hu [5]. In particular, Deng and Hu [5] investigated
the case when K is the cone of positive semidefinite matrices. This case is known as
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linear matrix inequalities (LMIs). In its optimization version it is also called semidef-
inite programming and has received intensive research attention recently. Sturm [27]
mainly investigated error bounds for LMIs in the absence of Slater’s condition. In
fact, in the context of LMIs, both Theorem 2.5 and Theorem 2.6 also follow from the
analysis in [27]. Moreover, an example was given in Sturm [27] showing that Assump-
tion 2 alone cannot guarantee a global Lipschitzian-type error bound even for LMIs.
Such an error bound is only possible when an additional scaling factor is present.
Error bounds (with a scaling factor) for general conic problems under Assumption 2
can be found in Renegar [23], where the notion of distance to ill-posedness is used in
estimating the Lipschitz constant.

Theorem 2.5 can also be derived from a result established by Bauschke, Borwein,
and Li [2, section 5], though the two approaches are quite different in motivation. In
case all shifting vectors bis are identical, Theorem 2.10 can be found in [1], in which
many other interesting error bound–type results are discussed. See also [9] and [12]
for related results.

Below we shall discuss how to derive some conditioned error bound relations for
the convex conic problem (1.2) under Assumption 2, without assuming Assumption 3
and Assumption 4.

In this situation the recession direction set L∩K \ {0} must be nonempty and is
not contained in the interior of K.

In a similar spirit as the angle between two cones, we define the angle between a
vector and a closed convex cone as the minimum angle between the vector and any
nontrivial direction in the cone. We make a convention here that the angle between
the zero vector and a cone is π. Now, for a fixed positive angle 0 < θ < π/2, consider
the cone

Cθ = {z | the projection of z onto L and the cone L ∩ K has an angle at least π/2 + θ}.
Roughly speaking, Cθ contains the points that do not lean too much toward the
recession cone L ∩ K.

Theorem 2.11. Suppose that Assumption 2 holds. Then, for any 0 < θ < π/2,
there exists a constant κθ > 0 such that

dist (z,F) ≤ κθv(z;F)
for all z ∈ Cθ.

Proof. Observe that if x̄ is the projection of z on F , then it must also be the
projection of z + y on F for any y ∈ L⊥. This can be seen as follows. The fact that
x̄ ∈ (b + L) ∩ K is the projection of z is equivalent to the existence of λ ∈ L⊥ and
µ ∈ K∗ such that

x̄− z = µ− λ and x̄Tµ = 0.

(See also (2.1).) Now if z is changed to z + y, then we need only to change λ to
λ+ y ∈ L⊥ to satisfy the same set of KKT conditions.

Remark also that to prove the theorem it is sufficient to show that, for any z ∈ Cθ,
its projection onto F is contained in a compact set.

Suppose that the theorem is false and that there is a sequence {z(k) ∈ Cθ | k =
1, 2, . . .} such that the corresponding projection on F , {x̄(k) ∈ F | k = 1, 2, . . .}, is
unbounded. Due to the above remarks, we need only to consider the projection of
z(k) onto the subspace L. Without loss of generality, assume that z(k) ∈ L ∩ Cθ for
all k.
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For sufficiently large k we have

‖z(k) − x̄(k)‖2 = ‖z(k)‖2 + ‖x̄(k)‖2 − 2〈z(k), x̄(k)〉
≥ ‖z(k)‖2 + ‖x̄(k)‖2 + cos(θ/2)‖z(k)‖‖x̄(k)‖
> ‖z(k) − x̄(1)‖2,

where the first inequality is because x̄(k)/‖x̄(k)‖ must be pointing asymptotically
toward the cone of recession directions L ∩ K and the last inequality is due to
the fact that ‖x̄(k)‖ → ∞. This contradicts x̄(k) being the closest point in F to
z(k).

For any given point z ∈ 	n, we may decompose z = z1 + z2 with z1 ∈ L ∩K and
z2 ∈ Cθ. Let the projection of z2 onto F be x̄2. Then

dist (z,F) ≤ ‖z2 + z1 − (x̄2 + z1)‖ = dist (z2,F),(2.7)

where we used the fact that z1 ∈ L ∩ K and so x̄2 + z1 ∈ F .
Combining (2.7) with Theorem 2.11 we have the following theorem.
Theorem 2.12. Suppose that Assumption 2 holds. Then

dist (z,F) ≤ κθv(z2;F)

for all z ∈ 	n with z = z1 + z2, z1 ∈ L ∩ K and z2 ∈ Cθ.
3. Hoffman’s error bound and the condition number for LP. In this

section we shall discuss error bounds for the linear system {x | ATx ≤ b} with
A ∈ 	m×n and rank (A) = m. This is the setting for which Hoffman’s error bound
result applies [8]. Our purpose is to see how the constant in Hoffman’s bound is related
to other known quantities for the linear system. Previous results on the constant of
Hoffman’s bound can be found, e.g., in [18, 20, 3, 15, 13, 14, 7]. Extensions of
Hoffman’s result in infinite dimensional space can be found in [4, 16].

By introducing a slack s(x) = b−ATx we confine ourselves to the range space of
AT , i.e.,

L = {s | ∃x ∈ 	m : s = ATx}.

Accordingly, K = 	n+.
For a given z ∈ 	n with s(z) �∈ 	n+, let x̄ be such that s(x̄) = b−AT x̄ ∈ (b+L)∩K

and that the distance between x̄ and z is minimal.
Let

K = {i | s(x̄)i > 0} and J = {1, . . . , n} \K.

Then for this given s(x̄) ≥ 0 we can rewrite (2.1) as


AJµJ = z − x̄,
µK = 0,
µJ ≥ 0.

(3.1)

As (3.1) is a necessary condition for optimality, it is certain that (3.1) is feasible.
What remains to be analyzed is the size of the solution. A key ingredient in our
analysis is the following lemma.
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Lemma 3.1. Suppose that A has full row rank. Then

χ(A) := sup{‖DAT (ADAT )−1‖ | D diagonal and D � 0} <∞.

Lemma 3.1 was first shown by Dikin [6] and was used in his convergence analysis
for affine scaling methods. Among others, Stewart [26] and Todd [29] rediscovered
this result later.

The meaning of Lemma 3.1 can be interpreted as follows. It is well known that
Null(A) = {x | Ax = 0} and Range(AT ) = {x | ∃y ∈ 	m, x = AT y} are orthocomple-
ments to each other. Obviously, for a given positive diagonal matrix D, Null(A) can
only intersect with D Range(AT ) at the origin; hence, there must be a positive angle
between them. Lemma 3.1 further states that the minimum angle between Null(A)
and D Range(AT ) is uniformly bounded from below by a positive constant that is
independent of D.

To understand this fact we may consider the following example. Let A = [1, 1].
Then Null(A) is simply the line x1 + x2 = 0. For a given positive diagonal matrix D,
D Range(AT ) is contained in the first and the third quadrants. The angle between
these two subspaces never drops below π/4. Another closely related quantity is

χ̄(A) := sup{‖DAT (ADAT )−1A‖ | D diagonal and D � 0}.

An important property of the constant χ̄(A) is that it reflects an intrinsic, geometric
relationship of the spaces. Vavasis and Ye [31] used χ̄(A) and χ(A) as a measure of
complexity for solving the related linear programming problem. Their results showed
that, in a real-number computation model, the linear program is solvable in poly-
nomial time, in terms of the total number of basic operations, with respect to the
dimension n and the complexity measure log χ̄(A). For problems with integral input
data, this result yields the usual polynomiality complexity result for linear programs
in terms of the input length.

Holder, Sturm, and Zhang [10] showed that χ(A) and χ̄(A) play an important role
in sensitivity analysis for linear programming. Furthermore, Sturm and Zhang [28]
extended some of the results in [10] to semidefinite programming. It is known, how-
ever, that Lemma 3.1 cannot extend to general semidefinite programming for arbitrary
invariant scaling of the cone Sn×n+ ; see [28].

Fortunately, in analyzing (3.1) we need only to deal with a polyhedral cone. To
see how the condition number χ(A) (χ̄(A)) is relevant in error bound analysis, we
need to introduce a number of technical lemmas.

First we note the following equivalent definition of χ(A) for arbitrary matrix A
due to Vavasis and Ye [31].

Lemma 3.2. It holds that

χ(A) = sup

{‖y‖
‖c‖ | y minimizes ‖D1/2(AT y − c)‖

for 0 �= c ∈ 	n and D positive diagonal

}
.

For our analysis it is important to know the size of a solution for a linear system.
To this end, we note the following two lemmas. Renegar [23] studied similar problems
in a quite general framework using a different quantity known as the distance to
ill-posedness.
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Lemma 3.3. Suppose that A has full row rank. Further assume that {x | Ax =
b, x > 0} �= ∅. Then there is a solution x̄ in F = {x | Ax = b, x ≥ 0} such that

‖x̄‖ ≤ χ(A)‖b‖.
Proof. Consider a linear program

(P)
minimize eTx
subject to Ax = b,

x ≥ 0,

and its dual

(D)
maximize bT y
subject to AT y + s = e,

s ≥ 0.

Both (P) and (D) satisfy Slater’s condition. Therefore their respective analytic central
paths {x(µ) | µ > 0} and {(y(µ), s(µ)) | µ > 0} exist, satisfying the relation


Ax(µ) = b,
AT y(µ) + s(µ) = e,
x(µ)s(µ) = µe.

(3.2)

Multiplying the second equation in (3.2) with X(µ), multiplying the diagonal matrix
with x(µ) as its diagonal components, and applying the first equation in (3.2) we
obtain

y(µ) = (AX(µ)AT )−1b− µ(AX(µ)AT )−1e.

Substituting this into the second equation and finally using the third relation in (3.2)
we have

x(µ) = X(µ)AT (AX(µ)AT )−1b+ µe− µX(µ)AT (AX(µ)AT )−1Ae.

Now we can apply Lemma 3.1 to obtain

‖x(0)‖ = ‖ lim
µ→0

x(µ)‖ ≤ χ(A)‖b‖.

The lemma is proven.
Next we shall extend this result to the case when Slater’s condition is no longer

assumed.
Lemma 3.4. Suppose that A has full row rank. Further assume that {x | Ax =

b, x ≥ 0} �= ∅. Then there is a solution x̄ in F = {x | Ax = b, x ≥ 0} such that

‖x̄‖ ≤ χ(A)‖b‖.
Proof. Let δ > 0. Consider a perturbed set

Fδ = {x | Ax = b+ δAe, x ≥ 0}.
Clearly, Fδ contains an interior point; therefore, Lemma 3.3 can be invoked. Let
xδ ∈ Fδ and

‖xδ‖ ≤ χ(A)‖b+ δAe‖.
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The set {xδ | 0 < δ < 1} is bounded. Let x0 be a cluster point of xδ as δ → 0.
Obviously, x0 ∈ F and

‖x0‖ ≤ χ(A)‖b‖.
Next we consider the size of a solution restricted to a face.
Lemma 3.5. Let I be an index set. Suppose that FI = {xI | AIxI = b, xI ≥ 0} �=

∅. Then there is a solution x̄I ∈ FI such that

‖x̄I‖ ≤ χ(A)‖b‖.
Proof. Let Ī be the complement index set of I. Consider the linear program

minimize eT
Ī
xĪ

subject to Ax = b,
x ≥ 0.

This linear program is feasible and has an optimal value equal to zero. By considering
perturbations on the primal and dual sides at the same time if necessary, the lemma
follows from similar arguments as in the proofs of Lemma 3.3 and Lemma 3.4.

Applying Lemma 3.5 to (3.1) we conclude that there is a multiplier µ such that

‖µ‖ = ‖µJ‖ ≤ χ(A)‖x̄− z‖.(3.3)

Finally we shall give an explicit constant in Hoffman’s error bound for linear
systems.

Theorem 3.6. Suppose that F = {x | ATx ≤ b} �= ∅ and A has full row rank. It
holds that

dist (z,F) ≤ χ(A)‖(AT z − b)+‖
for any z ∈ 	n.

Proof. Using (3.1) and (3.3) we have

‖x̄− z‖2 = (x̄− z)T (−Aµ)
= (AT z − b)Tµ

≤ (AT z − b)T+µ

≤ ‖(AT z − b)+‖‖µ‖
≤ ‖(AT z − b)+‖χ(A)‖x̄− z‖.

Hence

dist (z,F) ≤ χ(A)‖(AT z − b)+‖.
It is interesting to note that the Lipschitz constant established in Theorem 3.6

coincides with the sharp Lipschitz constant of Li [15]. In the absence of equality
constraints, which is the case considered here, the sharp Lipschitz constant can be
shown to be equal to

λ(A) = {‖A−1
I ‖ | |I| = m and AI nonsingular}.

(See Klatte and Thiere [13, 14] for a discussion on various Lipschitz constants.)
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The proof of Theorem 1 in Todd, Tunçel, and Ye [30] can be used to show that
χ(A) is in fact identical to λ(A) (in [30] a bound on χ̄(A) was considered). For
completeness we provide this argument below.

Proposition 3.7. It holds that

χ(A) = λ(A).

Proof. For any I with |I| = m and AI nonsingular, we let Dε be diagonal and
Dε
ii = 1 for i ∈ I and Dε

ii = ε for i �∈ I. Clearly, DεAT (ADεAT )−1 → A−1
I as ε ↓ 0

and so λ(A) ≤ χ(A).
To show χ(A) ≤ λ(A), we apply the equivalent definition of χ(A) as stipulated in

Lemma 3.2. First we choose a fixed 0 �= c ∈ 	n and a fixed positive diagonal matrix
D. Consider the unique y(c,D) that minimizes ‖D1/2(AT y− c)‖. Obviously the rank
of the active constraints at y(c,D) must be equal to m. Let J be such that |J | = m,
AJ nonsingular, and ATJ y(c,D) = cJ . Hence, y(c,D) = A−T

J cJ . This shows that

χ(A) ≤ sup{‖A−T
J cJ‖/‖c‖ | 0 �= c ∈ 	n, |J | = m, and AJ nonsingular}

≤ sup{‖A−T
J ‖ | |J | = m and AJ nonsingular}

= λ(A).

Combining the two inequalities the proposition follows.
Theorem 3.6 therefore makes a connection between two previously known quan-

tities for linear systems.

4. Conclusions. In this paper we discuss error bounds for sets in convex conic
form. The notion of constraint violation is extended to this class of problems. For
a number of applications the measure of constraint violation is easily computable.
We show that under Slater’s condition and, additionally, if either the feasible set
is bounded or the recession directions satisfy the Slater’s condition, then there is a
global Lipschitzian-type error bound for general convex conic problems. These results
are generalized to the intersection of multiple shifted (noncopointed) convex cones.
Under Slater’s condition alone it is impossible to have a global Lipschitz error bound.
In this case, however, one may still identify a conic region in which a Lipschitzian-
type error bound holds. Finally, we discuss the bounds in Hoffman’s lemma for linear
systems. It is shown that such a bound is nothing but the condition number for linear
programming as used in Vavasis and Ye [31].
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Abstract. Despite the efficiency shown by interior-point methods in large-scale linear pro-
gramming, they usually perform poorly when applied to multicommodity flow problems. The new
specialized interior-point algorithm presented here overcomes this drawback. This specialization uses
both a preconditioned conjugate gradient solver and a sparse Cholesky factorization to solve a linear
system of equations at each iteration of the algorithm. The ad hoc preconditioner developed by
exploiting the structure of the problem is instrumental in ensuring the efficiency of the method. An
implementation of the algorithm is compared to state-of-the-art packages for multicommodity flows.
The computational experiments were carried out using an extensive set of test problems, with sizes of
up to 700,000 variables and 150,000 constraints. The results show the effectiveness of the algorithm.
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1. Introduction. Multicommodity problems usually have many variables and
constraints, which makes it difficult for them to be solved by general procedures. This
has led to the formulation of specialized methods. However, some of the largest and
most difficult multicommodity problems are still challenging even for these special-
izations. The algorithm presented in this paper has three main features. First, it has
proven to be computationally efficient and robust in the solution of a wide range of
problems, not just for some specific kind of multicommodity instances. Second, it
is a specialized primal-dual interior-point algorithm, so it globally converges to the
optimum in polynomial time, unlike other methods that provide an ε-approximate
solution (e.g., [17]). And finally, it has been able to efficiently solve large instances
of Patient Distribution System (PDS) problems [7]. This class of problems is com-
monly used as a de facto standard for testing the performance of multicommodity
codes. With our algorithm we solved the PDS90 and PDS100 instances in a relatively
reasonable amount of time. (In [17] an approximate solution is provided at most for
PDS80.)

Most of the specialized methods attempt to exploit in some way the block struc-
ture of the multicommodity problem. Among the earlier approaches, we find primal
partitioning and the price and resource directive decompositions (see [2, Chap. 17]
and [21] for details). Of these three methods, the first two were regarded as the most
successful in [3]. Despite this, no implementation of primal partitioning has been able
to solve large problems significantly faster than the state-of-the-art simplex codes.
For instance, the recent primal partitioning package PPRN [6] was, on average, no
more than an order of magnitude faster than the primal simplex code of MINOS 5.3.
In some cases, accurate implementations of the dual simplex—preceded by a warm
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start based on solving minimum-cost network problems for each commodity—can
even outperform primal partitioning multicommodity specializations (see [13] for a
comparison of PPRN and the network+dual solver of CPLEX 3.0). In this paper, we
show that our algorithm, in general, outperforms both PPRN and CPLEX 4.0 and,
in some cases, by more than an order of magnitude.

The other method regarded as successful in [3], the price directive or Dantzig–
Wolfe decomposition, belongs to the class of cost decomposition approaches for multi-
commodity flows (see [13], [15], and [33] for recent variants based on bundle methods,
analytic centers, and smooth penalty functions, respectively). A recent computational
study [13] showed that these are promising approaches for solving a wide variety of
problems. However, for some classes of instances—typically difficult problems with
large networks and not many commodities such as the PDS ones—our interior-point
approach seems to give considerably better performance. Furthermore, Frangioni [12]
noted that the particular cost decomposition method of [13] might sometimes require
the algorithmic parameters to be tuned if performances are to be the best possible,
whereas our algorithm works well with default values.

Interior-point methods have also been applied in the past. For the single-
commodity case, efficient specializations were developed by Resende and others [26,
28, 29, 30]. These specializations relied on the use of preconditioned conjugate gradi-
ent (PCG) solvers. The preconditioners developed, though efficient, were appropriate
only for single-commodity problems. The first reported attempt at solving multi-
commodity problems by an interior-point method was probably that described in [1].
However, the general implementation of Karmarkar’s projective algorithm used there
was outperformed by a simplex specialized algorithm in the solution of small-size mul-
ticommodity instances. Alternative and more efficient approaches were developed in
the following years. In fact, the best complexity bound known for multicommodity
problems is provided by the two interior-point algorithms described in [19] and [20],
though none of these papers provided computational results. In [18], Kamath et al.
applied a variant of Karmarkar’s projective algorithm using a PCG solver. However,
their preconditioner did not take advantage of the multicommodity structure. An
attempt to exploit this structure was made in [9] by Choi and Goldfarb. Though
the decomposition scheme they presented is similar to the one in this paper, the
solution procedure differs substantially. Choi and Goldfarb suggest solving a fairly
dense matrix positive definite linear system that appears during the decomposition
stage by means of parallel and vector processing, whereas we apply a PCG method,
which enables large problems to be solved efficiently using a midsize workstation. A
different interior-point approach was developed in [31], using a barrier function to
decompose the problem. This strategy provided approximate solutions for some of
the large PDS problems (up to PDS70). However, as will be shown, our method
gives more accurate solutions. Finally, Portugal et al. introduced in [27] a specialized
interior-point algorithm based solely on a PCG, unlike our method, which combines
PCG with direct factorizations. The proposed preconditioner was an extension of that
developed in [26] by the same authors for single-commodity flows. No computational
results were reported in [27] for the solution of multicommodity problems using this
preconditioner.

This paper is organized as follows. Section 2 presents the formulation of the
problem to be solved. Section 3 outlines the primal-dual algorithm, and in section 4
we develop the specialization for multicommodity problems. Section 5 describes some
implementation details of this specialization. Finally, section 6 gives computational
results that show the efficiency of the algorithm.
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2. Problem formulation. Let G = (N ,A) be a directed graph, where N is a
set of m + 1 nodes and A is a set of n arcs, and let K be a set of k commodities
to be routed through the network represented by G. We shall also consider that the
arcs of the network have a capacity for all the commodities, which will be known as
the mutual capacity. So, the multicommodity network flow (MCNF) problem can be
formulated as follows:

min
x(1),...,x(k)

k∑
i=1

c(i)
T

x(i)(1)

subject to ANx
(i) = b(i), i = 1, . . . , k,(2)

k∑
i=1

x(i) ≤ bmc,(3)

0 ≤ x(i) ≤ x(i), i = 1, . . . , k.(4)

Vectors x(i) ∈ Rn and c(i) ∈ Rn are the flow and cost arrays for each commodity i,
i = 1, . . . , k. AN ∈ Rm×n is the node-arc incidence matrix, where each column is
related to an arc a ∈ A, and has only nonzero coefficients in those rows associated
with the origin and destination nodes of a (with coefficients 1 and −1, respectively).
We shall assume that AN is a full row-rank matrix. This can always be guaranteed
by removing any of the (redundant) node balance constraints. b(i) ∈ Rm is the vector
of supplies and demands for commodity i at the nodes of the network. Equation
(3) represents the mutual capacity constraints, where bmc ∈ Rn. Constraints (4) are
simple bounds on the flows, x(i) ∈ Rn, i = 1, . . . , k, being the upper bounds. These
upper bounds represent individual capacities of the arcs for each commodity.

Introducing the slacks smc for the mutual capacity constraints, (3) can be rewrit-
ten as

k∑
i=1

x(i) + smc = bmc.(5)

We can consider that the slacks smc are upper bounded by bmc, since all the vectors
x(i) in (5) have nonzero components. This gives

0 ≤ smc ≤ bmc.(6)

The MCNF problem can then be recast as

min (1) subject to (2), (4), (5), and (6).(7)

3. Outline of the primal-dual interior-point algorithm. Let us consider
the linear programming problem

min cTx

subject to Ax = b,

x ≥ x ≥ 0,

(8)

where x ∈ Rñ, x ∈ Rñ are the upper bounds, c ∈ Rñ, b ∈ Rm̃, and A ∈ Rm̃×ñ is a full
row-rank matrix. The dual of (8) is

max bT y − xTw
subject to AT y + z − w = c,

z ≥ 0, w ≥ 0,

(9)
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where y ∈ Rm̃ are the dual variables and z ∈ Rñ and w ∈ Rñ are the dual slacks.
Note that the MCNF problem, as defined in (7), fits the formulation of (8), where
ñ = (k + 1)n and m̃ = km+ n.

Replacing the inequalities in (8) by a logarithmic barrier in the objective function,
with parameter µ, and considering the slacks f = x− x, it can be seen that the KKT
first order optimality conditions of (8) and (9) are equivalent to the following system
of nonlinear equations (see [32] for a comprehensive description):

bxz ≡ µeñ −XZeñ = 0,

bfw ≡ µeñ − FWeñ = 0,

bb ≡ b−Ax = 0,(10)

bc ≡ c− (AT y + z − w) = 0,

(x, z, w) ≥ 0, x ≥ x,
where eñ is the ñ-dimensional vector of 1’s; X, Z, F , and W are diagonal matrices
defined asM ∈ Rñ×ñ = diag(m1, . . . ,mñ); and the vectors b∗ define the left-hand-side
terms of (10). Note that we did not include the slacks equation x + f = x in (10).
Instead we replaced the slacks f by x − x, reducing by ñ the number of equations
and variables. This forces the primal variables x of the iterates obtained during the
solution of (10) to always be interior in relation to their upper bounds.

The solutions of system (10)—considering inequalities as strict inequalities—for
different µ values gives rise to an arc of strictly feasible points known as the central
path. As µ tends to 0, the solutions of (10) converge to those of the original primal
and dual problems. A path-following algorithm attempts to follow the central path,
computing (10)—in long-step methods—through a damped Newton’s method together
with the reduction of the barrier parameter µ at each iteration of the algorithm. The
path-following algorithm considered for the specialization uses the reduction formula
µ = 0.1(xT z+fTw)/2ñ. It can be seen [32] that obtaining Newton’s direction amounts
to finding dy and then computing dx, dw, dz, in

(AΘAT )dy = bb +AΘr,

dx = Θ(AT dy − r),
(11)

dw = F−1(bfw +Wdx),

dz = bc + dw −AT dy,
where

r = F−1bfw + bc −X−1bxz, r ∈ Rñ,(12)

Θ = FX(ZF +XW )−1, Θ ∈ Rñ×ñ.(13)

Note that Θ is a positive definite diagonal matrix, since it is nothing but a product
of positive definite diagonal matrices. Since A is a full row-rank matrix, AΘAT is
also positive definite. It is quite clear that the main computational burden of the
algorithm is the repeated solution of the linear system

(AΘAT )dy = b̄,(14)

where b̄ denotes bb + AΘr in (11). The performance of any primal-dual multicom-
modity specialization relies on the efficient solution of (14).
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(a) (b)

Fig. 1. (a) Sparsity pattern of a multicommodity constraint matrix A. (b) Sparsity pattern of
the factorization of PAΘATPT .

4. Primal-dual specialization for the MCNF problem.

4.1. Motivation. General interior-point codes for linear programming attempt
to solve (14) through sparse Cholesky factorizations. To reduce the fill-in, they fac-
torize PAΘATPT , instead of AΘAT , where P is a permutation matrix obtained by
some heuristic. However, when applied to multicommodity problems, even the best
P matrices, such as those provided by good heuristics like the minimum-local-fill-in
or minimum-degree orderings, cannot prevent a fairly large dense submatrix from ap-
pearing in LLT = PAΘATPT . For instance, Figure 1(a) shows the sparsity pattern
of the constraint matrix A for a multicommodity problem with 4 commodities, 64
nodes, and 524 arcs (it corresponds to problem M1 in Table 3 of section 6). Using
the state-of-the-art interior-point code BPMPD [23], the sparsity pattern obtained for
L+LT is depicted in Figure 1(b). The dense submatrix created makes the factoriza-
tion of PAΘATPT computationally expensive and, for large problems, its storage in
the memory completely prohibitive. Then it is clear that, to be competitive, interior-
point methods must exploit the structure of the multicommodity problem to efficiently
solve (14).

4.2. Exploiting the multicommodity structure. The constraint matrix A
of the MCNF problem defined in (7) has the following structure:

A =

AN 0 . . . 0 0

0 AN . . . 0 0

...
...

. . .
...

...

0 0 . . . AN 0

1ln 1ln . . . 1ln 1ln

,(15)

where 1ln denotes the n×n identity matrix and 0 is the zero matrix. Moreover, matrix
Θ, as defined in (13), can be partitioned as

Θ =

Θ(1)

. . .

Θ(k)

Θmc

,(16)
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where Θ(i) ∈ Rn×n, i = 1, . . . , k, and Θmc ∈ Rn×n are associated with the flows x(i)

of commodity i and the mutual capacity slacks smc, respectively. Using (15) and (16),
it is straightforward to see that AΘAT in (14) has the following structure:

AΘAT =

ANΘ(1)ATN . . . 0 ANΘ(1)

...
. . .

...
...

0 . . . ANΘ(k)ATN ANΘ(k)

Θ(1)ATN . . . Θ(k)ATN Θmc +
∑k
i=1 Θ(i)

=
B C

CT D
,(17)

where B ∈ Rkm×km is the block diagonal matrix

B = diag(ANΘ(i)ATN , i = 1, . . . , k),(18)

each block being a square matrix of dimension m, C ∈ Rkm×n is defined as

C =
[
Θ(1)ATN . . . Θ(k)ATN

]T
,(19)

and D ∈ Rn×n corresponds to the lower diagonal submatrix of AΘAT :

D = Θmc +

k∑
i=1

Θ(i).(20)

Since Θ is diagonal and positive definite, it holds that D is a positive definite diagonal
matrix as well.

The above decomposition of AΘAT can be applied to the solution of (14), parti-
tioning appropriately the dual variables direction dy and the right-hand-side vector b̄:

B C

CT D

dy1

dy2
=
b̄1

b̄2
,(21)

where dy1, b̄1 ∈ Rkm and dy2, b̄2 ∈ Rn. The solution of (21) can be directly obtained
by block multiplication, yielding

(D − CTB−1C)dy2 = (b̄2 − CTB−1b̄1),(22)

Bdy1 = (b̄1 − Cdy2).(23)

Matrix D−CTB−1C is known as the Schur complement, and it will be denoted by S:

S = D − CTB−1C.(24)

To efficiently solve (22) and (23)—and obtain the solution to (14)—we only need
to deal with systems involving matrices B and S. Systems with matrix B can be
considered not too difficult. In fact, exploiting the block structure of B shown in
(18), these systems can be decomposed into k smaller ones of dimension m with
matrices ANΘ(i)ATN , i = 1, . . . , k. Each of these matrices can be easily obtained. If
we denote by Iv the set of arcs incident to node v and by a ≡ (v, w) the arc of A
that has v and w as origin and destination nodes and consider the structure of the
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node-arc incidence matrix AN , it is straightforward to see that ANΘ(i)ATN can be
easily computed as follows:

(ANΘ(i)ATN )vw
v=1,...,m
w=1,...,m

=




∑
∀a
−Θ(i)

a if a ≡ (v, w) ∈ A, (w, v) �∈ A,
∑
∀a,b

(−Θ(i)
a −Θ

(i)
b

)
if a ≡ (v, w) ∈ A, b ≡ (w, v) ∈ A,

∑
∀a∈Iv

Θ(i)
a if (v = w),

0 otherwise,

(25)

where Θ
(i)
a is the diagonal term of Θ(i) associated to arc a. Moreover, since Θ(i)

is symmetric and positive definite and AN is a full row-rank network matrix, we
have that matrices ANΘ(i)ATN are symmetric and positive definite as well. There-
fore, their Cholesky factorizations exist. In practice, to reduce the fill-in, instead of
ANΘ(i)ATN , we shall factorize PNANΘ(i)ATNP

T
N , where PN is a permutation matrix

of the nodes of the network. Note that PN will have to be computed only once,
since the nonzero pattern of ANΘ(i)ATN is the same for all the commodities. In gen-
eral, due to the high sparsity of the network matrix AN , we can expect that these
k Cholesky factorizations—and, hence, the factorization of B—will not be too com-
putationally expensive. Additionally, in a parallel computing environment, these k
factorizations—and their respective backward and forward substitutions—can be car-
ried out independently for each commodity.

System (22) still remains to be solved. We could consider computing and fac-
torizing S. However, this would mean solving n systems of equations with matrix
B, n being the number of arcs of the network. In addition, S could become fairly
dense. In fact, as the proposition below shows, if we perform symbolic computations,
matrix S turns out to be completely dense, increasing the solution cost of (22) with
a direct method. With no loss of generality and to simplify the notation we will con-
sider a problem with only one commodity and where PN = 1l (no node permutation
is required to reduce the fill-in for ANΘ(i)ATN ).

Proposition 1. Let L(1)L(1)T = ANΘ(1)ATN be the Cholesky factorization of
B = ANΘ(1)ATN . If we apply this factorization to remove the subdiagonal elements of
B and submatrix C in (17) by symbolic Gaussian elimination

L(1)−1

0

−CTB−1 1l

B C

CT D

=
L(1)T L(1)−1

C

0 D − CTB−1C

,

submatrix D − CTB−1C—the Schur complement—becomes completely dense.
Proof. Let Nv be the set of nodes adjacent to node v ∈ N , i.e.,

Nv = {w ∈ N such that (v, w) ∈ A or (w, v) ∈ A};

this set will be associated to matrix B = ANΘ(1)ATN . Let Iv be the set of arcs incident
to node v, i.e.,

Iv = {a ∈ A such that a ≡ (w, v) ∈ A or a ≡ (v, w) ∈ A};
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this set will be associated to matrix C = ANΘ(1). And let Ca be the set of nodes
connected to arc a ∈ A (initially Ca = {v, w}, where a ≡ (v, w)); this set will be
associated to matrix CT = Θ(1)ATN . Moreover we will denote as M j)/Mj) the ma-
trix/set M/M after j elimination stages—the original sets and matrices correspond
to M0)/M0)—and by vi and aj the node and arc associated to row i and column j
of AN , respectively.

Let us assume we are starting the Gaussian elimination and we have to remove
the subdiagonal terms of the first column of (17). This will be done through the first
row of B0) (which corresponds to the first node v1 of AN ). From (25) it can be seen
that we shall have to remove the elements of the rows of B0) related to the nodes in
N 0)
v1 . Two new nonzero elements will then appear, one in the upper and the other in

the lower diagonal parts of B1), for each pair of nodes (vi, vj) in N 0)
v1 not yet connected

by any arc. The adjacent node sets are suitably updated as

for all vi ∈ N 0)
v1 N 1)

vi = N 0)
vi

⋃
N 0)
v1 − {v1}.

(A comprehensive explanation of this result can be found in [14, Chap. 5].) New
nonzero elements will appear in matrix C1) as well. Initially, the only nonzero elements

in row i of C0) are found in the columns of the arcs I0)
vi . After the first elimination

stage we find that

for all vi ∈ N 0)
v1 I1)

vi = I0)
vi

⋃
I0)
v1 .

Similarly, when eliminating the first column of CT0), new nonzero elements will appear
in CT1). Unlike C1), these new entries are related to arcs, thus having

for all aj ∈ I0)
v1 C1)aj = C0)aj

⋃
N 0)
v1 .

Repeating the above procedure, it is not difficult to see that, after m − 1 elimi-
nation stages, all the nodes collapsed into the last one vm (see [14, Chap. 5] again for
a detailed description), yielding

Nm−1)
vm =

m⋃
i=1

Nvi = V.

It also holds, for the last row in matrix Cm−1), that

Im−1)
vm =

m⋃
i=1

Ivi = A

and, analogously for the last column in matrix CTm−1), that

for all aj ∈ A vm ∈ Cm−1)
aj .

Therefore, the last row in Cm−1) and the last column in CTm−1) become dense. It is
now clear that, if we attempt to eliminate the last column of CTm−1) from the last
row in the Cm−1) matrix, D − CTB−1C becomes dense.

In practice, however, if we perform numerical instead of symbolic computations, S
will not be completely dense due to cancellations. As shown by the next proposition,



860 JORDI CASTRO

the numerical sparsity pattern of S depends on the structure of the network and, in
the simplest case, can even be diagonal.

Proposition 2. If the network is a spanning tree (thus, it is connected and
m = n+ 1), the Schur complement is diagonal.

Proof. In this case, matrix AN is square and nonsingular. Using (18), (19), (20),
and the nonsingularity of AN , the Schur complement can be written as

S = D − CTB−1 = Θmc +

k∑
i=1

Θ(i) −
k∑
i=1

Θ(i)ATN (ANΘ(i)ATN )−1ANΘ(i)

= Θmc +

k∑
i=1

Θ(i) −
k∑
i=1

Θ(i) = Θmc.

The density of S increases with the complexity of the network. If each pair of
nodes of the network is connected by at least one arc, S can be shown to be numerically
completely dense for most Θ matrices. Leaving aside these extreme cases, for general
networks the Schur complement will be numerically fairly dense. This fact, together
with the cost associated with building matrix S, makes the solution of (22) with
a direct method prohibitive. A similar system had to be solved in the approach
suggested in [9]. However, no procedure was given there to circumvent this difficulty,
and the solution of (22) was addressed through parallel and vector processing. Rather
than use a direct method, the specialization we propose attempts to solve (22) through
a PCG.

4.3. Solution via a preconditioned conjugate gradient method. Before
applying a PCG method to (22) we must guarantee that S is symmetric and positive
definite at each iteration of the algorithm.

Lemma 1. Let T ∈ Rt×t be a square matrix partitioned as follows:

T =
B C

CT D
.

Then, if T is symmetric and positive definite and B is positive definite, it holds that
the Schur complement S = D − CTB−1C is symmetric and positive definite.

Proposition 3. The Schur complement matrix S = D − CTB−1C defined in
(22) is symmetric and positive definite at each iteration of the primal-dual algorithm.

Proof. The primal and dual variables—x, and z and w—are interior at each
iteration of the primal-dual algorithm. So we have that Θ, as defined in (13), is
a positive definite diagonal matrix. Moreover, since the network matrix AN was
assumed to be a full row-rank matrix, the constraint matrix of the MCNF problem
defined in (15) is a full row-rank matrix as well. Therefore, matrices ATΘA and B
defined in (17) and (18) are both symmetric and positive definite. Applying Lemma 1,
with T = ATΘA, we get that S is symmetric and positive definite.

The preconditioner that we propose in this paper, denoted byM , consists of using
an approximation of the inverse of S. The development of this preconditioner relies
on the following theorem.

Theorem 1 (P-regular splitting theorem). If R is symmetric positive definite
and R = P −Q is a P -regular splitting—i.e., P is nonsingular and P +Q is positive
definite—then ρ(P−1Q) < 1 (where ρ(T ) denotes the spectral radius of T ).
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Proof. See [25, pp. 254–255].
Proposition 4. The inverse of S = D − CTB−1C can be computed as

S−1 =

( ∞∑
i=0

(P−1Q)i

)
P−1,(26)

where

P = D, Q = CTB−1C.(27)

Proof. Premultiplying S by S−1 as defined in (26) we get

S−1S =

(( ∞∑
i=0

(P−1Q)i

)
P−1

)
(P −Q)

=

∞∑
i=0

(P−1Q)i −
∞∑
i=1

(P−1Q)i.(28)

Since P = D is a diagonal positive definite matrix, it is nonsingular. P + Q =
D+CTB−1C is positive definite as well because both D and B are positive definite.
Thus, P−Q is a regular splitting of S. Moreover, S is symmetric and positive definite,
as stated by Proposition 3. By Theorem 1, we have that ρ(P−1Q) < 1, and then the
geometric power series of (28) converge, obtaining the desired result:

S−1S = (P−1Q)0 +

∞∑
i=1

(P−1Q)i −
∞∑
i=1

(P−1Q)i = 1l.

The preconditioner is then obtained by truncating the infinite geometric power
series (26) at some term φ ≥ 0, which will be referred to as the order of the precon-
ditioner:

M−1 = (1l + (P−1Q) + (P−1Q)2 + · · ·+ (P−1Q)φ)P−1,(29)

where P and Q are defined in (27). Note that M is an adequate preconditioner for
the PCG, since it is symmetric and positive definite. (This can be easily proved by
showing that, from the symmetry and positive definiteness of both P and Q, M−1 is
symmetric and positive definite as well.) The main drawback of the preconditioner is
that matrices P and Q both become ill-conditioned as the iterates approach a solution,
which can lead to values ρ(P−1Q) very close to 1; consequently, (29) would be a poor
approximation of S−1. Despite this, the preconditioner has shown to be an efficient
solution strategy, being able to significantly reduce the number of iterations required
by nonpreconditioned conjugate gradient (CG) methods. For instance, Figure 2 shows
the evolution of ρ(P−1Q) for M1 and PDS1, the smallest problems in Tables 3 and 4
in section 6. Both problems required 30 interior-point iterations. It can be seen that,
though it tends to decrease for the central iterations, ρ(P−1Q) is close to 1 throughout
the execution of the algorithm (especially for problem PDS1). As shown below (next
two paragraphs, and Figures 4 and 5), even in these situations the goodness of the
preconditioner increases with φ, and we obtain a better performance than with a
nonpreconditioned CG method.

Clearly, the higher φ is, the better the preconditioning and the fewer iterations
of the PCG will be required. However, at each iteration of the PCG, we have to solve
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Fig. 2. Evolution of ρ(P−1Q) for the M1 and PDS1 problems.

Procedure MZ=r (P,Q, r, z, φ)

v := P−1r

z0 := v

for j=1 to φ do

zj := P−1Qzj−1 + v

end do

z := zφ

Fig. 3. Procedure for computing z = M−1r.

the system Mz = r, with r being any vector. This system can be easily computed
through the procedure presented in Figure 3, which involves solving φ systems with
matrix B, and thus a total of kφ systems with matrices ATNΘ(i)AN , i = 1, . . . , k.
Then φ must be chosen to balance two objectives: to reduce both the number of
PCG iterations and the number of systems to be solved. In practice, performances
are best for φ = 0 and, in some cases, for φ = 1. For instance, Figure 4 shows the
evolution of the CPU time and overall number of PCG iterations required to solve
problem M1 in Table 3 of section 6 for different φ values. Clearly, there are fewer
PCG iterations when φ increases, but the performance tends to be poorer. This is the
usual behavior observed in most problems tested. The algorithm uses φ = 0 as the
default value, though this parameter can be modified by the user. All the numerical
results in section 6 were obtained with this default value. Note that when φ = 0 the
preconditioner is nothing but M = P = D, the diagonal matrix defined in (20). In
this case the computation of Mz = r is reduced to n products.

Despite its simplicity, the diagonal preconditioner obtained for φ = 0 has proven
to be very efficient compared to a nonpreconditioned CG method. For instance,
Figure 5 shows the number of overall CG iterations required to solve the first 10 PDS
problems in Table 4 in section 6, by both the PCG with φ = 0 and a standard CG
method. The number of interior-point iterations was almost the same in both types of
executions. However, it is clear from the figure than the CG required many more CG
iterations to achieve the same accuracy in the solution of (22). For the 10 problems,
the code with the PCG was, on average, 3.7 times faster than that with the CG and
performed 7.5 times fewer CG iterations.
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Fig. 5. Overall number of CG iterations for the PCG with φ = 0 and a CG method.

Three remarks must be made about this solution strategy.
(i) Though designed for multicommodity instances, it can be applied to other

block-structured problems where a similar decomposition to that of (21) is possible.
We mention three of them. First, a direct extension of the MCNF problem consisting
of replacing the mutual capacity constraints by the more general ones

k∑
i=1

W (i)x(i) ≤ bmc,

where W (i) is a diagonal matrix of positive weights. Second, the nonoriented mul-
ticommodity problem—arcs have no orientation—which commonly appears, for in-
stance, in telecommunication networks [8]. And finally, multicommodity problems

with convex separable quadratic objective functions (e.g.,
∑k
i=1

∑
a∈A c

(i)
a (x

(i)
a )2, c

(i)
a ≥

0), which only imply a slight modification of the Θ diagonal matrix. Note that
simplex-based specializations for multicommodity flows cannot deal with this last
class of problems.

(ii) At each iteration of the PCG, φ+1 systems of equations with matrix B must
be solved for computingMz = r and q = Sp(z), p(z) being a vector that depends on z.
Since the k blocks of B have already been factorized, only the forward and backward
substitutions must be performed. The solutions to these k systems, however, can
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Fig. 7. Predictor-corrector vs. pure path-following, for the Mnetgen problems.

be efficiently parallelized since each of them requires the same computational effort
(load balancing). We can expect that a coarse-grain parallel implementation of the
algorithm would significantly reduce the solution time (at most by a factor of k).

(iii) The solution to (22) using a PCG algorithm forces us to use a pure primal-
dual path-following algorithm instead of other more successful approaches, such as
Mehrotra’s predictor-corrector method. The predictor-corrector method requires two
solutions to (21) with different right-hand sides. In our specialization, the benefit ob-
tained by computing this better direction is not worthwhile, since it means applying
the PCG method twice. Figures 6 and 7 compare a version of the algorithm using
Mehrotra’s predictor-corrector with a pure path-following algorithm for the PDS and
Mnetgen problems in Tables 3 and 4 in section 6. The predictor-corrector strategy was
implemented as described in [22] and [32]. The direction computed by the predictor
step was used as the starting point for the PCG of the corrector step in an attempt
to reduce the number of CG iterations. Figures 6 and 7 show the ratio of the number
of interior-point iterations, CG iterations, and execution time between the predictor-
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corrector and pure path-following algorithms. The dashed horizontal line separates
the executions according to whether the ratio was favorable to the predictor-corrector
(region below the line) or the pure path-following algorithm (region above the line).
Clearly, the predictor-corrector heuristic reduced the number of iterations (on av-
erage, it performed 1.45 and 1.55 times fewer iterations for the PDS and Mnetgen
problems, respectively). However, the overall number of CG iterations significantly
increased (with average ratios of 3.5 and 2.6 for each class of problems). The execution
time ratio, highly correlated with the CG iteration ratio, was favorable to the pure
path-following algorithm for most of the problems. Of the larger instances executed,
the predictor-corrector strategy was only better for PDS90. The larger Mnetgen in-
stances were not executed with the predictor-corrector method due to their large
execution times (e.g., problem M18 was stopped after 21 hours of execution, whereas
the pure path-following algorithm required only 2.55 hours). On average, the pure
path-following algorithm was 2.3 times faster than the predictor-corrector strategy
for the PDS problems and 2.2 times faster for the Mnetgen ones.

5. Implementation details. We have developed an implementation of the al-
gorithm presented in section 4 that will be referred to as IPM. This code is mainly
written in C, with only the Cholesky factorization routines coded in Fortran. It can be
freely obtained for academic purposes from http://www-eio.upc.es/˜jcastro, at soft-
ware entry. Below, we discuss some of the implementation aspects of IPM that have
proved to be instrumental in the performance of the algorithm.

5.1. Cholesky factorizations. The factorizations of matrices ATNΘ(i)AN , i =
1, . . . , k, and, mainly, their backward and forward substitutions at each iteration of the
PCG solver are the most computationally expensive steps of the algorithm. Note that
the symbolic factorization must be performed only once, since matrices ATNΘ(i)AN
have the same nonzero pattern for all the commodities. IPM uses the sparse Cholesky
package by E. Ng and B. Peyton [24]. For large networks these routines provided
significantly better solution times than alternative ones like the Sparspak package
[14]—although both share the same minimum-degree-ordering heuristic for computing
the permutation of the nodes of the network. Note that, unlike general interior-
point methods, the main computational burden is not the Cholesky factorizations
but the repeated forward and backward substitutions. Indeed, in practice, and due
to the (large) number of PCG iterations, these substitutions represent about 60% of
the execution time, whereas the factorizations amount to no more than 20%. (For
instance, in problems M5, M11, PDS10, and PDS30 of Tables 3 and 4 of section 6,
these figures were 45.3/0.4, 47.4/4.5, 48.8/2.8, and 65.7/18.7, respectively.) Since
the Ng–Peyton package concentrates its effort on the factorization stage, it may be
possible to improve the performance of the algorithm by either using or developing a
Cholesky solver focused on the solution phase.

5.2. Accuracy of the PCG method. The tolerance of the stopping criteria of
the PCG is the most influential parameter in the overall performance of the algorithm.
It determines the accuracy required to solve system (22) and, hence, the number of
PCG iterations performed. We followed a similar approach to that used by Resende
and Veiga in [29] for single-commodity network problems. At iteration i of the interior-
point method, we consider that the jth PCG iterate dyj2 solves (22) if

1− cos(Sdyj2, b̄2 − CTB−1b̄1) < εi,(30)

εi being the PCG tolerance parameter. This tolerance is dynamically updated as

εi = 0.95εi−1,(31)
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which guarantees better dy2 directions as we get closer to the solution. By default
IPM uses an initial tolerance of ε0 = 10−2. Smaller ε0 values provide better movement
directions, which reduce the sequence of primal-dual points but considerably increase
the number of PCG iterations. On the other hand, if large ε0 are used, the primal-dual
algorithm can fail to converge. The default value of 10−2 was good enough to solve
most of the problems tested (only a few required ε0 = 10−3) and provided the best
execution times. For instance, Figures 8 and 9 show the CPU time and the number of
PCG and primal-dual iterations required to solve problems M4 and PDS5 of Tables 3
and 4 of section 6, respectively, for different ε0 values (all data are relative to the base
case ε0 = 10−2). Though both problems are very different (M4 has a much smaller
network but three times more commodities), the behavior of IPM was almost the
same: for small ε0 values the CPU time and PCG iterations increased significantly
whereas the primal-dual iterations hardly decreased.

In our computational experience, we have seen that the ε0 value slightly affects
the precision of the optimizer provided. In general, IPM stops with a point where the
dual infeasibilities, computed as

‖AT y + z − w − c‖2
1 + ‖c‖2 ,
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are about 10−6, regardless of whether ε0 was chosen. In most tests performed, the
primal infeasibilities

‖Ax− b‖2
1 + ‖b‖2

were about 10−5 for ε0 = 10−2 and 10−6 for ε0 = 10−6. The gain of this digit in
the primal accuracy was at the expense of approximately doubling the solution time.
IPM stops when the relative duality gap of the current iterate

|cTx− (bT y − xTw)|
1 + |cTx|(32)

is less than an optimality tolerance, by default set to 10−6. Unlike general interior-
point solvers, and due to the use of a PCG, it is difficult to obtain more accurate
solutions. One possible way of overcoming this drawback would be to develop a
procedure for detecting the optimal face once we are close to the optimizer. Such
a strategy already exists for network linear programs [30], but, to the best of our
knowledge, there is not an equivalent result for multicommodity flows. In connection
to this, the inclusion of a crossover procedure is also part of further work to be done
on IPM.

5.3. Removing inactive mutual capacity constraints. The dimension of
the Schur complement S is the number of mutual capacity constraints n. Should
we have a procedure for detecting the inactive constraints, these could be removed,
thus reducing the computational effort required by (22). IPM implements two kinds
of strategy for the detection of inactive constraints. The first one is applied at the
beginning, as a preprocessing stage. The second follows the suggestions in [16] and
consists of detecting the inactive mutual capacity constraints during the execution of
the algorithm, using the complementarity condition yjsmcj = 0, where yj and smcj
denote the dual variable and primal slack of the jth mutual capacity constraint. At
iteration i of the primal-dual algorithm, we will remove the mutual capacity constraint
of arc aj if

yij ≈ 0 and simcj � 0.

IPM implements these conditions as |yij | < 0.01 and simcj > 0.1bmcj . This removal
is only active when the relative duality gap (32) is less than 1.0 (primal and dual
functions agree in one figure), in an attempt to guarantee that the current iterate
is sufficiently close to the optimizer. Note that, unlike general interior-point solvers,
removing mutual capacity constraints does not imply any additional symbolic refac-
torization.

5.4. Starting point. Following the suggestions in [5], an initial estimate of the
primal variables is computed by solving

min cTx+
ρ

2
(xTx+ (x− x)T (x− x))

subject to Ax = b,
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with |ρ| = 100, yielding

λ = (AAT )−1

(
b

2ρ
+A

(
c− x

ρ

))
,

x =
1

2

(
x+

ATλ− c
ρ

)
.

Thereafter, the components xi out of bounds are replaced by min{xi/2, 100}.
Dual estimators are obtained from the dual feasibility and complementarity slack-

ness conditions

(AT y)i + zi − wi = ci,

xizi = µ0,(33)

(xi − xi)wi = µ0,

where µ0 is set to a large value (e.g., 100). Dual variables are initialized as y = 0.
Dual slacks are computed from (33), yielding

zi =
µ0

xi
+
ci
2

+

√
µ2

0

x2
i

+
c2i
4
,

wi =
µ0zi

xizi − µ0
.

Note that for µ0 > 0 the above equations provide strictly positive values for w and z.

6. Computational results. To test the performance of the algorithm, IPM has
been compared with the NetOpt routine of CPLEX 4.0 [10] (which uses the solution
to k minimum-cost network problems, one for each commodity, as a warm start of
a dual simplex solver), and with PPRN [6], a primal partitioning code for linear
and nonlinear multicommodity flows. For all the three codes, we used the default
tolerances. All runs were carried out on a Sun/Ultra2 2200 workstation with 200
MHz clock, 256 Mbytes of main memory, ≈68 Mflops Linpack, 14.7 Specfp95, and 7.8
Specint95.

For the comparison, we considered three kinds of problem. The first one was ob-
tained from the meta-generator Dimacs2pprn (see [6]). This meta-generator requires a
previous minimum-cost network flow problem that is converted to a multicommodity
one. It can be obtained from ftp://ftp-eio.upc.es/pub/onl/codes/pprn/tests (an en-
hanced version is described in [13]). We used four minimum-cost network generators
from the DIMACS suite [11]: Rmfgen (D. Goldfarb and M. Grigoriadis), Grid-on-
Torus (A. V. Goldberg), Gridgraph (M. G. C. Resende), and Gridgen (Y. Lee and
J. Orlin). They are freely distributed and can be obtained via anonymous ftp from
dimacs.rutgers.edu at directory /pub/netflow. We generated two kinds of problem for
each generator: with few commodities (small problems) and with many commodities
(large problems). The small problems are represented by Sik, where i = 1, . . . , 4 de-
notes the DIMACS generator used (1 = Rmfgen, 2 = Grid-on-Torus, 3 = Gridgraph,
4 = Gridgen) and k ∈ {1, 4, 8, 16, 50, 100, 150, 200} is the number of commodities con-
sidered. The large problems are called Lik, where i and k have the same meaning as



INTERIOR-POINT ALGORITHM FOR MULTICOMMODITY FLOWS 869

Table 1
Dimensions and results obtained for the small Dimacs2pprn problems.

CPU time (seconds)

Pr. m n k ñ m̃ IPM CPLEX PPRN f∗ f∗−f∗
IPM

1+f∗

S11 2472 9048 1 9048 2472 37. 1. 1. 375675.2 −4.5e−6

S14 2472 9048 4 45240 18936 273. 8. 9. 2027285.0 −5.2e−6

S18 2472 9048 8 81432 28824 1058. 28. 149. 4506263.3 −5.4e−6

S116 2472 9048 16 153816 48600 1377. 73. 1166. 9870432.8 −7.8e−6

S150 128 496 50 25296 6896 17. 21. 39. 11839382.2 3.9e−5

S1100 128 496 100 50096 13296 76. 258. 465. 27150952.6 2.9e−5

S1150 128 496 150 74896 19696 137. 681. 1245. 39835825.1 8.3e−6

S1200 128 496 200 99696 26096 174. 1204. 2368. 54343948.3 −5.6e−6

S21 1500 9000 1 9000 1500 28. 1. 1. 36896.8 –1.5e–6

S24 1500 9000 4 45000 15000 623. 22. 85. 187962.0 –5.2e–6

S28 1500 9000 8 81000 21000 2499. 647. 814. 1197048.8 4.9e–6

s216 1500 9000 16 153000 33000 7550. 12872. 6721. 5876840.3 1.8e–5

S250 100 600 50 30600 5600 28. 14. 21. 5207622.7 2.2e–6

S2100 100 600 100 60600 10600 78. 110. 222. 12922703.9 1.4e–5

S2150 100 600 150 90600 15600 263. 652. 1137. 22663204.t –5.9e–6

S2200 100 600 200 120600 20600 565. 2393. 3495. 36829147.5 1.3e–5

S31 2502 5000 1 5000 2502 2. 1. 1. 94212753.2 –2.5e–6

S34 2502 5000 4 25000 15008 184. 55. 118. 355884986.5 –3.8e–6

S38 2502 5000 8 45000 25016 247. 85. 215. 128743093.7 9.2e–5

S316 2502 5000 16 8500 45032 956. 1171. 2666. 253615755.9 8.3e–5

S350 227 450 50 22950 11800 60. 21. 56. 27853327.9 6.0e–5

S3100 227 450 100 45450 23150 173. 290. 670. 65144564.1 6.8e–5

S3150 227 450 150 67950 34500 104. 144. 745. 27066715.3 4.5e–6

S3200 227 450 200 90450 45850 247. 550. 1922. 37964963.8 1.6e–5

S41 976 7808 1 7808 976 25. 1. 1. 5541980.3 –5.5e–7

S44 976 7808 4 39040 11712 747. (a) 41. 23223474.9 –2.6e–6

S48 976 7808 8 70272 15616 4079. (a) 497. 61792270.7 –4.9e–9

S416 976 7808 16 132736 23424 5509. (a) 6466. 165808232.3 9.1e–5

S450 101 606 50 30906 5656 14. 5. 4. 1409470.3 2.2e–5

S4100 101 606 100 61206 10706 39. 16. 25. 2940217.3 –1.6e–6

S4150 101 606 150 91506 15756 68. 38. 58. 4614971.4 3.2e–6

S4200 101 606 200 121806 20806 121. 126. 189. 6440385.6 2.6e–6

(a) Problem reported as infeasible by the solver.

before. (In this case, however, the number of commodities is always greater than 200.)
Tables 1 and 2 show the dimensions of these problems. Column Pr. is the name of
the problem. Columns m, n, and k show the number of nodes, arcs, and commodities,
respectively. Columns ñ and m̃ give the number of variables and constraints of the
linear problem (where ñ = (k + 1)n and m̃ = km+ n). Columns IPM, CPLEX, and
PPRN correspond to the CPU time, in seconds, required by each code to solve the
problem. Finally, column f∗ gives the optimal objective function value provided by

both CPLEX and PPRN, whereas column
f∗−f∗

IPM

1+f∗ shows the relative error of the
solution provided by IPM.



870 JORDI CASTRO

Table 2
Dimensions and results obtained for the large Dimacs2pprn problems.

CPU time (seconds)

Pr. m n k ñ m̃ IPM CPLEX PPRN f∗ f∗−f∗
IPM

1+f∗

L1
200 128 496 200 99400 26096 50. 49. 254. 43496063.1 –2.5e–6

L1
400 128 496 400 198800 51696 140. 319. 2092. 89227358.5 –5.3e–7

L1
600 128 496 600 298200 77296 242. 1328. 6590. 135813634.7 –1.3e–6

L1
800 128 496 800 397600 102896 278. 3001. 13428. 184848693.7 –1.3e–6

L1
1000 128 496 1000 497000 128496 363. 6006. 25813. 235407084.7 –1.2e–6

L1
1200 128 496 1200 596400 154096 546. 11887. 43946. 287243145.4 2.7e–5

L11400 128 496 1400 695800 179696 756. 20080. 78800. 339708251.9 7.7e–6

L2
200 80 500 200 100200 16500 71. 92. 278. 1372096.3 3.1e–6

L2
400 80 500 400 200400 32500 522. 2358. 4647. 7004937.6 4.6e–6

L2
500 80 500 500 250500 40500 905. 5395. 10259. 11941741.3 8.1e–6

L2
600 80 500 600 300600 48500 885. 10778. 20478. 17857546.4 1.6e–5

L3
200 242 472 200 94600 48872 59. 71. 387. 8153455.3 9.5e–6

L3
400 242 472 400 189200 97272 202. 685. 3367. 16715597.6 6.2e–6

L3
500 242 472 500 236500 121472 319. 1968. 8025. 21219420.2 1.9e–6

L3
600 242 472 600 283800 145672 384. 3256. 14614. 25646734.6 1.5e–5

L4
200 151 1208 200 241800 31408 310. 104. 231. 1690360.3 –9.7e–7

L4
300 151 1208 300 362700 46508 537. 365. 893. 2614303.6 –4.3e–6

L4
400 151 1208 400 483600 61608 805. 673. 2195. 3389601.0 7.4e–7

The second kind of problems were obtained with A. Frangioni’s [13] C version
of Ali and Kennington’s Mnetgen generator [4]. It can be freely obtained from
http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html. We generated 24
problems with different dimensions. They can all be considered difficult problems,
since they have a “dense” network (the ratio “number of arcs/number of nodes” is
8), 80% of the arcs have a mutual capacity, 30% of the arcs have a high cost, and
90% of the arcs have individual capacities for each commodity. The parameters used
for generating the instances can be found in [13]. The problems obtained with this
generator will be denoted as Mi, i = 1, . . . , 24. Table 3 shows the dimensions of these
tests, where the columns have the same meaning as in Tables 1 and 2.

The last type of problems corresponds to the PDS instances [7]. These problems
arise from a model for evacuating patients from a place of military conflict. Each
instance depends on a parameter t that denotes the planning horizon under study (in
number of days). The size of the network increases with t, whereas the number of
commodities is always 11. Problems obtained with this generator are denoted as PDSt,
where t is the number of days considered. Their dimensions are shown in Table 4. The
meaning of the columns is the same as in previous tables. The largest problems were
not solved with CPLEX due to the amount of time required. The PDS problems can
be retrieved from http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html.

Tables 1–4 show that IPM and PPRN solved all the problems, whereas CPLEX
exited with an infeasibility message in three of the small Dimacs2pprn tests and was
not run for the largest PDS. IPM solved most of the problems using the default initial
PCG tolerance of ε0 = 10−2. Only in three cases (problems S3

16, L2
200, and L2

500)
did this value have to be reduced to 10−3 to guarantee the convergence. In general
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Table 3
Dimensions and results obtained for the Mnetgen problems.

CPU time (seconds)

Pr. m n k ñ m̃ IPM CPLEX PPRN f∗ f∗−f∗
IPM

1+f∗

M1 64 524 4 2100 780 1. 0. 0. 192400.1 –6.3e–7

M2 64 532 8 4264 1044 2. 1. 1. 394051.1 4.1e–6

M3 64 497 16 7968 1521 5. 2. 4. 1071474.9 1.0 e–5

M4 64 509 32 16320 2557 12. 13. 19. 2146944.1 1.0e–5

M5 64 511 64 32768 4607 91. 141. 136. 4623138.5 8.1e–6

M6 128 997 4 3992 1509 2. 0. 1. 919643.2 1.5e–6

M7 128 1089 8 8720 2113 8. 1. 4. 1924133.9 –6.7e–7

M8 128 1114 16 17840 3162 25. 13. 34. 4145079.4 6.0e–6

M9 128 1141 32 36544 5237 155. 214. 478. 9785961.1 6.3e–6

M10 128 1171 64 76115 9363 485. 1647. 3419. 19269824.2 –3.9e–6

M11 128 1204 128 154240 17588 549. 7880. 9334. 40143200.8 9.2e–6

M12 256 2023 4 8096 3047 12. 1. 7. 5026132.3 1.4e–5

M13 256 2165 8 17328 4213 40. 13. 69. 9919483.2 –2.1e–6

M14 256 2308 16 36944 6404 146. 158. 769. 20692883.7 6.9e–6

M15 256 2314 32 74080 10506 465. 1664. 7610. 45671076.1 –1.4e–6

M16 256 2320 64 148544 18704 1040. 9235. 27722. 92249381.1 –1.2e–6

M17 256 2358 128 301952 35126 3742. 45990. 84066. 190137259.9 –7.8e–6

M18 256 2204 256 564480 67740 9187. 181701. 169810. 397882591.3 –1.4e–6

M19 512 4077 4 16312 6125 99. 7. 85. 21324851.2 -7.3e–6

M20 512 4373 8 34992 8469 190. 101. 654. 46339269.9 1.6e–5

M21 512 4620 16 73936 12812 1582. 1457. 7279. 96992237.2 –4.5e–6

M22 512 4646 32 148704 21030 2644. 8302. 73439. 192941834.8 -7.0e–7

M23 512 4768 64 305216 37536 7411. 55028. 178188. 412943158.7 8.9e–8

M24 512 4786 128 612736 70322 21263. 289541. 947790. 828013599.8 –1.3e–6

IPM required no more than 100 iterations to achieve a point with a dual relative gap
less than 10−6—the default optimality tolerance. We can also see that the solution
provided by IPM can be considered good enough: the relative error in the objective
function (last column of Tables 1–4) fluctuates between 10−5 and 10−7 (the worst case
corresponds to problem PDS40, with a relative error of 1.5 · 10−4). These results are
more accurate (two more exact figures in the objective function) than those provided
in [17] and [31] for the largest PDS instances. For instance, Table 5 summarizes the
results presented by Grigoriadis and Khachiyan in [17] and by Schultz and Meyer
in [31] for the largest PDS problems they solved using their ε-approximation and
barrier decomposition methods, respectively. Columns f∗εA and f∗BD give the optimal

objective function provided by each method, whereas columns
f∗−f∗

εA

1+f∗ and
f∗−f∗

BD

1+f∗
show the relative errors of the solutions obtained. Looking at Tables 4 and 5, we see
that IPM provided two and three more significant figures in all the problems. Indeed,
as stated by the authors in [17], ε-approximation methods are practical for computing
fast approximations to large instances, whereas the solutions provided by IPM can be
considered almost optimal.

Figures 10, 11, 12, and 13 show the ratio of the CPU time of CPLEX and PPRN
to IPM (i.e., “CPLEX CPU time/IPM CPU time” and “PPRN CPU time/IPM CPU
time”) for the problems in Tables 1–4. The executions are ordered by the number
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Table 4
Dimensions and results obtained for the PDSt problems.

CPU time (seconds)

t(a) m n ñ m̃ IPM CPLEX PPRN f∗ f∗−f∗
IPM

1+f∗

1 126 372 4464 1758 1. 0. 0. 29083930523. 2.8e–6

2 252 746 8952 3518 4. 1. 2. 28857862010. –5.9e–6

3 390 1218 14616 5508 8. 2. 5. 28597374145. –4.9e–6

4 541 1790 21480 7741 16. 4. 10. 28341928581. –1.5e–6

5 686 2325 27900 9871 29. 8. 19. 28054052607. –6.6e–6

6 835 2827 33924 12012 47. 13. 35. 27761037600. 1.3e–5

7 971 3241 38892 13922 46. 20. 52. 27510377013. 2.1e–5

8 1104 3629 43548 15773 45. 31. 75. 27239627210. 2.1e–5

9 1253 4205 50460 17988 94. 51. 84. 26974586241. 1.5e–5

10 1399 4792 57504 20181 88. 56. 136. 26727094976. 8.4e–6

11 1541 5342 64101 22293 144. 98. 178. 26418289612. 1.3e–5

12 1692 5965 71580 24577 113. 143. 188. 26103493922. 7.4e–5

13 1837 6571 78852 26778 137. 160. 328. 25825886804. 4.6e–5

14 1981 7151 85812 28942 180. 270. 342. 25529159469. 3.4e–5

15 2125 7756 93072 31131 236. 425. 564. 25177923601. 3.3e–5

18 2558 9589 115068 37727 396. 864. 1227. 24332411902. 6.4e–6

20 2857 10858 130296 42285 386. 1830. 2138. 23821658640. 7.0e–5

21 2996 11401 136812 44357 529. 1912. 2322. 23576150674. 2.6e–5

24 3419 13065 156780 50674 963. 4393. 3411. 22856729593. 5.1e–7

27 3823 14611 175332 56664 1010. 7178. 4810. 22133391961. 1.9e–5

30 4223 16148 193776 62601 1325. 24905. 6827. 21385445736. –1.7e–6

33 4643 17840 214080 68913 1750. 35397. 9154. 20589962883. 1.4e–5

36 5081 19673 236076 75564 1346. 44144. 12704. 19857712721. 4.4e–5

40 5652 22059 264708 84231 1494. 95064. 16779. 18855198824. 1.5e–4

50 7031 27668 332016 105009 4166. 85840. 46664. 16603525724. 3.5e–5

60 8423 33388 400656 126041 6761. 387577. 75880. 14265904407. 2.4e–6

70 9750 38396 460752 145646 12210. 540606. 112310. 12241162812. 2.0e–5

80 10989 42472 509664 163351 13005. — 125770. 11469077462. 3.0e–5

90 12186 46161 553932 180207 21781. — 178248. 11087561635. 1.8e–5

100 13366 49742 596904 196768 17222. — 214961. 10928229968. 8.8e–5

(a) k = 11 for all t.

of variables of the problem. The dashed line of the figures separates the executions
according to whether IPM was outperformed or not. For the small Dimacs2pprn
problems (Figure 10) both CPLEX and PPRN provided better times than IPM, par-
ticularly in the smaller instances. In some cases they were 50 and 33 times faster
than IPM, respectively. However, for the large Dimacs2pprn cases (Figure 11), IPM
provided the best executions and was up to 26 and 100 times more efficient than
CPLEX and PPRN. However, the Dimacs2pprn problems are not very complicated,
in spite of the large number of variables. This explains the moderate CPU times
required by the three codes in their solution. On the other hand, the Mnetgen and
PDS instances (Figures 12 and 13) can be considered to be difficult. It is in these
situations that IPM clearly outperforms both CPLEX and PPRN. For the Mnetgen
problems it was, on average, 4 times faster than CPLEX (20 in the best case) and
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Table 5
Results reported in [17] and [31] for some of the largest PDSt problems.

ε-approximation barrier decomposition

t f∗εA
f∗−f∗

εA
1+f∗ f∗BD

f∗−f∗
BD

1+f∗

50 1.66257·1010 -1.3e–3 1.6625·1010 -1.3e–3
60 1.42914·1010 -1.8e–3 1.4462·1010 -1.4e–2
70 1.22640·1010 -1.9e–3 1.2311·1010 -5.7e–3
80 1.15047·1010 -3.1e–3 — —
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Fig. 10. Ratio time of CPLEX and PPRN to IPM for the small Dimacs2pprn problems.
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Fig. 11. Ratio time of CPLEX and PPRN to IPM for the large Dimacs2pprn problems.

10 times faster than PPRN (45 in the best run). These average figures were 11 for
CPLEX and 4 for PPRN when solving the PDS problems (the maximum ratios were
of 67 and 12, respectively). It should be pointed out that IPM performed best for the
large problems, as indicated by the positive slope of the points in Figures 12 and 13
(note that a log scale is used for the vertical axis). This is especially true for the big
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Fig. 13. Ratio time of CPLEX and PPRN to IPM for the PDS problems.

Mnetgen problems, where IPM was consistently faster than both CPLEX and PPRN.
For the large PDS tests (e.g., t > 30) PPRN behaved very well and was only about
11 times slower than IPM, whereas CPLEX provided poorer performances.

Finally, we compared IPM with the CPLEX barrier solver, a state-of-the-art
implementation of a general interior-point algorithm. For the comparison, we solved
the small Dimacs2pprn problems Sik of Table 1. The remaining problems were not
executed due to the excessive CPU time the CPLEX barrier solver would take. Table 6
shows the results. The last column gives the ratio time between the CPLEX barrier
solver and IPM. The runs not reported correspond to cases where either the system
memory was insufficient or the program was stopped because of an excessive execution
time. Figure 14 shows the ratio times for the number of variables of the problem. It
can be seen that only in some of the smaller problems did the general interior-point
code slightly outperform the specialized one. As the size of the problem increases,
IPM performs better and is up to 800 times faster in the best case (i.e., S4

100).

7. Conclusions. From the computational experiments reported, it can be stated
that the specialized interior-point algorithm is an efficient and promising tool for the
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Table 6
Performance comparison of IPM and CPLEX (barrier solver).

CPU time (seconds) Ratio
Prob. IPM CPLEX time

S11 36.6 35.6 0.97
S14 273.3 2865.7 10.49
S18 1057.8 29445.6 27.84
S116 1377.1 — —
S150 17.2 995.5 57.91
S1100 76.3 3147.7 41.27
S1150 136.8 6684.8 48.86
S1200 173.9 13777.1 79.22

S21 28.1 28.7 1.02
S24 622.6 2467.0 3.96
S28 2498.7 23289.5 9.32
S216 7550.3 — —
S250 27.6 1195.0 43.22
S2100 77.8 4263.7 54.78
S2150 262.6 7584.8 28.89
S2200 565.2 6095.8 10.79

CPU time (seconds) Ratio
Prob. IPM CPLEX time

S31 2.0 2.6 1.28
S34 183.6 64.7 0.35
S38 246.7 548.6 2.22
S316 956.1 16290.0 17.04
S350 59.8 213.0 3.56
S3100 172.7 462.9 2.68
S3150 103.6 623.0 6.01
S3200 246.9 1254.3 5.08

S41 24.8 23.3 0.94
S44 747.3 1697.4 2.27
S48 4078.8 17400.7 4.27
S416 5508.8 — —
S450 14.1 5409.8 383.67
S4100 39.0 32760.9 839.81
S4150 68.3 — —
S4200 120.7 — —
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Fig. 14. Ratio time of CPLEX (barrier solver) to IPM for the small Dimacs2pprn problems.

solution of large and difficult multicommodity problems. However, the algorithm can
still be improved with additional refinements. These include optimal face detection
and crossover procedures, improvement in the accuracy of the solution provided by the
PCG, and a more appropriate Cholesky factorization solver to reduce the time spent
by the forward and backward substitutions. A coarse-grain parallel implementation
of the algorithm should also be developed in the future.
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method for the solution of minimum cost flow problems on an undirected multicommodity
flow network, in Proceedings of the First Portuguese National Telecommunications Con-
ference, Aveiro, Portugal, 1997, pp. 381–384 (in Portuguese).

[28] M.G.C. Resende and P. Pardalos, Interior point algorithms for network flow problems, in
Advances in Linear and Integer Programming, J.E. Beasley, ed., Oxford University Press,
New York, 1996, pp. 149–189.

[29] M.G.C. Resende and G. Veiga, An implementation of the dual affine scaling algorithm
for minimum-cost flow on bipartite uncapacitated networks, SIAM J. Optim., 3 (1993),
pp. 516–537.

[30] M.G.C. Resende, T. Tsuchiya, and G. Veiga, Identifying the optimal face of a network linear
program with a globally convergent interior point method, in Large Scale Optimization:
State of the Art, W. Hager, D. Hearn, and P. Pardalos, eds., Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1994, pp. 362–387.

[31] G.L. Schultz and R.R. Meyer, An interior point method for block angular optimization,
SIAM J. Optim., 1 (1991), pp. 583–602.

[32] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1996.
[33] S. Zenios, A smooth penalty function algorithm for network-structured problems, European J.

Oper. Res., 83 (1995), pp. 220–236.



REFORMULATION OF VARIATIONAL INEQUALITIES
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Abstract. Many variational inequality problems (VIPs) can be reduced, by a compactifica-
tion procedure, to a VIP on the canonical simplex. Reformulations of this problem are studied,
including smooth reformulations with simple constraints and unconstrained reformulations based
on the penalized Fischer–Burmeister function. It is proved that bounded level set results hold for
these reformulations under quite general assumptions on the operator. Therefore, it can be guaran-
teed that minimization algorithms generate bounded sequences and, under monotonicity conditions,
these algorithms necessarily find solutions of the original problem. Some numerical experiments are
presented.

Key words. variational inequalities, complementarity, minimization algorithms, reformulation
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PII. S1052623499352826

1. Introduction. We are interested in reformulations of variational inequality
problems (VIPs) where the domain is a simplex. The main motivation is that varia-
tional inequalities on generalized (perhaps unbounded) boxes can be reduced to the
simplex case if one knows appropriate lower bounds for each variable and a bound for
the sum of the variables. The reformulations of the VIP on a simplex do not have, in
principle, bounded variables. However, we will be able to show, for some reformula-
tions, that the objective function has bounded level sets. It is worth mentioning that
reformulations of complementarity problems do not have, in general, bounded level
sets, unless suitable restrictions are imposed on the problem. Therefore, when one
applies a general solver to such a reformulation, the risk of divergence exists, even
when one knows that stationary points are solutions of the VIP.

The following example will clarify the compactification strategy. Suppose that we
want to solve the nonlinear system of equations

F (x) = 0,(1.1)

where F : Rn → R
n has continuous first derivatives. Usually, globally convergent

algorithms for solving (1.1) rely on the unconstrained minimization problem

Minimize ‖F (x)‖22.(1.2)

See [12, 38, 41]. (Obviously, (1.1) is a variational inequality problem where the domain
is Rn.) Most algorithms (for example, globalizations of Newton’s method) have the
property that every limit point of the iterates is stationary, that is,

∇‖F (x)‖22 ≡ 2F ′(x)TF (x) = 0.(1.3)
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The most obvious drawbacks of this approach are
(1) The algorithm might converge to a stationary point that is not a solution

(F ′(x) being singular in this case).
(2) Limit points of the generated sequence might not exist at all.

With the aim of guaranteeing the existence of limit points (and, in fact, avoiding
possible overflows in the computer calculation), artificial bounds are frequently added
to (1.2). In this case, the globalization procedure must use techniques of bound-
constrained minimization [7, 10, 18, 19, 31, 36] and the limit points will be stationary
points of the bound-constrained problem. Unfortunately, if an artificial constraint is
active at the limit point, the limit point might not be a stationary point of (1.2) and,
hence, also not a solution of (1.1). This usually happens when the sequence generated
by the unconstrained algorithm applied to (1.2) tends to infinity.

In [5] it has been suggested that a better way in which the domain of (1.1) can be
compactified is to consider the variational inequality problem defined by F (x) on the
domain defined by the artificial bounds. In that paper it was proved that, under suit-
able conditions, any stationary point of a smooth reformulation (with bounded level
sets) of the variational inequality problem must be a solution of (1.1). Therefore, the
results in [5] represent sufficient conditions under which neither of the two objections
just exposed is problematic.

The discussion above can be repeated, with minor modifications, if the original
problem is a complementarity problem instead of a nonlinear system. See [2, 3, 4, 5,
13, 24, 34, 35].

The main drawback of the approach of [5] is that the reformulation of the original
problem requires 2n additional variables. In [4, 14] a different reformulation with
the same triplicating property can be found. In the present research, we introduce
reformulations with n+3 additional variables having similar properties as those proved
in [5]. The idea, as we mentioned above, is to consider first the variational inequality
problem on a smaller simplicial region.

This paper is organized as follows. In section 2 we explain how a variational
inequality problem on a generalized box can be reduced to a VIP in which the domain
is a simplex. In section 3 we define smooth reformulations of the VIP on the simplex,
for which the level sets are bounded and, under suitable conditions, stationary points
coincide with solutions of the variational inequality problem. In section 4 we repeat
the work of section 3 with respect to an unconstrained reformulation that uses the
penalized Fischer–Burmeister [8] function. See, also, [11, 14, 16, 17, 23, 27, 29, 30]. In
section 5 we present numerical experiments. Conclusions are given in section 6.

2. Reduction to the simplex form. The fact that, under certain conditions,
the solution of a restricted variational inequality problem is a solution of the original
one seems to be known by many researchers, although the result is not easily found
in the literature. The argument is as follows.

Consider the variational inequality problem V IP (F,Ω), which consists of finding
x ∈ Ω such that

〈F (x), z − x〉 ≥ 0 ∀z ∈ Ω,(2.1)

where F : Rn → R
n and Ω is closed and convex. Let B ⊂ Rn be closed and convex

too. Denote by B′ the set of interior points of B. Define Ωsmall = Ω∩B and consider
the variational inequality problem defined by

〈F (x), z − x〉 ≥ 0 ∀z ∈ Ωsmall.(2.2)
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Clearly, any solution of (2.1) that belongs to Ωsmall will be a solution of (2.2). Let
us show that, under certain conditions, every solution of (2.2) is a solution of (2.1).
Denote by Ssmall the set of solutions of (2.2). Essentially, the proof of the following
theorem is that given (under slightly stronger hypotheses) in [45].

Theorem 2.1. Assume that the set of solutions of (2.1) is closed. Assume,
moreover, that for every solution x of (2.2) there exists a sequence {xk} ⊂ B′∩Ssmall
such that limxk = x. Then, every solution of (2.2) solves (2.1).

Proof. Let x be a solution of (2.2). Let {xk} ⊂ B′ ∩ Ssmall be the sequence
(convergent to x) that is mentioned in the hypothesis. Let z ∈ Ω. Since xk ∈ B′ and
Ω is convex, there exists t > 0 such that xk + t(z − xk) ∈ Ωsmall. Therefore, since
xk solves (2.2), 〈F (xk), t(z − xk)〉 ≥ 0. So, 〈F (xk), z − xk〉 ≥ 0. Since z and k are
arbitrary, this means that xk solves (2.1) for all k. But the set of solutions of (2.1) is
closed, so x also solves (2.1).

Now, we consider the problem V IP (F,Ω1), where

Ω1 = {x ∈ Rn | xi ≥ 0 ∀ i ∈ I}(2.3)

and I ⊂ {1, . . . , n}. Nonlinear complementarity problems (NCPs) and nonlinear sys-
tems are particular cases of V IP (F,Ω1), where I = {1, . . . , n} and I = ∅, respectively.

Define

Ω2 =

{
x ∈ Rn | x ≥ � and

n∑
i=1

xi ≤M

}
,

where � ∈ Rn, �i = 0 for all i ∈ I, and
∑n
i=1 �i < M . Clearly, Ω2 ⊂ Ω1. We denote by

S2 the set of solutions of V IP (F,Ω2). The application of Theorem 2.1 to V IP (F,Ω1)
is given in the following theorem.

Theorem 2.2. Suppose that F is continuous on Ω1, S2 is convex, and there
exists x̄ ∈ S2 such that

∑n
i=1 x̄i < M and x̄i > �i for all i /∈ I. Then, any solution of

V IP (F,Ω2) solves V IP (F,Ω1).
Proof. Since F is continuous, the set of solutions of V IP (F,Ω1) is closed. Let

x ∈ S2. By the convexity of S2, we have that [x̄, x) ⊂ S2. Moreover, for all y ∈ [x̄, x),
we have that

∑n
i=1 yi < M and yi > �i, i /∈ I. Therefore, the hypothesis of Theo-

rem 2.1 holds for the sequence defined by xk = x+ 1
k (x̄−x). This implies the desired

result.
Defining G1 : Rn+1 → R

n+1 by

G1(y, xn+1) = (F (y), 0) ∀ y ∈ Rn, xn+1 ∈ R,(2.4)

Ω3 =

{
x ∈ Rn+1 |

n+1∑
i=1

xi = M and xi ≥ �i, i = 1, . . . , n + 1

}
,

and �n+1 = 0, it is easy to see that solving V IP (G1,Ω3) is equivalent to solving
V IP (F,Ω2). Finally, after a suitable change of variables, we can consider that M = 1
and �i = 0 for all i = 1, . . . , n + 1, so that the original problem is reduced to a
variational inequality problem on the canonical simplex.

3. Bounded smooth reformulations. The discussion in section 2 justifies the
study of the problem V IP (G,S), where G : Rm → R

m and

S =

{
x ∈ Rm | x ≥ 0 and

m∑
i=1

xi = 1

}
.
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According to [1, 22] (see, also, [2, 3, 4, 15, 20, 21, 32]) we define the following
reformulation for V IP (G,S):

Minimize Φ1(x, v, λ) subject to x ≥ 0, v ≥ 0,(3.1)

where

Φ1(x, v, λ) = ρ0‖G(x) + 1λ− v‖22 + ρ1

(
m∑
i=1

xi − 1

)2

+ 〈x, v〉2,

x, v ∈ Rm, λ ∈ R, 1 = (1, . . . , 1) ∈ Rm, ρ0, ρ1 > 0.
Let us prove that Φ1(x, v, λ) has bounded level sets on the set x ≥ 0, v ≥ 0. From

now on, we denote Rn+ = {x ∈ Rn | x ≥ 0}.
Theorem 3.1. Assume that G is continuous on Rm+ . Then, for all θ ∈ (0, ρ1),

the set

L1 = {(x, v, λ) ∈ R2m+1 | x ≥ 0, v ≥ 0, Φ1(x, v, λ) ≤ θ}

is bounded.
Proof. Assume that

(xk, vk, λk) ∈ L1 ∀ k = 0, 1, 2, . . . .

Since (
∑m
i=1 xki −1)2 ≤ θ and xk ≥ 0 for all k = 0, 1, 2, . . . , we have that the sequence

{xk} is bounded. Therefore, by the continuity of G, the sequence {G(xk)} is also
bounded.

Since ρ0‖G(xk) + 1λk − vk‖22 ≤ θ for all k = 0, 1, 2, . . . and {G(xk)} is bounded,
we have that {λk − vki } is bounded for all i = 1, . . . ,m. Therefore, if {vki } is bounded
for some i ∈ {1, . . . ,m}, λk is also bounded, implying that vki is bounded for all
i = 1, . . . ,m.

Now, if there exists j ∈ {1, . . . ,m} such that {vkj } is unbounded, we can extract a

subsequence such that vkj →∞. For the same subsequence, λk →∞ and, so, vki →∞
for all i = 1, . . . ,m. Let us call, for this subsequence, vk = (vk1 , . . . , v

k
m).

But 〈xk, vk〉2 ≤ θ for all k = 0, 1, 2, . . .. Therefore, since xk ≥ 0 for all k, we have
that

lim
k→∞

xk = 0.

Hence,

lim
k→∞

ρ1

(
m∑
i=1

xki − 1

)2

= ρ1.

Thus, for k large enough, Φ1(x
k, vk, λk) > θ and, so, (xk, vk, λk) /∈ L1. This means

that the assumption on the unboundedness of vki is not possible. This completes the
proof.

It is easy to find (x0, v0, λ0) such that Φ1(x
0, v0, λ0) < ρ1. For example, take

x0 ≥ 0 such that
∑m
i=1 x0

i = 1, arbitrarily choosing λ0 ∈ R and v0 ≥ 0. Therefore,

Φ1(x
0, v0, λ0) = ρ0‖G(x0) + 1λ0 − v0‖22 + 〈x0, v0〉2
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and, so, the condition Φ1(x
0, v0, λ0) < ρ1 holds if we choose

ρ1 > ρ0‖G(x0) + 1λ0 − v0‖22 + 〈x0, v0〉2.

Theorem 3.1 implies that, with the proper choice of x0, ρ0, and ρ1, any reasonable
iterative minimization algorithm for solving (3.1) necessarily produces a sequence that
has limit points. In fact, the sequence generated by such an algorithm will satisfy

Φ1(x
k, vk, λk) ≤ Φ1(x

0, v0, λ0) ∀ k = 0, 1, 2, . . . ;

so, by Theorem 3.1, (xk, vk, λk) will be bounded. Moreover, for most iterative min-
imization algorithms, limit points are stationary (KKT) points of the minimization
problem. This guarantees that stationary points of problem (3.1) will be necessarily
found. It remains to relate the stationary points of (3.1) to the solutions of V IP (G,S).
This is done in the following theorem.

Theorem 3.2. If G is monotone and has continuous first derivatives, all the
stationary points of (3.1) are solutions of V IP (G,S).

Proof. Since S is bounded, this result follows from Theorem 4 of [22]. See also
[1, 20].

It is easy to see that G1, defined by (2.4), is monotone if and only if F is monotone.
Therefore, stationary points of (3.1) define (after changing variables) solutions of
V IP (F,Ω2). Under the interiority hypothesis of Theorem 2.2, these are also solutions
of V IP (F,Ω1).

An interesting consequence of the results of this section comes from analyzing the
nonlinear system F (x) = 0, where F is monotone (see [43]) but ‖F (x)‖22 has stationary
points or even local minimizers that are not solutions of the system. Essentially, in
this section it has been proved that if one selects adequate artificial bounds � and
M and the reformulation (3.1) is applied, there is no risk of convergence to spurious
stationary points of the squared norm of F .

We finish this section considering a different smooth reformulation of V IP (G,S).
See [37]. Consider the minimization problem

Minimize Φ2(x, v, λ) subject to x ≥ 0, v ≥ 0,(3.2)

where

Φ2(x, v, λ) = ρ0‖G(x) + 1λ− v‖22 + ρ1

(
m∑
i=1

xi − 1

)2

+

m∑
i=1

(xivi)
2.

As in the case of (3.1) it is easy to see that solutions of V IP (G,S) correspond to global
solutions of (3.2) for which the objective function vanishes. Moreover, the following
results can be proved using the same techniques of Theorem 3.1 and Theorem 3.2.
Finally, an initial bounded level set can be obtained choosing ρ1 similarly to above.

Theorem 3.3. Assume that G is continuous on Rm+ . Then, for all θ ∈ (0, ρ1),
the set

L2 ≡ {(x, v, λ) ∈ R2m+1 | x ≥ 0, v ≥ 0, Φ2(x, v, λ) ≤ θ}

is bounded.
Theorem 3.4. If G is monotone and has continuous first derivatives, all the

stationary points of (3.2) are solutions of V IP (G,S).
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Remark. The compactification procedure is essential to guarantee that stationary
points of smooth reformulations are solutions of the associated monotone NCPs. For
example, consider the NCP defined by F : R1 → R

1, where

F (x) =




−1 if x ≤ 1,
−1 + 2

3 (x− 1)2 if 1 ≤ x ≤ 2,

1− 4
3e

−x+2 if x ≥ 2.

(3.3)

Clearly, F is monotone and the unique solution of the associated NCP is 2 + ln 4
3 .

The optimization problem associated with the smooth reformulations (without
compactification) is to minimize Φ(x, z) = (F (x) − z)2 + (xz)2 subject to x, z ≥ 0.
This problem has, besides the global solution, the stationary point (0, 0), which is not
a solution of the NCP. Moreover, since Φ(k, 1

k2 ) ≤ 1 for all k = 3, 4, . . . , the level set

{(x, z) | Φ(x, z) ≤ 1, x ≥ 0, z ≥ 0}

is not bounded.

4. Penalized Fischer–Burmeister reformulation. The Fischer–Burmeister
function, defined by

ϕ(a, b) = a + b−
√

a2 + b2 ∀ a, b ∈ R,(4.1)

has been used in many reformulations of complementarity and variational inequality
problems [11, 14, 16, 17, 23, 27, 29, 30, 42]. Its main property is that ϕ(a, b) = 0 if
and only if a ≥ 0, b ≥ 0, and ab = 0.

The penalized Fischer–Burmeister (PFB) function has been introduced recently
in [8]. It is defined by

ψµ(a, b) = ϕ(a, b) + µa+b+,(4.2)

where µ ≥ 0, c+ = max{c, 0}, and ϕ is the Fischer–Burmeister function (4.1). Related
functions have been proposed in [30, 33].

Based on this function, Chen, Chen, and Kanzow [8] introduced a new method for
solving NCPs for which an excellent practical performance has been reported. These
authors proved a bounded level set result (if µ > 0) under the condition that F is a
monotone function with a strictly feasible point or that F is an R0-function (see [9]).

Similarly to (3.1), we define the following reformulation of V IP (G,S):

Minimize Φ3(x, v, λ),(4.3)

where

Φ3(x, v, λ) = ρ0‖G(x) + 1λ− v‖22 + ρ1

(
m∑
i=1

xi − 1

)2

+

m∑
i=1

ψµ(xi, vi)
2

and ρ0, ρ1, and 1 are as in (3.1). As in the previously defined reformulations, the
objective function of (4.3) vanishes if and only if x is a solution of V IP (G,S).

If G is differentiable, the objective function Φ3 is once (but not twice) continu-
ously differentiable. Boundedness of the level sets associated with Fischer–Burmeister
(µ = 0) reformulations of complementarity problems has been proved in [29] under
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restrictive conditions on F . Here we will prove bounded level set results that hold
assuming only continuity of G.

Theorem 4.1. Assume that G is continuous on Rm, µ = 0, and θ ∈ (0, 1/m) is
such that

ρ1(
√
θm− 1)2 > θ.(4.4)

Then, the set

L3 = {(x, v, λ) ∈ R2m+1 | Φ3(x, v, λ) ≤ θ}(4.5)

is bounded.
Proof. Suppose that {(xk, vk, λk)} ∈ L3 for all k = 0, 1, 2, . . .. Let us suppose, by

contradiction, that this sequence is not bounded.
Since Φ3(x

k, vk, λk) ≤ θ, we have that

ϕ(xki , v
k
i )

2 ≤ θ ∀ k = 0, 1, 2, . . . .

So,

−ϕ(xki , vki ) ≤
√
θ ∀ k = 0, 1, 2, . . . .

By an elementary property of the Fischer–Burmeister function, this implies that

xki ≥ −
√
θ and vki ≥ −

√
θ ∀ k = 0, 1, 2, . . . .

So, xk ≥ (−√θ, . . . ,−√θ) and (
∑m
i=1 xki − 1)2 ≤ θ/ρ1 for all k = 0, 1, 2, . . .. This

implies that {xk} is bounded.
By the continuity of G, {G(xk)} is also bounded. Therefore, since {‖G(xk)+1λk−

vk‖22} is obviously bounded and vki ≥ −
√
θ ∀ k = 0, 1, 2, . . . , the unboundedness of

{(xk, vk, λk)} implies that there exists a subsequence such that (after relabeling)

lim
k→∞

vki =∞ ∀ i = 1, . . . ,m.(4.6)

But the sequence {xk} is bounded, so it has a convergent subsequence. Therefore, we
can ensure that for a suitable subsequence (4.6) holds. So, after a new relabeling,

lim
k→∞

xki = ai ∀ i = 1, . . . ,m.(4.7)

By an elementary property of (4.1), (4.6) and (4.7) imply that

lim
k→∞

ϕ(xki , v
k
i ) = ai

for some ai ≥ −
√
θ, i = 1, . . . ,m. Thus

lim
k→∞

m∑
i=1

ϕ(xki , v
k
i )

2 =

m∑
i=1

a2
i .

Since
∑m
i=1 ϕ(xki , v

k
i )

2 ≤ θ for all k, this implies that

m∑
i=1

a2
i ≤ θ.
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Hence,

m∑
i=1

ai ≤
√
θm.

But, by (4.4),
√
θm < 1, so

ρ1

(
m∑
i=1

ai − 1

)2

≥ ρ1(
√
θm− 1)2.

Therefore, by (4.4),

ρ1

(
m∑
i=1

ai − 1

)2

> θ.

This implies that, for k large enough,

ρ1

(
m∑
i=1

xki − 1

)2

> θ,

and, so,

Φ3(x
k, vk, λk) > θ.

This contradicts the fact that (xk, vk, λk) ∈ L3.
As in the case of Φ1 and Φ2, with a suitable choice of ρ0, we can ensure that

Φ3(x
0, v0, λ0) < θ,(4.8)

where θ satisfies (4.4). In fact, we take x0 ≥ 0 such that
∑m
i=1 x0

i = 1 and v0 = 0.
Then, Φ3(x

0, v0, λ0) = ρ0‖G(x0)+1λ0−v0‖22 and condition (4.8) holds if ρ0 is chosen
to be sufficiently small.

Remark. The classical Fischer–Burmeister reformulation of the NCP defined by
(3.3) consists of minimizing Φ(x) ≡ (

√
x2 + F (x)2−x−F (x))2. Since Φ(k) ≤ 1 for all

k = 3, 4, 5, . . ., this function fails to have bounded level sets. Of course, the level sets
F (x) ≤ α are bounded if α > 0 is small enough, but it is not possible to predict for
which point x0 the level set {x ∈ R | Φ(x) ≤ Φ(x0)} is bounded. Of course, a rather
trivial way to obtain examples where the level sets of all classical reformulations of the
monotone NCP are not bounded is to consider problems with an unbounded solution
set. Finally, in the absence of monotonicity, examples of unbounded level sets are easy
to obtain for all the classical reformulations.

Theorem 4.2. Assume that G is continuous on Rm. If µ > 0, for all θ ∈ (0, ρ1),
the set L3, defined in (4.5), is bounded.

Proof. Suppose that (xk, vk, λk) ∈ L3 for all k = 0, 1, 2, . . .. Therefore,

ψµ(x
k
i , v

k
i )

2 ≤ θ ∀ i = 1, . . . ,m, k = 0, 1, 2, . . . .

So, by (4.2),

−ϕ(xki , vki ) ≤
√
θ ∀ i = 1, . . . ,m, k = 0, 1, 2, . . . .
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This implies, as in Theorem 4.1, that

xki ≥ −
√
θ ∀ i = 1, . . . ,m, k = 0, 1, 2, . . . .

So, since ρ1(
∑m
i=1 xki − 1)2 ≤ θ for all k = 0, 1, 2, . . ., we have that {xk} is bounded.

By the continuity of G, {G(xk)} is bounded and, so, {λk − vki } is bounded for all
i = 1, . . . ,m. As in previous boundedness theorems, we only need to prove that the
assumption vki →∞ for all i = 1, . . . ,m leads to a contradiction. In fact, if vki →∞
for all i = 1, . . . ,m we have, as in Theorem 4.1, that, for a suitable subsequence, {xki }
is convergent and {ϕ(xki , vki )} is bounded. Assume, for a moment, that there exists
i ∈ {1, . . . ,m} and ε > 0 such that

xki ≥ ε

for an infinite set of indices. This implies that xki v
k
i →∞ and, so, the sequence is not

contained in L3. Therefore,

lim
k→∞

xk ≤ 0.

This implies that

lim
k→∞

ρ1

(
m∑
i=1

xki − 1

)2

≥ ρ1.

This is impossible, since (xk, vk, λk) ∈ L3. So, the proof is complete.
Clearly, an initial estimate that belongs to a bounded level set can be chosen as

we did in the smooth reformulations studied in section 3.
The following theorem is a sufficiency result for the reformulation (4.3) that cor-

responds to Theorem 3.2 and Theorem 3.4 of section 3.
Theorem 4.3. If G is monotone and has continuous first derivatives, all the

stationary points of (4.3) are solutions of V IP (G,S).
Proof. The case µ = 0 follows from a straightforward generalization of Theo-

rem 2.4 of [28]. In the case µ > 0, use Proposition 3.3 of [8] to generalize Theorem 2.4
of [28]. Then, generalize this result as in the case µ = 0.

5. Preliminary numerical experience. We solved some VIPs on the simplex
S using the reformulations studied in this paper. Our objective here is to get a prelim-
inary idea of the comparative behavior of different reformulations. The first problem
considered was

〈G(x), z − x〉 ≥ 0 ∀ z ∈ S,

where G : Rm → R
m was given by G(x) = Ax− c, A was the 10× 10 Hilbert matrix

([A]i,j = 1
i+j−1 ), and the entries of ci were chosen randomly in [0, 2]. In Table 5.1 we

recall the different reformulations studied in this paper.
To solve the optimization problems associated with different reformulations, we

used the general purpose algorithm SPG given in [6]. This is a very simple algorithm
that generally outperforms conjugate gradient methods in the unconstrained case (see
[40]) and is comparable to good large-scale bound-constrained solvers when simple
constraints are present. Of course, this algorithm does not take into account the
structure of the problems at all and, so, can be very inefficient in many cases, but it
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Table 5.1
Reformulations and optimization problems.

Reformulation Objective Complementarity Feasible
function term region

Smooth 1 Φ1 〈x, v〉2 R
m
+ × Rm

+ × R
Smooth 2 Φ2

∑m

i=1
(xivi)

2
R
m
+ × Rm

+ × R
PFB Φ3

∑m

i=1
ψµ(xi, vi)

2
R
m × Rm × R

Table 5.2
Comparison of reformulations.

Reformulation Successful executions Best in
Smooth 1 (3.1) 4 1 problem
Smooth 2 (3.2) 3 0 problems
PFB (4.3), µ = 0 7 3 problems
PFB (4.3), µ = 0.1 6 3 problems
PFB (4.3), µ = 1.0 8 1 problem
PFB (4.3), µ = 10. 4 0 problems

is useful when the goal is to compare reformulations as we do in this case. In this first
set of experiments we used a modest computer environment (Pentium with 90 MHZ)
and the code was written in (double precision) Fortran 77.

The convergence criterion used to terminate the execution of SPG was

‖P (z −∇Φi(z))− z‖ ≤ 10−6,

where z = (x, v, λ) and P is the projection on the feasible region. As an initial ap-
proximation we took xi = uniformly random between 0 and 1 and then divided each
coordinate by

∑m
i=1 xi. We also took v = 0 and λ = 0. In order to ensure bounded

level sets we chose ρ0 = 1 and ρ1 = max{1, 1.1‖G(x0)‖22}.
We solved 10 problems with different random generations of c and the initial

x. We considered that the execution was successful if the solution was obtained in
less than 25 seconds. In general, successful executions used less than 5 seconds for
all the formulations. In Table 5.2, we show the number of successful executions and
the number of times each reformulation was the best, in terms of execution time.
In all the successful cases, the solutions were obtained with the same precision. In
two problems, all the reformulations failed. We considered that there was not a “best
reformulation” in these two cases.

Both in the condensed Table 5.2, and looking in detail at the experiments, the
behavior of “Smooth 2” appears to be similar to PFB with µ = 10. This is not
surprising, since a large µ in ψµ(a, b) gives more weight to the multiplicative term ab
in the positive orthant and “Smooth 2” only uses this term.

The penalty parameter µ in the function ψµ(a, b) affects the measure of “lack
of complementarity” in the positive orthant (a ≥ 0, b ≥ 0) in the following way: If
µ ≈ 0, then ψµ(a, b) ≈ ϕ(a, b) and, so, ψµ(ε,M) is “approximately independent”
of M if ε > 0 is small and M is large. This comes from limM→∞ ϕ(ε,M) = ε. In
other words, ϕ(ε,M) ≈ min{ε,M}. On the other hand, if µ is large or if we are
using “Smooth 2,” the measure of lack of complementarity tends quickly to ∞ if one
of the variables tends to infinity and the other is kept fixed. Whether it is better to
consider that (ε,M) is almost complementary or not is a problem-dependent question.
However, at the beginning of iterative processes, it is dubious that the variable that
corresponds to the smaller complementary variable will be zero at the solution and,
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so, it seems convenient to try to reduce both. This decision corresponds to “µ large”
in the PFB reformulation.

The “Smooth 1” reformulation is “more global” in the sense that the influence of
the lack of complementarity of the pair (xj , vj) depends on the lack of complementarity
of the other pairs. In fact, since

∂

∂vj

(
m∑
i=1

xivi

)2

= 2

(
m∑
i=1

xivi

)
xj and

∂

∂xj

(
m∑
i=1

xivi

)2

= 2

(
m∑
i=1

xivi

)
vj ,

the contribution of the jth lack of complementarity to the gradient of the objective
function grows with the deviation from complementarity of the remaining pairs. In
other words, “Smooth 1” will try a large step toward zero on the variable vj not only
when xj and xjvj are large but also when some of the products xivi (for i �= j) are
large.

The small number of experiments described above encouraged us to define a
Newton-type algorithm that uses Φ3 as the objective function, with the aim of com-
paring more systematically different choices of µ. Observe that finding a zero value of
Φ3 is equivalent to solving the (2m + 1)× (2m + 1) nonlinear system

H(z) = 0,

where z = (x, v, λ) and

H(z) =

(
G(x)− v + λ1,

√
ρ1

(
m∑
i=1

xi − 1

)
, ψµ(x1, v1), . . . , ψµ(xm, vm)

)
.

If G is smooth, H is smooth except when xivi = 0 for some i. (However, Φ3 is smooth
for all z.) Therefore, the Newtonian direction

d(z) = −B(z)−1H(z),(5.1)

where B(z) ∈ ∂BG(z), is well defined whenever a nonsingular element of ∂BG(z)
can be found. See [39]. This allows us to define a nonmonotone safeguarded Newton-
gradient algorithm along the lines of [11, 25]. From now on, we write Φ(z) = Φ3(x, v, λ)
for the sake of simplicity.

Assume that γ ∈ (0, 1), β1, β2 > 0, α ∈ (0, 1/2), ν ∈ {0, 1, 2, . . .} are given inde-
pendently of k. Suppose that the iterate zk has been computed for some k ≥ 0. Then,
if ∇Φ(zk) �= 0, the iterate zk+1 is computed as follows.

Algorithm 5.1 (nonmonotone safeguarded Newton-gradient).
Step 1. If d(zk) (given by (5.1)) exists and, in addition,

〈d(zk),∇Φ(zk)〉 ≤ −γ‖d(zk)‖2‖∇Φ(zk)‖2(5.2)

and

β1‖∇Φ(zk)‖2 ≤ ‖d(zk)‖2 ≤ β2‖∇Φ(zk)‖2,(5.3)

define dk = d(zk). Otherwise, define dk = −∇Φ(zk).
Step 2. Starting with t = 1 and using classical safeguarded backtracking (see

[11, 12]), compute tk > 0 such that
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Φ(zk + tkd
k) ≤ Φ̃k + αtk〈dk,∇Φ(zk)〉,(5.4)

where

Φ̃k = max{Φ(zk), . . . ,Φ(zτ )}

and τ = max{0, k − ν} (see [25]).
Define zk+1 = zk + tkd

k. Using slight modifications of the results of [11] and
[25] we can prove that every limit point of a sequence generated by this algorithm
is stationary. Since we have proved that, choosing the appropriate initial point and
ρ1, the generated sequences are bounded, it turns out that stationary points are
necessarily found, in the limit, by Algorithm 5.1.

We wrote a double precision Fortran code implementing this algorithm for the
unconstrained minimization of Φ3. We chose γ = β1 = 1/β2 = α = 10−4 and ν = 9.
As initial point we took x0 = (1, 1/2, . . . , 1/m)/

∑m
i=1(1/i), v0 = 0, λ0 = 0. We ran

the algorithm for different choices of µ using problems defined by operators G(x) taken
from the nonlinear-system literature. Namely, we define the following problems.

Problem 1 (Hilbert). m = 100.
G(x) = Ax−c, where A is defined as the Hilbert matrix and c = (1, 1/2, . . . , 1/m).
Problem 2 (Broyden). m = 100.

[G(x)]1 = (3− 2x1)x1 − 2x2 + 1,

[G(x)]i = (3− 2xi)xi − xi−1 − 2xi+1 + 1, i = 2, . . . ,m− 1,

[G(x)]m = (3− 2xm)xm − xm−1.

Problem 3 (Rosenbrock). m = 20.

[G(x)]i = 10(xi+1 − x2
i ) if i is odd,

[G(x)]i = 1− xi−1 if i is even.

Problem 4 (Helical valley). m = 99.
For i = 1, . . . ,m/3,

[G(x)]3i = 10x3i+2 − 50

π
atan (x3i+1/3i)− 50 if x3i < 0,

[G(x)]3i = 10x3i+2 − 50

π
atan (x3i+1/3i) if x3i > 0,

[G(x)]3i+1 =
√

x2
3i + x2

3i+1,

and

[G(x)]3i+2 = x3i+2.

Problem 5 (Watson). m = 31.
For i = 1, . . . , 29,
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Table 5.3
Comparison of different penalty parameters in PFB.

Problem m µ ‖H(z)‖∞ It FE Changes Time

Hilbert 100 10−6 0.95E − 10 10 64 0 2.16
0.10 0.22E − 10 13 74 0 2.81
1.00 0.14E − 09 12 84 0 2.56
10.00 0.17E − 11 11 69 0 2.32
100.0 0.34E − 10 13 92 0 2.78

Broyden 100 10−6 0.42E − 09 4 5 0 0.82
0.10 0.42E − 09 4 5 0 0.82
1.00 0.42E − 09 4 5 0 0.82
10.00 0.42E − 09 4 5 0 0.82
100.0 0.42E − 09 4 5 0 0.82

Rosenbrock 20 10−6 0.48E − 09 3 4 0 < 0.1
0.10 0.48E − 09 3 4 0 < 0.1
1.00 0.48E − 09 3 4 0 < 0.1
10.00 0.48E − 09 3 4 0 < 0.1
100.0 0.48E − 09 3 4 0 < 0.1

Helical 99 10−6 0.36E − 14 122 2021 104 25.7
0.10 0.36E − 14 122 2025 105 26.3
1.00 0.13E − 11 122 1995 104 26.2
10.00 0.28E − 11 62 830 45 13.0
100.0 0.40E − 09 153 2594 134 32.6

Watson 31 10−6 0.10E − 09 35 197 1 0.1
0.10 0.10E − 09 35 197 1 0.1
1.00 0.10E − 09 35 197 1 0.1
10.00 0.10E − 09 35 197 1 0.1
100.0 0.10E − 09 35 197 1 0.1

Murty 100 10−6 0.44E − 15 176 561 1 25.6
0.10 0.77E − 10 150 397 1 31.3
1.00 0.26E − 09 173 491 1 35.9
10.00 0.80E − 12 166 511 1 34.4
100.0 0.16E − 11 165 493 1 34.2

[G(x)]i =

m∑
j=1

(j − 1)xj(i/29)
j−2 −


 m∑
j=1

xj(i/29)(i/29)
j−2




2

− 1,

[G(x)]30 = x1,

[G(x)]31 = x2 − x2
1 − 1.

Problem 6 (Murty). m = 100.
G(x) = Ax − c, where A is upper-triangular, [A]ij = 2 if i < j, [A]ii = 1 for all

i = 1, . . . ,m, and c = (1, . . . , 1).
The experiments that we report below were run in a SPARCstation Sun Ultra

1, with an UltraSPARC 64 bits processor, 167-MHz clock, and 128-MBytes of RAM
memory. The stopping criterion was ‖H(z)‖∞ ≤ 10−8. Besides number of iterations
(It), number of function evaluations (FE), and CPU time (in seconds), we report in
Table 5.3 the number of times the Newton direction needed to be replaced by the
gradient direction. In this preliminary implementation, the linear systems were solved
by Gaussian elimination, without taking advantage of their sparsity. Obviously, the
computer time must decrease dramatically if a sparse implementation is developed,
but the other indicators would not change.

We observe that in three problems (Broyden, Rosenbrock, and Watson) the be-
havior of the five penalty parameters is the same. In Hilbert and Murty the smallest
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Table 5.4
Algorithm 5.1 with Problem Hilbert, µ = 0.1.

Iteration k Evaluations ‖H(zk)‖2
0 1 1.1659909612460
1 7 1.1506050628261
2 19 1.1559111113737
3 31 1.1586923058790
4 39 1.1556372319450
5 46 1.1414773334813
6 51 1.1299367786945
7 56 1.1386723439549
8 62 1.1617009941393
9 66 1.0730683927287
10 70 0.98505951078780
11 72 0.67329707514733
12 73 4.2472036158979E − 03
13 74 2.6507263515338E − 11

µ was, marginally, the best. However, in Helical, “µ = 10” clearly outperformed the
other alternatives. Probably, very large values of µ should be discarded from practical
implementations (at least in well-scaled problems), but the best choice among “small”
values of µ seems to depend strongly on the problem characteristics.

The number of functional evaluations per iteration appears to be large in the prob-
lems Hilbert, Watson, and Murty. With the aim of understanding this phenomenon,
we ran some problems choosing the gradient direction in the first (5 or 10) iterations.
Running Hilbert with µ = 0.1 and 5 (first) gradient iterations, the computer time
decreased to 1.6 seconds and, with 10 (first) gradient iterations, to 1.1 seconds. We
found it instructive to show the detailed behavior of the algorithm in the ordinary
case and in the two modified cases. See Tables 5.4, 5.5, and 5.6. We observe that,
in fact, the first Newton iterations are not worthwhile in terms of the progress they
provide, whereas, of course, they are much more expensive than gradient iterations.
The quadratic convergence of Newton is quite evident in the last two iterations. We
also ran the algorithm using only gradient iterations, and we observed, as expected,
an extremely slow convergence behavior. In fact, convergence did not occur after 1000
iterations in this case.

The qualitative behavior described for Hilbert is essentially the same in the Wat-
son problem. In this case, with 10 initial gradient iterations, the computer time re-
duced to 0.18 seconds and even the number of iterations decreased. On the other
hand, the modification of the algorithm in the Murty problem did not cause mean-
ingful improvements. In this problem, the number of iterations increased moderately
and the computer time remained more or less the same.

Problem Helical is instructive in a different sense. In this case, the Newton di-
rection was rejected at most iterations and the algorithm behaves, essentially, as a
steepest descent method. We decided to modify the algorithmic parameters in order to
weaken the criterion of acceptance of the Newton direction at Step 1 of Algorithm 5.1.
Consequently, we chose γ = β1 = 1/β2 = 10−25 and ran the problem with these new
parameters. The results were quite impressive, showing how sensitive this type of
algorithm can be with respect to safeguarding constants. For µ = 0.1 the Newton
direction was never rejected, convergence occurred in 10 iterations with 18 function
evaluations and 1.9 seconds of CPU time. Similar improvements were obtained for the
other values of µ.
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Table 5.5
Algorithm 5.1 with Problem Hilbert, µ = 0.1 First 5 are gradient iterations.

Iteration k Evaluations ‖H(zk)‖2
0 1 1.1659909612460
1 9 1.0818877741731
2 17 1.0192301426184
3 24 1.0804586556667
4 32 0.98801773901278
5 40 0.91336945465545
6 41 0.46240603597402
7 45 0.78454888864694
8 46 0.86704125514515
9 47 0.93591242869472
10 54 1.0832676503144
11 55 1.2486098348917E − 06
12 56 9.6170809859694E − 14

Table 5.6
Algorithm 5.1 with Problem Hilbert, µ = 0.1. First 10 are gradient iterations.

Iteration k Evaluations ‖H(zk)‖2
0 1 1.1659909612460
1 9 1.0818877741731
2 17 1.0192301426184
3 24 1.0804586556667
4 32 0.98801773901278
5 40 0.91336945465545
6 48 0.85190911080106
7 55 1.1099440799153
8 63 0.97638264851556
9 71 0.87222456838420
10 79 0.78914420687610
11 80 0.29364275115164
12 81 0.95227479134610
13 82 1.0932851184041E − 02
14 83 1.9355846720355E − 09

6. Final remarks. We believe that the results presented in this paper have
a reasonably wide scope of applications. Consider the general variational inequality
problem defined by F1 on Ω, where F1 is smooth,

Ω = {x ∈ Rq | g(x) ≤ 0},
g = (g1, . . . , gp), and gi smooth and convex for all i = 1, . . . , p. Under a suitable
constraint qualification [26], this problem is equivalent to

F1(x) +

p∑
i=1

wi∇gi(x) = 0,

w ≥ 0, g(x) ≤ 0,

p∑
i=1

gi(x)wi = 0.

Defining n = p+q, z = (x,w), F (z) = (F1(x) +
∑p
i=1 wi∇gi(x),−g(x)), and I = {p+

1, . . . , p+q} we obtain a problem of type V IP (F,Ω1) (2.3). So, after compactification,
we obtain the VIP on the simplex.
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In this research we proved that, using several potentially useful reformulations, the
boundedness of the sequences generated by standard algorithms can be guaranteed,
so that limit points exist and sufficiency results can be applied.

Sufficiency results of the type “stationarity implies solution” usually depend on
“monotonicity-like” assumptions. However, one should not interpret that the reformu-
lations must be tried only when the monotonicity assumption is guaranteed to hold.
Optimization algorithms usually guarantee stationary points, but their practical effi-
ciency is linked to their ability to find global minimizers in a substantial number of
cases. This means that we can try to solve the reformulation in any situation, with the
hope that using good global strategies we will probably find solutions of the original
problem.

In [43, 44], Solodov and Svaiter presented Newton-like methods for solving mono-
tone nonlinear systems and monotone NCPs, respectively. Their convergence results
are very strong but, on the other hand, the monotonicity assumption seems to be more
essential for their algorithms than it is for the different reformulations presented here.
The conditions under which specific algorithms for reformulations enjoy the “true”
convergence properties of [43, 44] should be investigated.

Acknowledgments. We are indebted to two anonymous referees, whose com-
ments helped us to improve the paper.
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Abstract. Newton’s method for optimal control of highly nonlinear partial differential equations
is analyzed using a 2-norm technique. We consider the case where neither the linearization of
the equality constraint e characterizing the differential equation is surjective nor a second order
sufficient optimality condition holds for the topology on which e is well defined. Such problems
occur, for instance, in optimal control of semilinear elliptic equations or for parameter estimation
problems. Despite the above mentioned difficulties, sufficient conditions for second order convergence
are obtained.
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1. Introduction. The purpose of this paper is the derivation of optimality sys-
tems and the analysis of Newton’s method for a class of optimal control problems
which are weakly singular in a sense to be described shortly. We consider

(P)
minJ(y, u)

subject to e(y, u) = 0,

where e represents a partial differential equation in the state variable y and with
control variable u. Both y and u will be elements of infinite dimensional (function)
spaces. In the situation that we have in mind e is defined on a Banach space Y1 × U
with values in the dual Z∗ of a Hilbert space Z. To derive an optimality system one
introduces the Lagrangian L associated with (P) by

L(y, u, λ) = J(y, u) + (λ, e(y, u))Z,Z∗ .

Proceeding formally, assume that (y∗, u∗) is a local solution to (P). Then a necessary
optimality condition for (P) is given by{

L′(y∗, u∗, λ∗) = 0,
e(y∗, u∗) = 0

(1.1)

for an appropriate choice of λ∗ ∈ Z. Here and throughout primes denote the (partial)
derivatives with respect to (y, u). Derivatives with respect to other variables are de-
noted by subscripts. A sufficient condition for the existence of λ∗ such that (1.1) holds
consists of smoothness assumptions and surjectivity of the linearization e′(y∗, u∗) of
e at (y∗, u∗). In the situations that we have in mind e′(y∗, u∗) is not surjective. It
may, however, be surjective if e′(y∗, u∗) is considered as a mapping with domain in a
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larger space Y × U(⊃ Y1 × U). On Y × U the nonlinear mapping e is not necessarily
well defined. Consider, for example, the case where e is a function of y only and
e(y) = −∆y + exp(y), with Y = H1

0 (Ω) and Y1 = H1
0 (Ω) ∩ L∞(Ω).

Thus weakly singular refers to the situation in which e is Fréchet differentiable
from Y1 × U to Z∗ but the Fréchet derivative e′ is not surjective from Y1 × U to Z∗.
In order to overcome this difficulty a second space Y × U is utilized. Considered as
an operator with domain in Y ×U , the operator e′ is assumed to be closable, but it is
not necessarily defined on all of Y ×U or continuous. The derivation of the necessary
optimality conditions and the second order convergence analysis of Newton’s method
will depend on using a 2-norm framework.

Let us next consider Newton’s method for solving (P). It is well known that
this method has good convergence properties if, e.g., e′(y∗, u∗), considered as an
operator on Y1 ×U , is surjective and the Jacobian of (1.1) is uniformly monotone or,
alternatively, the Hessian of L(y, u, λ) is uniformly positive definite on the kernel of
e′(y∗, u∗). Here we only assume such properties with respect to the Y × U topology.
Utilizing the smoothing properties enjoyed by the solutions to the primal and adjoint
equations it will be shown that quadratic convergence nevertheless can be achieved
with respect to the Y1 × U norm.

It has been pointed out before that the analysis of optimal control problems
with respect to optimality conditions, sensitivity analysis, or justification of numerical
algorithms may require us to simultaneously consider (P) with respect to two spaces.
In our work e is well defined and smooth on the smaller space with the finer topology.
The second larger space is chosen such that e′(y∗, u∗) has closed range and that a
second order sufficient optimality condition holds. In the literature the necessity
of utilizing two different norms to guarantee amenable properties of the optimization
problem is referred to as 2-norm discrepancy. Differing from our contribution, previous
authors used two norms for the control space rather than for the state space. In [I]
necessary and sufficient optimality conditions for optimization problems in Banach
spaces are given. In that work the Fréchet derivative of the equality constraint is
assumed to be an operator with closed range from the smaller space with the finer
topology (denoted by Y1 × U in our work) to Z. In the applications that motivate
our research such a property does not hold. To obtain the optimality system we
require only that the linearization of e, defined as an operator with domain in Y ×
U , is closable. In [M] as well optimization problems with equality and inequality
constraints are treated. Transformed to our setup, the assumptions in [M] require
the Fréchet derivative to be surjective from Y1 × U to Z, which is not true for our
applications. In applying 2-norm techniques to optimal control problems the authors
of [CTU, GT1, GT2, M] utilize two norms for the control space, typically L∞ and
Lr, r < ∞, whereas only one norm is used for the state space. We, on the contrary,
use two norms for the variables of the state space and only one for the control space,
which is typically L2. This difference is motivated by the different applications that
we have in mind. If the partial differential equations are sufficiently regularizing with
respect to the state variable, then it is advantageous to avoid the use of L∞-norms for
the control space since neither the cost functional nor the equality constraint which
characterizes the partial differential equation provides radial unboundedness of the
optimization problem with respect to the control variable in the L∞-norm. In [CTU,
GT1, GT2] existence of solutions to the optimal control problem studied there is
guaranteed by imposing L∞-bounds on the set of admissible controls. Such constraints
are not needed to guarantee existence of optimal controls in our approach. The above
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references are mainly focused on optimal control in abstract spaces with applications
to partial differential equations in mind. The use of 2-norm techniques can also be
necessary for the analysis of optimal control of ordinary differential equations. We
refer to, e.g., [AM] in this respect.

The paper is organized in the following manner. In section 2 we present a frame-
work that allows us to obtain an optimality system without a surjectivity assumption
for e′(y∗, u∗) : Y1 × U → Z∗. Examples are given to a control-in-the-coefficient prob-
lem that arises from parameter estimation of the convection coefficient and to elliptic
boundary value problems with nonlinearities of exponential type. Section 3 is dedi-
cated to the analysis of Newton’s method for weakly singular problems. It will allow
us to retain the second order convergence rate despite the fact that e′(y∗, u∗) is not
closed on Y1 × U and that a second order optimality condition is satisfied only for
a topology that is coarser than that for which e is well defined. Applications of the
general results are given to nonlinear elliptic equations. In the appendix we pro-
vide L∞(Ω) a priori estimates for elliptic boundary value problems with exponential
nonlinearities.

2. The optimality system. We consider the equality constrained optimization
problem

(P)
minJ(y, u)

e(y, u) = 0,

with J : Y × U → R, e : Y1 × U → Z∗, where Y,U, Z are Hilbert spaces and Y1

is a Banach space that is densely embedded in Y . Further, Z∗ denotes the dual
of Z. Let (y∗, u∗) denote a local solution to (P) and let V (y∗) × V (u∗) ⊂ Y1 × U
denote a neighborhood such that J(y∗, u∗) ≤ J(y, u) for all (y, u) ∈ V (y∗) × V (u∗)
satisfying e(y, u) = 0. It is assumed throughout that J is Fréchet differentiable in
a neighborhood in the Y × U topology of (y∗, u∗) and that the Fréchet derivative
is locally Lipschitz continuous. Further, e is assumed to be Fréchet differentiable at
(y∗, u∗) with Fréchet derivative

e′(y∗, u∗)(δy, δu) = ey(y
∗, u∗)δy + eu(y∗, u∗)δu.

Thus ey(y
∗, u∗) ∈ L(Y1, Z

∗). Since Y1 is dense in Y , one may consider ey(y
∗, u∗) as a

densely defined linear operator with domain in Y . To distinguish this operator from
ey(y

∗, u∗) defined on Y we shall denote it in this section by

G : D(G) ⊂ Y → Z∗

and we assume that
(H1) G∗ : D(G∗) ⊂ Z → Y ∗ is densely defined.

Then necessarily G is closable [K, p. 168]. Its closure will be denoted by the same
symbol. In addition the following assumptions will be required:

(H2) Jy(y
∗, u∗) ∈ Rg G∗.

Condition (H2) is a regularity assumption. It implies the existence of a solution
λ∗ ∈ D(G∗) to the adjoint equation

G∗λ+ Jy(y
∗, u∗) = 0.

We shall refer to λ∗ as the Lagrange multiplier.
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(H3) There exists a dense linear subspace D ⊂ U with the following property:
For every v ∈ D there exists tv > 0 such that for all t ∈ [0, tv] there exists
y(t) ∈ Y1 satisfying e(y(t), u∗ + tv) = 0 and

lim
t→0+

1

t
|y(t)− y∗|2Y = 0.(2.1)

(H4) For every v ∈ D and y(·) as in (H3), e is directionally differentiable at every
element of {(y(t), u∗ + tv) : t ∈ [0, tv]} in directions (y, u) ∈ Y1 × U and

lim
t→0+

1

t

(∫ 1

0

[e′(y∗ + s(y(t)− y∗), u∗ + stv)− e′(y∗, u∗)](y(t)− y∗, tv)ds, λ∗
)
Z∗,Z

= 0.

Note that (H4) is satisfied if (H3) holds with Y replaced by Y1 and if e : Y1 → Z∗ is
Fréchet differentiable with locally Lipschitzian derivative.

Our assumptions do not require surjectivity of e′(y∗, u∗) : Y1 × U �→ Z∗ (which
is a typical assumption for the derivation of an optimality system [MZ]) nor that
e′(y∗, u∗) is well defined on all of Y × U .

We next give several examples which demonstrate the applicability of hypotheses
(H1)–(H4) and the necessity to allow for two spaces Y1 and Y with Y1 � Y . The
typical situation that we have in mind is Y1 = Y ∩ L∞(Ω) with Y a Hilbertian
function space over Ω.

Example 2.1. Consider first the finite dimensional equality constrained optimiza-
tion problem 


min y21 + u2,
y1 − y22 = u,
y32 = u2,

(2.2)

for which (y∗, u∗) = (0, 0, 0) is the solution. Here Y = R
2, U = R

1, Z = R
1, and

e(y, u) =

(
y1 − y22 − u
y32 − u2

)
.

Note that e′(y, u) = (
1 −2y2 −1
0 3y22 −2u

) and that e′(y∗, u∗) is not surjective. Moreover,

G∗ = (
1 0
0 0

) and the adjoint equation

G∗
(
λ1

λ2

)
=

(
0
0

)

has (infinitely many) solutions. Thus (H1), (H2) are satisfied. As for (H3) note that

(
y1(u)
y2(u)

) = (
u+ u

4
3

u
2
3

) defines a solution branch to e(y, u) = 0 for which (H3) is satisfied.

It is simple to verify (H4). Hence (2.2) is an example for an optimization where all
hypotheses (H1)–(H4) are satisfied (and Theorem 2.3 will be applicable) but e′(y∗, u∗)
is not surjective.

Example 2.2. We consider the optimal control problems with distributed control

min
1

2
|y − z|2L2(Ω) +

β

2
|u|2L2(Ω)(2.3)
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subject to 

−∆y + exp y = u in Ω,
∂y
∂n = 0 on Γ,
y = 0 on ∂Ω \ Γ,

(2.4)

where β > 0, z ∈ L2(Ω), Ω is a bounded domain in Rn, n ≤ 3, with smooth bound-
ary ∂Ω and Γ is a nonempty connected subset of ∂Ω. In Example 2.3 below we
shall reconsider this problem with distributed control replaced by Neumann bound-
ary control. To consider this problem in the general setting the control variable u is
chosen in U = L2(Γ). We set Y = Z = H1

Γ(Ω) = {y ∈ H1(Ω) : y = 0 on ∂Ω \ Γ},
Y1 = H1

Γ(Ω) ∩ L∞(Ω), and Z∗ = (H1
Γ(Ω))∗. Moreover, let

J(y, u) =
1

2
|y − z|2L2(Ω) +

β

2
|u|2L2(Ω)

and let e : Y1 × U → Z∗ be defined by assigning to (y, u) ∈ Y1 × U the functional on
Z given by

v → (∇y,∇v) + (exp y, v)− (u, v).

The following lemma is essential. Its proof will be given in the appendix.
Lemma 2.1. For every u ∈ L2(Ω) the variational problem

(∇y,∇v) + (exp y, v) = (u, v) for v ∈ H1
Γ(Ω)

has a unique solution y = y(u) ∈ H1
Γ(Ω) and there exists a constant C such that

|y|H1
Γ
∩L∞ ≤ C(|u|L2(Ω) + C) for all u ∈ L2(Ω)(2.5)

and

|y(u1)− y(u2)|H1
Γ
∩L∞ ≤ C|u1 − u2|L2(Ω) for all ui ∈ L2(Ω), i = 1, 2.(2.6)

The concept of a solution of (2.4) is the variational one of Lemma 2.1. The
control component of any minimizing sequences {(yn, un)} for J is clearly bounded.
Together with Lemma 2.1, it is therefore simple to argue the existence of a solution
(y∗, u∗) ∈ Y1 of (2.3), (2.4). For (y, u) ∈ Y1 ×L2(Ω) let ey(y, u)δy denote the Fréchet
derivative of e with respect to y in direction δy ∈ H1

Γ(Ω). It is given by the functional
v → (∇δy,∇v) + ((exp y)δy, v). Clearly ey(y, u) : Y → Z∗ is symmetric and (H1),
(H2) are satisfied. Assumption (H3) is a direct consequence of Lemma 2.1. To verify
(H4) note that e′(y, u)(δy, δu) is the functional defined by

v → (∇δy,∇v) + (exp(y)δy, v)− (δu, v)Ω, v ∈ H1
Γ(Ω).

If (y, u) ∈ Y1 × U , then e′(y, u) is well defined on Y × U . Assumption (H4) requires
us to consider

lim
t→0+

1

t

∫ 1

0

∫
Ω

(exp(y∗ + s(y(t)− y∗))− exp y∗)(y(t)− y∗)λ∗dxds,(2.7)

where y(t) is the solution of (2.4) with u = u∗ + tv, v ∈ U . Note that λ∗ ∈ L∞, and
that {|y(t)|L∞ : t ∈ [0, 1]} is bounded by Lemma 2.1. Moreover, |y(t)−y∗|Y1 ≤ Ct|v|L2
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and thus the pointwise local Lipschitz property of the exponential function implies that
the limit in (2.7) is zero. Assumption (H4) now easily follows.

The considerations of this example remain correct for cost functionals J that
are much more general than the one in (2.3). In fact, it suffices that J is weakly
lower semicontinuous from Y ×U to R and radially unbounded with respect to u, i.e.,
limn→∞ |un|L2 = ∞ implies that lim supn→∞ infy∈Y J(y, un) = ∞. This guarantees
existence of a solution (y∗, u∗). The general regularity assumptions and (H1)–(H4) are
satisfied if J : Y × U → R is continuous and Fréchet differentiable in a neighborhood
of (x∗, u∗) with locally Lipschitz continuous derivative.

Example 2.3. Consider the nonlinear optimal boundary control problem

min
1

2
|y − z|2L2(Ω) +

β

2
|u|2Hs(Γ)(2.8)

subject to 

−∆y + exp y = f in Ω,
∂y
∂n = u on Γ,
y = 0 on ∂Ω \ Γ,

(2.9)

where β > 0, z ∈ L2(Ω), f ∈ L∞ are fixed, Ω is a bounded domain in Rn, with smooth
boundary ∂Ω, and Γ is a nonempty connected subset of ∂Ω. Further assume that s
is a real number strictly larger than n−3

2 if n ≥ 3 and that s = 0 if n < 3. Unlike
in Example 2.2 the dimension n of Ω is now allowed to be arbitrary. This example
can be treated within the general framework of this paper by setting Y, Y1, Z

∗ as in
Example 2.2 and

J(y, u) =
1

2
|y − z|2L2(Ω) +

β

2
|u|2Hs(Γ).

The control space U is chosen to be Hs(Γ). To verify (H1)–(H4) one proceeds as
in Example 2.2 by utilizing the following lemma, the proof of which is given in the
appendix.

Lemma 2.2. The variational problem

(∇y,∇v) + (exp y, v) = (f, v) + (u, v)Γ, v ∈ H1
Γ(Ω),

has a unique solution y = y(u) ∈ H1
Γ(Ω) ∩ L∞(Ω) for every u ∈ Hs(Γ), and there

exists a constant C such that

|y|H1
Γ
(Ω)∩L∞ ≤ C(|u|Hs(Γ) + C) for all u ∈ Hs(Γ).(2.10)

Moreover, C can be chosen such that

|y(u1)− y(u2)|H1
Γ
(Ω)∩L∞ ≤ C|u1 − u2|Hs for all ui ∈ Hs(Γ), i = 1, 2.(2.11)

Example 2.4. We consider the least squares problem for the estimation of the
convection coefficient u in

−∆y + u · ∇y = f in Ω,

y = 0 on ∂Ω, div u = 0,

from data z ∈ L2(Ω). Here Ω is a bounded domain in Rn with smooth boundary
∂Ω and f ∈ L2(Ω). To cast this problem in abstract form we choose the space



902 KAZUFUMI ITO AND KARL KUNISCH

U = {u ∈ L2
n(Ω) : div u = 0} and define e: (H1

0 (Ω) ∩ L∞(Ω)) × U → H1
0 (Ω)∗ by

assigning to each (y, u) ∈ (H1
0 (Ω) ∩ L∞(Ω))× U the functional on H1

0 (Ω) given by

v → (∇y,∇v) + (u y,∇v)− (f, v) for v ∈ H1
0 (Ω).

Note that e(y, u) is not well defined for (y, u) ∈ H1
0 (Ω)×U since u ·∇y ∈ L1(Ω) only.

The regularized least squares problem is given by{
min 1

2 |y − z|2L2 + β
2 |u|2L2

n

subject to e(y, u) = 0, div u = 0,
(2.12)

where e(y, u) = −∆y + u∇y − f . This problem was considered with a direct analysis
in [IK] and we shall now argue that it is a special case of problem (P) satisfying (H1)–
(H4). For this purpose we set Y = H1

0 (Ω), Y1 = H1
0 (Ω) ∩ L∞(Ω), and Z = H1

0 (Ω).
Note that (u · ∇y, y) = (∇ · (uy), y) = 0 for (y, u) ∈ Y1 × U . Using this fact and
techniques similar to those of the proof of Lemma 2.1 (compare [T, section 2.3] and
[IK]) it can be shown that for every u ∈ U there exists a unique solution y = y(u) ∈ Y1

and for every bounded subset B of U there exists a constant k(B) such that

|y(u)|Y1 ≤ k(B)|u|L2
n

for all u ∈ B.(2.13)

Extracting a subsequence of a minimizing sequence to (2.12), it is simple to argue the
existence of a solution (y∗, u∗) ∈ Y1 × U of (2.12). Clearly e is Fréchet differentiable
at (y∗, u∗) and e′(y∗, u∗) ∈ Y ∗ is the functional given by

(e′(y∗, u∗)(δy, δu), v)Y ∗,Y = (∇δy,∇v) + (u∗ · ∇δy, v) + (δu · ∇y∗, v).

Note that G = ey(y
∗, u∗) is well defined on Y1 and G ∈ L(Y1, Z

∗). But as a conse-
quence of the quadratic term u∗ · ∇δy, which is only in L1(Ω), G is not defined on
all of Y = H1

0 (Ω). As an operator from Y1 to Z∗ the operator G is not surjective.
Considered as an operator with domain in Y its adjoint is given by

G∗w = −∆w −∇ · (u∗w).

The domain of G∗ contains Y1 and hence G∗ is densely defined. Moreover, its range
contains L2(Ω) and thus (H1) as well as (H2) are satisfied. Let U(u∗) ⊂ U be a
bounded neighborhood of u∗. Since for every u ∈ B

(∇(y(u)− y∗),∇v)− (u(y(u)− y∗),∇v) = ((u− u∗)y∗,∇v) for all v ∈ H1
0 (Ω),

it follows that there exists a constant k > 0 such that

|y(u)− y∗|H1 ≤ k|u− u∗|L2
n

for all u ∈ U(u∗),(2.14)

and (H3) follows. The validity of (H4) is a consequence of (2.14) and the fact that λ∗

is the unique variational solution in H1
0 (Ω) of

−∆λ∗ −∇ · (u∗λ∗) = −(y∗ − z)

and hence an element of L∞(Ω).
Remark 2.1. Comparing Examples 2.2 and 2.3 with Example 2.4 we observe

that the linearization e′(y, u), with (y, u) ∈ Y1 × U , is well defined on Y × U for
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Examples 2.2 and 2.3 but it is only defined with domain strictly contained in Y × U
for Example 2.4. For none of these examples is e defined on all of Y × U .

Example 2.5. Here we consider the nonlinear optimal control problem with non-
linearity of blowup type,


min 1

2 |∇(y − z)|2
L2

2(Ω)
+ β

2 |u|2L2(Γ) subject to

−∆y − exp y = f in Ω,
∂y
∂n = u on Γ,
y = 0 on ∂Ω \ Γ,

(2.15)

where β > 0, z ∈ H1
Γ(Ω), f ∈ L2(Ω), Ω is a smooth bounded domain in R2 and Γ ⊂ ∂Ω

is a connected strict subset of ∂Ω. Since Ω is assumed to be a two-dimensional domain
we have the following property of the exponential function: For every p ∈ [1,∞),

{| exp y|Lp : y ∈ B} is bounded,(2.16)

provided that B is a bounded subset of H1
0 (Ω), [GT, p. 155]. The variational form of

the boundary value problem in (2.15) is given by

(∇y,∇v)− (exp y, v) = (f, v) + (u, v)Γ for all v ∈ H1
Γ(Ω),(2.17)

where H1
Γ(Ω) is defined in Example 2.2. To argue existence of a solution of (2.15)

let {(yn, un)} be a minimizing sequence with weak limit (y∗, u∗) ∈ H1
0 (Ω) × L2(Ω).

Due to (2.16) and the radial unboundedness of the cost functional with respect to the
H1

Γ(Ω)×L2(Γ)-norm the set {| exp yn|Lp : n ∈ N} is bounded for every p ∈ [1,∞) and
{| exp yn|W 1,p : n ∈ N} is bounded for every p ∈ [1, 2). Since W 1,p(Ω) is compactly
embedded in L2(Ω) for every p ∈ (1, 2) it follows that for a subsequence of {yn},
denoted by the same symbol, lim exp(yn) = exp y∗ in L2(Ω). It is now simple to
argue that (y∗, u∗) is a solution of (2.15). Let us discuss then the validity of (H1)–
(H4) with Y = Y1 = H1

Γ(Ω), Z∗ = (H1
Γ(Ω))∗, with the obvious choice for J , and

with e : Y × U → Z∗ the mapping assigning to (y, u) ∈ Y × U the functional
v → (∇y,∇v)− (exp y, v)− (f, v)− (u, v)Γ for v ∈ H1

Γ(Ω). From (2.16) it follows that
e is well defined and its Fréchet derivative at (y, u) in direction (δy, δu) is characterized
by

(e′(y, u)(δy, δu), v) = (∇δy,∇v)− (exp(y)δy, v)− (δu, v)Γ for v ∈ H1
Γ(Ω).

The operator G = ey(y
∗, u∗) can be expressed as

G(δy) = −∆δy − exp(y∗)δy.

Note that G ∈ L(Y,Z) and G is self-adjoint with compact resolvent. In particular,
(H1) is satisfied. The spectrum of G consists of eigenvalues only. It will be assumed
that

0 is not an eigenvalue of G.(2.18)

Due to the regularity assumption for z (note that it would suffice to have ∆z ∈ (H1
Γ)∗),

(2.18) implies that (H2) holds. To argue the validity of (H3) and (H4) one can rely
on the implicit function theorem. Let B be a bounded open neighborhood of y∗ in
H1

Γ(Ω). Using (2.16) one argues the existence of a constant κ > 0 such that

| exp y − exp ȳ|L4 ≤ κ|y − ȳ|H1 for all y, ȳ ∈ B.
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It follows that e is continuous on B×U , and its partial derivative ey(y, u) is Lipschitz
continuous with respect to (y, u) ∈ B×U . The implicit function theorem implies the
existence of a neighborhood U(u∗) of u∗ such that for every u ∈ U(u∗) there exists
a solution y(u∗) of (2.17) depending continuously on u. Since e(y, u) is Lipschitz
continuous with respect to u it follows, moreover, that there exists L > 0 such that

|y(u)− y∗|H1 ≤ L|u− u∗|L2(Γ) for all u ∈ U(u∗).

Assumptions (H3) and (H4) are a direct consequence of this estimate.
The methodology utilized to consider this example can also be applied to Exam-

ples 2.2 and 2.3 provided that Ω is restricted to be two-dimensional. This is essential
for (2.16) to hold and we are not aware of generalizations of (2.16) to dimensions
higher than 2. For Example 2.5 it is essential for the cost functional to be radially
unbounded with respect to the H1

Γ(Ω)-norm for the y-component to guarantee that
minimizing sequences are bounded. For Examples 2.2 and 2.3 the a priori bound on
the y-component of minimizing sequences can be obtained through the state equation.

The following result provides a general technique to obtain a system of first order
optimality conditions for examples of the type discussed above.

Theorem 2.3. Let (y∗, u∗) be a local solution of (P) and assume that (H1)–(H4)
hold. Then 


e(y∗, u∗) = 0 in Z∗ (primal equation),
G∗λ∗ + Jy(y

∗, u∗) = 0 in Y ∗ (adjoint equation),
C∗λ∗ + Ju(y∗, u∗) = 0 in U∗ (optimality),

(2.19)

where C = eu(y∗, u∗).
The system of equations (2.19) is referred to as the optimality system.
Proof. Let v ∈ D, choose tv according to (H3), and assume that t ∈ (0, tv]. Due

to (H3) and (H4)

0 = e(y(t), u∗ + tv)− e(y∗, u∗) = G(y(t)− y∗) + tCv

+

∫ 1

0

[e′(y∗ + s(y(t)− y∗), u∗ + stv)− e′(y∗, u∗)](y(t)− y∗, tv)ds.
(2.20)

Assumption (H2) implies the existence of a solution λ∗ to the adjoint equation. Ob-
serve that by (2.20) and the fact that u∗ is a local solution to (P)

0 ≤ J(y(t), u∗ + tv)− J(y∗, u∗) = J ′(y∗, u∗)(y(t)− y∗, tv)

+

∫ 1

0

[J ′(y∗ + s(y(t)− y∗), u∗ + stv)− J ′(y∗, u∗)] (y(t)− y∗, tv)ds
+(G∗λ∗, y(t)− y∗)Y ∗,Y + t(Cv, λ∗)Z∗,Z

+

∫ 1

0

([e′(y∗ + s(y(t)− y∗), u∗ + stv)− e′(y∗, u∗)] (y(t)− y∗, tv), λ∗)Z∗,Zds.

By the second equation in (2.19), local Lipschitz continuous differentiability of J , (H3),
(H4), and the fact that J ′(y∗, u∗)(y(t)− y∗, tv) = Jy(y

∗, u∗)(y(t)− y∗) + tJu(y∗, u∗)v
we obtain

0 ≤ lim
t→0+

1

t
J(y(t), u∗ + tv)− J(y∗, u∗) = (Ju(y∗, u∗)(u∗) + C∗λ∗, v)U∗,U .
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Since v is arbitrary in D it follows that

Ju(y∗, u∗)(u∗) + C∗λ∗ = 0 in U∗.

This ends the proof.
Consider the optimization problem which contains additional control constraints

which are not necessarily described by equalities:

(P′)
minJ(y, u),

e(y, u) = 0,

u ∈ K,
where K is a closed convex subset of U . The following corollary to the proof of
Theorem 2.3 can easily be obtained.

Corollary 2.4. Let (y∗, u∗) be a solution to (P′). Then under the assumptions
of Theorem 2.3


e(y∗, u∗) = 0 in Z∗,
G∗λ∗ + Jy(y

∗, u∗) = 0 in Y ∗,(
C∗λ∗ + Ju(y∗, u∗), u− u∗

)
U∗,U

≥ 0 for all u ∈ K.
(2.21)

3. Newton’s algorithm for weakly singular problems. In this section we
describe and analyze Newton’s method as applied to the weakly singular problem (P).
It will be convenient to start with the description of a Newton step applied to the
reduced form of (P). Thus we consider

min Ĵ(u) = J(y(u), u),

where y(u) denotes a solution to e(y, u) = 0. In the following formal computation we
use y to denote y(u). The computation can be made rigorous under the assumptions
that will be specified below. These assumptions will be imposed in a neighborhood
V (u∗) ⊂ U of u∗. The first derivative of Ĵ(u) is given by

Ĵu = eu(y, u)∗λ+ Ju(y, u),(3.1)

where u ∈ V (u∗) and λ = λ(u) satisfies

ey(y, u)∗λ = −Jy(y, u).(3.2)

Here and below ey(y, u) is considered as an operator from its domain D(ey(y, u)) in
Y to Z∗ and ey(y, u)∗ denotes its conjugate. To justify (3.2) we compute

〈Ĵu(u), δu〉U = 〈Jy(y, u), δy〉Y + 〈Ju, δu〉U ,
where eyδy + euδu = 0 and thus

〈Ĵu(u), δu〉U = −〈(ey(y, u)∗)−1Jy(y, u), eu(y, u)δu〉Y + 〈Ju(y, u), δu〉U
= 〈eu(y, u)∗λ+ Ju(y, u), δu〉U ,

as desired. As is common in optimal control problems we expressed the first derivative
of the reduced cost functional Ĵ by means of the adjoint equation (3.2). The primal
variable y(u) and the adjoint variable λ(u) satisfy

Ly(y(u), u, λ(u)) = 0 for u ∈ V (u∗).(3.3)
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Using this equation a short computation shows that the second derivative of Ĵ(u) can
be expressed as

Ĵuu = W (y, u)∗L′′(y, u, λ)W (y, u),

where

W (y, u) =

( −ey(y, u)−1 eu(y, u)
I

)
.

Setting δy = −ey(y, u)−1 eu(y, u)δu, the Newton equation

Ĵuu(u)δu = −Ĵu(u)

can be expressed as
 W (y, u)∗L′′(y, u, λ)

(
δy
δu

)
= W (y, u)∗

(
0

−(eu(y, u)∗λ+ Ju(y, u))

)
,

ey(y, u)δy + eu(y, u)δu = 0

or as 

L′′(y, u, λ)

(
δy
δu

)
−
(

0
(eu(y, u)∗λ+ Ju(y, u))

)
∈ N (W (y, u)∗),

ey(y, u)δy + eu(y, u)δu = 0,

where N (W (y, u)∗) denotes the nullspace of W (y, u)∗. By the definition of W (y, u)
we have

R(W (y, u)) = N (e′(y, u)) = N ((ey(y, u), eu(y, u))).

Moreover, if e′(y, u) has closed range, then

N (W (y, u)∗) = R(W (y, u))⊥ = N (e′(y, u))⊥ = R(e′(y, u)∗).

As a consequence the Newton update can be expressed as
 L′′(y, u, λ) e′(y, u)∗

e′(y, u) 0




 δy
δu
δλ


 = −


 0
eu(y, u)∗λ+ Ju(y, u)

0


 ,(3.4)

where the equality is understood in Y ∗×U∗×Z∗. The question arises in which space
to solve (3.4) for (δy, δu, δλ). Since it is not assumed that e′ is surjective from Y1×U
to Z∗ we aim for solutions in Y ×U×Z. Therefore the updates (y+δy, u+δu, λ+δλ)
shall not necessarily remain in Y1 ×U ×D(ey(y, u)∗). However, our assumptions will
guarantee that the feasibility steps consisting in solving the primal equation

e(y, uc) = 0(3.5)

for yc and the adjoint equation

ey(yc, uc)
∗λ+ Jy(yc, uc) = 0(3.6)

for the dual variable λc are such that (yc, uc) ∈ Y1 × Z1 holds. Here uc = u+ δu and
Z1 ⊂ D(ey(y

∗, u∗)) denotes a Banach space densely embedded into Z, with λ∗ ∈ Z1,
and as above ey(y

∗, u∗)∗ denotes the conjugate of ey(y
∗, u∗):D(ey(y

∗, u∗)) ⊂ Y → Z∗.
Such a Banach space always exists. For instance, one can take Z1 = D(ey(y

∗, u∗))
endowed with the graph norm. Since Y1 and Z1 are contained in Y and Z the feasibility
step can also be considered as a smoothing step.

We are now prepared to specify the Newton iteration for weakly singular problems.
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Algorithm.
(i) Initialization: Choose u0 ∈ V (u∗), solve

e(y, u0) = 0, ey(y, u0)
∗λ+ Jy(y0, u0) = 0 for (y0, λ0) ∈ Y1 × Z1,

and set k = 0.
(ii) Newton step: Solve for (δy, δu, δλ) ∈ Y × U × Z
 L′′(yk, uk, λk) e′(yk, uk)∗

e′(yk, uk) 0




 δy
δu
δλ


 = −


 0
eu(yk, uk)

∗λk + Jy(yk, uk)
0


 .

(iii) Update uk+1 = uk + δu.
(iv) Feasibility step: Solve for (yk+1, λk+1) ∈ Y1 × Z1:

e(y, uk+1) = 0, ey(y, uk+1)
∗λ+ Jy(yk+1, uk+1) = 0.

(v) Stop, or set k = k + 1 and goto (ii).
Remark 3.1. Let us briefly interpret the above algorithm from the point of view

of the SQP-method applied to (P). In this method both y and u are considered as
independent variables related by the equality constraint e(y, u) = 0 which is realized
by a Lagrangian term. The SQP-method is essentially Newton’s method applied to
(2.16) to iteratively solve for (y∗, u∗, λ∗). This results in determining updates from
the linear system

L′′(yk, uk, λk) e′(yk, uk)∗

e′(yk, uk) 0




δyδu
δλ


=−


 ey(yk, uk)∗λk + Jy(yk, uk)
eu(yk, uk)

∗λk + Ju(yk, uk)
e(yk, uk)


 .(3.7)

If the values for yk and λk are obtained by means of a feasibility step as in (iv)
of the algorithm, then the first and the last components on the right-hand side of
(3.7) are 0 and the linear system (3.7) coincides with that of the algorithm. Let
us point out that under the conditions of this paper the SQP-iteration is not well
defined since the matrix appearing on the left-hand side of (3.7) is not well defined
at (yk+1, uk+1, λk+1) = (yk, uk, λk) + (δy, δu, δλ). If the feasibility step is also used in
the SQP-method, then Newton’s method and the SQP-method coincide.

We next specify additional assumptions which justify the above computations and
under which well-posedness and convergence of the algorithm can be argued. These
assumptions are imposed on J and e in a convex bounded neighborhood of (y∗, u∗, λ∗)
which for convenience we again denote by the symbol

V (y∗)× V (u∗)× V (λ∗) ⊂ Y1 × U × Z1.

(H5) (a) For every u ∈ V (u∗) there exists a solution y = y(u) ∈ V (y∗) of e(y, u) =
0. Moreover, there exists ( > 0 such that |y(u)− y∗|Y1 ≤ (|u− u∗|U .
(b) For every (y, u) ∈ V (y∗) × V (u∗) there exists a solution λ = λ(y, u) ∈
V (λ∗) of e∗y(y, u)λ+Jy(y, u) = 0 and |λ(y, u)−λ∗|Z1 ≤ (|(y, u)−(y∗, u∗)|Y1×U .

(H6) J is twice continuously Fréchet differentiable on Y ×U with the second deriva-
tive locally Lipschitz continuous.

(H7) The operator e : V (y∗)×V (u∗) ⊂ Y1×U → Z∗ is Fréchet differentiable with
Lipschitz continuous Fréchet derivative e′(y, u) ∈ L(Y1 × U,Z∗). Moreover,
for each (y, u) ∈ V (y∗) × V (u∗) the operator e′(y, u) with domain in Y × U
has closed range.
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(H8) For every λ ∈ V (λ∗) the mapping (y, u) → (λ, e(y, u))Z,Z∗ from V (y∗) ×
V (u∗) → R is twice Fréchet differentiable and the mapping (y, u, λ) →
(λ, e′′(y, u)(·, ·))Z,Z∗ from V (y∗) × V (u∗) × V (λ∗) ⊂ Y1 × U × Z1 → L(Y1 ×
U, Y ∗×U∗) is Lipschitz continuous. Moreover, for each (y, u, λ) ∈ Y1×U×Z1,
the bilinear form (λ, e′′(y, u)(·, ·))Z,Z∗ can be extended as a continuous bilin-
ear form on (Y × U)2.

Condition (H5) requires well-posedness of the primal and the adjoint equation in
Y1, respectively, Z1. The adjoint equations arise from linearization of e at elements
of Y1 × U . Condition (H6) requires smoothness of J . Finally, in (H7) and (H8)
the necessary regularity requirements for e as mapping on Y1 × U and in Y × U
are specified. From (H5) it follows that the initialization as well as the feasibility
step are well defined provided that uk+1 ∈ V (u∗). As a consequence the derivatives
of J and e that are required for defining the Newton step are taken at elements
(yk, uk, λk) ∈ Y1×U×Z1. In Theorem 3.2 below sufficient conditions are given which
imply that (yk, uk, λk) ∈ V (y∗) × V (u∗) × V (λ∗). Conditions (H6)–(H8) guarantee
that the operator appearing on the left-hand side of the Newton step is well defined
as an operator on Y1 × U × Z1 and in Y × U × Z with range in Y ∗ × U∗ × Z∗.

We proceed by addressing the solvability of the linear system arising in the Newton
step for (δy, δu, δλ) ∈ Y ×U×Z. Let J denote the canonical isomorphism from Y ×U
to Y ∗ × U∗ and let (y, u, λ) ∈ V (y∗) × V (u∗) × V (λ∗). Then due to the assumption
that e′(y, u), considered as an operator with domain in Y ×U , has closed range in Z∗

we have

Y ∗ × U∗ = Rg e′(y, u)∗ ⊕ J ker e′(y, u);

see [Y, p. 205]. Let P :Y ∗×U∗ → J ker e′(y, u) denote the Hilbert space projection.
Then solving 

 L′′(y, u) e′(y, u)∗

e′(y, u) 0




 δy
δu
δλ


 = −

(
F (y, u, λ)

0

)
,

where

F (y, u, λ) =

(
0

eu(y, u)∗λ+ Ju(y, u)

)
,

for (δy, δu, δλ) ∈ Y × U × Z is equivalent to solving

PL′′
(
δy
δu

)
+ (I − P )L′′

(
δy
δu

)
+ (e′)∗δλ = −PF − (I − P )F(3.8)

for (
δy
δu

) ∈ ker e′(y, u) ⊂ Y × U and δλ ∈ Z. In (3.8) all operators are evaluated at

(y, u, λ) ∈ V (y∗)× V (u∗)× V (λ∗). Let us assume that

(H9) PL′′(y, u, λ)(ker e′(y, u)) ⊃ J ker e′(y, u)

for all (y, u, λ) ∈ V (y∗)× V (u∗)× V (λ∗). Note that (H9) holds, for example, if there
exist κ > 0 such that

〈L′′(y, u)v, v〉Y ∗×U∗,Y×U ≥ κ|v|2Y×U for all v ∈ ker e′(y, u)
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for all (y, u, λ) ∈ V (y∗)× V (u∗)× V (λ∗). With (H9) holding one solves

PL′′(y, u)

(
δy
δu

)
= −PF (y, u, λ)(3.9)

for (
δy
δu

) ∈ ker e′(y, u), and with (
δy
δu

) thus determined, δλ is chosen to satisfy

e′(y, u)∗δλ = (P − I)
(
F (y, u, λ) + L′′(y, u)

(
δy
δu

))
.(3.10)

We summarize these steps in the following proposition.
Proposition 3.1. If (H6)–(H9) hold, then the Newton step has a solution

(δy, δu, δλ) ∈ Y × U × Z, whenever (yk, uk, λk) ∈ V (y∗)× V (u∗)× V (λ∗).
With (H5)–(H9) holding, the algorithm is well defined provided that the iterates

{uk} remain in V (u∗). The following theorem will guarantee this property (in a
possibly smaller neighborhood) and establishes the convergence rate of the algorithm.
For x = (y, u, λ) ∈ V (y∗)× V (u∗)× V (λ∗) let

A(x) : D(A(x)) ⊂ Y × U × Z → Y ∗ × U∗ × Z∗

denote the operator

A(x) =

(
L′′(x) e′(y, u)∗

e′(y, u) 0

)
.

We shall require the following assumption:

(H10)




There exists a neighborhood V (x∗) of radius ρ > 0 of x∗ = (y∗, u∗, λ∗)
in V (y∗)× V (u∗)× V (λ∗) ⊂ Y1 × U×Z1 and κ > 0 such that for every
x ∈ V (x∗) and δw ∈ Y ∗ × U∗ × Z∗

A(x)δx = δw

admits a unique solution δx satisfying

|δx|Y×U×Z ≤ κ|δw|Y ∗×U∗×Z∗

Remark 3.2. Let us give sufficient conditions for (H10) to hold:

(H11)

{
L′′(x∗) ∈ L(Y × U, Y ∗ × U∗) and there exists κ1 > 0 such that
(L′′(x∗)v, v)Y ∗×U∗,Y×U ≥ κ1|v|2Y×U for all v ∈ ker e′(y∗, u∗),

(H12) e′(y∗, u∗) ∈ L(Y × U,Z∗) is surjective.

Replacing the term |x̄|2Y×U in (H11) by |x̄|2Y1×U would result in a classical second
order sufficient optimality condition; see [MZ], for example. Despite the fact that
positivity of L′′(x∗) (or more generally A as in (H10)) is demanded only with respect
to the Y × U (respectively, Y × U × Z) norm, we nevertheless obtain convergence
of the algorithm in Y1 × U × Z1 due to the feasibility step (iv) and the smoothing
properties of the partial differential equation. With (H11) and (H12) holding, A(x∗)
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allows a continuous inverse from Y ∗ × U∗ × Z∗ to Y × U × Z. If in addition

(H13)




for every (y, u) ∈ V (y∗)× V (u∗) the operator e′(y, u) can be extended
as continuous linear operator from Y × U to Z∗, and the mapping
(y, u)→ e′(y, u) from V (y∗)× V (u∗) ⊂ Y1 × U → L(Y × U,Z∗) is
continuous, and
(y, u, λ)→ (λ, e′′(y, u)(·, ·)) from V (y∗)× V (u∗)× V (λ∗) ⊂ Y1 × U × Z1

→ L(Y × U, Y ∗ × U∗) is continuous,

then, together with (H6), x→ A(x) from V (y∗)×V (u∗)×V (λ∗) to L(Y ×U×Z, Y ∗×
U∗ × Z∗) is continuous and (H10) holds.

Theorem 3.2. If (H5)–(H8) and (H10) hold and |u0−u∗|U is sufficiently small,
then the iterates of the algorithm are well defined and they satisfy

|(yk+1, uk+1, λk+1)− (y∗, u∗, λ∗)|Y1×U×Z1
≤ K|uk − u∗|2U(3.11)

for a constant K independent of k.
Proof. We argued above that the algorithm is well defined. To prove conver-

gence let us denote by x∗ the triple (y∗, u∗, λ∗), similarly δx = (δy, δu, δλ) and
xk = (yk, uk, λk). The Newton step of the algorithm can be expressed as

A(xk)δx = −F(xk),(3.12)

with F : Y1 × U × Z1 → Y ∗ × U∗ × Z∗ defined by

F(y, u, λ) = −

 ey(y, u)∗λ+ Jy(y, u)
eu(y, u)∗λ+ Ju(y, u)

e(y, u)


 .

Note that due to the smoothing step the first and third coordinates of F are 0. Due
to (H5) there exists ( ≥ 1 such that

|yk − y∗|Y1
≤ (|uk − u∗|U if uk ∈ V (u∗)(3.13)

and

|λk−λ∗|Z1≤(|(yk, uk)−(y∗, u∗)|Y1×U if (yk, uk) ∈ V (y∗)×V (u∗).(3.14)

Here yk, λk are determined by the feasibility step (iv). For any x ∈ V (y∗)× V (u∗)×
V (λ∗) we find from (H6)–(H8) that ( in (3.13), (3.14) can also be chosen such that

(3.15)

|F(x∗)−F(x)−F ′(x)(x∗ − x)|Y ∗×U∗×Z∗

=

∫ 1

0

|(F ′(x+ s(x∗ − x))−F ′(x))(x∗ − x)|Y ∗×U∗×Z∗ds

=

∫ 1

0

|(A(x+ s(x∗ − x))−A(x))(x∗ − x)|Y ∗×U∗×Z∗ds

≤ (

2
|x∗ − x|2Y1×U×Z1

.

Let us assume that

xk ∈ V (x∗),
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with V (x∗) as in (H10). We estimate, using (3.12), (3.15), and the fact that F(x∗) = 0

|A(xk)(δx+ xk − x∗)|Y ∗×U∗×Z∗ = |F(x∗)−F(xk)−F ′(xk)(x∗ − xk)|
≤ (

2
|x∗ − xk|2Y1×U×Z1

and by (H10)

|xk + δx− x∗|Y×U×Z ≤ (κ
2
|xk − x∗|2Y1×U×Z1

.(3.16)

Consequently, we obtain for uk+1 = uk + δu

|uk+1 − u∗|U ≤ (κ
2
|xk − x∗|2Y1×U×Z1

.(3.17)

The proof will be completed by an induction argument with respect to k. Let r :=
|u0 − u∗| be chosen such that

2(5κr ≤ 1 and 2(2r < ρ.(3.18)

Then |y0 − y∗|Y1
≤ (r by (3.13), and |λ0 − λ∗|Z1

≤ √2(2r by (3.14). It follows that
|x0−x∗|Y1×U×Z1 ≤ 2(2r < ρ and hence x0 ∈ V (x∗). Estimate (3.11) for k = 0 follows
in an identical manner as the general case and hence we go directly to the induction
step. Let |xk − x∗|Y1×U×Z1

< 2(2r. From (3.17) it follows that

|uk+1 − u∗|U ≤ 2(5κr2 ≤ r < ρ.(3.19)

Consequently, (3.13) and (3.14) are applicable and imply, combined with (3.17),

|xk+1 − x∗|Y1×U×Z1 ≤ 2(2|uk+1 − u∗|U ≤ (3κ|xk − x∗|2Y1×U×Z1
.

Applying (3.13) and (3.14) for xk − x∗ we obtain

|xk+1 − x∗|Y1×U×Z1
≤ 4(7κ|uk − u∗|2U ,

which gives (3.11) with K = 4(7κ. From (3.18) it follows that |xk+1 − x∗|Y1×U×Z1
≤

2(2r < ρ. This ends the induction step.
Let us return now to some of the examples of section 2 and discuss the applicability

of conditions (H5)–(H9).
Example 2.2 revisited. Condition (H5)(a) is a direct consequence of (2.5) in

Lemma 2.1. Condition (H5)(b) requires us to consider the variational form of the
linear equation { −∆λ+ eyλ = −(y − z),

λ = 0 on ∂Ω \ Γ, ∂λ
∂n = 0 on Γ,

(3.20)

with y ∈ V (y∗) ⊂ Y1 = Z1 = H1
Γ × L∞(Ω). From [T, Chapter 2.3] it follows that

there exists a unique solution λ = λ(y) ∈ Y1 to (3.20). Moreover, if y ∈ V (y∗) and
w = λ(y)− λ(y∗), then w satisfies{ −∆w + ey

∗
w = (ey

∗ − ey)λ(y) + y∗ − y,
w = 0 on ∂Ω \ Γ, ∂w

∂n = 0 on Γ.
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It follows that there exists L > 0 such that

|λ(y)− λ(y∗)|Y1 ≤ L|y − y∗|Y1 for all y ∈ V (y∗),

and thus (H5)(b) is satisfied. It is simple to argue the validity of (H6)–(H8) as
well as of (H12) and (H13). Note that e′(y∗, u∗) is not surjective from Y1 × U to
Z∗. Condition (H9) is subsumed by the stronger assumption (H10). According to
Remark 3.2, the latter holds provided that (H11) can be verified. As for (H11), this
condition is equivalent to the requirement that

|δy|2H1
Γ

+ (λ∗, ey
∗
(δy)2) + β|δu| ≥ κ(|δy|2H1

Γ
+ |δu|2), κ > 0,(3.21)

for all (δy, δu) satisfying{ −∆δy + ey
∗
δy = δu,

δy = 0 on ∂Ω \ Γ, ∂δy
∂n = 0 on Γ,

(3.22)

where λ∗ is the solution of (3.20) with y = y∗. There exists k̄ such that

|δy|H1
Γ
≤ k̄|δu|L2 for all (δy, δu) satisfying (3.22).

Consequently, (3.21) is satisfied provided there exists κ > 0 such that

(λ∗, ey
∗
(δy)2) +

β

2k̄
|δy|2H1

Γ
≥ κ|δy|2H1

Γ
, δy ∈ H1

Γ(Ω),

which is the case, for example, if λ∗ ≥ 0 or (see (3.20)) if |y∗−z|L2 is sufficiently small
(small residue problem). If z ≥ y∗, then the weak maximum principle [T] applied to
(3.20) gives λ∗ ≥ 0.

Example 2.3 revisited. The verification of conditions (H5)–(H8) as well as of (H12)
and (H13) with Y, Y1, Z, and Z1 as in Example 2.2 is almost identical to the one for
Example 2.2 revisited. Note that the adjoint equations coincide for both examples.
The second order sufficient optimality condition (H11) has the form

|δy|2L2 + (λ∗, ey
∗
(δy)2) + β|δu|2Hs(Γ) ≥ κ(|δy|2H1

Γ
+ |δu|2HsΓ)

for some κ > 0 independent of (δy, δu) satisfying

−∆δy + ey
∗
δy = 0,

δy = 0 on ∂Ω \ Γ, ∂δy
∂n = δu on Γ,

(3.23)

and λ∗ is a solution of (3.20) with y = y∗. There exists k̄ such that

|δy|Y1 ≤ k̄|δu|Hs(Γ) for all (δy, δu) satisfying (3.23).

Thus, as for Example 2.2, sufficient conditions for (H11) are given by positivity of λ∗

or smallness of |y∗ − z|L∞ .
Example 2.4 revisited. For convenience we recall that the state equation that

appears as a constraint in (2.5) is given by{ −∆y + u · ∇y = f in Ω,
y = 0 on ∂Ω,

(3.24)
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where div u = 0. Using (2.6) and triangle inequality arguments it is simple to verify
(H5) provided that

(y∗, λ∗) ∈W 1,∞(Ω)×W 1,∞(Ω).(3.25)

Conditions (H6)–(H8) are easily verified except for the closed range property of
e′(y, u), with (y, u) ∈ V (y∗) × V (u∗) ∈ Y1 × U . To verify the latter, one uses the
Lax–Milgram lemma to first argue surjectivity of ey(y, u) for u ∈ C∞

n with div u = 0.
A density argument can then be used to assert surjectivity of ey(y, u) for every u ∈ U .
Hence the range of e′(y, u) considered as mapping with domain in Y × U equals Z∗.
In [IK] it was shown that (H10) holds, provided that

0 < β − 2|λ∗|L∞ |y∗|L∞ .(3.26)

To interpret condition (3.26), we note that if u∗ were smooth, then A(y∗, u∗, λ∗)
would be well defined on Y × U × Z and (3.26) implies (H11). However, we cannot
rely on Remark 3.2 to verify (H10) for this example, since (H13) is not satisfied. In
conclusion, Theorem 3.2 is applicable if (3.25) and (3.26) hold.

For this example numerical results based on the algorithm given above are con-
tained in [IK, Ku].

Appendix. For the proof of Lemmas 2.1 and 2.2 we require the following lemma
which we take from [T].

Lemma A.1. Let ϕ : (k1, h1) → R be a nonnegative, nonincreasing function and
suppose that there are positive constants r,K and β with β > 1 such that

ϕ(h) ≤ K(h− k)−rϕ(k)β for k1 < k < h < h1.

If k̂ := K
1
r 2

β
β−1ϕ(k1)

β−1
r satisfies k1 + k̂ < h1, then ϕ(k1 + k̂) = 0.

Proof of Lemma 2.1. Let us first argue the existence of a solution y = y(u) ∈
H1

Γ(Ω) of

(A.1) (∇y,∇v) + (ey, v)H1
Γ
(Ω)∗,H1

Γ
(Ω) = (u, v) for all v ∈ H1

Γ(Ω),

where H1
Γ(Ω) = {y ∈ H1(Ω) : y = 0 on ∂Ω \ Γ}, u ∈ L2(Γ), and (·, ·)H1

Γ
(Ω)∗,H1

Γ
(Ω)

denotes the duality pairing from H1
Γ(Ω) to its dual. The argument is based on the

theory of maximal monotone operators. Let A stand for −∆ considered as an operator
from H1

Γ(Ω) to H1
Γ(Ω)∗ and let E : D(E) ⊂ H1

Γ(Ω) → H1
Γ(Ω)∗ denote the operator

E(y) = exp(y). Clearly E is monotone and as such it has a maximal monotone
extension which we again denote by E [B, Theorem 1.4]. Since Γ is nonempty the
Poincaré inequality implies the existence of a positive scalar γ, such that A − γI is
maximal monotone. Here I denotes the duality mapping from H1

Γ(Ω) to H1
Γ(Ω)∗.

Moreover, D(A−γI)∩D(E) = D(E) and hence A−γI+E is maximal monotone [B,
Theorem 1.7]. It follows that (A − γI + E) + γI = A + E is surjective [B, Theorem
1.2].

Throughout the remainder of the proof, C will denote a generic constant, inde-
pendent of u ∈ L2(Ω). Using a monotonicity argument it is simple to argue that the
solution y = y(u) ∈ H1

Γ(Ω) to (A.1) is unique and that

(A.2) |y(u1)− y(u2)|H1 ≤ C|u1 − u2|L2
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for every pair ui ∈ L2(Ω). It follows that

|y(u)|H1 ≤ C(|u|L2 + C)

for every u ∈ L2(Ω). To verify (2.5) it remains to obtain an L∞(Ω) bound for
y = y(u). The proof is based on a generalization of well-known L∞(Ω)-estimates
due to Stampacchia and Miranda [T] for linear variational problems to the nonlinear
problem (A.1). Let us aim first for a pointwise (a.e.) upper bound for y. For k ∈ (0,∞)
we set yk = (y − k)+ and Ωk = {x ∈ Ω : yk > 0}. Note that yk ∈ H1

Γ(Ω) and yk ≥ 0.
Using (A.1) we find

(∇yk,∇yk) = (∇y,∇yk) = (u, yk)− (ey, yk) ≤ (u, yk),

and hence

(A.3) |∇yk|2L2 ≤ |u|L2 |yk|L2 .

By Hölder’s inequality and a well-known embedding result

|yk|L2 =

( ∫
Ωk

y2k

) 1
2

≤ |yk|L6 |Ωk| 13 ≤ C|∇yk|L2 |Ωk| 13 .

Here we used the assumption that n ≤ 3. Employing this estimate in (A.3) implies
that

(A.4) |∇yk|L2 ≤ C|Ωk| 13 |u|L2 .

We denote by h and k arbitrary real numbers satisfying 0 < k < h <∞ and we find

|yk|4L4 =

∫
Ωk

(y − k)4 >
∫

Ωh

(y − k)4 ≥ |Ωh|(h− k)4,

which, combined with (A.4), gives

(A.5) |Ωh| ≤ Ĉ(h− k)−4|Ωk| 43 |u|4L2 ,

where the constant Ĉ is independent of h, k, and u. It will be shown that Lemma A.1
is applicable to (A.5) with ϕ(k) = |Ωk|, β = 4

3 , and K = Ĉ|u|4L2 . The conditions
on k1 and h1 can easily be satisfied. In fact, in our case k1 = 0, h1 = ∞, and

k̂ = Ĉ
1
4 |u|L22

β
β−1 |Ω0| β−1

4 . The condition k1 + k̂ < h1 is satisfied since

k̂ = Ĉ
1
4 |u|L22

β
β−1 |Ω0|

β−1
4 < Ĉ

1
4 |u|L22

β
β−1 |Ω| β−1

4 <∞.

We conclude that |Ωk̂| = 0 and hence y ≤ k̂ a.e. in Ω. A uniform lower bound on
y can be obtained in an analogous manner by considering yk = (−(k + y))+. We
leave the details to the reader. This concludes the proof of (2.5). To verify (2.6)
the H1 estimate for y(u1) − y(u2) is already clear from (A.2) and it remains to
verify the L∞(Ω) estimate. Let us set yi = y(ui), z = y1 − y2, zk = (z − k)+, and
Ωk = {x ∈ Ω : zk > 0} for k ∈ (0,∞). We obtain

|∇zk|2L2 = (∇z,∇zk) = (u1 − u2, zk)− (ey1 − ey2 , zk) ≤ (u1 − u2, zk).
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Proceeding as above with y and yk replaced by z and zk the desired pointwise upper
bound for y1 − y2 is obtained. For the lower bound we define zk = (−(k + z))+ for
k ∈ (0,∞) and Ωk = {x ∈ Ω : zk > 0} = {x : k + y1(x) < y2(x)}. It follows that

|∇zk|2L2 = −(∇(y1 − y2),∇zk) = (ey1 − ey2 , zk)− (u1 − u2, zk) ≤ −(u1 − u2, zk).

From this inequality we obtain the desired uniform pointwise lower bound on y1− y2.
Proof of Lemma 2.2. The variational form of (2.9) is given by

(A.6) (∇y,∇v) + (ey, y)H1
Γ
(Ω)∗,H1

Γ
= (f, v) + (u, v)Γ for all v ∈ H1

Γ(Ω),

where u varies in Hs(Γ) and f ∈ L∞(Ω) is fixed. As in the proof of Lemma 2.1 one
argues the existence of a solution y = y(u) to (A.6). A monotonicity argument implies
the existence of C > 0 such that

(A.7) |y(u1)− y(u2)|H1 ≤ C|u1 − u2|Hs(Γ)

for every pair ui ∈ L2(Γ), i = 1, 2. Further, C can be chosen such that

|y(u)|H1 ≤ C (|u|Hs(Γ) + C
)
.

To complete the proof it remains to verify the appropriate L∞-bounds. We proceed
as in the proof of Lemma 2.1 and give only the necessary changes. Since s > n−3

2 if
n ≥ 3, there exists p > n − 1 such that Hs(Γ) embeds continuously into Lp(Γ). If
n = 2 we may choose s = 0. To verify (2.10) we define yk = (y−k)+ and obtain from
(A.6)

(A.8) |∇yk|2 ≤ |f |L∞ |y|L1 + |u|Lp(Γ)|τΓyk|Lp′ (Γ),

where τΓ denotes the trace operator on H1
Γ(Ω) and p′ is conjugate to p, i.e., 1

p + 1
p′ = 1

if p ≥ 3 and p′ = 2 if n < 3. Since p > n − 1 we have p′ < n−1
n−2 . We next use a

well-known embedding result for trace operators [T, p. 70] and obtain from (A.8) that

|∇yk|2 ≤ |f |L∞ |yk|L1 + C|u|Hs(Γ) · |yk|W 1, p′·n
n−1+p′

.

It follows that there exists a constant C independent of k such that

(A.9) |∇yk|2 ≤ C(|f |L∞ + |u|Hs(Γ))|∇yk|
L

p′·n
n−1+p′

.

Utilizing Hölder’s inequality we find

(A.10) |∇yk| ≤ C(|f |L∞ + |u|Hs(Γ))|Ωk|r,

where r = 2(n−1+p′)−p′n
2p′n . Note that as a consequence of p′ < n−1

n−2 we have r > n−2
2n if

n ≥ 3 , r = 1
4 if n = 2, and r = 1

2 if n = 1. Let 0 < k < h <∞. Then as in the proof
of Lemma 2.1

|y|tLt ≥ |Ωh|(h− k)t,
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where t = 2n
n−2 if n ≥ 3 and t > 1

r if n < 3. Since H1(Ω) embeds continuously into

L
2n

n−2 for n ≥ 3 and into Lq for every q <∞ if n = 2, estimate (A.10) implies that

|Ωh| ≤ Ĉ(h− k)−t (|f |L∞ + |u|Hs(Γ

)t |Ωk|tr,
where Ĉ is independent of h, k, u (and also f). Note that tr > 1. Utilizing Lemma A.1
with β = tr the proof can be completed in the same manner as the one of Lemma 2.1.
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Abstract. We extend pattern search methods to linearly constrained minimization. We de-
velop a general class of feasible point pattern search algorithms and prove global convergence to a
Karush–Kuhn–Tucker point. As in the case of unconstrained minimization, pattern search methods
for linearly constrained problems accomplish this without explicit recourse to the gradient or the
directional derivative of the objective. Key to the analysis of the algorithms is the way in which the
local search patterns conform to the geometry of the boundary of the feasible region.
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1. Introduction. This paper continues the line of development in [8, 9, 15] and
extends pattern search algorithms to optimization problems with linear constraints:

minimize f(x)
subject to � ≤ Ax ≤ u,

(1.1)

where f : Rn → R, x ∈ Rn, A ∈ Qm×n, �, u ∈ Rm, and � ≤ u. We allow the possibility
that some of the variables are unbounded either above or below by permitting �i, ui =
±∞, i ∈ {1, . . . ,m}. We also admit equality constraints by allowing �i = ui.

We can guarantee that if the objective f is continuously differentiable, then a sub-
sequence of the iterates produced by a pattern search method for linearly constrained
minimization converges to a Karush–Kuhn–Tucker (KKT) point of problem (1.1). As
in the case of unconstrained minimization, pattern search methods for linearly con-
strained problems accomplish this without explicit recourse to the gradient or the
directional derivative of the objective. We also do not attempt to estimate Lagrange
multipliers.

As with pattern search methods for bound constrained minimization [8], when we
are close to the boundary of the feasible region the pattern of points over which we
search must conform to the geometry of the boundary. The general idea, which also
applies to unconstrained minimization [9], is that the pattern must contain search
directions that comprise a set of generators for the cone of feasible directions. We
must be a bit more careful than this; we must also take into account the constraints
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that are almost binding in order to be able to take sufficiently long steps. In the bound
constrained case this turns out to be simple to ensure (though in section 8.3 we will
sharpen the results in [8]). In the case of general linear constraints the situation is
more complicated.

Practically, we imagine pattern search methods being most applicable in the case
where there are relatively few linear constraints besides simple bounds on the vari-
ables. This is true for the applications that motivated our investigation. Our analysis
does not assume nondegeneracy, but the class of algorithms we propose will be most
practical when the problem is nondegenerate.

2. Background. After we presented this work at the 16th International Sym-
posium on Mathematical Programming in Lausanne, Robert Mifflin brought to our
attention the work of Jerrold May in [11], which extended the derivative-free algo-
rithm for unconstrained minimization in [12] to linearly constrained problems. May
proves both global convergence and superlinear local convergence for his method. To
the best of our knowledge, this is the only other provably convergent derivative-free
method for linearly constrained minimization.

Both May’s approach and the methods described here use only values of the
objective at feasible points to conduct their searches. Moreover, the idea of using as
search directions the generators of cones that are polar to cones generated by the
normals of faces near the current iterate appears already in [11]. This is unavoidable
if one wishes to be assured of not overlooking any possible feasible descent in f using
only values of f at feasible points.

On the other hand, there are significant differences between May’s work and the
approach we discuss here. May’s algorithm is more obviously akin to a finite-difference
quasi-Newton method. Most significantly, May enforces a sufficient decrease condition;
pattern search methods do not. Avoiding a sufficient decrease condition is useful in
certain situations where the objective is prone to numerical error. The absence of
a quantitative decrease condition also allows pattern search methods to be used in
situations where only comparison (ranking) of objective values is possible.

May also assumes that the active constraints are never linearly dependent—i.e.,
nondegeneracy. Our analysis, which is based on the intrinsic geometry of the feasible
region rather than its algebraic description, handles degeneracy (though from a prac-
tical perspective, degeneracy can make the calculation of the pattern expensive). On
the other hand, we must place additional algebraic restrictions on the search direc-
tions since pattern search methods require their iterates to lie on a rational lattice.
To do so, we require that the matrix of constraints A in (1.1) be rational. This mild
restriction is a price paid for not enforcing a sufficient decrease condition.

May’s algorithm also has a more elaborate way of sampling f than the general
pattern search algorithm we discuss here. This, and the sufficient decrease condition
he uses, enables May to prove local superlinear convergence, which is stronger than
the purely global results we prove here.

In section 3 we outline the general definition of pattern search methods for linearly
constrained minimization. In section 4 we present the convergence results. In section 5
we review those results from the analysis for the unconstrained case upon which we rely
for the analysis in the presence of linear constraints. In section 6 we prove our main
results. In section 7 we discuss stopping criteria and the questions of identifying active
constraints and estimating Lagrange multipliers. In section 8 we outline practical
implementations of pattern search methods for linearly constrained minimization.
Section 9 contains some concluding remarks, while section 10 contains essential, but
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rather technical, results concerning the geometry of polyhedra that are required for
the proofs in section 6.

Notation. We denote by R, Q, Z, and N the sets of real, rational, integer, and
natural numbers, respectively. The ith standard basis vector will be denoted by ei.
Unless otherwise noted, norms and inner products are assumed to be the Euclidean
norm and inner product. We will denote the gradient of the objective by g(x).

We will use Ω to denote the feasible region for problem (1.1):

Ω = { x ∈ Rn | � ≤ Ax ≤ u } .

Given a convex cone K ⊂ Rn we denote its polar cone by K◦; K◦ is the set of
v ∈ Rn such that (v, w) ≤ 0 for all w ∈ K, where (v, w) denotes the Euclidean inner
product.

If Y is a matrix, y ∈ Y means that the vector y is a column of Y .

3. Pattern search methods. We begin our discussion with a simple instance
of a pattern search algorithm for unconstrained minimization: minimize f(x). At
iteration k, we have an iterate xk ∈ Rn and a step-length parameter ∆k > 0. We
successively look at the points x+ = xk ± ∆kei, i ∈ {1, . . . , n}, until we find x+ for
which f(x+) < f(xk). Figure 3.1 illustrates the set of points among which we search
for x+ for n = 2. This set of points is an instance of what we call a pattern, from
which pattern search takes its name. If we find no x+ such that f(x+) < f(xk), then
we reduce ∆k by half and continue; otherwise, we leave the step-length parameter
alone, setting ∆k+1 = ∆k and xk+1 = x+. In the latter case we can also increase the
step-length parameter, say, by a factor of 2, if we feel a longer step might be justified.
We repeat the iteration just described until ∆k is deemed sufficiently small.

One important feature of pattern search that plays a significant role in the global
convergence analysis is that we do not need to have an estimate of the derivative of f
at xk so long as included in the search is a sufficient set of directions to form a positive
spanning set for the cone of feasible directions, which in the unconstrained case is all
of Rn. In the unconstrained case the set { ±ei | i = 1, . . . , n } satisfies this condition,
the purpose of which is to ensure that if the current iterate is not a stationary point
of the problem, then we have at least one descent direction.

For the linearly constrained case we expand the notion of what constitutes a
sufficient set of search directions. Now we must take into account explicit information
about the problem: to wit, the geometry of the nearby linear constraints. We need
to ensure that if we are not at a constrained stationary point, we have at least one
feasible direction of descent. Moreover, we need a feasible direction of descent along
which we will remain feasible for a sufficiently long distance to avoid taking too short
a step. This is a crucial point since, just as in the unconstrained case, we will not
enforce any notion of sufficient decrease. Practically, we must ensure that we have
directions that allow us to move parallel to the constraints.

We modify the example given above by adding linear constraints near the current
iterate xk and show in Figure 3.2 the effect this has on the choice of pattern. We add
one further qualification to the essential logic of pattern search for the unconstrained
case by noting that we are considering a feasible point method, so the initial iterate
x0 and all subsequent iterates must be feasible. To enforce this, we can introduce
the simple rule of assigning an arbitrarily high function value (say +∞) to any step
that takes the search outside the feasible region defined by Ω. Otherwise, the logic of
pattern search remains unchanged.
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xk︸ ︷︷ ︸
∆k

Fig. 3.1. An illustration of pattern search for unconstrained minimization.

xk︸ ︷︷ ︸
∆k

Ω

Fig. 3.2. An illustration of pattern search for linearly constrained minimization.

We now turn to the technical components of the general pattern search method
for the linearly constrained problem (1.1). We borrow much of the machinery from the
unconstrained case [15], modified in view of more recent developments in [8, 9]. We
begin by describing how the pattern is specified and then used to generate subsequent
iterates.

3.1. The pattern. The pattern for linearly constrained minimization is defined
in a way that is a little less flexible than for patterns in the unconstrained case.
In [15], at each iteration the pattern Pk is specified as the product Pk = BCk of
two components, a fixed basis matrix B and a generating matrix Ck that can vary
from iteration to iteration. This description of the pattern was introduced in the
unconstrained case in order to unify the features of such disparate algorithms as
the method of Hooke and Jeeves [7] and multidirectional search (MDS) [14]. In the
case of bound constrained problems [8], we introduced restrictions on the pattern Pk
itself rather than on B and Ck independently but maintained the pretense of the
independence of the choice of the basis and generating matrices.

For linearly constrained problems, we will ignore the basis—i.e., we will take
B = I—and work directly in terms of the pattern Pk (for many of the classical
pattern search methods for unconstrained minimization, B = I). We do this because,
as with bound constrained problems, we need to place restrictions on Pk itself and it
is simplest just to ignore B.

A pattern Pk is a matrix Pk ∈ Zn×pk . We will place a lower bound on pk, but it
has no upper bound. To obtain the lower bound, we begin by partitioning the pattern
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(1) sk ∈ ∆kPk = ∆k [Γk Lk].
(2) (xk + sk) ∈ Ω.
(3) If min { f(xk + y) | y ∈ ∆kΓk and (xk + y) ∈ Ω } < f(xk),

then f(xk + sk) < f(xk).

Fig. 3.3. Hypotheses on the result of the linearly constrained exploratory moves.

matrix into components

Pk = [ Γk Lk ].

In section 3.5 we will describe certain geometrical restrictions that Γk ∈ Zn×rk must
satisfy. For now we simply observe that rk ≥ n+1. We will have more to say on rk in
section 8, in particular how we may reasonably expect to arrange rk ≤ 2n. We also will
have occasion to refer to Γk as the core pattern since it represents the set of sufficient
directions required for the analysis. We require that Lk ∈ Zn×(pk−rk) contains at least
one column, a column of zeroes; this is purely a convenience we will explain shortly.
Additional columns of Lk may be present to allow algorithmic refinements but play
little active role in the analysis. Given these definitions of the components Γk and Lk
of Pk, it should be clear that pk ≥ rk + 1 > n + 1.

We define a trial step sik to be any vector of the form sik = ∆kc
i
k, where ∆k ∈ R,

∆k > 0, and cik denotes a column of Pk = [c1k · · · c pkk ]. We call a trial step sik feasible
if (xk + sik) ∈ Ω. At iteration k, a trial point is any point of the form xik = xk + sik,
where xk is the current iterate. We will accept a step sk from among the trial steps sik
that have been considered to form the next iterate xk+1 = xk + sk. The inclusion of
a column of zeroes in Lk allows for a zero step, i.e., xk+1 = xk. Among other things,
this ensures that if xk is feasible, then the pattern Pk always contains at least one
step—the zero step—that makes it possible to produce a feasible xk+1.

3.2. The linearly constrained exploratory moves. Pattern search methods
proceed by conducting a series of exploratory moves about the current iterate xk to
choose a new iterate xk+1 = xk + sk for some feasible step sk determined during
the course of the exploratory moves. The hypotheses on the result of the linearly
constrained exploratory moves, given in Figure 3.3, allow a broad choice of exploratory
moves while ensuring the properties required to prove convergence. In the analysis of
pattern search methods, these hypotheses assume the role played by sufficient decrease
conditions in quasi-Newton methods.

We also observe that the last of the hypotheses is not as restrictive as may first
appear. Another way to state the condition is to say that the exploratory moves are
allowed to return the zero step only if there is no feasible step sk ∈ ∆kΓk that yields
improvement over f(xk). Otherwise, we may accept any feasible sk ∈ ∆kPk for which
f(xk+ sk) < f(xk). Thus, in the unconstrained example depicted in Figure 3.1, while
we look successively in each of the directions defined by the unit basis vectors for x+

for which f(x+) < f(xk), we are free to abandon the search the moment we find such
an x+. This means that if we are lucky, we can get by with as few as one evaluation
of f(x) in an iteration. The same holds for the example with linear constraints. This
economy is possible because we do not enforce a sufficient decrease condition on the
improvement realized in the objective.
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Let x0 ∈ Ω and ∆0 > 0 be given.
For k = 0, 1, . . . ,

(a) Compute f(xk).
(b) Determine a step sk using a linearly constrained exploratory moves algorithm.
(c) If f(xk + sk) < f(xk), then xk+1 = xk + sk. Otherwise xk+1 = xk.
(d) Update Pk and ∆k.

Fig. 3.4. The generalized pattern search method for linearly constrained problems.

There are two possibilities:
(a) If f(xk + sk) ≥ f(xk) (i.e., the iteration is unsuccessful), then ∆k+1 = θk∆k,

where θk ∈ (0, 1).
(b) If f(xk + sk) < f(xk) (i.e., the iteration is successful), then ∆k+1 = λk∆k,

where λk ∈ [1,+∞).
The parameters θk and λk are not allowed to be arbitrary but must be of the
following particular form. Let τ ∈ Q, τ > 1, and {w0, . . . , wL} ⊂ Z, w0 < 0, wL ≥ 0,
and w0 < w1 < · · · < wL, where L > 1 is independent of k. Then θk must be of the
form τwi for some wi ∈ {w0, . . . , wL} such that wi < 0, while λk must be of the form
τwj for some wj ∈ {w0, . . . , wL} such that wj ≥ 0.

Fig. 3.5. Updating ∆k.

3.3. The generalized pattern search method for linearly constrained
problems. Figure 3.4 states the general pattern search method for minimization
with linear constraints. To define a particular pattern search method, we must specify
the pattern Pk, the linearly constrained exploratory moves to be used to produce a
feasible step sk, and the algorithms for updating Pk and ∆k. We defer a discussion of
stopping criteria to section 7.

3.4. The updates. Figure 3.5 specifies the rules for updating ∆k. The aim of
the update of ∆k is to force decrease in f(x). An iteration with f(xk+ sk) < f(xk) is
successful; otherwise, the iteration is unsuccessful. As is characteristic of pattern search
methods, a step need only yield simple decrease, as opposed to sufficient decrease, in
order to be acceptable.

We will sometimes refer to outcome (a) in Figure 3.5, a reduction of ∆k, as
backtracking, in a loose analogy to backtracking in line-search methods. Note that
part (3) in Figure 3.3 prevents backtracking, and thus shorter steps, unless we first
sample f(x) in a suitably large set of directions from xk and find no improvement.
This is at the heart of the global convergence analysis.

3.5. Geometrical restrictions on the pattern. In the case of linearly con-
strained minimization, the core pattern Γk must reflect the geometry of the feasible
region when the iterates are near the boundary. Pattern search methods do not ap-
proximate the gradient of the objective but instead rely on a sufficient sampling of
f(x) to ensure that feasible descent will not be overlooked if the pattern is sufficiently
small. We now discuss the geometrical restrictions on the pattern that make this
possible in the presence of linear constraints.
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3.5.1. The geometry of the nearby boundary. We begin with the relevant
features of the boundary of the feasible region near an iterate. Let aTi be the ith row
of the constraint matrix A in (1.1), and define

A�i =
{
x | aTi x = �i

}
,

Aui
=
{
x | aTi x = ui

}
.

These are the boundaries of the half-spaces whose intersection defines Ω. Set

∂Ω�i(ε) = { x ∈ Ω | dist(x,A�i) ≤ ε } ,
∂Ωui(ε) = { x ∈ Ω | dist(x,Aui) ≤ ε } ,

and

∂Ω(ε) =

m⋃
i=1

(∂Ω�i(ε) ∪ ∂Ωui(ε)) .

Given x ∈ Ω and ε ≥ 0 we define the index sets

I�(x, ε) = { i | x ∈ ∂Ω�i(ε) } ,(3.1)

Iu(x, ε) = { i | x ∈ ∂Ωui(ε) } .(3.2)

For i ∈ I�(x, ε) we define

ν�i(x, ε) = −ai,(3.3)

and for i ∈ Iu(x, ε) we define

νui(x, ε) = ai.(3.4)

These are the outward pointing normals to the corresponding faces of Ω.
Given x ∈ Ω we will define the cone K(x, ε) to be the cone generated by the

vectors ν�i(x, ε) for i ∈ I�(x, ε) and νui(x, ε) for i ∈ Iu(x, ε). Recall that a convex
cone K is called finitely generated if there exists a finite set of vectors {v1, . . . , vr}
(the generators of K) such that

K =

{
v | v =

r∑
i=1

λivi, λi ≥ 0, i = 1, . . . , r

}
.

Finally, let PK(x,ε) and PK◦(x,ε) be the projections (in the Euclidean norm) onto
K(x, ε) and K◦(x, ε), respectively. By convention, if K(x, ε) = ∅, then K◦(x, ε) = Rn.
Observe that K(x, 0) is the cone of normals to Ω at x, while K◦(x, 0) is the cone of
tangents to Ω at x.

The cone K(x, ε), illustrated in Figure 3.6, is the cone generated by the normals
to the faces of the boundary within distance ε of x. Its polar K◦(x, ε) is important
because if ε > 0 is sufficiently small we can proceed from x along all directions in
K◦(x, ε) for a distance δ > 0, depending only on ε, and still remain inside the feasible
region. This is not the case for directions in the tangent cone of the feasible region
at x, since the latter cone does not reflect the proximity of the boundary for points
close to, but not on, the boundary.
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x

Ω

ε
✛

K◦(x, ε)

✻

✯

K(x, ε)

Fig. 3.6. The situation near the boundary.

3.5.2. Specifying the pattern. We now state the geometrical restriction on
the pattern Pk. We require the core pattern Γk of Pk to include generators for all of
the cones K◦(xk, ε), 0 ≤ ε ≤ ε∗, for some ε∗ > 0 that is independent of k.

We also require that the collection Γ = ∪∞k=0Γk be finite. Thus (and this is the
real point), Γ will contain a finite set of generators for all of the cones K◦(xk, ε),
0 ≤ ε ≤ ε∗. Note that as ε varies from 0 to ε∗ there is only a finite number of distinct
cones K(xk, ε) since there is only a finite number of faces of Ω. This means that the
finite cardinality of Γ is not an issue. There remains the question of constructing sets of
generators that are also integral; we address the issue of constructing suitable patterns,
by implicitly estimating ε∗, in section 8. However, we will see that the construction is
computationally tractable and, in many cases, is not particularly difficult. We close
by noting that the condition that Γk contains generators of K◦(xk, ε) implies that Γk
contains generators for all tangent cones to Ω at all feasible points near xk.

If xk is “far” from the boundary in the sense that K(xk, ε) = ∅, then K◦(xk, ε) =
Rn and a set of generators for K◦(xk, ε) is simply a positive spanning set for Rn

[5, 9]. (A positive spanning set is a set of generators for a cone in the case that the
cone is a vector space.) If the iterate is suitably in the interior of Ω, the algorithm will
look like a pattern search algorithm for unconstrained minimization [9], as it ought.
On the other hand, if xk is near the boundary, K(xk, ε) �= ∅ and the pattern must
conform to the local geometry of the boundary, as depicted in Figures 3.2 and 3.6.

The design of the pattern reflects the fundamental challenge in the development of
constrained pattern search methods. We do not have an estimate of the gradient of the
objective and, consequently, we have no idea which constraints locally limit feasible
improvement in f(x). In a projected gradient method one has the gradient and can
detect the local interaction of the descent direction with the boundary by conducting
a line-search along the projected gradient path. In derivative-free methods such as
pattern search we must have a sufficiently rich set of directions in the pattern since
any subset of the nearby faces may be the ones that limit the feasibility of the steepest
descent direction, which is itself unavailable for use in the detection of the important
nearby constraints. Nonetheless, in section 4 we are able to outline the conditions for
global convergence, and in section 8 we outline practical implementations of pattern
search methods for linearly constrained minimization.

4. Convergence analysis. In this section we state the convergence results for
pattern search methods for linearly constrained minimization. We defer the proofs of
these results to section 6, after reviewing existing results for pattern search methods
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in section 5.
We first summarize features of the algorithm whose statements are scattered

throughout section 3.
Hypothesis 0.
(1) The pattern Pk = [Γk Lk ] ∈ Zn×pk , pk > n + 1, so that all search directions

are integral vectors scaled by ∆k ∈ Rn. All steps sk are then required to be of
the form ∆kc

i
k, where cik denotes a column of Pk = [c1k · · · cpkk ].

(2) The core pattern Γk ∈ Zn×rk , rk ≥ n + 1, belongs to Γ, where Γ is a finite
set of integral matrices, the columns of which include generators for all of the
cones K◦(xk, ε), 0 ≤ ε ≤ ε∗, for some ε∗ > 0 that is independent of k.

(3) The matrix Lk ∈ Zn×(pk−rk) contains at least one column, a column of zeroes.
(4) The rules for updating ∆k are as given in Figure 3.5.
(5) The exploratory moves algorithm returns steps that satisfy the conditions

given in Figure 3.3.
We now add some additional hypotheses on the problem (1.1).
Hypothesis 1. The constraint matrix A is rational.
Hypothesis 1 is a simple way of ensuring that we can find a rational lattice that

fits inside the feasible region in a suitable way. In particular, the rationality of A
ensures that we can construct Γk satisfying part (2) of Hypothesis 0, as discussed
further in section 8.
Hypothesis 2. The set LΩ(x0) = { x ∈ Ω | f(x) ≤ f(x0) } is compact.
Hypothesis 3. The objective f(x) is continuously differentiable on an open neigh-

borhood D of LΩ(x0).
We next remind the reader that unless otherwise noted norms are assumed to be

the Euclidean norm and that we denote by g(x) the gradient of the objective f at x.
Let PΩ be the projection onto Ω. For feasible x, let

q(x) = PΩ(x− g(x))− x.

Note that because the projection PΩ is nonexpansive q(x) is continuous on Ω. The
following proposition summarizes properties of q that we need, particularly the fact
that x is a constrained stationary point for (1.1) if and only if q(x) = 0. The results
are classical; see section 2 of [6], for instance.
Proposition 4.1. Let x ∈ Ω. Then

‖ q(x) ‖ ≤ ‖ g(x) ‖

and x is a stationary point for problem (1.1) if and only if q(x) = 0.
We can now state the first convergence result for the general pattern search

method for linearly constrained minimization.
Theorem 4.2. Assume Hypotheses 0–3 hold. Let {xk} be the sequence of iterates

produced by the generalized pattern search method for linearly constrained minimiza-
tion (Figure 3.4). Then

lim inf
k→+∞

‖ q(xk) ‖ = 0 .

As an immediate corollary, we have the following result.
Corollary 4.3. There exists a limit point of {xk} that is a constrained station-

ary point for (1.1).
Note that Hypothesis 2 guarantees the existence of one such limit point.
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(1) sk ∈ ∆kPk = ∆k [Γk Lk].
(2) (xk + sk) ∈ Ω.
(3) If min { f(xk + y) | y ∈ ∆kΓk and (xk + y) ∈ Ω } < f(xk),

then f(xk + sk) ≤ min { f(xk + y) | y ∈ ∆kΓk and (xk + y) ∈ Ω }.

Fig. 4.1. Strong hypotheses on the result of the linearly constrained exploratory moves.

We can strengthen Theorem 4.2, in the same way that we do in the unconstrained
and bound constrained cases [8, 15], by adding the following hypotheses.
Hypothesis 4. The columns of the pattern matrix Pk remain bounded in norm;

i.e., there exists c4 > 0 such that for all k, c4 > ‖ cik ‖, for all i = 1, . . . , pk.
Hypothesis 5. The original hypotheses on the result of the linearly constrained

exploratory moves are replaced with the stronger version given in Figure 4.1.
The third condition is stronger than the hypotheses on the result of the linearly

constrained exploratory moves given in Figure 3.3. Now we tie the amount of decrease
in f(x) that must be realized by the step sk to the amount of decrease that could be
realized were we to rely on the local behavior of the linearly constrained problem, as
defined by the columns of Γk.
Hypothesis 6. We have limk→+∞ ∆k = 0.
Note that we do not require ∆k to be monotone nonincreasing.
Then we obtain the following stronger results.
Theorem 4.4. Assume Hypotheses 0–6 hold. Then for the sequence of iterates

{xk} produced by the generalized pattern search method for linearly constrained mini-
mization (Figure 3.4),

lim
k→+∞

‖ q(xk) ‖ = 0 .

Corollary 4.5. Every limit point of {xk} is a constrained stationary point for
(1.1).

Again, Hypothesis 2 guarantees the existence of at least one such limit point.

5. Results from the standard theory. We need the following results from the
analysis of pattern search methods in the unconstrained case. For the proofs, see [15];
these results generalize to the linearly constrained case without change. Theorem 5.1
is central to the convergence analysis for pattern search methods; it allows us to prove
convergence for these methods in the absence of any sufficient decrease condition.
Theorem 5.1. Any iterate xN produced by a generalized pattern search method

for linearly constrained problems (Figure 3.4) can be expressed in the form

xN = x0 +
(
βrLBα−rUB

)
∆0B

N−1∑
k=0

zk,(5.1)

where
• x0 is the initial guess;
• β/α ≡ τ, with α, β ∈ N and relatively prime and τ is as defined in the rules
for updating ∆k (Figure 3.5);
• rLB and rUB are integers depending on N, where rLB ≤ 0 and rUB ≥ 0;
• ∆0 is the initial choice for the step-length control parameter;
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• B is the basis matrix; and
• zk ∈ Zn, k = 0, . . . , N − 1.

Recall that in the case of linearly constrained minimization we set B = I.
The quantity ∆k regulates step-length as indicated by the following.
Lemma 5.2. (i) There exists a constant ζ∗ > 0, independent of k, such that for

any trial step sik �= 0 produced by a generalized pattern search method for linearly
constrained problems we have ‖ sik ‖ ≥ ζ∗∆k.

(ii) Under Hypothesis 4, there exists a constant ψ∗ > 0, independent of k, such
that for any trial step sik produced by a generalized pattern search method for linearly
constrained problems we have ∆k ≥ ψ∗‖ sik ‖.

In the case of pattern search for linearly constrained problems, Pk is integral.
Since sik ∈ ∆kPk, we may take ζ∗ = 1.

6. Proof of Theorems 4.2 and 4.4. We now proceed with the proofs of the
two main results stated in section 4. Essential to our arguments are some results
concerning the geometry of polyhedra. We defer the treatment of these technical
details to section 10.

Given an iterate xk, let gk = g(xk) and qk = PΩ(xk−gk)−xk. Let B(x, δ) be the
ball with center x and radius δ, and let ω denote the following modulus of continuity
of g. Given x ∈ LΩ(x0) and ε > 0,

ω(x, ε) = sup { δ > 0 | B(x, δ) ⊂ D and ‖ g(y)− g(x) ‖ < ε for all y ∈ B(x, δ) } .
Then we have this elementary proposition concerning descent directions, whose proof
we omit (see [8]).
Proposition 6.1. Let s ∈ Rn and x ∈ LΩ(x0). Assume that g(x) �= 0 and

g(x)T s ≤ −ε‖ s ‖ for some ε > 0. Then, if ‖ s ‖ < ω(x, ε/2),

f(x + s)− f(x) ≤ −ε

2
‖ s ‖.

The next result is the crux of the convergence analysis. Using the results in sec-
tion 10, we show that if we are not at a constrained stationary point, then the pattern
always contains a descent direction along which we remain feasible for a sufficiently
long distance.

Let Γ∗ be the maximum norm of any column of the matrices in the set Γ, where
Γ is as in section 3.1 and section 3.5. If ∆k ≤ δ/Γ∗, then ‖ sik ‖ ≤ δ for all sik ∈ ∆kΓk.
Also define

h = min
1≤i≤m

�i �=ui

ui − �i
‖ ai ‖ .(6.1)

This is the minimum distance between the faces of Ω associated with the constraints
that are not equality constraints. Finally, ‖ gk ‖ is bounded on LΩ(x0) by hypothesis;
let g∗ be an upper bound for ‖ gk ‖.
Proposition 6.2. There exist r6.2 > 0 and c6.2 > 0 such that if η > 0, ‖ qk ‖ ≥ η,

and ∆k ≤ r6.2η
2, then there is a trial step sik defined by a column of ∆kΓk for which,

given xk ∈ Ω, (xk + sik) ∈ Ω and

−gTk sik ≥ c6.2‖ qk ‖‖ sik ‖.
Proof. Let

r = min(ε∗/(g∗)2, h/(2(g∗)2), r10.7),
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where ε∗ is the constant introduced in section 3.5.2, h is given by (6.1), and r10.7 is
the constant that appears in Proposition 10.7.

Now consider ε = rη2. From Proposition 4.1, ‖ qk ‖ ≤ ‖ gk ‖ ≤ g∗, so our choice
of r ensures that ε is sufficiently small that

(1) ε ≤ ε∗,
(2) ε ≤ h/2, and
(3) ε ≤ r10.7η

2.
Because of this last fact, (3), we may apply Proposition 10.7 to w = −gk with

x = xk and γ = g∗ to obtain

‖ PK◦(xk,ε)(−gk) ‖ ≥ c10.7‖ qk ‖.(6.2)

Meanwhile, since we require the core pattern Γk of Pk to include generators for all of
the cones K◦(xk, δ), δ ≤ ε∗, then, because ε ≤ ε∗, some subset of the core pattern
steps sik forms a set of generators for K◦(xk, ε). Consequently, by virtue of (6.2) we
may invoke Corollary 10.4: for some sik ∈ ∆kΓk we have

−gTk sik ≥ c10.4 ‖ PK◦(xk,ε)(−gk) ‖ ‖ sik ‖.(6.3)

From (6.3) we then obtain

−gTk sik ≥ c10.4 c10.7 ‖ qk ‖ ‖ sik ‖ = c6.2 ‖ qk ‖ ‖ sik ‖,
where c6.2 = c10.4 c10.7. Thus, we are assured of a descent direction inside the pattern.

Now we must show that we can take a sufficiently long step along this descent
direction and remain feasible. Define

r6.2 = r/(2Γ∗)

and consider what happens when ∆k ≤ r6.2η
2. We have ∆k ≤ ε/(2Γ∗); and since

sik ∈ ∆kΓk, we have ‖ sik ‖ ≤ ε/2. Since sik ∈ K◦(xk, ε), and ε ≤ h/2 by (2) above,
we can apply Proposition 10.8 to w = sik to conclude that (xk + sik) ∈ Ω.

We now show that if we are not at a constrained stationary point, we can always
find a step in the pattern that both is feasible and yields improvement in the objective.
Proposition 6.3. Given any η > 0, there exists r6.3 > 0, independent of k,

such that if ∆k ≤ r6.3η
2 and ‖ qk ‖ ≥ η, the pattern search method for linearly

constrained minimization will find an acceptable step sk; i.e., f(xk+1) < f(xk) and
xk+1 = (xk + sk) ∈ Ω.

If, in addition, the columns of the generating matrix remain bounded in norm and
we enforce the strong hypotheses on the results of the linearly constrained exploratory
moves (Hypotheses 4 and 5), then, given any η > 0, there exists σ > 0, independent
of k, such that if ∆k < r6.3η

2 and ‖ qk ‖ ≥ η, then

f(xk+1) ≤ f(xk)− σ‖ qk ‖‖ sk ‖.
Proof. Proposition 6.2 assures us of the existence of r6.2 and a step sik defined by

a column of ∆kΓk such that (xk + sik) ∈ Ω and

gTk s
i
k ≤ −c6.2‖ qk ‖‖ sik ‖,

provided ∆k ≤ r6.2η
2. Also, since g(x) is uniformly continuous on LΩ(x0) and LΩ(x0)

is a compact subset of the open set D on which f(x) is continuously differentiable,
there exists ω∗ > 0 such that

ω
(
xk,

c6.2
2

η
)
≥ ω∗
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for all k for which ‖ qk ‖ ≥ η.
Now define

r6.3 = min
(
r6.2, ω∗/(Γ∗(g∗)2)

)
and suppose ‖ qk ‖ ≥ η and ∆k ≤ r6.3η

2. We have

‖ sik ‖ ≤ ∆kΓ
∗ ≤ ω∗ ≤ ω

(
xk,

c6.2
2
‖ qk ‖

)
.

Hence, by Proposition 6.1,

f(xk + sik)− f(xk) ≤ −c6.2
2
‖ qk ‖‖ sik ‖.

Thus, when ∆k ≤ r6.3η
2, f(xk + sik) < f(xk) for at least one feasible sik ∈ ∆kΓk. The

hypotheses on linearly constrained exploratory moves guarantee that if

min { f(xk + y) | y ∈ ∆kΓk, (xk + y) ∈ Ω } < f(xk),

then f(xk+sk) < f(xk) and (xk+sk) ∈ Ω. This proves the first part of the proposition.
If, in addition, we enforce the strong hypotheses on the result of the linearly

constrained exploratory moves, then we actually have

f(xk+1)− f(xk) ≤ −c6.2
2
‖ qk ‖‖ sik ‖.

Part (i) of Lemma 5.2 then ensures that

f(xk+1) ≤ f(xk)− c6.2
2

ζ∗∆k‖ qk ‖.

Applying part (ii) of Lemma 5.2, we arrive at

f(xk+1) ≤ f(xk)− c6.2
2

ζ∗ψ∗‖ qk ‖‖ sk ‖.

This yields the second part of the proposition with σ = (c6.2/2)ζ∗ψ∗.
Corollary 6.4. If lim infk→+∞ ‖ qk ‖ �= 0, then there exists a constant ∆∗ > 0

such that for all k, ∆k ≥ ∆∗.
Proof. By hypothesis, there exists N and η > 0 such that for all k > N, ‖ qk ‖ ≥ η.

By Proposition 6.3, we can find δ = r6.3η
2 such that if k > N and ∆k < δ, then we

will find an acceptable step. In view of the update of ∆k given in Figure 3.5, we
are assured that for all k > N, ∆k ≥ min(∆N , τw0δ). We may then take ∆∗ =
min{∆0, . . . ,∆N , τw0δ}.

The next theorem combines the strict algebraic structure of the iterates with
the simple decrease condition of the generalized pattern search algorithm for linearly
constrained problems, along with the rules for updating ∆k, to tell us the limiting
behavior of ∆k.
Theorem 6.5. Under Hypotheses 0–3, lim infk→+∞ ∆k = 0.
Proof. The proof is like that of Theorem 3.3 in [15]. Suppose 0 < ∆LB ≤ ∆k for

all k. Using the rules for updating ∆k, found in Figure 3.5, it is possible to write ∆k

as ∆k = τ rk∆0, where rk ∈ Z.
The hypothesis that ∆LB ≤ ∆k for all k means that the sequence {τ rk} is bounded

away from zero. Meanwhile, we also know that the sequence {∆k} is bounded above
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because all the iterates xk must lie inside the set LΩ(x0) = { x ∈ Ω | f(x) ≤ f(x0) }
and the latter set is compact; part (i) of Lemma 5.2 (which is a consequence of the
rules for updating ∆k) then guarantees an upper bound ∆UB for {∆k}. This, in turn,
means that the sequence {τ rk} is bounded above. Consequently, the sequence {τ rk}
is a finite set. Equivalently, the sequence {rk} is bounded above and below.

Next we recall the exact identity of the quantities rLB and rUB in Theorem 5.1;
the details are found in the proof of Theorem 3.3 in [15]. In the context of Theorem 5.1,

rLB = min
0≤k<N

{rk}, rUB = max
0≤k<N

{rk}.

If, in the matter at hand, we let

rLB = min
0≤k<+∞

{rk}, rUB = max
0≤k<+∞

{rk},(6.4)

then (5.1) holds for the bounds given in (6.4) and we see that for all k, xk lies in the
translated integer lattice G generated by x0 and the columns of βrLBα−rUB∆0I.

The intersection of the compact set LΩ(x0) with the lattice G is finite. Thus,
there must exist at least one point x∗ in the lattice for which xk = x∗ for infinitely
many k.

We now appeal to the simple decrease condition in part (c) of Figure 3.4, which
guarantees that a lattice point cannot be revisited infinitely many times since we
accept a new step sk if and only if f(xk) > f(xk + sk) and (xk + sk) ∈ Ω. Thus there
exists an N such that for all k ≥ N, xk = x∗, which implies f(xk) = f(xk + sk).

We now appeal to the algorithm for updating ∆k (part (a) in Figure 3.5) to see
that ∆k → 0, thus leading to a contradiction.

6.1. The proof of Theorem 4.2. The proof is like that of Theorem 3.5 in [15].
Suppose that lim infk→+∞ ‖ qk ‖ �= 0. Then Corollary 6.4 tells us that there exists
∆∗ > 0 such that for all k, ∆k ≥ ∆∗. But this contradicts Theorem 6.5.

6.2. The proof of Theorem 4.4. The proof, also by contradiction, follows that
of Theorem 3.7 in [15]. Suppose lim supk→+∞ ‖ qk ‖ �= 0. Let ε > 0 be such that there
exists a subsequence ‖ q(xmi) ‖ ≥ ε. Since

lim inf
k→+∞

‖ qk ‖ = 0,

given any 0 < η < ε, there exists an associated subsequence li such that

‖ qk ‖ ≥ η for mi ≤ k < li, ‖ q(xli) ‖ < η.

Since ∆k → 0, we can appeal to Proposition 6.3 to obtain for mi ≤ k < li, i sufficiently
large,

f(xk)− f(xk+1) ≥ σ‖ qk ‖‖ sk ‖ ≥ ση‖ sk ‖,
where σ > 0. Summation then yields

f(xmi)− f(xli) ≥ ∑li
k=mi

ση‖ sk ‖ ≥ ση‖ xmi − xli ‖.
Since f is bounded below on the set LΩ(x0), we know that f(xmi) − f(xli) → 0 as
i→ +∞, so ‖ xmi − xli ‖ → 0 as i→ +∞. Then, because q is uniformly continuous,
‖ q(xmi)− q(xli) ‖ < η for i sufficiently large. However,

‖ q(xmi) ‖ ≤ ‖ q(xmi)− q(xli) ‖+ ‖ q(xli) ‖ ≤ 2η.(6.5)

Since (6.5) must hold for any η, 0 < η < ε, we have a contradiction (e.g., try η = ε
4 ).
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7. Comments on the algorithm. We next discuss some practical aspects of
pattern search algorithms for linearly constrained problems. In this section we pro-
pose some stopping criteria for these algorithms as well as examine the questions of
estimating Lagrange multipliers and identifying the constraints active at a solution.

7.1. Stopping criteria. The stopping criterion that seems most natural to us is
to halt the algorithm once ∆k falls below some prescribed tolerance ∆∗. Equivalently,
one can halt once the absolute length of the steps in the core pattern falls below some
prescribed tolerance δ∗.

The following proposition concerning the correlation of stationarity and the size
of ∆k lends support to this choice of a stopping criterion. The result relates ‖ qk ‖
and the ∆k at those steps where ∆k is reduced (i.e., where backtracking occurs);
if we terminate the algorithm at such an iterate, then, if ∆k is sufficiently small,
‖ qk ‖ will also be small. In the case of bound constraints, a similar result allows
one to establish convergence for a pattern search algorithm for general nonlinearly
constrained problems via inexact bound constrained minimization of the augmented
Lagrangian [10]. For convenience, we assume that ∇f(x) is Lipschitz continuous.
However, if we assume only that ∇f(x) is uniformly continuous on LΩ(x0), we can
still establish a correlation between stationarity and the size of ∆k.
Proposition 7.1. Suppose ∇f(x) is Lipschitz continuous on LΩ(x0) with Lip-

schitz constant C. There exists c7.1 > 0 for which the following holds. If xk is an
iterate at which there is an unsuccessful iteration, then

‖ qk ‖2 ≤ c7.1∆k.(7.1)

Proof. We need only consider the situation where η = ‖ qk ‖ > 0. There are two
cases to consider. First suppose r6.2‖ qk ‖2 ≤ ∆k, where r6.2 is the constant of the
same name in Proposition 6.2. Then we immediately have

‖ qk ‖2 ≤ ∆k/r6.2.(7.2)

On the other hand, suppose r6.2‖ qk ‖2 > ∆k. By Proposition 6.2, there exists
sik ∈ ∆kΓk such that (xk + sik) ∈ Ω and

−gTk sik ≥ c6.2‖ qk ‖‖ sik ‖.(7.3)

Since iteration k is unsuccessful, it follows from Figure 3.3 that f(xk+sik)−f(xk) ≥ 0
for all feasible sik ∈ ∆kΓk. By the mean-value theorem, for some ξ in the line segment
connecting xk and xk + sik we have

0 ≤ f(xk + sik)− f(xk)

= ∇f(xk)
T sik + (∇f(ξ)−∇f(xk))

T sik

≤ −c6.2‖ qk ‖‖ sik ‖+ ‖ ∇f(ξ)−∇f(xk) ‖‖ sik ‖,

where sik is the step for which (7.3) holds. Thus

c6.2‖ qk ‖ ≤ ‖ ∇f(ξ)−∇f(xk) ‖.

Using the Lipschitz constant C for ∇f(x), we obtain

c6.2‖ qk ‖ ≤ C‖ ξ − xk ‖ ≤ CΓ∗∆k,
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where Γ∗ is the maximum norm of any column of the matrices in the set Γ. Thus

c6.2‖ qk ‖2 ≤ g∗CΓ∗∆k,(7.4)

where g∗ is the upper bound on ∇f(x). The proposition then follows from (7.2) and
(7.4).

Remark. We conjecture that one can establish the estimate ‖ qk ‖ ≤ c∆k at un-
successful steps. The appearance of ‖ qk ‖2 rather than ‖ qk ‖ in (7.1) is a consequence
of the appearance of η2 in the hypotheses of Proposition 10.7, which in turn derives
from the limitations of the way in which the latter proposition is proved.

May’s algorithm [11], which is based on a difference approximation of feasible
directions of descent, uses a difference approximation of local feasible descent in its
stopping criterion. In connection with pattern search one could also attempt to do
something similar, estimating ∇f(x) by either a difference approximation or a re-
gression fit and using this information in a stopping test. However, depending on
the application, the simpler stopping criterion ∆k < ∆∗ may be preferable—for in-
stance, if the objective is believed to be untrustworthy in its accuracy, or if f(x) is
not available as a numerical value and only comparison of objective values is possible.

7.2. Identifying active constraints. Another practical issue is that of identi-
fying active constraints, as in [2, 3, 4]. A desirable feature of an algorithm for linearly
constrained minimization is the identification of active constraints in a finite number
of iterations; that is, if the sequence {xk} converges to a stationary point x∗, then in
a finite number of iterations the iterates xk land on the constraints active at x∗ and
remain thereafter on those constraints.

As discussed in [8] for the case of bound constraints, there are several impediments
to proving such results for pattern search algorithms and showing that ultimately the
iterates will land on the active constraints and remain there. For algorithms such as
those considered in [2, 3, 4], this is not a problem because the explicit use of the
gradient impels the iterates to do so in the neighborhood of a constrained stationary
point. However, pattern search methods do not have this information, and at this
point it is not clear how to avoid the possibility that these algorithms take a purely
interior approach to a point on the boundary. On the other hand, the kinship of
pattern search methods and gradient projection methods makes us hopeful that we
may be able to devise a suitable mechanism to ensure pattern search methods also
identify the active constraints in a finite number of iterations.

7.3. Estimating Lagrange multipliers. Similar limitations pertain to esti-
mating Lagrange multipliers as do to identifying active constraints. Pattern search
methods do not use an explicit estimate of ∇f(x), and one does not obtain an esti-
mate of the Lagrange multipliers for (1.1) from the usual workings of the algorithm.
Some manner of postoptimality sensitivity analysis would be required to obtain es-
timates of the multipliers, again, either through difference estimates or regression
estimates of ∇f(x).

The authors are indebted to one of the referees for pointing out that May’s algo-
rithm [11] obtains multiplier estimates using only values of the objective at feasible
points and for suggesting that the same idea could be used in our algorithm. As already
mentioned in section 7.1, May’s algorithm explicitly employs difference estimates of
the directional derivatives of the objective in feasible directions (taking into account
constraints that are nearby but perhaps not active). These directional derivatives are
computed in a coordinate system corresponding to the generators of the cone of feasi-
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ble directions, and one thereby obtains multiplier estimates. We sketch the idea here;
for the details, see section 2.3 and Chapter 4 in [11].

Let N denote a matrix whose columns are a set of inward pointing normals to the
active constraints at x. We assume that N has full column rank r. Let N+ denote
the pseudo-inverse of N, and let nT1 , . . . , nTr denote the rows of N+. One can show
that the ni are part of a set of generators for the cone tangent to the feasible region
at x (see Lemma 2.1 in [11]; Proposition 8.2 below is a version of this result). If x is
a constrained stationary point, then

∇f(x)−Nλ = 0, λ ≥ 0.(7.5)

(The condition (7.5) is also sufficient for x to be a constrained stationary point; see
Lemma 2.2 in [11].) The multipliers λ are then given by λ = N+∇f(x). Thus λi,
the ith component of N+∇f(x), is simply the directional derivative nTi ∇f(x). Since
ni is a feasible direction, the directional derivative nTi ∇f(x) can be estimated using
values of f only at feasible points. In May’s algorithm, N+ is computed via the QR
decomposition as part of the calculation of the feasible search directions. In the case
of pattern search, a construction of the requisite feasible directions is given in section
8.2.

For yet another way in which one can obtain information about multipliers from
pattern search methods, see the augmented Lagrangian approach in [10].

8. Constructing patterns for problems with linear constraints. In this
section we outline practical implementations of pattern search methods for linearly
constrained minimization. The details will be the subject of future work. In the
process we also show that under the assumption that A is rational, one can actually
construct patterns with both the algebraic properties required in section 3.1 and the
geometric properties required in section 3.5.

8.1. Remarks on the general case. We begin by showing that in general it is
possible to find rational generators for the cones K◦(x, ε). By clearing denominators
we then obtain the integral vectors for Γ as required in section 3.1. The construction
is an elaboration of the proof that polyhedral cones are finitely generated (see [16],
for instance). The proof outlines an algorithm for the construction of generators of
cones. Given a cone K we will use V to denote a matrix whose columns are generators
of K

K = { x | x = V λ, λ ≥ 0 } .
Proposition 8.1. Suppose K is a cone with rational generators V . Then there

exists a set of rational generators for K◦.
Proof. Suppose w ∈ K◦; then (w, v) ≤ 0 for all v ∈ K. Let v = V λ, λ ≥ 0. Then

(w , v) =
(
PN (V T )w + PN (V T )⊥w , V λ

) ≤ 0,

where PN (V T ) and P(N (V T ))⊥ are the projections onto the nullspace N (V T ) of V T

and its orthogonal complement N (V T )⊥, respectively. Since N (V T )⊥ is the same as
the range R(V ) of V, we have

(w , v) =
(
PR(V )w , V λ

) ≤ 0.

Let N and R be rational bases for N (V T ) and R(V ), respectively; these can be
constructed, for instance, via reduction to row echelon form since V is rational.
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Let {p1, . . . , pt} be a rational positive basis for N (V T ). Such a positive basis can
be constructed as follows. If N is n× r, then if Π is a rational positive basis (with t
elements) for Rr (e.g., Π = [I − I]), then NΠ is a rational positive basis for N (V T ).

Meanwhile, if R is a rational basis for R(V ), then for some z we have

PR(V )w = Rz,

whence

(w , v) = (Rz , V λ) ≤ 0.

Since λTV TRz ≤ 0 for all λ ≥ 0, it follows that V TRz ≤ 0. Let e = (1, . . . , 1)T and
consider

C =
{
z | V TRz ≤ 0, eTV TRz ≥ −1

}
.

Since C is convex and compact, it is the convex hull of its extreme points {c1, . . . , cs}.
Furthermore, note that the extreme points of C will define a set of generators for
the cone

{
z | V TRz ≤ 0

}
. The extreme points of C are also rational since V TR is

rational; the extreme points will be solutions to systems of equations with rational
coefficients. These extreme points, which are the vertices of the polyhedron C, can
be computed by any number of vertex enumeration techniques (e.g., see [1] and the
references cited therein).

Returning to w ∈ K◦, we see that we can express w as a positive linear combina-
tion of the vectors {p1, . . . , pt, c1, . . . , cs}. Moreover, by construction the latter vectors
are rational.

8.2. The nondegenerate case. As we have seen, the construction of sets of
generators for cones is nontrivial and is related to the enumeration of vertices of
polyhedra. However, in the case of nondegeneracy—the absence of any point on the
boundary at which the set of binding constraints is linearly dependent—we can com-
pute the required generators in a straightforward way. This case is handled in [11] by
using the QR factorization to derive the search directions. Because we require rational
search directions, we use the LU factorization (reduction to row echelon form, to be
more precise) since the latter can be done in rational arithmetic.

The following proposition shows that once we have identified a cone K(xk, δ) with
a linearly independent set of generators, we can construct generators for all the cones
K(xk, ε), 0 ≤ ε ≤ δ.
Proposition 8.2. Suppose that for some δ, K(x, δ) has a linearly independent

set of rational generators V . Let N be a rational positive basis for the nullspace of
V T .

Then for any ε, 0 ≤ ε ≤ δ, a set of rational generators for K◦(x, ε) can be found
among the columns of N, V (V TV )−1, and −V (V TV )−1.

Proof. Given x ∈ Ω and δ > 0, let K = K(x, δ). Suppose w ∈ K◦; then (w, v) ≤ 0
for all v ∈ K. Let v = V λ, λ ≥ 0. Since V has full column rank, we have

(w, v) = ((I − V (V TV )−1V T )w + V (V TV )−1V Tw, V λ) ≤ 0

or (V Tw, λ) ≤ 0 for all λ ≥ 0. Let ξ = V Tw; then we have (ξ, λ) ≤ 0 for all λ ≥ 0, so
ξ ≤ 0.

The matrix N is a positive basis for the range of I − V (V TV )−1V T , since the
latter subspace is the same as the nullspace of V T . Then any w ∈ K◦ can be written
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in the form

w = Nζ − V (V TV )−1ξ,

where ζ ≥ 0 and ξ ≥ 0. Thus the columns of N and −V (V TV )−1 are a set of
generators for K◦.

Moreover, for ε < δ we obtain K̃ = K(x, ε) by dropping generators from V .
Without loss of generality we will assume that we drop the first r columns of V,
where V has p columns. Then consider w ∈ K̃◦. Proceeding as before, we obtain
(V Tw, λ) ≤ 0 for all λ ≥ 0, λ1, . . . , λr = 0. If we once again define ξ = V Tw, then we
see that ξr+1, . . . , ξp ≤ 0, while ξ1, . . . , ξr are unrestricted in sign. Hence we obtain

a set of generators for K̃◦ from the columns of N, the first r columns of V (V TV )−1

and their negatives, and the last p− r columns of −V (V TV )−1.
Proposition 8.2 leads to the following construction of patterns for linearly con-

strained minimization. Under the assumption of nondegeneracy, we know there exists
ε∗ such that if 0 ≤ ε ≤ ε∗, then K(x, ε) has a linearly independent set of generators.
If we knew this ε∗, it would be a convenient choice for the ε∗ required in section 3.5.
The following algorithm implicitly estimates ε∗: it conducts what amounts to a safe-
guarded backtracking on ε at each iteration to find a value of εk for which K(xk, εk)
has a linearly independent set of generators.

Given ε∗ independent of k, choose εk ≥ ε∗. Then
(1) Define the cone K(xk, εk) as in section 3.5.
(2) Let V represent the matrix whose columns are the generators ν�i (xk, εk) and

νui (xk, εk) of K(xk, εk) (defined in (3.3)–(3.4)). Determine whether or not
V has full column rank. If so, go to step 3. Otherwise, reduce εk just until
|I�(xk, εk)|+ |Iu(xk, εk)| is decreased. Return to step 1.

(3) Construct a rational positive basis N for the range of I − V (V TV )−1V T .
This can be done via reduction to row echelon form, or simply by taking the
columns of the matrices ± (I − V (V TV )−1V T

)
.

(4) Form the matrix Γk = [N V (V TV )−1 − V (V TV )−1 ].
Under the assumption of nondegeneracy, εk will remain bounded away from 0 as a
function of k, implicitly giving us the ε∗ introduced in section 3.5.2.

This construction also shows that we may reasonably expect to arrange that rk,
the number of columns of Γk defined in section 3.1, to be at most 2n. Suppose V has
rank r. Then the nullspace of V has dimension n− r, so we can find a positive basis
N for the nullspace with as few as n − r + 1 elements (or 0 elements, if n = r). At
the same time, V (V TV )−1 has r columns, so we can arrange Γk to have as few as
(n− r +1)+ 2r = n+ r− 1 columns, if r < n, or 2r elements, if r = n. In either case
Γk has at most 2n columns.

8.3. The case of bound constraints. Matters simplify enormously in the
case of bound constraints, previously considered in [8]. We will briefly discuss the
specialization to bound constrained minimization and in the process sharpen the
results in [8].

In the case of bound constraints we have

minimize f(x)
subject to l ≤ x ≤ u.

Again, we allow the possibility that some of the variables are unbounded either above
or below by permitting �j , uj = ±∞, j ∈ {1, . . . , n}.



936 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

In the case of bound constraints we know a priori the possible generators of the
cones K(x, ε) and K◦(x, ε). For any x ∈ Ω and any ε > 0 the cone K(x, ε) is generated
by some subset of the coordinate vectors ±ei. If K(x, ε) is generated by νi1 , . . . , νir ,
where νij ∈ {eij ,−eij}, then K◦(x, ε) is generated by the set −νi1 , . . . ,−νir to-
gether with a positive basis for the orthogonal complement of the space spanned
by νi1 , . . . , νir . This orthogonal complement simply corresponds to the remaining co-
ordinate directions.

This simplicity allows us to prescribe in advance patterns that work for all K(x, ε).
In [8] we gave the prescription Γk = [I − I]. This choice, independent of k, includes
generators for all possible K◦(x, ε). However, if not all the variables are bounded,
then one can make a choice of Γk that is independent of k but more parsimonious
in the number of directions. Let xi1 , . . . , xir be the variables with either a lower or
upper bound; then Γk should include the coordinate vectors ±ei1 , . . . ,±eir together
with a positive basis for the orthogonal complement of the linear span of ei1 , . . . , eir ;
a positive basis for the orthogonal complement can have as few as (n−r)+1 elements.

The choice of Γk = [I − I] in [8] requires, in the worst case, 2n objective evalua-
tions per iteration. The more detailed analysis given here leads to a reduction in this
cost if not all the variables are bounded. If only r < n variables are bounded, then
we can find an acceptable pattern containing as few as 2r + ((n− r) + 1) = n+ r + 1
points.

Finally, note that if general linear constraints are present but A has full row rank
(i.e., there are no more than n constraints and they are all linearly independent), then
one can carry out a construction similar to that for bound constraints.

9. Conclusions. We have introduced pattern search algorithms for solving prob-
lems with general linear constraints. We have shown that under mild assumptions we
can guarantee global convergence of pattern search methods for linearly constrained
problems to a KKT point. As in the case of unconstrained minimization, pattern
search methods for linearly constrained problems accomplish this without explicit re-
course to the gradient or the directional derivative. In addition, we have outlined
particular instances of such algorithms and shown how the general approach can be
greatly simplified when the only constraints are bounds on the variables. The effec-
tiveness of these techniques will be the subject of future work.

10. Appendix: Results concerning the geometry of polyhedra. We need
a number of results concerning the geometry of polyhedra for the proofs of section 6.
We begin with a classical result on the structure of finitely generated cones.
Theorem 10.1. Let C be a finitely generated convex cone in Rn. Then C is the

union of finitely many finitely generated convex cones each having a linearly indepen-
dent set of generators chosen from the generators of C.

Proof. See Theorem 4.17 in [16].
Corollary 10.2. Let C be a finitely generated convex cone inRn with generators

{v1, . . . , vr}. Then there exists c10.2 > 0, depending only on {v1, . . . , vr}, such that any
z ∈ C can be written in the form z =

∑r
i=1 λivi with λ ≥ 0 and ‖ λ ‖ ≤ c10.2‖ z ‖.

Proof. Theorem 10.1 says that we can write z in the form z =
∑rz
j=1 λijvij , where

rz ≤ r, λij ≥ 0, and the matrix Vz = [vi1 · · · virz ] has full column rank. The full
column rank of Vz means that the induced linear transformation is one-to-one; so if
V +
z is the pseudoinverse of Vz, then (λi1 , . . . , λirz )

T = V +
z z. If we define λ via

λi =

{
λij if i = ij ,
0 otherwise,
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then λ ≥ 0, z = V λ, and ‖ λ ‖ ≤ ‖ V +
z ‖‖ z ‖. Since the matrix Vz is drawn from a

finite set of possibilities (e.g., the set of all subsets of {v1, . . . , vr}), we can find the
desired constant c10.2, independent of z.

Let C be a closed convex cone in Rn with vertex at the origin and let C◦ be its
polar. Given any vector z, we will denote by zC and zC◦ the projections of z onto the
cones C and C◦, respectively. The classical polar decomposition [13, 17] allows us to
express z as

z = zC + zC◦ ,

where (zC , zC◦) = 0.
Proposition 10.3. Suppose the cone C is generated by {v1, . . . , vr}. Then there

exists c10.3 > 0, depending only on {v1, . . . , vr}, such that for any z for which zC �= 0

max
1≤i≤r

zT vi
‖ vi ‖ ≥ c10.3‖ zC ‖.

Proof. By Corollary 10.2, we have c10.2 > 0, depending only on {v1, . . . , vr}, such
that we can write zC as zC =

∑r
i=1 λivi, with ‖ λ ‖ ≤ c10.2‖ zC ‖ and λ ≥ 0. Then

zT zC =

r∑
i=1

λiz
T vi,

so for some i we must have

λiz
T vi ≥ 1

r
zT zC =

1

r
‖ zC ‖2.

Since ‖ λ ‖ ≤ c10.2‖ zC ‖ and ‖ zC ‖ �= 0, we obtain

zT vi ≥ 1

r

1

c10.2
‖ zC ‖.

If we let

v∗ = max
1≤i≤r

‖ vi ‖

we obtain

zT vi ≥ 1

r

1

c10.2

1

v∗
‖ vi ‖‖ zC ‖

and the desired result, with c10.3 = (rc10.2v
∗)−1.

For the polyhedron defining the feasible region of (1.1), we have the following.
Corollary 10.4. There exists c10.4 > 0, depending only on A, for which the

following holds. For any x ∈ Ω and ε ≥ 0, let K = K(x, ε). Then for any z for which
zK◦ �= 0,

max
1≤i≤r

zT vi
‖ vi ‖ ≥ c10.4‖ zK◦ ‖,

where {v1, . . . , vr} are the generators of K◦(x, ε) required in section 3.5.2 to be in Γ.
Proof. The corollary follows from the observation that since K(x, ε) is generated

by subsets of the rows of A, K(x, ε) can be one of only a finite number of possible



938 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

cones. Consequently K◦(x, ε) will also be one of only a finite number of possible cones.
Applying Proposition 10.3 to each of these latter cones in turn (with the generators
in Γ for K◦(x, ε)) and taking the minimum yields the corollary.

Let

a∗ = max
1≤i≤m

{‖ ai ‖}.

Then we have the following straightforward proposition.
Proposition 10.5. For any x ∈ Ω and ε ≥ 0, we have

�i ≤ aTi x ≤ �i + ε‖ ai ‖ ≤ �i + εa∗ for i ∈ I�(x, ε),(10.1)

ui − εa∗ ≤ ui − ε‖ ai ‖ ≤ aTi x ≤ ui for i ∈ Iu(x, ε),(10.2)

where I�(x, ε) and Iu(x, ε) are the index sets defined in (3.1)–(3.2).
Proof. A simple calculation shows that the distance from any point x to the

affine subspace defined by aTi z = b is
∣∣ b− aTi x

∣∣ /‖ ai ‖. Thus, if the distance from x
to aTi z = b is no more than ε, then

b− ε‖ ai ‖ ≤ aTi x ≤ b + ε‖ ai ‖.
Then (10.1) and (10.2) follow from the fact that x ∈ Ω and the definitions of I�(x, ε)
and Iu(x, ε).

Despite its unpromising appearance, the following result is extremely useful, as it
relates the local geometry of Ω (as manifest in K(x, ε)) to the global geometry of Ω
(as manifest in the projection PΩ).
Proposition 10.6. There exists c10.6 > 0 such that for any x ∈ Ω, ε ≥ 0, and

w ∈ Rn,

‖ (x + w)− PΩ(x + w) ‖2 ≥ ‖ PK(x,ε)w ‖2 − c10.6 ε ‖ PK(x,ε)w ‖.
Proof. PΩ(x + w) is the solution y of the convex quadratic program

minimize 1
2‖ y − (x + w) ‖2

subject to � ≤ Ay ≤ u.
(10.3)

The dual of (10.3) is the following program in (z, µ1, µ2):

maximize 1
2‖ z − (x + w) ‖2 − µT1 (u−Az)− µT2 (Az − �)

subject to z − (x + w) + ATµ1 −ATµ2 = 0
µ1, µ2 ≥ 0.

(10.4)

The proposition will follow from a felicitous choice of (z, µ1, µ2) for the dual.
Given x ∈ Ω and ε ≥ 0, let K = K(x, ε) and consider the polar decomposition

w = wK + wK◦ . We can write

wK = ATµ1 −ATµ2,

where µ1, µ2 ≥ 0 and the only nonzero components of µ1, µ2 correspond to the gen-
erators of K(x, ε), which are the outward pointing normals to the constraints within
distance ε of x. More precisely,

µi1 �= 0 only if i ∈ Iu(x, ε), µi2 �= 0 only if i ∈ I�(x, ε).(10.5)
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Furthermore, by Corollary 10.2 we can choose µ1, µ2 in such a way that there exists
c10.2 > 0, depending only on A, such that

‖ µ1 ‖+ ‖ µ2 ‖ ≤ c10.2‖ wK ‖.(10.6)

Meanwhile, let z = x + wK◦ . Then

w = wK + wK◦ = z − x + ATµ1 −ATµ2,

so (z, µ1, µ2) is feasible for the dual (10.4). Since y = PΩ(x + w) is feasible for the
primal (10.3), by duality we have

1
2‖ (x + w)− PΩ(x + w) ‖2
≥ 1

2‖ (x + w)− z ‖2 − µT1 (u−Az)− µT2 (Az − �)

= 1
2‖ wK ‖2 − µT1 (u−Ax)− µT2 (Ax− �) + (ATµ1 −ATµ2)

TwK◦ .

Since wK = ATµ1 −ATµ2 and (wK , wK◦) = 0, the latter expression reduces to

1
2‖ (x + w)− PΩ(x + w) ‖2 ≥ 1

2‖ wK ‖2 − µT1 (u−Ax)− µT2 (Ax− �).(10.7)

Now, in light of (10.5) and Proposition 10.5 we have

µT1 (u−Ax) + µT2 (Ax− �) ≤ a∗ ε ‖ µ1 ‖1 + a∗ ε ‖ µ2 ‖1 ≤ a∗
√
n ε (‖ µ1 ‖+ ‖ µ2 ‖).

Applying (10.6) we obtain

µT1 (u−Ax) + µT2 (Ax− �) ≤ c10.2 a∗
√
n ε ‖ wK ‖.

Substituting this into (10.7) yields

1
2‖ (x + w)− PΩ(x + w) ‖2 ≥ 1

2‖ wK ‖2 − c10.2 a∗
√
n ε ‖ wK ‖,

which is the desired result, with c10.6 = 2c10.2a
∗√n.

The consequence of Proposition 10.6 of utility to us is the following. It says that
if x ∈ Ω is close to ∂Ω and the step from x to PΩ(x + w) is sufficiently long, then w
cannot be “too normal” to ∂Ω near x.
Proposition 10.7. Given γ > 0, there exist r10.7 > 0 and c10.7 > 0, depending

only on A and γ, such that if η > 0, x ∈ Ω, 0 ≤ ε ≤ r10.7η
2, ‖ w ‖ ≤ γ, and

‖ PΩ(x + w)− x ‖ ≥ η, then

‖ PK◦(x,ε)w ‖ ≥ c10.7 ‖ PΩ(x + w)− x ‖.
Proof. Given x ∈ Ω and ε ≥ 0, let K = K(x, ε) and consider the polar decompo-

sition w = wK + wK◦ . Let q = PΩ(x + w)− x. We have

‖ w ‖2 = ‖ wK ‖2 + ‖ wK◦ ‖2 = ‖ (w− q) + q ‖2 = ‖ w− q ‖2 + 2 (w − q , q) + ‖ q ‖2.
We know that (z − PΩ(z) , PΩ(z)− y) ≥ 0 for all y ∈ Ω from the properties of the
projection PΩ [17]. Choosing z = x + w and y = x we obtain (w − q , q) ≥ 0, so

‖ wK ‖2 + ‖ wK◦ ‖2 ≥ ‖ w − q ‖2 + ‖ q ‖2.
From Proposition 10.6 we obtain

‖ wK ‖2 + ‖ wK◦ ‖2 ≥ ‖ wK ‖2 − c10.6 ε ‖ wK ‖+ ‖ q ‖2.
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Using the hypothesis that ‖ w ‖ ≤ γ, we obtain

‖ wK◦ ‖2 ≥ −c10.6 εγ + ‖ q ‖2.
Let

r10.7 =
3

4

1

γ

1

c10.6
.

Then, if ε ≥ 0 satisfies ε ≤ r10.7η
2, we have

‖ wK◦ ‖2 ≥ ‖ q ‖2/4.
Taking square roots yields the proposition, with c10.7 = 1/2.

As we noted at the introduction of K◦(x, ε), we can proceed from x along all
directions in K◦(x, ε) for a distance δ > 0, depending only on ε, and still remain
inside the feasible region. The following proposition is the formal statement of this
observation.
Proposition 10.8. Suppose ε > 0 satisfies ε ≤ h/2, where h is defined by (6.1).

Then for any x ∈ Ω, if w ∈ K◦(x, ε) and ‖ w ‖ ≤ ε/2, then (x + w) ∈ Ω.
Proof. Consider any index i ∈ {1, . . . ,m}. We will show that x + w is feasible

with respect to the ith constraint.
If x /∈ ∂Ω�i(ε) ∪ ∂Ωui(ε), then �i + ε‖ ai ‖ < aTi x < ui − ε‖ ai ‖, so

aTi x + aTi w ≥ �i + ε‖ ai ‖ − ‖ ai ‖‖ w ‖ ≥ �i + (ε/2)‖ ai ‖ ≥ �i

and

aTi x + aTi w ≤ ui − ε‖ ai ‖+ ‖ ai ‖‖ w ‖ ≤ ui − (ε/2)‖ ai ‖ ≤ ui.

On the other hand, suppose x ∈ ∂Ω�i(ε) ∪ ∂Ωui(ε). There are three cases to
consider. First suppose x ∈ Ω�i(ε) and x ∈ ∂Ωui

(ε). Since ε < h/2, this means that
�i = ui (i.e., the constraint is an equality constraint). Then, if w ∈ K◦(x, ε), we have
both (w , −ai) ≤ 0 and (w , ai) ≤ 0, so (w , ai) = 0. Thus

�i = aTi x + aTi w = ui.

Next suppose x ∈ ∂Ω�i(ε) but x /∈ ∂Ωui
(ε). If w ∈ K◦(x, ε), we have (−ai, w) ≤ 0.

Applying Proposition 10.5 we obtain

�i ≤ aTi x + aTi w ≤ �i + ε‖ ai ‖+ ‖ ai ‖‖ w ‖ ≤ �i + (3ε/2)‖ ai ‖ ≤ ui.

Finally, if x ∈ ∂Ωui(ε) but x /∈ ∂Ω�i(ε), then, if w ∈ K◦(x, ε), (ai, w) ≤ 0, so

ui ≥ aTi x + aTi w ≥ ui − ε‖ ai ‖ − ‖ ai ‖‖ w ‖ ≥ ui − (3ε/2)‖ ai ‖ ≥ �i.

Thus (x + w) satisfies the constraints for all i ∈ {1, . . . ,m}, so (x + w) ∈ Ω.
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For any y∗ in X∗ we have

〈d, y∗ − x∗〉 ≤ 0 since d ∈ NX∗(x∗).

This implies that X∗ can be separated from x∗ + d by a hyperplane Hd passing
through x∗ and orthogonal to d. Let {dk} be a sequence converging to d, such that
x∗ + tkd

k ∈ X for some sequence of positive numbers {tk}. (Such a sequence exists
because d ∈ TX(x∗).) Since d is not on Hd, we can assume without loss of generality
that Hd separates X

∗ from x∗ + tkd
k. Thus,

dist(x∗ + tkd
k, X∗) ≥ dist(x∗ + tkd

k, Hd)

=
tk〈d, dk〉
‖d‖ .
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Abstract. A very general optimization problem with a variational inequality constraint, in-
equality constraints, and an abstract constraint are studied. Fritz John type and Kuhn–Tucker
type necessary optimality conditions involving Mordukhovich coderivatives are derived. Several
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1. Introduction. An optimization problem with variational inequality constraints
(OPVIC) is a special class of an optimization problem over variables x and y in which
some or all of its constraints are defined by a parametric variational inequality with y
as its primary variable and x as the parameter. In this paper we consider a very gen-
eral optimization problem with variational inequality constraints in finite dimensional
spaces defined as follows:

(OPVIC) minimize f(x, y)

subject to (s.t.) ψ(x, y) ≤ 0, (x, y) ∈ C,
y ∈ Ω, 〈F (x, y), y − z〉 ≤ 0 ∀z ∈ Ω,

where f : Rn+m → R, ψ : Rn+m → Rd, F : Rn+m → Rm are Lipschitz near all
optimal solutions of (OPVIC), C is a nonempty closed subset of Rn+m, and Ω is a
closed convex subset of Rm. The above problem is also called a generalized bilevel
programming problem (see, e.g., Ye, Zhu, and Zhu [27]) or a mathematical program
with equilibrium constraints (see, e.g., Luo, Pang, and Ralph [10]). The reader is
referred to [10] for recent developments on the subject and references for other types
of optimality conditions.

Although under certain constraint qualifications one can reduce (OPVIC) to an
ordinary nonlinear programming problem, it is known that the usual constraint quali-
fication such as the Mangasarian–Fromovitz constraint qualification cannot in general
be satisfied for the equivalent nonlinear programming problem (see [27, Proposition
1.1]). In Ye and Ye [26], under the pseudoupper-Lipschitz continuity, a Kuhn–Tucker
type necessary optimality condition involving Mordukhovich coderivatives was derived
for (OPVIC). In Ye [25], it was shown that a Kuhn–Tucker type necessary optimal-
ity condition involving the proximal coderivatives (which are in general smaller than

∗Received by the editors December 3, 1998; accepted for publication (in revised form) November
23, 1999; published electronically June 6, 2000. This work was supported by NSERC and a University
of Victoria internal research grant.

http://www.siam.org/journals/siopt/10-4/34847.html
†Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3P4,

Canada (janeye@math.uvic.ca).

943



944 J. J. YE

Mordukhovich coderivatives) holds under a stronger constraint qualification in the
case where the variational inequality is a complementarity system, i.e., Ω = Ra ×Rb+
with a+ b = m.

The purpose of this paper is to study (OPVIC) under much weaker assumptions
and derive more powerful results than those in [26]. In particular, we incorporate
inequality constraints and an abstract constraint in our problems and we do not
assume the smoothness of the mapping F as in [26].

As in [26], we formulate (OPVIC) as the following optimization problem with a
generalized equation constraint:

(GP) minf(x, y)

s.t. ψ(x, y) ≤ 0, (x, y) ∈ C,
0 ∈ F (x, y) +N(y,Ω),

where

N(y,Ω) :=

{
the normal cone of Ω at y if y ∈ Ω,
∅ if y 
∈ Ω

is the normal cone operator.
We show that if (x̄, ȳ) is a local solution of (OPVIC), then there exist λ ≥ 0, η ∈

Rm, and γ ∈ Rd+ not all zero such that

0 ∈ λ∂f(x̄, ȳ) + ∂〈ψ, γ〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ)
+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +N((x̄, ȳ), C),

〈ψ(x̄, ȳ), γ〉 = 0,

where ∂ denotes the limiting subgradient (see Definition 2.2), NΩ denotes the set-
valued map y ⇒ N(y,Ω), and D∗ denotes the coderivative of a set-valued map (see
Definition 2.4). Moreover we introduce the concept of calmness for (OPVIC) and
show that under the calmness condition λ can be taken as 1. Several constraint
qualifications that are stronger than the calmness condition but easier to verify are
introduced and their relationships are indicated.

Note that in the case where Ω = Rm, (OPVIC) is reduced to an ordinary nonlinear
programming problem with equality, inequality, and abstract constraints. Hence our
results are applicable even for an ordinary nonlinear programming problem.

We organize the paper as follows. Section 2 contains background material on
nonsmooth analysis. In section 3, we derive the Fritz John type necessary optimality
condition involving Mordukhovich coderivatives and the Kuhn–Tucker type neces-
sary optimality conditions involving Mordukhovich coderivatives under the calmness
condition. In section 4 we introduce several constraint qualifications for the Kuhn–
Tucker necessary optimality conditions involving the Mordukhovich coderivatives and
study the relationships between these constraint qualifications. Applications to bilevel
programming problems are discussed in section 5.

The following notations are used throughout the paper. For an m-by-n matrix A
and index sets I ⊆ {1, 2, . . . ,m}, J ⊆ {1, 2, . . . , n}, AI and AI,J denote the submatrix
of A with rows specified by I and the submatrix of A with rows and columns specified
by I and J , respectively. For a mapping ψ : Rn → Rd and a vector γ ∈ Rd, 〈ψ, γ〉(x)
is the function defined by 〈ψ, γ〉(x) := 〈ψ(x), γ〉. For a vector d ∈ Rn, di is the ith
component of d and dI is the subvector composed from the components di, i ∈ I.
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〈a, b〉 is the inner product of vectors a and b. gphΦ is the graph of a set-valued map
Φ and epif is the epigraph of a function f . intΩ, clΩ, and coΩ denote the interior,
the closure, and the convex hull of a set Ω. We denote by Bδ(x0) and B the open ball
centered at x0 with radius δ > 0 and the open unit ball, respectively.

2. Preliminaries. This section contains some background material on non-
smooth analysis which will be used later. We give only concise definitions that will be
needed in the paper. For more detailed information on the subject, our references are
Clarke [3], Clarke et al. [4], Rockafellar and Wets [19], Loewen [9], and Mordukhovich
[13, 14].

First we give some concepts for various normal cones.
Definition 2.1. Let Ω be a nonempty subset of Rn. Given z̄ ∈ clΩ, the convex

cone

Nπ(z̄,Ω) := {ξ ∈ Rn : ∃M > 0 s.t. 〈ξ, z − z̄〉 ≤M‖z − z̄‖2 ∀z ∈ Ω}

is called the proximal normal cone to set Ω at point z̄, the closed cone

N(z̄,Ω) :=

{
lim
k→∞

ξk : ξk ∈ Nπ(zk,Ω), zk → z̄

}

is called the limiting normal cone to Ω at point z̄, and the closed convex hull of the
limiting normal cone

NC(z̄,Ω) := clcoN(z̄,Ω)

is called the Clarke normal cone to set Ω at point z̄.
Using the definitions for normal cones, we now give definitions for subgradients

of a single-valued map.
Definition 2.2. Let f : Rn → R ∪ {+∞} be lower semicontinuous and finite at

z̄ ∈ Rn. The proximal subgradient of f at z̄ is defined by

∂πf(z̄) := {ξ : (ξ,−1) ∈ Nπ((z̄, f(z̄)), epif)},

the limiting subgradient of f at z̄ is defined by

∂f(z̄) := {ξ : (ξ,−1) ∈ N((z̄, f(z̄)), epif)},

and the Clarke generalized gradient of f at z̄ is defined by

∂Cf(z̄) := {ξ : (ξ,−1) ∈ NC((z̄, f(z̄)), epif)},

where epif := {(x, r) ∈ Rn ×R : f(x) ≤ r} is the epigraph of f .
The following calculus rules for subgradients are well known and can be found in

the references given in the beginning of this section (see, e.g., [9, Proposition 5A.4,
Theorem 5A.8], proof of [5, Lemma 2.2]).

Proposition 2.3. Let functions f : Rn → R ∪ {+∞} be lower semicontinuous
and finite at z̄ ∈ Rn, g : Rn → R be Lipschitz near z̄, and h : Rn → R is C1+ at z̄
(i.e., the gradient of h is Lipschitz near z̄). Then the nonnegative scalar multiplication
rule is

∂(λf)(z̄) = λ∂f(z̄) ∀λ ≥ 0
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and the sum rules are

∂(f + g)(z̄) ⊆ ∂f(z̄) + ∂g(z̄),

∂π(f + h)(z̄) = ∂πf(z̄) +∇h(z̄).
Let ϕ(x) := f(F (x)), where F : Rm → Rn is Lipschitz near x̄ and f : Rn → R is

Lipschitz near F (x̄). Then the chain rule is

∂ϕ(x̄) ⊆
⋃
{∂〈η, F 〉(x̄) : η ∈ ∂f(F (x̄))}.

For set-valued maps, the definition for a limiting normal cone leads to the def-
inition of coderivative of a set-valued map introduced by Mordukhovich (see, e.g.,
[14]).

Definition 2.4. Let Φ : Rn ⇒ Rq be an arbitrary set-valued map (assigning
to each z ∈ Rn a set Φ(z) ⊂ Rq which may be empty) and (x̄, ȳ) ∈ clgphΦ, where
gphΦ := {(z, v) : v ∈ Φ(z)} denotes the graph of the set-valued map Φ. The set-valued
map D∗Φ(z̄, v̄) from Rq into Rn defined by

D∗Φ(z̄, v̄)(η) = {ξ ∈ Rn : (ξ,−η) ∈ N((z̄, v̄), gphΦ)}
is called the coderivative of Φ at the point (z̄, v̄). By convention for (z̄, v̄) 
∈ clgphΦ
we define D∗Φ(z̄, v̄)(η) = ∅. The symbol D∗Φ(z̄) is used when Φ is single-valued at z̄
and v̄ = Φ(z̄).

In the special case when a set-valued map is single-valued, the coderivative is
related to the limiting subgradient in the following way.

Proposition 2.5 (see [14, Proposition 2.11]). Let Φ : Rn → Rq be single-valued
and Lipschitz near z̄. Then

D∗Φ(z̄)(η) = ∂〈Φ, η〉(z̄) ∀η ∈ Rq.
We now give some concepts for Lipschitz behavior of a set-valued map. The

following concept for Lipschitz behavior was introduced by Aubin [1].
Definition 2.6. A set-valued map Φ : Rn ⇒ Rq is said to be pseudo-Lipschitz

continuous around (z̄, v̄) ∈ gphΦ if there exist a neighborhood U of z̄, a neighborhood
V of v̄, and µ ≥ 0 such that

Φ(z) ∩ V ⊂ Φ(z′) + µ‖z′ − z‖clB ∀z′, z ∈ U.
On the other hand, the following upper-Lipschitz behavior was studied by Robin-

son [21].
Definition 2.7. A set-valued map Φ : Rn ⇒ Rq is said to be upper-Lipschitz

continuous at z̄ ∈ Rn if there exist a neighborhood U of z̄ and µ ≥ 0 such that

Φ(z) ⊂ Φ(z̄) + µ‖z − z̄‖clB ∀z ∈ U.
The following proposition is a sum rule for coderivatives.
Proposition 2.8 (see [14, Corollary 4.2]). Let Φ1 and Φ2 be closed-graph set-

valued maps from Rn into Rq and let v̄ ∈ Φ1(z̄)+Φ2(z̄). Assume that the multifunction
S : Rn+q ⇒ R2q defined by

S(z, v) := {(v1, v2) ∈ R2q|v1 ∈ Φ1(z), v2 ∈ Φ2(z), v1 + v2 = v}
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is locally bounded around (z̄, v̄) and either Φ1 is pseudo-Lipschitz around (z̄, v1) or Φ2

is pseudo-Lipschitz around (z̄, v2) for each (v1, v2) ∈ S(z̄, v̄). Then for any η ∈ Rq

D∗(Φ1 +Φ2)(z̄, v̄)(η) ⊆∪(v1,v2)∈S(z̄,v̄)[D
∗Φ1(z̄, v1)(η) +D

∗Φ2(z̄, v2)(η)].

The following sum rule for the case where one of the set-valued maps is single-
valued follows from Propositions 2.5 and 2.8.

Corollary 2.9. Let Φ1 : Rn → Rq be single-valued and Lipschitz near z̄ and
Φ2 : Rn ⇒ Rq be an arbitrary closed set-valued map. Then for any v̄ ∈ Φ1(z̄)+Φ2(z̄)
and η ∈ Rq

D∗(Φ1 +Φ2)(z̄, v̄)(η) ⊆ ∂〈Φ1, η〉(z̄) +D∗Φ2(z̄, v̄ − Φ1(z̄))(η).

3. Necessary optimality conditions. The purpose of this section is to de-
rive the necessary optimality conditions involving Mordukhovich coderivatives for
(OPVIC).

The following fundamental results obtained by Mordukhovich will be useful in
proving the Fritz John type necessary optimality condition involving Mordukhovich
coderivatives.

Lemma 3.1 (extremal principle). Let Ω1, . . . ,Ωn be closed sets in Rm and let
x̄ ∈ ∩ni=1Ωi. Suppose that there exist a neighborhood U of x̄ and sequences {aik} ⊆
Rm, i = 1, 2, . . . , n such that aik → 0 as k →∞ for i = 1, 2, . . . , n and

∩ni=1(Ωi − aik) ∩ U = ∅ ∀k = 1, 2, . . . .

Then there exists ξi ∈ N(x̄,Ωi), i = 1, . . . , n such that

ξ1 + ξ2 + · · ·+ ξn = 0, ‖ξ1‖+ ‖ξ2‖+ · · ·+ ‖ξn‖ = 1.

Although the terminology of the extremal principle was first given by Mordukhovich
[14], the essence of the results can be traced back to Mordukhovich [11]. We may use-
fully view it as an extension of the Hahn–Banach separation theorem to nonconvex
sets. The proof for the case when n = 2 can be found in [14, Theorem 3.2]. For
the case when n > 2, the result can be proved in exactly the same way as the proof
of [14, Theorem 3.2] or mathematical induction on n can be used as in the proof of
Mordukhovich and Shao [17, Theorem 3.2].

The extremal principle turns out to be very useful in deriving the Fritz John type
necessary optimality condition as shown in the following theorem.

Theorem 3.2. Let (x̄, ȳ) be a local solution of (OPVIC). Then there exist λ ≥ 0,
η ∈ Rm, γ ∈ Rd+ not all zero such that

0 ∈ λ∂f(x̄, ȳ) + ∂〈ψ, γ〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ)
+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +N((x̄, ȳ), C),

〈ψ(x̄, ȳ), γ〉 = 0.

Proof. Define

Ω1 := {(x, y, u0, u, v) : f(x, y) ≤ u0},
Ω2 := {(x, y, f(x̄, ȳ), u, 0) : ψ(x, y) ≤ u},
Ω3 := {(x, y, f(x̄, ȳ), 0, 0) : (x, y) ∈ C},
Ω4 := {(x, y, f(x̄, ȳ), 0, v) : v ∈ F (x, y) +N(y,Ω)}.
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Then (x̄, ȳ, f(x̄, ȳ), 0, 0) ∈ ∩4
i=1Ωi. By taking a1k = (0, 0, νk, 0, 0) with νk < 0, νk → 0,

aik = 0 ∀i = 2, 3, 4, and U = V × R1+d+m, where V is a neighborhood of the local
minimizer (x̄, ȳ), it is easy to verify that

∩4
i=1(Ωi − aik) ∩ U = ∅ ∀k = 1, 2, . . . .

By Lemma 3.1, there exist ξi, not all zero such that ξi ∈ N((x̄, ȳ, f(x̄, ȳ), 0, 0),Ωi),
i = 1, 2, 3, 4, and

0 = ξ1 + ξ2 + ξ3 + ξ4.

That is, there exist (a,−λ) ∈ Rn+m+1, (b,−γ) ∈ Rn+m+d, c ∈ Rn+m, (d,−η) ∈
Rn+m+m not all zero such that

(a,−λ) ∈ N((x̄, ȳ, f(x̄, ȳ)), epif),(3.1)

(b,−γ) ∈ N((x̄, ȳ, 0), epiψ),(3.2)

c ∈ N((x̄, ȳ), C),(3.3)

(d,−η) ∈ N((x̄, ȳ, 0), gphϕ) where ϕ(x, y) := F (x, y) +N(y,Ω),(3.4)

and

0 = a+ b+ c+ d.(3.5)

By the definition of epigraph, inclusion (3.1) implies that λ ≥ 0. Since f is Lipschitz
near (x̄, ȳ), either a = 0, λ = 0, or λ > 0 and ( aλ ,−1) ∈ N((x̄, ȳ, f(x̄, ȳ)), epif), which
by definition implies that a

λ ∈ ∂f(x̄, ȳ). Hence (3.1) implies that

λ ≥ 0, a ∈ λ∂f(x̄, ȳ).(3.6)

Similarly, inclusion (3.2) implies that γ ≥ 0. Let M := {i : ψi(x̄, ȳ) = 0} be
the index set of the binding constraints. Inclusion (3.2) implies that (b,−γM ) ∈
N((x̄, ȳ, 0), gphψM ), which is equivalent to b ∈ D∗ψM (x̄, ȳ)(γM ) by definition of
coderivatives. By virtue of Proposition 2.5, we haveD∗ψM (x̄, ȳ)(γM ) = ∂〈ψM , γM 〉(x̄, ȳ).
Therefore we have

γ ≥ 0, 〈ψ(x̄, ȳ), γ〉 = 0, b ∈ ∂〈ψ, γ〉(x̄, ȳ).(3.7)

By definition of coderivatives, (3.4) implies that d ∈ D∗ϕ(x̄, ȳ, 0)(η). By Corollary
2.9, we have

d ∈ D∗ϕ(x̄, ȳ, 0)(η)
⊆ ∂〈F, η〉(x̄, ȳ) + {0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η).(3.8)

The conclusion of the theorem follows from inclusions (3.6), (3.7), (3.3), (3.8), and
(3.5).

Remark. In the case of ordinary mathematical programming problems, Ω = Rm,
Theorem 3.2 is a limiting subgradient version of the generalized Lagrange multiplier
rules in Clarke [3, Theorem 6.1.1] and was obtained by Mordukhovich in [12, Theorem
1(b)].

The following constraint qualification called no nonzero abnormal multiplier con-
straint qualification (NNAMCQ) follows from the Fritz John type necessary condition.
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Corollary 3.3. Let (x̄, ȳ) be a local solution of (OPVIC). Assume that condition
(NNAMCQ) is satisfied, i.e., there is no nonzero vector (γ, η) ∈ Rd+ ×Rm such that

0 ∈ ∂〈ψ, γ〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ)
+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +N((x̄, ȳ), C),(3.9)

〈ψ(x̄, ȳ), γ〉 = 0

is satisfied at (x̄, ȳ). Then λ > 0 in the conclusion of Theorem 3.2.
Proof. By Theorem 3.2, there exists λ ≥ 0, η ∈ Rm, γ ∈ Rd+ not all zero such that

0 ∈ λ∂f(x̄, ȳ) + ∂〈ψ, γ〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ)
+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +N((x̄, ȳ), C),(3.10)

〈ψ(x̄, ȳ), γ〉 = 0.

The case λ = 0 is impossible under condition (NNAMCQ). Indeed, if λ = 0 in the
above condition, then the inclusion (3.10) coincides with inclusion (3.9). But this is
impossible since (γ, η) is nonzero.

It is well known that the calmness condition (see, e.g., Clarke [3]) is the weakest
constraint qualification for nonlinear programming problems with Lipschitz problem
data. We now extend the concept to the setting of (OPVIC).

Definition 3.4. Let (x̄, ȳ) be a local solution to (OPVIC). (GP) is said to be
calm at (x̄, ȳ) provided that there exist ε > 0 and µ > 0 such that ∀ (p, q) ∈ εB
∀ (x, y) ∈ Bε(x̄, ȳ) satisfying

ψ(x, y) + p ≤ 0, (x, y) ∈ C,
q ∈ F (x, y) +N(y,Ω)

it follows that

f(x̄, ȳ) ≤ f(x, y) + µ‖(p, q)‖.
Lemma 3.5. Let (x̄, ȳ) be a local solution to (GP), where (GP) is calm at (x̄, ȳ).

Then (x̄, ȳ, 0) is a local solution to the following problem:

min f(x, y) + dµmax{ψi(x, y), 0, i = 1, . . . , d}+ µ‖q‖
s.t. (x, y, q) ∈ gphΦ ∩ C ×Rm,

where Φ is a set-valued map defined by Φ(x, y) := F (x, y) +N(y,Ω).
Proof. By definition of the calmness,

f(x̄, ȳ) ≤ f(x, y) + µ(‖p‖+ ‖q‖) ∀(x, y, p, q)
s.t. ψ(x, y) + p ≤ 0, (x, y, q) ∈ gphΦ ∩ C ×Rm, (x, y) ∈ Bε(x̄, ȳ), (p, q) ∈ εB.

Since

ψi(x, y)− ψ+
i (x, y) ≤ 0, i = 1, . . . , d

taking pi = −ψ+
i (x, y), we have for (x, y) in a neighborhood of (x̄, ȳ) and q near 0,

f(x̄, ȳ) ≤ f(x, y) + µ
(

d∑
i=1

ψ+
i (x, y) + ‖q‖

)

≤ f(x, y) + dµmax{ψi(x, y), 0, i = 1, . . . , d}+ µ‖q‖.
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Notice that max{ψi(x̄, ȳ), 0, i = 1, . . . , d} = 0. The proof is complete.
Theorem 3.6. Let (x̄, ȳ) be a local solution of (OPVIC). Suppose that (GP) is

calm at (x̄, ȳ). Then λ can be taken as 1 in the conclusion of Theorem 3.2.
Proof. By Lemma 3.5, (x̄, ȳ, 0) is a local solution to the new (OPVIC):

min f̃(x, y, q)

s.t. 0 ∈ F̃ (x, y, q) +N(y,Ω),

where f̃(x, y, q) := f(x, y) + dµmax{ψi(x, y), 0, i = 1, . . . , d}+ µ‖q‖ and F̃ (x, y, q) :=
−q + F (x, y).

We now prove that condition (NNAMCQ) is satisfied. Indeed, it is easy to see
that the inclusion (3.9) for the new (OPVIC) is

0 ∈ ∂〈F, η〉(x̄, ȳ)× {−η}+ {0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η)× {0}+N((x̄, ȳ), C)× {0},
which is only satisfied by the zero vector η = 0.

Applying Corollary 3.3, there exists η ∈ Rm such that

0 ∈ ∂f̃(x̄, ȳ, 0) + ∂〈F, η〉(x̄, ȳ)× {−η}
+{0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η)× {0}+N((x̄, ȳ), C)× {0}.

Note that

f̃(x, y, q) = f(x, y) + dµh(ψ(x, y)) + µ‖q‖,
where h : Rd → R is defined by h(u) := max{u1, . . . , ud, 0}. By the sum rule and the
chain rule in Proposition 2.3,

∂f̃(x̄, ȳ, 0) ⊆ ∂f(x̄, ȳ)×{0}+dµ∪{∂〈η, ψ〉(x̄, ȳ) : η ∈ ∂h(ψ(x̄, ȳ))}+µ({0}×{0}×B).
The proof of the theorem is completed after calculating the subgradient of the

convex function h at ψ(x̄, ȳ), i.e.,

∂h(ψ(x̄, ȳ)) =

{
γ ∈ Rd : γi ≥ 0, γiψi(x̄, ȳ) = 0, i = 1, . . . , d and

d∑
i=1

γi = 1

}
.

Remark. In the case of ordinary mathematical programming problems, Ω = Rm,
Theorem 3.6 can be considered as a limiting subgradient version of the generalized
Lagrange multiplier rules in Clarke [3, Proposition 6.4.4].

Note that Theorems 3.2 and 3.6 involve the coderivative D∗NΩ(ȳ,−F (x̄, ȳ))(η).
By the definition of coderivatives,

ξ ∈ D∗NΩ(ȳ,−F (x̄, ȳ))(η)⇐⇒ (ξ,−η) ∈ N((ȳ,−F (x̄, ȳ)), gphNΩ).

Hence calculation of the coderivative D∗NΩ(ȳ,−F (x̄, ȳ))(η) depends on calculation
of the limiting normal cone N((ȳ,−F (x̄, ȳ)), gphNΩ). In the case Ω = Rm+ , the lim-
iting normal cone N((ȳ,−F (x̄, ȳ)), gphNΩ) can be calculated explicitly by using the
following proposition.

Proposition 3.7. For any (ȳ, z̄) ∈ gphNRm
+
, define

L := L(ȳ, z̄) := {i ∈ {1, 2, · · · ,m} : ȳi > 0, z̄i = 0},
I+ := I+(ȳ, z̄) := {i ∈ {1, 2, · · · ,m} : ȳi = 0, z̄i < 0},
I0 := I0(ȳ, z̄) := {i ∈ {1, 2, · · · ,m} : ȳi = 0, z̄i = 0}.
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Then

N((ȳ, z̄), gphNRm
+
) = {(α,−β) ∈ R2m : αL = 0, βI+ = 0

∀i ∈ I0, either αiβi = 0 or αi < 0 and βi < 0}.

Proof. The proof of the above proposition follows from [25, Proposition 2.7] and
the definition of the limiting normal cones.

In many applications, Ω can be chosen as Ω = Ra × Rb+ for some nonnegative
integers a, b with a + b = m. Let y = (z, u), F (x, y) = (G(x, y), H(x, y)). Since
NRa(z) = {0} is a constant map, we have

D∗NΩ(ȳ,−F (x̄, ȳ))(α, β) = {0} ×D∗NRb
+
(ū,−H(x̄, z̄, ū))(β).

Again the limiting normal cone N((ū,−H(x̄, z̄, ū)), gphNRb
+
) can be calculated by

using Proposition 3.7.
In the case where Ω is a polyhedral convex set, a calculation of the limiting normal

cone to the graph of the normal cone to the set Ω was first given in the proof of [6,
Theorem 2] and stated in [20, Proposition 4.4].

4. Constraint qualifications. In this section we study sufficient conditions for
the calmness, introduce some constraint qualifications, and discuss the relationships
between them.

Definition 4.1. We say that the constraint system (CS) for (OPVIC)

(CS) ψ(x, y) ≤ 0, (x, y) ∈ C,
0 ∈ F (x, y) +N(y,Ω)

has a local error bound at a point (x̄, ȳ) if there exist positive constants µ, δ, and ε
such that

d((x, y),Σ(0, 0)) ≤ µ‖(p, q)‖ ∀ (p, q) ∈ εB,
(x, y) ∈ Σ(p, q) ∩Bδ(x̄, ȳ),(4.1)

where

Σ(p, q) := {(x, y) ∈ C : ψ(x, y) + p ≤ 0, q ∈ F (x, y) +N(y,Ω)}(4.2)

is the set of solutions to the perturbed generalized equation.
Note that (CS) has a local error bound at a point (x̄, ȳ) if and only if Σ(p, q) is

pseudoupper-Lipschitz continuous around (0, 0, x̄, ȳ) in the terminology of [26, Def-
inition 2.8]. Σ(p, q) being either pseudo-Lipschitz continuous around (0, 0, x̄, ȳ) (see
Definition 2.6) or upper-Lipschitz continuous (see Definition 2.7) at (x̄, ȳ) implies that
(CS) has a local error bound at (x̄, ȳ).

We now prove that the existence of a local error bound for the constraint system
of (OPVIC) at a solution (x̄, ȳ) implies that (OPVIC) is calm at (x̄, ȳ).

Proposition 4.2. Suppose that (CS) has a local error bound at (x̄, ȳ), a local
solution to (OPVIC). Then (GP) is calm at (x̄, ȳ).

Proof. Since (CS) has a local error bound at (x̄, ȳ), there exist positive numbers
µ, δ, ε such that (4.1) is satisfied. Let (p, q) ∈ εB, (x, y) ∈ Σ(p, q) ∩ Bδ(x̄, ȳ) and
(x∗, y∗) ∈ Σ(0, 0) be the projection of the vector (x, y). Then
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f(x̄, ȳ) ≤ f(x∗, y∗) since (x̄, ȳ) solves (OPVIC)

= f(x, y) + (f(x∗, y∗)− f(x, y))
≤ f(x, y) + Lf‖(x∗, y∗)− (x, y)‖ where Lf is the Lipschitz constant of f

= f(x, y) + Lfd((x, y),Σ(0, 0))

≤ f(x, y) + Lfµ‖(p, q)‖ by virtue of (4.1).

The proof is complete.
We now study sufficient conditions for existence of a local error bound that are

easier to verify. Recall that a set-valued map is called a polyhedral multifunction if its
graph is a union of finitely many polyhedral convex sets. This class of set-valued maps
is closed under (finite) addition, scalar multiplication, and (finite) composition. By
Robinson [23, Proposition 1], a polyhedral multifunction is upper-Lipschitz. Hence
the following result provides a sufficient condition for existence of a local error bound.

Theorem 4.3. Suppose that the mappings ψ, F are affine, C is polyhedral, and
Ω is a polyhedral convex set. Then the solution map for the perturbed generalized
equation (4.2) is upper-Lipschitz at any feasible solution of (OPVIC) and hence (CS)
has a local error bound at any feasible solution of (OPVIC).

Proof. Since the graph of NΩ is a finite union of polyhedral convex sets, NΩ is
polyhedral. Hence (ψ, F )+Rd+×NΩ ( as the sum of polyhedral maps (ψ, F ), Rd+×NΩ)
is polyhedral, and so therefore is its inverse map

S(p, q) := {(x, y) : ψ(x, y) + p ≤ 0, q ∈ F (x, y) +N(y,Ω)}.
That is, the graph

gphS := {(x, y, p, q) : ψ(x, y) + p ≤ 0, q ∈ F (x, y) +N(y,Ω)}
is a union of polyhedral convex sets. Since

gphΣ = {(x, y, p, q) ∈ C ×Rd ×Rm : ψ(x, y) + p ≤ 0, q ∈ F (x, y) +N(y,Ω)}
= (C ×Rd ×Rm) ∩ gphS,

which is also a union of polyhedral convex sets, Σ is also a polyhedral multifunction.
By [23, Proposition 1], Σ is upper-Lipschitz. Hence (CS) has a local error bound at
any feasible point.

Remark. The result in the case Ω = Rm is actually the well-known error bound
result for linear systems due to Hoffman [7]. In this case, the above result recovers the
well-known result in nonlinear programming that no other constraint qualification is
needed when the constraint system is linear.

We now prove that condition (NNAMCQ) defined in Corollary 3.3 is a sufficient
condition for existence of a local error bound.

Theorem 4.4. Assume that condition (NNAMCQ) is satisfied at (x̄, ȳ). Then
the solution map for the perturbed generalized equation (4.2) is pseudo-Lipschitz con-
tinuous around (0, 0, x̄, ȳ) and hence (CS) has a local error bound at (x̄, ȳ).

Proof. By virtue of [16, Proposition 3.5], it suffices to prove that

D∗Σ(0, 0, x̄, ȳ)(0, 0) = {(0, 0)}.
Suppose that (γ,−η) ∈ D∗Σ(0, 0, x̄, ȳ)(0, 0), which means by the definition of coderiva-
tives that

(γ,−η, 0, 0) ∈ N((0, 0, x̄, ȳ), gphΣ).
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By the definition of limiting normal cones, there are sequences (pk, qk, xk, yk) →
(0, 0, x̄, ȳ) and (γk,−ηk, αk, βk)→ (γ,−η, 0, 0) with

(γk,−ηk, αk, βk) ∈ Nπ((pk, qk, xk, yk), gphΣ).
For each k by the definition of proximal normal cones, there are M > 0 such that
∀ (p, q, x, y) ∈ gphΣ,
〈(γk,−ηk, αk, βk), (p, q, x, y)− (pk, qk, xk, yk)〉 ≤M‖(p, q, x, y)− (pk, qk, xk, yk)‖2.

That is, (pk, qk, xk, yk) is a solution to the optimization problem

min〈−(γk,−ηk, αk, βk), (p, q, x, y)〉+M‖(p, q, x, y)− (pk, qk, xk, yk)‖2
s.t. ψ(x, y) + p ≤ 0, (x, y) ∈ C,

q ∈ F (x, y) +N(y,Ω).

Inclusion (3.9) for the above problem is

0 ∈ {(γ, 0)} × ∂〈ψ, γ〉(xk, yk) + {(0,−η)} × ∂〈F, η〉(xk, yk)
+{(0, 0, 0)} ×D∗NΩ(y

k, qk − F (xk, yk))(η) + {(0, 0)} ×N((x, y), C),

〈ψ(xk, yk) + pk, γ〉 = 0,

which is only satisfied by γ = 0, η = 0 and hence (NNAMCQ) is satisfied at (pk, qk, xk, yk).
Applying Corollary 3.3, there exist γ̃k ∈ Rd, η̃k ∈ Rm such that

0 ∈ −(γk,−ηk, αk, βk) + {(γ̃k, 0)} × ∂〈ψ, γ̃k〉(xk, yk) + {(0,−η̃k)} × ∂〈F, η̃k〉(xk, yk)
+{(0, 0, 0)} ×D∗NΩ(y

k, qk − F (xk, yk))(η̃k) + {(0, 0)} ×N((xk, yk), C),

〈ψ(xk, yk) + pk, γ̃k〉 = 0.

That is,

(αk, βk) ∈ ∂〈ψ, γk〉(xk, yk) + ∂〈F, ηk〉(xk, yk)
+{0} ×D∗NΩ(y

k, qk − F (xk, yk))(ηk) +N((xk, yk), C),

〈ψ(xk, yk) + pk, γk〉 = 0.

Taking limits as k →∞ by virtue of Lipschitz continuity of ψ and F , we have

0 ∈ ∂〈ψ, γ〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ) + {0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +N((x̄, ȳ), C),

〈ψ(x̄, ȳ), γ〉 = 0.

Consequently, by condition (NNAMCQ), (γ, η) = (0, 0) and hence Σ is pseudo-
Lipschitz continuous around (0, 0, x̄, ȳ).

In the case of the nonlinear programming problem (i.e, when Ω = Rm), condition
(NNAMCQ), with the limiting subgradient replaced by the Clarke generalized gradi-
ent, is equivalent to the generalized Mangasarian–Fromovitz constraint qualification
(see, e.g., [24, Proposition 3.1] and [8]). We now extend the equivalence to the case
where Ω = Ra ×Rb+. The result was proved by Outrata [18, Proposition 3.3] for the
case where Ω = Rm+ , ψ is independent of y and there are no abstract constraints.
Note that our result improves the one in [18] in that no extra assumption such as (A)
in [18] is needed for the inequality constraints. However, the proof technique is the
same as that in [18]. Hence we only sketch the proof.
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Proposition 4.5. Assume that Ω = Ra×Rb+ with a, b nonnegative integers and
a + b = m, C = D × Rb, where D is a closed subset of Rn+a. Let y = (z, u) and
F (x, y) = (G(x, y), H(x, y)) and suppose all mappings ψ,G,H are C1. We say that
the generalized Mangasarian–Fromovitz constraint qualification (GMFCQ) is satisfied
at (x̄, ȳ) if

(i) for every partition of I0 into sets P,Q,R with R 
= ∅, there exist vectors
k ∈ intTC((x̄, z̄), D), h ∈ Rb such that hI+ = 0, hQ = 0, hR ≥ 0,

∇x,zψM (x̄, z̄, ū)k +∇uψM (x̄, z̄, ū)h ≤ 0,

∇x,zG(x̄, z̄, ū)k +∇uG(x̄, z̄, ū)h = 0,

∇x,zHL∪P (x̄, z̄, ū)k +∇uHL∪P (x̄, z̄, ū)h = 0,

∇x,zHR(x̄, z̄, ū)k +∇uHR(x̄, z̄, ū)h ≥ 0,

and either hi > 0 or

∇x,zHi(x̄, z̄, ū)k +∇uHi(x̄, z̄, ū)h > 0 for some i ∈ R;
(ii) for every partition of I0 into the sets P,Q, the matrix[ ∇x,zG(x̄, z̄, ū) ∇uGL∪P (x̄, z̄, ū)

∇x,zHL∪P (x̄, z̄, ū) ∇uHL∪P,L∪P (x̄, z̄, ū)
]

has full row rank and there exist vectors k ∈ intTC((x̄, z̄), D), h ∈ Rb such
that

hI+ = 0, hQ = 0,

∇x,zψM (x̄, z̄, ū)k +∇uψM (x̄, z̄, ū)h < 0,

∇x,zG(x̄, z̄, ū)k +∇uG(x̄, z̄, ū)h = 0,

∇x,zHL∪P (x̄, z̄, ū)k +∇uHL∪P (x̄, z̄, ū)h = 0,

where TC((x̄, z̄), D) denotes the Clarke tangent cone of D at (x̄, z̄),M := {i : ψi(x̄, z̄, ū) =
0} is the index set of binding inequality constraints, and

L := L(x̄, z̄, ū) := {i ∈ {1, 2, · · · , b} : ūi > 0, Hi(x̄, z̄, ū) = 0},
I+ := I+(x̄, z̄, ū) := {i ∈ {1, 2, · · · , b} : ūi = 0, Hi(x̄, z̄, ū) > 0},
I0 := I0(x̄, z̄, ū) := {i ∈ {1, 2, · · · , b} : ūi = 0, Hi(x̄, z̄, ū) = 0}.

Then (GMFCQ) implies (NNAMCQ) and under the assumption that intTC((x̄, z̄), D) 
=
∅ (GMFCQ) is equivalent to (NNAMCQ) with limiting normal cone of D replaced by
the Clarke normal cone of D.

Proof. Let η = (α, β). Then the condition (NNAMCQ) is equivalent to saying
that there is no nonzero vector (γ, α, β) ∈ Rd+ ×Ra ×Rb such that

0 ∈ ∇ψM (x̄, z̄, ū)�γM +∇G(x̄, z̄, ū)�α+∇H(x̄, z̄, ū)�β
+{0} × {0} ×D∗NRb

+
(ū,−H(x̄, z̄, ū))(β) +N((x̄, z̄), D)× {0},

where A� denotes the transpose of a matrix A. That is, there is no (γ, α, β) 
= 0 such
that γ ≥ 0 and

−∇x,zψM (x̄, z̄, ū)�γM −∇x,zG(x̄, z̄, ū)�α−∇x,zH(x̄, z̄, ū)�β ∈ N((x̄, z̄), D),

(−∇uψM (x̄, z̄, ū)�γM −∇uG(x̄, z̄, ū)�α−∇uH(x̄, z̄, ū)�β,−β)
∈ N((ū,−H(x̄, z̄, ū)), gphNRb

+
).
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Let (w,−β) ∈ N((ū,−H(x̄, z̄, ū)), gphNRb
+
). Then, by Proposition 3.7, wL =

0, βI+ = 0 and for any i ∈ I0, either wiβi = 0 or wi < 0, βi < 0. So I0 splits into the
sets

P := {i ∈ I0 : wi = 0}, Q := {i ∈ I0 : βi = 0}, R := {i ∈ I0 : wi < 0, βi < 0}.

Using this partition, condition (NNAMCQ) is equivalent to the following two condi-
tions:

(i) For every partition of I0 into the sets P,Q,R with R 
= ∅ there are no vectors
γM , w, α, βL∪P∪R satisfying the system

−∇x,zψM (x̄, z̄, ū)�γM −∇x,zG(x̄, z̄, ū)�α
−∇x,zHL∪P∪R(x̄, z̄, ū)�βL∪P∪R ∈ N((x̄, z̄), D)

−∇uψM,L∪P (x̄, z̄, ū)�γM −∇uGA,L∪P (x̄, z̄, ū)�α
−∇uHL∪P∪R,L∪P (x̄, z̄, ū)�βL∪P∪R = 0,

wI+∪Q∪R = −∇uψM,I+∪Q∪R(x̄, z̄, ū)�γM −∇uGA,I+∪Q∪R(x̄, z̄, ū)�α

−∇uHL∪P∪R,I+∪Q∪R(x̄, z̄, ū)�βL∪P∪R,
γM ≥ 0, wR < 0, βR < 0;

(ii) For every partition of I0 into the sets P,Q there are no vectors γM , w, α, βL∪P
satisfying the system

−∇x,zψM (x̄, z̄, ū)�γM −∇x,zG(x̄, z̄, ū)�α
−∇x,zHL∪P (x̄, z̄, ū)�βL∪P ∈ N((x̄, z̄), D)

−∇uψM,L∪P (x̄, z̄, ū)�γM −∇uGA,L∪P (x̄, z̄, ū)�α
−∇uHL∪P,L∪P (x̄, z̄, ū)�βL∪P = 0,

wI+∪Q = −∇uψM,I+∪Q(x̄, z̄, ū)�γM −∇uGA,I+∪Q(x̄, z̄, ū)�α

−∇uHL∪P,I+∪Q(x̄, z̄, ū)�βL∪P ,
γM ≥ 0,

where A denotes the index set A := {1, 2, · · · , a}.
In the case where D is an open set, as in Outrata [18], the results follow from

applying Motzkin’s and Tucker’s theorems of alternatives and the general case follows
from applying the convex separation theorem.

Remark. Note that in the case where Ω = Rm, (OPVIC) is an ordinary nonlinear
programming problem with equality, inequality constraints, and abstract constraints
and (GMFCQ) is reduced to the condition that the matrix ∇F (x̄, ȳ) has full row rank
and there exist vectors k ∈ intTC((x̄, ȳ), C) such that

∇ψM (x̄, ȳ)k < 0,

∇F (x̄, ȳ)k = 0,

which is the generalized Mangasarian–Fromovitz constraint qualification for the non-
linear programming problems (see, e.g., Jourani [8]). Note that we can also deal
with the case where the mappings ψ, F are not smooth but Lipschitz continuous only
by replacing the gradient ∇ by the Clarke gradient ∂C without any difficulty. The
smoothness in the assumption is just for the easy exposition.
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The following theorem extends a sufficient condition in [4, Theorem 3.3.1] for
existence of a local error bound of an equality system to (CS). Note that as in the
proof of [4, Theorem 3.3.8], we can prove that (NNAMCQ) is stronger than the
following sufficient condition for existence of an local error bound.

Theorem 4.6. Let (x̄, ȳ) ∈ Σ(0, 0), where Σ is the solution map (4.2). Assume
that the bounded constraint qualification condition (Bounded CQ) is satisfied at (x̄, ȳ),
i.e., there exist constants µ > 0, 0 < ε ≤ ∞, such that

µ−1 ≤ inf{‖ξ‖ :ξ ∈ ∂〈ψ, e1〉(x, y) + ∂〈F, e2〉(x, y)
+{0} ×D∗NΩ(y, q − F (x, y))(e2) +N((x, y), C),

〈ψ(x, y) + p, e1〉 = 0, ‖(e1, e2)‖ = 1, e1 ≥ 0,

(p, q) 
= 0, (x, y) ∈ Σ(p, q) ∩Bε(x̄, ȳ)}.

Then if ε <∞ ∀ 0 < δ < ε,

d((x, y),Σ(0, 0)) ≤ µ‖(p, q)‖ ∀ (x, y) ∈ Σ(p, q) ∩Bδ(x̄, ȳ), (p, q) ∈ (ε− δ)µ−1B

and if ε =∞,

d((x, y),Σ(0, 0)) ≤ µ‖(p, q)‖ ∀ (x, y) ∈ Σ(p, q).

Proof. Observe that

Σ(0, 0) = {(x, y) : 0 ∈ Φ(x, y)}
= {(x, y) : d(0,Φ(x, y)) = 0},

where Φ(x, y) := (−ψ(x, y), F (x, y))+Rd−×N(y,Ω)+∆C(x, y) and ∆C is the indicator
mapping of set C defined by

∆C(x, y) :=

{ {0} if (x, y) ∈ C,
∅ if (x, y) 
∈ C.

It is obvious that the following claim will be useful.
Claim. Suppose the function f(x) : Rn → R ∪ {+∞} is nonnegative and lower

semicontinuous. Let x0 be a solution of S = {x : f(x) = 0}. Suppose that for some
µ > 0, 0 < ε ≤ ∞,

‖ξ‖ ≥ µ−1 ∀ ξ ∈ ∂πf(x), 0 < f(x) <∞, x ∈ Bε(x0).

If ε <∞, then ∀ 0 < δ < ε,

d(x, S) ≤ µf(x) ∀x ∈ Bδ(x0), f(x) < (ε− δ)µ−1

and if ε =∞, then

d(x, S) ≤ µf(x) ∀x ∈ Rn.

Proof of the claim. Taking V = Bε(x0) in [4, Theorem 3.3.1],

min{d(x,Bε(x0)
C), d(x, S)} ≤ µf(x) ∀x ∈ Bε(x0),

where ΩC denotes the complement of a set Ω.
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Let 0 < δ < ε and x ∈ Bδ(x0). Then obviously, d(x,Bε(x0)
C) > ε− δ. Hence for

all x ∈ Bδ(x0) satisfying f(x) < (ε− δ)µ−1 ,

d(x, S) = min{d(x,Bε(x0)
C), d(x, S)} ≤ µf(x) < ε− δ.

In the case ε =∞, d(x,B∞(x0)
C) =∞, hence

d(x, S) ≤ µf(x) ∀x.
The proof of the claim is complete.

Observe that

d(0,Φ(x, y)) := inf{‖(p, q)‖ : (p, q) ∈ Φ(x, y)} = inf{‖(p, q)‖+ΨgphΦ(x, y, p, q)},
where ΨE denotes the indicator function of set E. By the statement and the proof of
[9, Theorem 5A.2], the function (x, y)→ d(0,Φ(x, y)) is lower semicontinuous and

∂πd(0,Φ(x, y)) ⊆ {(γ, η) : (γ, η, 0, 0) ∈ ∂πg(x, y, p, q)
for some (p, q) such that d(0,Φ(x, y)) = ‖(p, q)‖+ΨgphΦ(x, y, p, q)},

where g(x, y, p, q) := ‖(p, q)‖+ΨgphΦ(x, y, p, q). At the point (x, y, p, q) ∈ gphΦ such
that 0 < d(0,Φ(x, y)) = ‖(p, q)‖, ‖(p, q)‖ is smooth and the subgradient is the unit
sphere Sd+m. By the sum rule Proposition 2.3, we have

∂πg(x, y, p, q) = {0} × {0} × Sd+m +Nπ((x, y, p, q), gphΦ).

Hence

∂πd(0,Φ(x, y)) ⊆ {(γ, η) : (γ, η, 0, 0) ∈ {0} × {0} × Sd+m +Nπ((x, y, p, q), gphΦ)

for some (p, q) such that d(0,Φ(x, y)) = ‖(p, q)‖+ΨgphΦ(x, y, p, q)}.
For any (γ, η, 0, 0) ∈ {0} × {0} × Sd+m + Nπ((x, y, p, q), gphΦ), there exists

(e1, e2) ∈ Sd+m such that (γ, η, e1,−e2) ∈ Nπ((x, y, p, q), gphΦ). By definition of
the proximal normal cone, there exists M > 0 such that ∀ (x′, y′, p′, q′) ∈ gphΦ,

〈(γ, η, e1,−e2), (x′, y′, p′, q′)− (x, y, p, q)〉 ≤M‖(x′, y′, p′, q′)− (x, y, p, q)‖2.
That is, (x, y, p, q) is an optimal solution to

min 〈−(γ, η, e1,−e2), (x′, y′, p′, q′)〉+M‖(x′, y′, p′, q′)− (x, y, p, q)‖2
s.t. ψ(x′, y′) + p′ ≤ 0, (x′, y′) ∈ C,

q′ ∈ F (x′, y′) +N(y′,Ω).

One can easily verify that (NNAMCQ) for the above problem is satisfied. Applying
Corollary 3.3, we conclude that

(γ, η) ∈ ∂〈ψ, e1〉(x, y) + ∂〈F, e2〉(x, y)
+{0} ×D∗NΩ(y, q − F (x, y))(e2) +N(x, y, C),

e1 ≥ 0, 〈ψ(x, y) + p, e1〉 = 0.

Hence,

∂πd(0,Φ(x, y)) ⊆{(γ, η) : (γ, η) ∈ ∂〈ψ, e1〉(x, y) + ∂〈F, e2〉(x, y)
+{0} ×D∗NΩ(y, q − F (x, y))(e2) +N((x, y), C)

for some (e1, e2) ∈ Sd+m such that e1 ≥ 0, 〈p+ ψ(x, y), e1〉 = 0,

and some (p, q) such that d(0,Φ(x, y)) = ‖(p, q)‖+ΨgphΦ(x, y, p, q)}.
The proof of the theorem is completed after applying the claim.
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Now consider the case where the abstract constraint is independent of y, i.e.,
C = D ×Rm, there is no inequality constraint and ∀ x near x̄ the solution map

y(x) := {y ∈ Rm : 0 ∈ F (x, y) +N(y,Ω)}
is single-valued and Lipschitz on a neighborhood of ȳ. Then it is obvious that a
local solution (x̄, ȳ) of (OPVIC) is also a local solution to the problem of minimizing
f(x, y(x)) overD, and hence no other constraint qualifications are needed. A sufficient
condition for the existence of such a Lipschitz continuous single-valued map is the
strong regularity of the generalized equation

0 ∈ F (x̄, y) +N(y,Ω)(4.3)

at ȳ in the sense of Robinson [22]. Indeed, in the following theorem we will show that
strong regularity is stronger than the constraint qualification (NNAMCQ). The reader
is referred to [22] for conditions of strong regularity. Since (4.3) is strongly regular in
particular if F is locally strongly monotone in y uniformly in x, the following condition
is weaker than the one in [26, Theorem 3.2 (b)]. Note that the result for the case
Ω = Rm+ was proved by Outrata [18] using a different proof.

Theorem 4.7. Let (x̄, ȳ) be a solution to the generalized equation. Assume that
F (x, y) is C1 around (x̄, ȳ) and the generalized equation (4.3) is strongly regular at ȳ.
Then the constraint qualification (NNAMCQ) is satisfied at (x̄, ȳ).

Proof. Let y := x and f(q, y) := −q + F (x̄, y) in [22, Theorem 2.1 and Corollary
2.2]. Since the generalized equation (4.3) is strongly regular at ȳ, there exist neigh-
borhoods N of 0 and W of ȳ, and a single-valued function y(q) : N → W , such that
for any q ∈ N , y(q) is the unique solution in W of the inclusion

q ∈ F (x̄, y) +N(y,Ω).

Further, y(q) is Lipschitz continuous near 0. That is Σx̄(q) := {y ∈ Rm : q ∈
F (x̄, y) +N(y,Ω)} is pseudo-Lipschitz continuous around (0, ȳ). Note that from [15,
Theorem 5.8], Σx̄(q) is pseudo-Lipschitz continuous around (0, ȳ) if and only if there
is no nonzero vector η ∈ Rm such that

0 ∈ ∇yF (x̄, ȳ)�η +D∗NΩ(ȳ,−F (x̄, ȳ))(η).
Therefore there is no nonzero vector η ∈ Rm such that

0 ∈ ∇xF (x̄, ȳ)�η +N(x̄, D),

0 ∈ ∇yF (x̄, ȳ)�η +D∗NΩ(ȳ,−F (x̄, ȳ))(η).
That is, (NNAMCQ) is satisfied.

Corollary 4.8. The following conditions are constraint qualifications:
(1) [calmness constraint qualification (calmness CQ)]: The problem (GP) is calm

at (x̄, ȳ).
(2) [error bound CQ]: (CS) has a local error bound at (x̄, ȳ).
(3) [linear constraint qualification (linear CQ)]: The mappings ψ, F are affine, C

is polyhedral, and Ω is a polyhedral convex set.
(4) [strongly regular constraint qualification (SRCQ)]: There is no inequality con-

straint ψ(x, y) ≤ 0. F is C1 around the optimal solution (x̄, ȳ). C = D×Rm,
where D is a closed subset of Rn. The generalized equation

0 ∈ F (x̄, y) +N(y,Ω)

is strongly regular at ȳ.
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(5) [no nonzero abnormal multiplier constraint qualification (NNAMCQ)]: There
is no nonzero vector (γ, η) ∈ Rd+ ×Rm such that

0 ∈ ∂〈ψ, γ〉(x̄, ȳ) + ∂〈F, η〉(x̄, ȳ) + {0} ×D∗NΩ(ȳ,−F (x̄, ȳ))(η) +N((x̄, ȳ), C)

〈ψ(x̄, ȳ), γ〉 = 0.

(6) [generalized Mangasarian–Fromovitz constraint qualification (GMFCQ)]: Stated
as in Proposition 4.5.

(7) [bounded constraint qualification (bounded CQ)]: There exist constants µ >
0, 0 < ε ≤ ∞, such that

µ−1 ≤ inf{‖ξ‖ :ξ ∈ ∂〈ψ, e1〉(x, y) + ∂〈F, e2〉(x, y)
+{0} ×D∗NΩ(y, q − F (x, y))(e2) +N((x, y), C),

〈ψ(x, y) + p, e1〉 = 0, ‖(e1, e2)‖ = 1, e1 ≥ 0,

(p, q) 
= 0, (x, y) ∈ Σ(p, q) ∩Bε(x̄, ȳ)}.
In summary, we have proved the following relationships between the constraint

qualifications:
(SRCQ)

⇓
(NNAMCQ) ⇐= (GMFCQ) when Ω = Ra ×Rb+

⇓
Linear CQ Bounded CQ

⇓ ⇓
Error Bound CQ

⇓
Calmness CQ.

5. Applications to bilevel programming problems. The purpose of this
section is to illustrate applications of the results obtained in the previous sections to
the bilevel programming problems defined as follows:

(BP) minimize f(x, z) s.t. ψ(x, z) ≤ 0, (x, z) ∈ D and z ∈ S(x),
where S(x) is the set of solutions of the problem (Px):

(Px) minimize g(x, z) s.t. ϕ(x, z) ≤ 0

and f : Rn+a → R, ψ : Rn+a → Rd, ϕ : Rn+a → Rb. For simplicity, we assume all
functions f, g, ψ, ϕ are smooth enough.

Let z ∈ S(x). If a certain constraint qualification holds for the lower level problem
(Px) at z, then there exists u ∈ Rb such that

∇zg(x, z) + u∇zϕ(x, z) = 0, ϕ(x, z) ≤ 0,

u ≥ 0, 〈u, ϕ(x, z)〉 = 0,

where u∇zϕ(x, z) :=
∑
uk∇zϕk(x, z). It is easy to see that the above Kuhn–Tucker

conditions for (Px) can be written as the generalized equation

0 ∈ ((∇zg + u∇zϕ)t(x, z),−ϕ(x, z)) +N((z, u), Ra ×Rb+),
where at denotes the transpose of a vector a. Hence the original bilevel programming
problem becomes an (OPVIC).



960 J. J. YE

Applying Theorems 3.2 and 3.6 we now derive necessary optimality conditions for
(BP).

Theorem 5.1. Assume that f and ψ are C1, g, ϕ are twice continuously differen-
tiable around (x̄, z̄). Further assume that g is pseudoconvex in z, ϕ is quasi-convex in
z. Let (x̄, z̄) solve the problem (BP). For each feasible solution (x, z) of (BP) suppose
that a certain constraint qualification holds for (Px) at z and ū is a corresponding
multiplier associated with (x̄, z̄), i.e.,

0 = ∇zg(x̄, z̄) + ū∇zϕ(x̄, z̄), ū ≥ 0, 〈ϕ(x̄, z̄), ū〉 = 0.

Then there exist λ ≥ 0, γ ∈ Rd+, α ∈ Ra, β ∈ Rb not all zero such that

0 ∈ λ∇f(x̄, z̄) + γ∇ψ(x̄, z̄) + α∇(∇zg + ū∇zϕ)t(x̄, z̄)− β∇ϕ(x̄, z̄) +N((x̄, z̄), D),

〈ψ(x̄, z̄), γ〉 = 0, (−∇zϕ(x̄, z̄)α,−β) ∈ N(ū, ϕ(x̄, z̄)), gphNRb
+
).

λ can be taken as 1 if one of the following constraint qualifications hold:
(a) ∇zg, ψ, ϕ are affine mappings and D is polyhedral.
(b) There is no nonzero vector (γ, α, β) ∈ Rd+ ×Ra ×Rb such that

0 ∈ γ∇ψ(x̄, z̄) + α∇(∇zg + ū∇zϕ)t(x̄, z̄)− β∇ϕ(x̄, z̄) +N((x̄, z̄), D),

〈ψ(x̄, z̄), γ〉 = 0, (−∇zϕ(x̄, z̄)α,−β) ∈ N((ū, ϕ(x̄, z̄)), gphNRb
+
).

(c) There exist µ > 0 and ε > 0 such that

µ−1 ≤inf{‖(ξ1, ξ2)‖ :
ξ1 ∈ e1∇ψ(x, z) + e2∇(∇zg + u∇zϕ)t(x, z)− e3∇ϕ(x, z) +N((x, z), D),

(ξ2 −∇zϕ(x, z)e2,−e3) ∈ N((u, q + ϕ(x, z)), gphNRb
+
),

〈ψ(x, z) + p, e1〉 = 0, ‖(e1, e2, e3)‖ = 1, e1 ≥ 0,

(p, q) 
= 0, (x, z, u) ∈ Σ(p, q) ∩Bε(x̄, z̄, ū)},
where

Σ(p, q) := {(x, z, u) ∈ C ×Rb : ψ(x, z) + p ≤ 0,

q ∈ ((∇zg + u∇zϕ)t(x, z),−ϕ(x, z)) +N((z, u), Ra ×Rb+)}.
(d) D = E × Ra, where E is a closed subset of Rn and there is no inequality

constraint ψ(x, z) ≤ 0. Furthermore the strong second order sufficient con-
dition and the linear independence of binding constraints hold for the lower
level problem Px̄ at z̄, i.e., for any nonzero v such that

∇zϕi(x̄, z̄)tv = 0, i ∈ L,
〈v, (∇2

zg(x̄, z̄) + ū∇2
zϕ(x̄, z̄))v〉 > 0, and gradients of the binding constraints

{∇zϕi(x̄, z̄), i ∈ L ∪ I0} are linearly independent, where

ū∇2
zϕ(x̄, z̄) :=

∑
ūi∇2

zϕi(x̄, z̄)

and

L := L(x̄, z̄, ū) := {i : ūi > 0, ϕi(x̄, z̄) = 0},
I0 := I0(x̄, z̄, ū) := {i : ūi = 0, ϕi(x̄, z̄) = 0},
I+ := I+(x̄, z̄, ū) := {i : ūi = 0, ϕi(x̄, z̄) < 0}.
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Proof. Since the objective function of the lower level problem g is pseudoconvex in
z and the constraint ϕ is quasi-convex in z, by Theorem 4.2.11 of Bazaraa and Shetty
[2] the Kuhn–Tucker condition is a necessary and sufficient condition for optimality.
Therefore from the discussion preceding Theorem 5.1 we know that (x̄, z̄) is a solution
of the following problem:

min f(x, z)

s.t. 0 ∈ ((∇zg + u∇zϕ)t(x, z),−ϕ(x, z)) +N((z, u), Ra ×Rb+),(5.1)

ψ(x, z) ≤ 0, (x, z) ∈ C.
Condition (a) is the linear constraint qualification (Linear CQ). Condition (b) is

the no nonzero abnormal multiplier constraint qualification (NNAMCQ). Condition
(c) is the bounded constraint qualification (Bounded CQ). Condition (d) is a sufficient
condition for the strong regularity of the generalized equation (5.1) by virtue of [22,
Theorem 4.1].

Remark. In the case where D = {(x, z) : h(x, z) ≤ 0} and h(x, z) : Rn+a → Rq,
if h is an affine mapping, it is known that

N((x̄, z̄), D) = {ζ∇h(x̄, z̄) : ζ ∈ Rq+, 〈h(x̄, z̄), ζ〉 = 0}.
In this case, the necessary optimality condition becomes the existence of λ ≥ 0,
γ ∈ Rd+, α ∈ Ra, β ∈ Rb not all zero and ζ ∈ Rq+ such that

0 = λ∇f(x̄, z̄) + γ∇ψ(x̄, z̄) + α∇(∇zg + ū∇zϕ)t(x̄, z̄)− β∇ϕ(x̄, z̄) + ζ∇h(x̄, z̄),
〈h(x̄, z̄), ζ〉 = 0, 〈ψ(x̄, z̄), γ〉 = 0,

(−∇zϕ(x̄, z̄)α,−β) ∈ N(ū, ϕ(x̄, z̄)), gphNRb
+
).

Hence incorporating an abstract constraint in (OPVIC) can be used as a useful device
to handle linear and nonlinear constraints separately.

REFERENCES

[1] J.-P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper.
Res., 9 (1994), pp. 87–111.

[2] M.S. Bazaraa and C.M. Shetty, Nonlinear Programming Theory and Algorithms, John Wi-
ley & Sons, New York, 1979.

[3] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983.
[4] F.H. Clarke, Yu. S. Ledyaev, R.J. Stern, and P.R. Wolenski, Nonsmooth Analysis and

Control Theory, Springer, New York, 1998.
[5] F.H. Clarke, R.J. Stern, and P.R. Wolenski, Subgradient criteria for monotonicity, the

Lipschitz condition, and convexity, Canad. J. Math., 45 (1993), pp. 1167–1183.
[6] A.L. Dontchev and R.T. Rockafellar, Characterizations of strong regularity for variational

inequalities over polyhedral convex sets, SIAM J. Optim., 6 (1996), pp. 1087–1105.
[7] A.J. Hoffman, On approximate solutions of systems of linear inequalities, J. Res. Nat. Bur.

Standards, 49 (1952), pp. 263–265.
[8] A. Jourani, Constraint qualifications and Lagrange multipliers in nondifferentiable program-

ming problems, J. Optim. Theory Appl., 81 (1994), pp. 533–548.
[9] P.D. Loewen,Optimal Control via Nonsmooth Analysis, CRM Proc. Lecture Notes 2, AMS,

Providence, RI, 1993.
[10] Z.Q. Luo, J.S. Pang and D. Ralph, Mathematical Programs with Equilibrium Constraints,

Cambridge University Press, New York, 1996.
[11] B.S. Mordukhovich, Maximum principle in problems of time optimal control with nonsmooth

constraints, J. Appl. Math. Mech., 40 (1976), pp. 960–969.
[12] B.S. Mordukhovich, Metric approximation and necessary optimality conditions for general

classes of nonsmooth extremal problems, Soviet Math. Dokl., 22 (1980), pp. 526–530.



962 J. J. YE

[13] B.S. Mordukhovich, Approximation Methods in Problems of Optimization and Control,
Nauka, Moscow, 1988.

[14] B.S. Mordukhovich, Generalized differential calculus for nonsmooth and set-valued mappings,
J. Math. Anal. Appl., 183 (1994), pp. 250–288.

[15] B.S. Mordukhovich, Lipschitz stability of constraint systems and generalized equations, Non-
linear Anal., 173 (1994), pp. 173–206.

[16] B.S. Mordukhovich, Stability theory for parametric generalized equations and variational
inequalities via nonsmooth analysis, Trans. Amer. Math. Soc., 343 (1994), pp. 609–655.

[17] B.S. Mordukhovich and Y. Shao, Extremal characterization of Asplund spaces, Trans. Amer.
Math. Soc., 124 (1996), pp. 197–205.

[18] J.V. Outrata, Optimality conditions for a class of mathematical programs with equilibrium
constraints, Math. Oper. Res., 24 (1999), pp. 627–644.

[19] R.T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1998.
[20] R.A. Poliquin and R.T. Rockafellar, Tilt stability of a local minimum, SIAM J. Optim., 8

(1998), pp. 287–299.
[21] S.M. Robinson, Stability theory for systems of inequalities. Part I: Linear systems, SIAM J.

Numer. Anal., 12 (1975), pp. 754–769.
[22] S.M. Robinson, Strongly regular generalized equations, Math. Oper. Res., 5 (1980), pp. 43–62.
[23] S.M. Robinson, Some continuity properties of polyhedral multifunctions, Math. Programming

Stud., 14 (1981), pp. 206–214.
[24] J.J. Ye and D.L. Zhu, Optimality conditions for bilevel programming problems, Optimization,

33 (1995), pp. 9–27.
[25] J.J. Ye, Optimality conditions for optimization problems with complementarity constraints,

SIAM J. Optim., 9 (1999), pp. 374–387.
[26] J.J Ye and X.Y. Ye, Necessary optimality conditions for optimization problems with varia-

tional inequality constraints, Math. Oper. Res., 22 (1997), pp. 977–997.
[27] J.J. Ye, D.L. Zhu, and Q.J. Zhu, Exact penalization and necessary optimality conditions for

generalized bilevel programming problems, SIAM J. Optim., 7 (1997), pp. 481–507.



ON THE CONSTANT POSITIVE LINEAR DEPENDENCE
CONDITION AND ITS APPLICATION TO SQP METHODS∗
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Abstract. In this paper, we introduce a constant positive linear dependence condition (CPLD),
which is weaker than the Mangasarian–Fromovitz constraint qualification (MFCQ) and the constant
rank constraint qualification (CRCQ). We show that a limit point of a sequence of approximating
Karush–Kuhn–Tucker (KKT) points is a KKT point if the CPLD holds there. We show that a
KKT point satisfying the CPLD and the strong second-order sufficiency conditions (SSOSC) is an
isolated KKT point. We then establish convergence of a general sequential quadratical programming
(SQP) method under the CPLD and the SSOSC. Finally, we apply these results to analyze the
feasible SQP method proposed by Panier and Tits in 1993 for inequality constrained optimization
problems. We establish its global convergence under the SSOSC and a condition slightly weaker
than the Mangasarian–Fromovitz constraint qualification, and we prove superlinear convergence of a
modified version of this algorithm under the SSOSC and a condition slightly weaker than the linear
independence constraint qualification.

Key words. constrained optimization, KKT point, constraint qualification, feasible SQP
method, global convergence, superlinear convergence
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1. Introduction. Consider the constrained optimization problem

min{f(x) | x ∈ X},(1.1)

where X = {x ∈ �n | g(x) ≤ 0, h(x) = 0}, f : �n → �, g : �n → �m,
and h : �n → �p are continuously differentiable functions. Assume that X �= ∅. Let
I = {1, . . . ,m} and J = {1, . . . , p}. For a vector d ∈ �q, we let supp(d) = {j | dj �= 0}.

Let x ∈ X be a given feasible point of (1.1). Let

I(x) = {j ∈ I | gj(x) = 0},

S(x) = {∇gj(x) | j ∈ I(x)},

and

T (x) = {∇hj(x) | j ∈ J}.

We call a feasible point x a Karush–Kuhn–Tucker (KKT) point of (1.1) if there exist
vectors u ∈ �m and v ∈ �p such that the following requirements are simultaneously
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satisfied: 


∇f(x) +∑j∈I uj∇gj(x) +
∑
j∈J vj∇hj(x) = 0;

u ≥ 0;

uT g(x) = 0.

(1.2)

We call the pair (u, v) a Lagrange multiplier at x and denote the set of all possible
Lagrange multipliers associated with x by M(x). For a given x ∈ X, if we regard
(1.2) as the constraints of a linear program with (u, v) as variables, we see that if
x is a KKT point, there is a (u, v) ∈ M(x) such that the vectors {∇gj(x) | j ∈
supp(u)} ∪ {∇hj(x) | j ∈ supp(v)} are linearly independent. We call such a (u, v) a
regular Lagrange multiplier of x.

For convenience, we set M(x) = ∅ if x is not a KKT point. We say that x is an
isolated KKT point of (1.1) if there is a neighborhood of x such that x is the only
KKT point in this neighborhood. Note that an isolated KKT point may have more
than one Lagrange multiplier.

In sequential quadratic programming (SQP) methods [7, 10, 23, 24, 9] and KKT
equation methods [26] for solving (1.1), at each step, an approximate KKT point of
(1.1) is found. Is any limit point of a sequence of approximate KKT points a KKT
point of (1.1)? If it is, will the whole sequence converge to it? Under which conditions
is a KKT point stable with respect to perturbations? In the next section, we formally
define an approximate KKT point sequence and introduce a regularity condition called
the constant positive linear dependence condition (CPLD). The CPLD is weaker than
the well-known Mangasarian–Fromovitz constraint qualification (MFCQ) [16] and the
constant rank constraint qualification (CRCQ); moreover, the MFCQ and the CRCQ
together are weaker than the linear independence constraint qualification (LICQ). We
show that a limit point x∗ of an approximate KKT point sequence is a KKT point of
(1.1) if the CPLD holds at x∗. In section 3, we show that if a KKT point x satisfies the
CPLD and the strong second-order sufficiency conditions (SSOSC) [31], then it is an
isolated KKT point. Hence, a limit point x∗ of an approximate KKT point sequence
is a KKT point of (1.1) and the whole sequence will converge to it if both the CPLD
and the SSOSC hold at x∗. We state in section 3 a Kojima theorem on perturbed
KKT points under the MFCQ and the SSOSC. The Kojima theorem will be used in
section 6.

SQP methods constitute an important class of methods for solving (1.1). They
enjoy local superlinear convergence under mild conditions [7, 10, 23, 24, 9]. The su-
perlinear convergence of SQP methods was first established [7, 10] under a set of
conditions: the LICQ, the second-order sufficiency conditions, and the strict com-
plementarity slackness. This set of conditions was first studied in [5] and is called
the Jacobian uniqueness condition [10]. Robinson [31] reduced the second-order suffi-
ciency conditions and the strict complementarity slackness to the SSOSC. Robinson’s
condition has been used for classical SQP methods and KKT equations methods in
[1, 9, 26]. What is difficult is to relax the LICQ. The relaxation of the LICQ may
result in multiple Lagrange multipliers. Only recently, several authors [6, 28, 35] be-
gan to study the convergence of algorithms on problems with nonunique Lagrange
multipliers. In section 4, we apply the results in sections 2 and 3 to a general SQP
method and establish its convergence under the CPLD and the SSOSC. In sections 5
and 6, we further apply these results to a feasible SQP method. For classical SQP
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methods, the iteration points may be infeasible, while feasible SQP methods take spe-
cial precautions to guarantee that the iteration points are feasible. Panier and Tits
[17, 18] proposed two feasible SQP methods in 1987 and 1993. They established global
and superlinear convergence of their feasible SQP methods under the classical Jaco-
bian uniqueness condition. In section 5, we establish global convergence of the 1993
Panier–Tits method [18] under the condition that the CPLD and the SSOSC hold for
a limit point of the primal iterative sequence and the MFCQ holds at all non-KKT
points in X. In section 6, we first modify the 1993 Panier–Tits algorithm slightly;
then, with the help of the Kojima theorem, we establish superlinear convergence of
the modified algorithm under the SSOSC and a condition slightly weaker than the
LICQ. In this way, both the strict complementarity condition and the LICQ, assumed
in [18], are relaxed. These results can be extended to the 1987 Panier–Tits method.

Throughout the paper, we denote the Euclidean norm of a vector v by ‖v‖, the
corresponding induced norm of a matrix H by ‖H‖, and the cardinality of a finite set
J by |J | and let N ≡ {1, 2, . . .}.

2. Limiting point of an approximate KKT point sequence. We first re-
view the concept of positive linear independence for vectors [21, 32, 33, 29].

Definition 2.1. Let A = {a1, . . . , al} and B = {b1, . . . , br} be two finite subsets
of �n such that A ∪B �= ∅. We say that (A,B) is positive-linearly dependent if there
are α ∈ �l and β ∈ �r such that α ≥ 0, (α, β) �= 0, and

l∑
j=1

αja
j +

r∑
j=1

βjb
j = 0.

Otherwise, we say that (A,B) is positive-linearly independent. If B = ∅, we simply
say that A is positive-linearly dependent or independent.

Clearly, just as linearly independent and dependent sets, a subset pair of a
positive-linearly independent set pair is always positive-linearly independent and a
set pair with a positive-linearly dependent subset pair is always positive-linearly de-
pendent.

Proposition 2.2. Let Gj : �n → �n, j = 1, . . . , l, and Hj : �n → �n, j =
1, . . . , r, be continuous functions. If ({Gj(x)}lj=1, {Hj(x)}rj=1) is positive-linearly in-
dependent for x ∈ �n, then there is a neighborhood N(x) of x such that for any
y ∈ N(x), ({Gj(y)}lj=1, {Hj(y)}rj=1) is positive-linearly independent.

Proof. If such a neighborhood does not exist, then there is a sequence {yk}∞k=1 ⊂
�n with yk → x as k → +∞ and αk ≥ 0, ‖(αk, βk)‖ ≡ 1, such that

l∑
j=1

αkjGj(y
k) +

r∑
j=1

βkjHj(y
k) = 0.

Without loss of generality, we may assume that αk → α∗ and βk → β∗ as k → +∞.
Clearly, 



∑l
j=1 α

∗
jGj(x) +

∑r
j=1 β

∗
jHj(x) = 0;

α∗ ≥ 0;

‖(α∗, β∗)‖ = 1.
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This gives a contradiction.
This proposition will be used in later sections.
Proposition 2.3. For any given x ∈ X, assume that ∇f(x), ∇gj(x), j ∈ I(x),

and ∇hj(x), j ∈ J, are not all zero. Then x is a KKT point of (1.1), i.e., M(x) �=
∅, if and only if there is a subset S0(x) ⊆ S(x) and a subset T0(x) of T (x) such
that (S0(x), T0(x)) is positive-linearly independent while (S0(x)

⋃{∇f(x)}, T0(x)) is
positive-linearly dependent.

Proof. The case when ∇f(x) = 0 is trivial. Thus we assume that ∇f(x) �= 0.
[⇒]. If M(x) �= ∅, then there exist vectors u = u1 ∈ �m and v = v1 ∈ �p such

that (1.2) holds. Let I1 = supp(u), J1 = supp(v), S1 = {∇gj(x) | j ∈ I1}, and
T1 = {∇hj(x) | j ∈ J1}. Since ∇f(x) �= 0, by the first equality of (1.2), S1 ∪ T1 �= ∅.
If (S1, T1) is positive-linearly independent, then let S0(x) = S1 and T0(x) = T1, and
the first equality in (1.2) implies that (S0(x)

⋃{∇f(x)}, T0(x)) is positive-linearly
dependent. If (S1, T1) is positive-linearly dependent, then we have αj ≥ 0, j ∈ I1, and
βj , j ∈ J1, such that not all of αj and βj are zero and∑

j∈I1
αj∇gj(x) +

∑
j∈J1

βj∇hj(x) = 0.

If some αj �= 0, let λ = min{ uj

αj
| j ∈ I1, αj �= 0}; otherwise, there is j̄ ∈ J1 such

that βj̄ �= 0, and we then let λ =
vj̄
βj̄
. Let u2

j = uj − λαj for j ∈ I1, u2
j = 0 for j �∈ I1,

v2
j = vj − λβj for j ∈ J1, and v2

j = 0 for j �∈ J1. Then (u, v) = (u2, v2) still satisfies
(1.2) but its support set is strictly contained in I1 ∪ J1, the support sets of S1 and
T1. Repeat this process. Finally, we have a subset S0(x) of S(x) and a subset T0(x)
of T (x), which satisfy the requirements.

[⇐]. Assume that I0 ⊆ I(x) and J0 ⊆ J such that S0(x) = {∇gj(x) | j ∈
I0} and T0(x) = {∇hj(x) | j ∈ J0} satisfy the requirements. The fact that
(S0(x)

⋃{∇f(x)}, T0(x)) is positive-linearly dependent implies that there are γ ∈ �,
α ∈ �|I0|, and β ∈ �|J0| such that γ ≥ 0, α ≥ 0, (γ, α, β) �= 0, and

γ∇f(x) +
∑
j∈I0

αj∇gj(x) +
∑
j∈J0

βj∇hj(x) = 0.

These and the assumption that (S0(x), T0(x)) is positive-linearly independent imply

that γ > 0. Let uj =
αj

γ for j ∈ I0, uj = 0 for j �∈ I0, vj = βj

γ for j ∈ J0, and vj = 0

for j �∈ J0. Then (u, v) satisfies (1.2). Hence, M(x) �= ∅.
A given feasible point x ∈ X is said to satisfy the MFCQ [16] if T (x) is linearly

independent and there is a vector z ∈ �n such that

(∇gI(x)(x))T z < 0

and

(∇h(x))T z = 0.

The following proposition was given in section 1.8 of [21].
Proposition 2.4. For any given x ∈ X, assume that I(x) ∪ J �= ∅. Then the

MFCQ holds at x if and only if (S(x), T (x)) is positive-linearly independent.
Proof. If I(x) = ∅, the conclusion is obvious; otherwise, the conclusion follows

Motzkin’s theorem of the alternative [16].
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We now define an approximate KKT point sequence of (1.1).
Definition 2.5. We say that {xk}∞k=1 ⊂ �n is an approximate KKT point se-

quence of (1.1) if there is a sequence {(uk, vk, εk, δk, λk)}∞k=1 ⊂ �m×�p×�n×�m×�
such that the following requirements are simultaneously satisfied for each k:



∇f(xk) +∑j∈I u
k
j∇gj(xk) +

∑
j∈J v

k
j∇hj(xk) = εk;

g(xk) ≤ δk;

uk ≥ 0;

(uk)T (g(xk)− δk) = 0;

‖h(xk)‖ ≤ λk;

(2.1)

and {(εk, δk, λk)}∞k=1 converges to zero as k →∞.
Such an approximate KKT point sequence is produced by SQP methods, KKT

equations methods, and some other methods for solving (1.1). If x∗ is a limit point
of {xk}, or without loss of generality, if {xk} converges to x∗, is x∗ a KKT point of
(1.1)? To answer this question, we introduce a regularity condition.

Definition 2.6. A given feasible point x ∈ X is said to satisfy the CPLD if
for any I0 ⊆ I(x) and J0 ⊆ J, whenever ({∇gj(x) | j ∈ I0}, {∇hj(x) | j ∈ J0})
is positive-linearly dependent, there is a neighborhood N(x) of x such that for any
y ∈ N(x), ({∇gj(y) | j ∈ I0}, {∇hj(y) | j ∈ J0}) is linearly dependent.

Note that in the definition we do not require that ({∇gj(y) | j ∈ I0}, {∇hj(y) | j ∈
J0}) be positive-linearly dependent, which is stronger than our requirement here. By
Propositions 2.2 and 2.4, the CPLD is weaker than the MFCQ.

It is said that the CRCQ [11, 15, 20, 34, 22] holds at x ∈ X if there is a neigh-
borhood N(x) of x such that for every I0 ⊆ I(x) and J0 ⊆ J, the family of gradient
vectors

{∇gj(y) | j ∈ I0}
⋃
{∇hj(y) | j ∈ J0}

has the same rank (which depends on I0 and J0) for all vectors y ∈ N(x). It is
not difficult to see that the CRCQ holds at x if and only if for any I0 ⊆ I(x) and
J0 ⊆ J, whenever {∇gj(x) | j ∈ I0}

⋃{∇hj(x) | j ∈ J0} is linearly dependent,
there is a neighborhood N(x) of x such that for any y ∈ N(x), {∇gj(y) | j ∈
I0}
⋃{∇hj(y) | j ∈ J0} is linearly dependent. Hence, the CPLD is also weaker

than the CRCQ. Note [11] that neither the CRCQ implies the MFCQ nor the MFCQ
implies the CRCQ. Furthermore, even the MFCQ and the CRCQ together are weaker
than the LICQ. This can be seen from the following example: n = m = 2, p =
0, g1(x) = x1 + x2, g2(x) = 2x1 +2x2, at x = (0, 0)T . If x is a local minimum point of
(1.1) and the CPLD holds at x, is x always a KKT point of (1.1)? If so, we may also
call the CPLD a constraint qualification, but at this moment we only use the CPLD
to derive the following result.

Theorem 2.7. If an approximate KKT point sequence {xk}∞k=1 converges to x∗

as k →∞ and the CPLD holds at x∗, then x∗ is a KKT point of (1.1), i.e., there are
a u∗ ∈ �m and a v∗ ∈ �p such that (x∗, u∗, v∗) satisfies (1.2).

Proof. By using the theory of linear programming, we may assume, without loss
of generality, for any given k, there is (ūk, v̄k) satisfying (2.1) such that

{∇gj(xk) | j ∈ supp(ūk)}
⋃
{∇hj(xk) | j ∈ supp(v̄k)}
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is linearly independent. Let Ik = supp(ūk) and Jk = supp(v̄k). Without loss of gen-
erality, we may assume that I0 ≡ Ik and J0 ≡ Jk. Then I0 ⊆ I(x∗) and J0 ⊆ J . If
{(ūk, v̄k)}∞k=1 has a bounded subsequence, then, without loss of generality, we may
assume that there are u∗ ∈ �m and v∗ ∈ �p such that ūk → u∗ and v̄k → v∗ as
k →∞. Letting k tend to infinity in (2.1), we see that (x∗, u∗, v∗) satisfies (1.2), and
hence the conclusion holds for this case. We assume now that

lim
k→∞

‖(uk, vk)‖ = +∞.

Without loss of generality, we may assume that

lim
k→∞

(uk, vk)

‖(uk, vk)‖ = (α, β).

Then ‖(α, β)‖ = 1, supp(α) ⊆ I0, supp(β) ⊆ J0, and α ≥ 0. Dividing both sides of

∇f(xk) +
∑
j∈I

ūkj∇gj(xk) +
∑
j∈J

v̄kj∇hj(xk) = εk

by ‖(uk, vk)‖ and letting k tend to infinity in the above equality, we obtain∑
j∈I0

αj∇gj(x∗) +
∑
j∈J0

βj∇hj(x∗) = 0.

This implies that ({∇gj(x∗) | j ∈ I0}, {∇hj(x∗) | j ∈ J0}) is positive-linearly
dependent. By the assumptions that the CPLD holds at x∗ and xk → x∗, we have
that for all large k, ({∇gj(xk) | j ∈ I0}, {∇hj(xk) | j ∈ J0}) are linearly dependent.
This contradicts the fact that {∇gj(xk) | j ∈ I0}

⋃{∇hj(xk) | j ∈ J0} are linearly
independent for all k. .

3. Isolated and stable KKT points. We now assume that f, g, and h are
twice continuously differentiable.

For any x ∈ �n, u ∈ �m, and v ∈ �p, we denote the Lagrange function of (1.1)
by

L(x, u, v) = f(x) + uT g(x) + vTh(x).

By Robinson [31], a triplet (x, u, v) is said to satisfy the SSOSC if it satisfies the KKT
conditions (1.2) and ∇xxL(x, u, v) is positive definite on the subspace

G(x, u, v) = {d ∈ �n | ∇f(x)T d = 0, ∇gj(x)T d = 0 for j ∈ supp(u),

∇hj(x)T d = 0 for j ∈ J}.
Note that even under the second-order sufficiency conditions, x will be a strict local
minimum of (1.1).

Definition 3.1. Suppose that x is a KKT point of (1.1). If for all Lagrange
multipliers (u, v) of x, (x, u, v) satisfies the SSOSC, then we say that x satisfies the
SSOSC.

Theorem 3.2. Suppose that x∗ is a KKT point of (1.1). If x∗ satisfies the CPLD
and the SSOSC, then x∗ is an isolated KKT point of (1.1).

Proof. Suppose that x∗ is not an isolated KKT point of (1.1). Then there is a
KKT point sequence {xk}∞k=1 such that xk �= x∗ and limk→∞ xk = x∗. It follows
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from the theory of linear programming that for each k, there is a regular Lagrange
multiplier (uk, vk) for xk. Let Ik = supp(uk) and Jk = supp(vk). Without loss of
generality, we may assume that I0 ≡ Ik and J0 ≡ Jk for all k. Then

{∇gj(xk) | j ∈ I0}
⋃
{∇hj(xk) | j ∈ J0}

is linearly independent for all k. By the CPLD at x∗,

({∇gj(x∗) | j ∈ I0}, {∇hj(x∗) | j ∈ J0})

is positive-linearly independent.
If {(uk, vk)}∞k=1 is unbounded, without loss of generality, we may assume that

lim
k→∞

‖(uk, vk)‖ = +∞,

lim
k→∞

(uk, vk)

‖(uk, vk)‖ = (α, β),

‖(α, β)‖ = 1, α ≥ 0, supp(α) ⊆ I0, and supp(β) ⊆ J0. Then dividing

∇f(xk) +
∑
j∈I

ukj∇gj(xk) +
∑
j∈J

vkj∇hj(xk) = 0

by ‖(uk, vk)‖ and letting k →∞, we have∑
j∈I0

αj∇gj(x∗) +
∑
j∈J0

βj∇hj(x∗) = 0.

This contradicts the fact that

({∇gj(x∗) | j ∈ I0}, {∇hj(x∗) | j ∈ J0})

is positive-linearly independent.
Hence {(uk, vk)}∞k=1 is bounded. Without loss of generality, we may assume that

uk → u∗ and vk → v∗. Then (u∗, v∗) ∈ M(x∗) is a Lagrange multiplier of x∗,
supp(u∗) ⊆ I0, and supp(v∗) ⊆ J0. We may assume that

lim
k→∞

xk − x∗

‖xk − x∗‖ = d.

Then ‖d‖ = 1. Since

gj(x
k)− gj(x

∗) = 0, j ∈ I0,

and

hj(x
k)− hj(x

∗) = 0, j ∈ J,

we have, by Taylor’s theorem, that

gj(x
k)− gj(x

∗) = ∇gj(x∗)T (xk − x∗) + o(‖xk − x∗‖), j ∈ I0,(3.1)
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and

hj(x
k)− hj(x

∗) = ∇hj(x∗)T (xk − x∗) + o(‖xk − x∗‖), j ∈ J.(3.2)

Dividing (3.1) and (3.2) by ‖xk − x∗‖ and letting k →∞, we have

∇gj(x∗)T d = 0, j ∈ I0,(3.3)

and

∇hj(x∗)T d = 0, j ∈ J.(3.4)

On the other hand, since (u∗, v∗) ∈M(x∗), we have

∇f(x∗) +
∑

j∈supp(u∗)

u∗j∇gj(x∗) +
∑

j∈supp(v∗)

v∗j∇hj(x∗) = 0.

This formula, combined with (3.3), (3.4) and observing that supp(u∗) ⊆ I0 and
supp(v∗) ⊆ J, yields

∇f(x∗)T d = 0.(3.5)

From (3.3), (3.4), and (3.5), we have d ∈ G(x∗, u∗, v∗). For any given k and t ∈ [0, 1],
let

(xt, ut, vt) = (1− t)(x∗, u∗, v∗) + t(xk, uk, vk).

Then, Robinson’s function [31, 8] is defined by

s(t) = (xk − x∗)T


∇f(xt) +∑

j∈I0
utj∇gj(xt) +

∑
j∈J0

vtj∇hj(xt)



− (uk − u∗)T g(xt)− (vk − v∗)Th(xt).

The function s : [0, 1] → � is clearly continuous on [0, 1] and continuously differen-
tiable on (0, 1). Moreover, s(0) = 0 = s(1). By the mean-value theorem, for any given
k, there exists tk ∈ (0, 1) such that s′(tk) = 0, i.e.,

(xk − x∗)T∇xxL(xtk , utk , vtk)(xk − x∗) = 0.

Dividing this inequality by ‖xk − x∗‖2 and passing to the limit k →∞, we obtain

dT∇xxL(x∗, u∗, v∗)d = 0.

This formula, combined with the facts that d ∈ G(x∗, u∗, v∗) and ∇xxL(x∗, u∗, v∗) is
positive definite in G(x∗, u∗, v∗), implies that d = 0, which contradicts the fact that
‖d‖ = 1. This proves the theorem.

Remark. It is possible to reduce the requirement of twice differentiability of
f, g, and h to semismoothness of ∇f,∇g, and ∇h. Such an optimization problem is
called an SC1 optimization problem. For SC1 optimization and its applications, see
[24, 19, 4, 9, 3, 12, 27, 13, 2, 25].

Theorem 3.3. Suppose that x∗ is a limit point of an approximate KKT point
sequence {xk}∞k=1 of (1.1) and the CPLD and the SSOSC hold at x∗. If

lim
k→∞

‖xk+1 − xk‖ = 0,(3.6)
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then limk→∞ xk = x∗.
Proof. By Theorem 2.7, we have that x∗ is a KKT point of (1.1) and every

accumulation point of {xk}∞k=1 is a KKT point of (1.1). The assumptions that the
CPLD and the SSOSC hold at x∗ and Theorem 3.2 imply that x∗ is an isolated KKT
point of (1.1), i.e., there is ε > 0 such that the ballO(x∗, ε) = {x ∈ �n, | ‖x−x∗‖ ≤ ε}
does not contain any KKT point other than x∗. On the other hand, (3.6) implies that
for k large enough, ‖xk+1 − xk‖ < ε

4 and there exists a subsequence {xk}k∈K such
that ‖xk − x∗‖ < ε

4 on K. It is then impossible to leave O(x∗, ε) without creating
another cluster point and hence a KKT point in that ball.

In the remaining part of this section, as in [14], ‖·‖ is for the infinity norm instead
of the Euclidean norm. Let N(x, δ) = {y ∈ �n : ‖y − x‖ ≤ δ}.

Consider the perturbed form of (1.1)

min{f(x) + f̄(x) | x ∈ X̄},(3.7)

where X̄ = {x ∈ �n | g(x) + ḡ(x) ≤ 0, h(x) + h̄(x) = 0}, f, f̄ : �n → �,
g, ḡ : �n → �m, and h, h̄ : �n → �p are twice continuously differentiable functions.

Definition 3.4. Let x∗ be a KKT point of (1.1). We call x∗ a strongly stable
KKT point of (1.1) if for some δ∗ > 0 and each δ ∈ (0, δ∗] there exists an α > 0 such
that whenever twice continuously differentiable functions f̄ , ḡ, and h̄ satisfy

sup
‖x−x∗‖≤δ∗

i∈I,j∈J

{|f̄(x)|, |ḡi(x)|, |h̄j(x)|, ‖∇f̄(x)‖, ‖∇ḡi(x)‖, ‖∇h̄j(x)‖,

‖∇2f̄(x)‖, ‖∇2ḡi(x)‖, ‖∇2h̄j(x)‖} ≤ α,

N(x∗, δ) contains a solution x̄∗ of (3.7), which is unique in N(x∗, δ∗).
The following theorem is Theorem 7.2 of [14]. We will use it in section 6.

Theorem 3.5 (by Kojima [14]). Suppose that x∗ is a KKT point of (1.1) and
that the MFCQ holds at x∗. Then x∗ is a strongly stable KKT point of (1.1) if and
only if for all (u, v) ∈M(x∗), (x∗, u, v) satisfies the SSOSC.

Remark. The Kojima theorem can be regarded as an alternative to Robinson’s
perturbation theorem in [30]. Theorem 4.1 of [30] (together with Theorem 2.1 and
Corollary 2.2 of the same paper) shows that under the SSOSC and the LICQ one has
Lipschitzian behavior of the solution and the multipliers, with respect to perturba-
tions, while the Kojima theorem shows that under the SSOSC and the MFCQ one
has continuity of the solution and the multipliers, with respect to perturbations (but
a counterexample in [31] shows that we cannot prove Lipschitz continuity in this sit-
uation). It is thus not surprising that in section 6 we must add the CRCQ to get our
superlinear convergence result for a modified version of the 1993 Panier–Tits method.
Note that the example in [31] does not satisfy the CRCQ. A question is, Is the Kojima
theorem still true if the MFCQ is replaced by the CRCQ?

4. A general SQP method. We describe a general SQP method as follows.

Algorithm A.
Let C > 0.
Data. x0 ∈ X,H0 ∈ �n×n, symmetric positive definite.
Step 0. (Initialization.) Set k = 0.
Step 1. (Computation of a search direction.) Compute dk by solving the quadratic
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program

(QP )




min 1
2d
THkd+∇f(xk)T d

s.t. gj(x
k) +∇gj(xk)T d ≤ 0, j ∈ I,

s.t. hj(x
k) +∇hj(xk)T d = 0, j ∈ J.

If dk = 0 stop.
Step 2. (Line search and additional correction.) Determine the steplength αk ∈ (0, 1)
and a correction direction d̄k such that

‖d̄k‖ ≤ C‖dk‖.(4.1)

Step 3. (Updates.) Compute a new symmetric positive definite approximation Hk+1

to the Hessian of the Lagrangian. Set xk+1 = xk +αkd
k + d̄k and k = k+1. Go back

to Step 1.
Algorithm A is a general model for SQP methods. For a specific SQP method,

the rules for determining αk, d̄
k, and Hk must be given. For classical SQP methods

[23], d̄k = 0. We assume that the quadratic program (QP ) is always solvable. This is
obvious for feasible SQP methods since 0 is a feasible solution of (QP ) in that case.
Checking the KKT conditions of (QP ) for d = 0, we have the following proposition.

Proposition 4.1. If Algorithm A stops in Step 1, then xk is a KKT point of
(1.1).

Hence, we need only consider the case where Algorithm A generates an infinite
sequence.

Theorem 4.2. Assume that Algorithm A generates an infinite sequence {xk}∞k=1

and that this sequence has an accumulation point x∗. Let K be a subsequence of N
such that

lim
k∈K

xk = x∗.

Suppose that the CPLD holds at x∗ and that the Hessian estimates {Hk}∞k=0 are
bounded, i.e., there exists a scalar C1 > 0 such that for all k

‖Hk‖ ≤ C1.(4.2)

If

lim inf
k∈K

‖dk‖ = 0,(4.3)

then x∗ is a KKT point of (1.1).

Proof. Without loss of generality, by passing to a subsequence if necessary, we
may assume that

lim
k∈K
‖dk‖ = 0.(4.4)
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By the KKT conditions of (QP ), we have




Hkd
k +∇f(xk) +∇g(xk)T ūk +∇h(xk)Tuk = 0;

g(xk) +∇g(xk)T dk ≤ 0;

uk ≥ 0;

(uk)T (g(xk)−∇g(xk)T dk) = 0;

h(xk) +∇h(xk)T dk = 0.

By (4.2) and (4.4), as k →∞ for k ∈ K, we have that

εk ≡ −Hkd
k → 0,

δk ≡ −∇g(xk)T dk → 0,

and

λk ≡ ‖∇h(xk)T dk‖ → 0.

Then, by Theorem 2.7, x∗ is a KKT point of (1.1).

Theorem 4.3. Assume that the conditions of Theorem 4.2 hold. If, furthermore,
f, g, and h are twice continuously differentiable, the SSOSC holds at x∗, and

lim
k→∞

dk = 0,(4.5)

then limk→∞ xk = x∗.
Proof. This follows from (4.1) and Theorem 3.3.

We can establish superlinear convergence of the general SQP method by following,
step by step, with minor modifications, the proofs of Lemma 3 to Theorem 1 of [23]
and replacing ∇2

xxL(x
∗, u∗, v∗) with ∇2

xxL(x
k, uk, vk) in (3.10) of [23]. We will see this

more clearly in section 6.

To establish (4.3) or (4.5) one must use the properties of specific SQP methods.
In the next section, we will establish these two conditions for a feasible SQP method.

5. Global convergence of a Panier–Tits method. In this section, we estab-
lish the global convergence of the 1993 Panier–Tits feasible SQP method [18] under
the SSOSC and a condition slightly weaker than the MFCQ. The global convergence
of the 1987 Panier–Tits method [17] can be established in the same way. First of all,
we describe the algorithm given in [18]. Keep in mind that the Panier–Tits methods
are for inequality constrained optimization problems. Therefore, in this section and
the next section, problem (1.1) becomes

min{f(x) | x ∈ X},(5.1)

where X = {x ∈ �n | g(x) ≤ 0}.
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5.1. A Panier–Tits method. In [18], a continuous map d1 : �n → �n is
needed in the algorithm such that

d1(x) = 0 if x is a KKT point of (5.1),(5.2)

∇f(x)T d1(x) < 0 if x is not a KKT point of (5.1),(5.3)

and

∇gj(x)T d1(x) < 0 if x is not a KKT point of (5.1) and j ∈ I(x).(5.4)

As indicated in [18], if the LICQ holds at x, then the continuous map d1(x) satisfying
(5.2), (5.3), and (5.4), for example, can be obtained as the solution of

min
1

2
‖d‖2 +max{∇f(x)T d; max{gj(x) +∇gj(x)T d | j ∈ I}}.(5.5)

We see from (5.4) that the existence of such a d1(x) implies that the MFCQ holds
at all non-KKT points. On the other hand, if the MFCQ holds at all non-KKT points,
then such a continuous map still exists (see section 2.6 of [21]). However, this does
not require that the MFCQ hold at KKT points.

In the method of [18], it is necessary to have a map ρ : �n → [0, 1] that is bounded
away from zero outside every neighborhood of zero, and for v small

ρ(v) = O(‖v‖2).
Since the existence of the map ρ is independent of problem (5.1), for sake of simplicity,
we choose

ρ(v) =
‖v‖2

1 + ‖v‖2 .

Establishing the convergence properties of the algorithm presents no difficulty when
choosing other such maps.

The 1993 Panier–Tits method is as follows.
Algorithm B.

Let C > 0, τ1 ∈ (0, 1
2 ), τ2 ∈ (0, 1), τ3 ∈ (2, 3).

Data. x0 ∈ X,H0 ∈ �n×n, symmetric positive definite.
Step 0. (Initialization.) Set k = 0.
Step 1. (Computation of a search arc.)

(i) Compute dk0 by solving the quadratic program

(QP1)




min 1
2d
THkd+∇f(xk)T d

s. t. gj(x
k) +∇gj(xk)T d ≤ 0, j ∈ I.

If dk0 = 0, stop.
(ii) Let dk1 be the solution of (5.5), ρk = ρ(dk0), and dk = (1− ρk)d

k
0 + ρkd

k
1 .

(iii) Compute a correction d̃k as the solution of the problem

(QP2)




min 1
2 (d

k + d)THk(d+ dk) +∇f(xk)T (d+ dk)

s.t. gj(x
k + dk) +∇gj(xk)T d ≤ −‖dk‖τ3 , j ∈ I,
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if it exists and has norm less than min {‖dk‖, C} and d̃k = 0 otherwise. Hence, in any
case, we have

‖d̃k‖ ≤ min {‖dk‖, C}.(5.6)

Step 2. (Arc search.)
Compute tk, the first number t of the sequence {1, τ2, τ2

2 , . . .} satisfying
f(xk + tdk + t2d̃k) ≤ f(xk) + τ1t∇f(xk)T dk

and

gj(x
k + tdk + t2d̃k) ≤ 0, j ∈ I.

Step 3. (Updates.) Compute a new symmetric positive definite approximation Hk+1

to the Hessian of the Lagrangian. Set xk+1 = xk+ tkd
k+ t2kd̃

k and k = k+1. Go back
to Step 1.

We see that Algorithm B is a special case of Algorithm A with dk0 in Algorithm
B playing the role of dk in Algorithm A. The following two propositions show that
Algorithm B is well defined and either stops at a KKT point of (5.1) or generates a
sequence {xk}∞k=1.

Proposition 5.1 (Proposition 3.1 of [18]). If Algorithm B stops at Step 1(i),
then xk is a KKT point of (5.1). If xk is not a KKT point of (5.1), dk0 satisfies

∇f(xk)T dk0 < 0(5.7)

and

∇gj(xk)T dk0 ≤ 0 for all j ∈ I(xk).

Proposition 5.2 (Proposition 3.2 of [18]). The line search yields a step tk = τ i2
for some finite i = i(k).

5.2. Global convergence of Algorithm B. In order to prove the convergence
properties of Algorithm B, we assume that

(H1) the Hessian estimates {Hk}∞k=0 are bounded, i.e., there exists a scalar C1 > 0
such that for all k, ‖Hk‖ ≤ C1;

(H2) the MFCQ holds at all non-KKT points in X.
As discussed in subsection 5.1, (H2) implies that (5.5) has a continuous solution for

x. By Proposition 4.1 or Proposition 5.1, we may assume that Algorithm B generates
an infinite sequence {xk}∞k=1 and {xk}∞k=1 has an accumulation point x

∗. Furthermore,
we assume that

(H3) the CPLD holds at x∗.
(H2) and (H3) together are slightly weaker than the condition that the MFCQ

holds at all points in X.
Theorem 5.3. Assume that the hypotheses (H1)–(H3) hold. Then x∗ is a KKT

point of (5.1).
Proof. We assume that there is K such that

lim
k∈K

xk = x∗.

By Theorem 4.2, we only need to prove that

lim inf
k∈K

‖dk0‖ = 0.
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Assume that this does not hold. Then there exists a subsequence K′ ⊂ K and a scalar
c > 0 such that for all k ∈ K′, ‖dk0‖ ≥ c. Suppose, by contradiction, that x∗ is not
a KKT point of (5.1). Then from the definitions of ρk and ρ, there exists a number
c0 > 0 such that for all k ∈ K′, ρk ≥ c0. Therefore, using (5.3), (5.4), (5.7), and the
definition of dk in Step 1(ii) of Algorithm B, we have

∇f(xk)T dk ≤ c0∇f(xk)T dk1 .(5.8)

Similarly, for j ∈ I, we have
∇gj(xk)T dk ≤ −gj(xk) + c0∇gj(xk)T dk1 .(5.9)

Since x∗ is not a KKT point, we may assume that

lim
k∈K′

dk1 = d∗1,(5.10)

∇f(x∗)T d∗1 ≤ −3c1,(5.11)

and

∇gj(x∗)T d∗1 ≤ −3c1 for j ∈ I(x∗)(5.12)

for some c1 > 0. (5.10) and (5.11) imply that, for k ∈ K′ large enough,

∇f(xk)T dk1 ≤ −2c1.(5.13)

Similarly, from (5.10) and (5.12), we have, for k ∈ K′ large enough, that

∇gj(xk)T dk1 ≤ −2c1 for j ∈ I(x∗).(5.14)

Therefore, by viewing (5.8) and (5.13), (5.9) and (5.14), we have c2 > 0 such that,
for all k ∈ K′ large enough,

∇f(xk)T dk < −c2,

∇gj(xk)T dk < −c2 for j ∈ I(x∗),
and, by continuity of g,

gj(x
k) ≤ −c2 for j ∈ I \ I(x∗).

From the definitions of ρ and dk, we see that {dk}∞k=1 is bounded. From (5.6), {d̃k}∞k=1

is also bounded. The argument used in the proof of Proposition 3.2 of [17] implies that,
in this case, the step performed by the line search is bounded away from zero. This
and the monotonic decrease of f(xk) imply therefore that {f(xk)}k∈K′ is unbounded,
which contradicts the facts that xk → x∗ as k ∈ K′ and k →∞ and the continuity of
f . Hence the proof of this theorem is complete.

In addition to (H1)–(H3), we further assume that
(H4) f and g are twice continuously differentiable;
(H5) there exists a scalar C2 > 0 such that, for all k, the Hessian estimates satisfy

dTHkd ≥ C2‖d‖2 for any d ∈ �n;(5.15)
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(H6) x∗ satisfies the SSOSC.
Proposition 5.4. Assume that (H1)–(H6) hold and {xk}∞k=1 is generated by

Algorithm B. Then

lim
k→∞

xk = x∗.(5.16)

Proof. The argument used in the proof of Proposition 3.4 in [18] showed that

lim
k→∞

‖xk+1 − xk‖ = 0,

which combined with Theorem 3.3 yields that (5.16) holds.
Proposition 5.5. Assume that (H1)–(H6) hold. Then

lim
k→∞

dk0 = 0.

Proof. By Proposition 4.3, {xk}∞k=1 is bounded. From

−‖∇f(xk)‖‖dk0‖ ≤ ∇f(xk)T dk0 ≤ −
1

2
(dk0)

THkd
k
0 ≤ −

1

2
C2‖dk0‖2

we have

‖dk0‖ ≤
2

C2
‖∇f(xk)‖2,

which implies that {dk0}∞k=1 is bounded.
Suppose, by contradiction, that there exists a subsequence {dk0}k∈K such that

lim
k∈K

dk0 = d∗0 �= 0.(5.17)

Since x∗ is a KKT point of (1.1), there is a u∗ ≥ 0 such that


∇f(x∗) +∑j∈I(x∗) u
∗
j∇gj(x∗) = 0,

u∗jgj(x
∗) = 0 for j ∈ I(x∗),

which combined with the facts that ∇f(x∗)T d∗0 ≤ 0, ∇gj(x∗)T d∗0 ≤ 0 for j ∈ I(x∗)
and u∗ ≥ 0 implies that

∇f(x∗)T d∗0 = 0.

On the other hand, from ∇f(xk)T dk0 ≤ − 1
2C2‖dk0‖2, C2 > 0, Proposition 4.3, and

limk∈K d∗0 = d∗0, we have

0 = ∇f(x∗)T d∗0 ≤ −
1

2
C2‖d∗0‖2,

which contradicts (5.17). This completes the proof.

6. Superlinear convergence of a modified Panier–Tits method. We begin
by modifying Algorithm B in subsection 6.1 to enable us to prove its superlinear
convergence. Then we establish the superlinear convergence of the modified algorithm
in subsection 6.2.
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6.1. A modified Panier–Tits method. In Algorithm B, let uk be a regular
Lagrange multiplier of dk0 with respect to (QP1). Let Îk be the active constraint set of
(QP1). Then there is a subset Ik ⊂ Îk such that u

k
j = 0 if j �∈ Ik and {∇gj(xk) | j ∈ Ik}

is a maximum linearly independent subset of {∇gj(xk) | j ∈ Îk}. We now replace
(QP2) in Algorithm B by

(QP3)




min 1
2 (d

k + d)THk(d+ dk) +∇f(xk)T (d+ dk)

s.t. gj(x
k + dk) +∇gj(xk)T d = −‖dk‖τ3 , j ∈ Ik,

gj(x
k + dk) +∇gj(xk)T d ≤ −‖dk‖τ3 , j ∈ I \ Ik.

We call the resulting algorithm Algorithm C. This modification forces Ik to be a part
of the active constraints of (QP3), which is necessary for the proof of superlinear
convergence without assuming the LICQ and the strict complementarity slackness.
Checking the proofs of subsection 5.2, we see that this modification does not affect
the global convergence of the algorithm since only (5.6) is required for d̃k in the global
convergence analysis in subsection 5.2. We did not make this modification in section 5
since there it was not needed.

Let Rk be the n× |Ik| matrix whose columns consist of ∇gj(xk) for j ∈ Ik. Note
that RTkRk is invertible in view of the definition of the regular Lagrange multiplier.
Let

Pk = I −Rk(R
T
kRk)

−1RTk

and

∇2
xxL(x

k, uk) = ∇2f(xk) +
∑
j∈Ik

ukj∇2gj(x
k).

6.2. Superlinear convergence of Algorithm C. In the following analysis, we
assume that {xk}∞k=1 converges to a point x

∗. It follows from the preceding discussion
that x∗ is a KKT point of (5.1). In addition to (H1)–(H6), we assume that the following
hypotheses hold:

(H7) x∗ satisfies the CRCQ;
(H8) whenever B ⊂ I(x∗) and vectors in {∇gj(x∗)|j ∈ B} are linearly indepen-

dent, ({∇gj(x∗)|j ∈ I(x∗) \B}, {∇gj(x∗)|j ∈ B}) is positive-linearly independent;
(H9)

‖Pk(Hk −∇2
xxL(x

k, uk))Pkd
k‖

‖dk‖ → 0 as k →∞.

Note that the LICQ implies both (H7) and (H8). Thus, even (H7) and (H8)
together are slightly weaker than the LICQ at x∗.

Proposition 6.1. Assume that (H1)–(H9) hold and that {xk}∞k=1 is generated
by Algorithm C. Then for k large enough, the step size tk is one.

Proof. Since Ik are finite sets for all k, we may partition N ≡ {1, 2, . . .} into l+1
disjoint subsets Ki for i = 0, 1, . . . , l such that K0 is finite, while other Ki are infinite
and Ik ≡ Īi if k ∈ Ki and i > 0. For i = 1, . . . , l, let R̄i be the n× |Īi| matrix whose
columns consist of ∇gj(x∗) for j ∈ Īi. Note that by (H7), R̄Ti R̄i is also invertible. By
the equality part of the KKT conditions for (QP1),

ukIk = −(RTkRk)−1RTk (Hkd
k
0 +∇f(xk)).
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Then, as k →∞ for k ∈ Ki,
ukIk → u∗̄Ii = −(R̄Ti R̄i)−1R̄Ti ∇f(x∗).

Let u∗i = 0 if i �∈ Īi. Then u∗ ∈M(x∗). We see that 0 is a KKT point of

(Q̄P i)




min 1
2d
T d+∇f(x∗)T d

s.t. gj(x
∗) +∇gj(x∗)T d = 0, j ∈ Īi,

gj(x
∗) +∇gj(x∗)T d ≤ 0, j ∈ I \ Īi,

with a Lagrange multiplier u∗. Because of (H7), vectors in {∇gj(x∗)|j ∈ Īi} are
linearly independent. Then (H8) implies that the MFCQ holds at x∗ for (Q̄P i). It is
easy to see that the SSOSC holds at x∗ for (Q̄P i) too. Applying the Kojima theorem
(Theorem 3.5), we see that

(QP4)




min 1
2d
T d+∇f(xk)T d

s.t. gj(x
k + dk) +∇gj(xk)T d = −‖dk‖τ3 , j ∈ Ik,

gj(x
k + dk) +∇gj(xk)T d ≤ −‖dk‖τ3 , j ∈ I \ Ik,

is feasible for k large enough, since (QP4) is a perturbed form of (Q̄P i). Since (QP3)
has the same constraints as (QP4), (QP3) is also feasible for k large enough. Hence,
and because of (H5) and (H7), and because of the fact that if the CRCQ holds at
a point then it holds at a neighborhood of that point, (QP3) has a KKT point d̃k

for k large enough. Now, we may follow the proof of Proposition 3.6 of [18] step by
step with minor modification for each i satisfying 1 ≤ i ≤ l. Note that l is finite. The
conclusion follows.

Finally, two-step superlinear convergence follows. As in [18], the proof is not given
as it follows step by step, with minor modifications, that of Lemma 3 to Theorem 1
in [23]. Note that with (H9), (H8), and (H7), we do not need to invoke Lemmas 1 and
2 in [23], which rely on the LICQ and the strict complementarity slackness.

Theorem 6.2. Under the stated assumptions, the convergence is two-step super-
linear, i.e.,

lim
k→∞

‖xk+2 − x∗‖
‖xk − x∗‖ = 0.

Remark. Similarly, as we mentioned in section 4, the conditions of Powell’s theo-
rem on the SQP method, Theorem 1 of [23], may be reduced to the SSOSC and the
CPLD, by replacing (3.10) in [23] with (H9).

Again, the result in this section can also be extended to the 1987 Panier–Tits
algorithm.
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AN OPTIMIZATION PROBLEM FOR PREDICTING THE MAXIMAL
EFFECT OF DEGRADATION OF MECHANICAL STRUCTURES∗
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Abstract. This paper deals with a nonlinear nonconvex optimization problem that models
prediction of degradation in discrete or discretized mechanical structures. The mathematical diffi-
culty lies in equality constraints of the form

∑m

i=1
1
yi
Aix = b, where Ai are symmetric and positive

semidefinite matrices, b is a vector, and x, y are the vectors of unknowns. The linear objective
function to be maximized is (x, y) �→ bT x.

In a first step we investigate the problem properties such as existence of solutions and the
differentiability of related marginal functions. As a by-product, this gives insight in terms of a
mechanical interpretation of the optimization problem. We derive an equivalent convex problem
formulation and a convex dual problem, and for dyadic matrices Ai a quadratic programming problem
formulation is developed. A nontrivial numerical example is included, based on the latter formulation.

Key words. nonlinear optimization, structural optimization, variational methods

AMS subject classifications. 49A55, 65K10, 73C60, 73K40

PII. S1052623497328768

1. Introduction and problem formulation. The topic of this paper is the
investigation of mathematical properties of a recently proposed model for the evalua-
tion of the maximal effect of degradation in mechanical structures (cf. [2]). The model
takes the form of an optimization problem over two sets of variables, one being the
state variables (displacements or forces) for the structure, the other being so-called
inner state variables characterizing the degradation of the structure.

The model is based on the use of structural compliance (flexibility) as a global
measure of the effect of degradation and on an interpretation of local degradation as a
loss of stiffness of elements or material in the structure, with the maximal degradation
effect characterized by the distribution of degradation giving the upper bound on this
global measure. For evolution of degradation, sequential solutions to this problem
predict patterns of evolving local degradation and local deformation corresponding to
the respective stage in a process (a time-stepping approach). We note that the model
does not reflect explicit considerations (i.e., the cause for degradation) that arise in
studies of damage mechanics, but there are many analogies to models used in the
field of continuum damage mechanics; the reader is referred to the recent monographs
[7, 8] for surveys on damage mechanics. Also, for a discussion on certain mathematical
problems arising in continuum damage mechanics we refer to [9] and the literature
cited therein.

In the following we introduce the main optimization problem considered in this
paper. In order to enable readers familiar with mechanics to make their own interpre-
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tations, we use common notation from this field. However, the general mathematical
structure of the problem is illustrated in Remark 1.2.

We consider the following optimization problem:

max
β∈Rm, u∈Rn

1
2f

Tu

subject to (s.t.)
m∑
i=1

[
(1− βi)

1
Ei

+ βi
1
ED

i

]−1

ai�iKiu = f,

0 ≤ βi ≤ 1 for all i = 1, . . . ,m,

m∑
i=1

ai�iβi ≤ D.

(P1)

In this problem, f ∈ Rn is a given vector. To exclude trivial cases, we assume f �= 0.
The matrices K1, . . . ,Km ∈ Rn×n are given with

Ki positive semidefinite for all i = 1, . . . ,m.(A1)

The given constants ai, �i, Ei, E
D
i , i = 1, . . . ,m, are positive, with

0 < ED
i < Ei for all i = 1, . . . ,m.(A2)

Throughout the paper we put V :=
∑m
i=1 ai�i, and for the given constantD we assume

0 < D ≤ V.(A3)

Finally, we assume that

f ∈ Range
(

m∑
i=1

Ki

)
.(A4)

Together with (A1) this assumption guarantees that for any fixed β ∈ [0, 1]m the
equality constraints can be solved for u. Moreover, (A2) to (A4) guarantee that the
set of feasible points of (P1) is nonempty.

Application 1.1. Problem (P1) models one time-step of the computation of upper
bounds on the progressive degradation of elastic structures. This is outlined in the
following. We mainly concentrate on trusses for simplicity.

(i) Truss structures. Trusses are pin-jointed frameworks consisting of long slen-
der bar elements. Denote the number of bars by m, and let the material of the ith bar
be linearly elastic with Young’s modulus Ei. Similarly, denote by �i the length and
by ai the cross-sectional area of this bar. The matrix Ki contains some geometrical
properties of the ith bar (see also below). Then u ∈ Rn is the vector of nodal displace-
ments under the load f that is applied at the nodal points (i.e., points where bars
are connected). For a more precise description see, e.g., [3, 6]. Let ED

i be a Young’s
modulus smaller than Ei (cf. (A2)), i.e., characterizing weaker material. Then the
variable βi determines the effective stiffness of the material in the ith bar, controlling
the “degree of degradation”: For fixed βi, the effective Young’s modulus is given by
Eeff
i = [(1 − βi)

1
Ei

+ βi
1
ED

i

]−1. If βi = 0, then we get the effective material constant

Eeff
i = Ei (i.e., the original material), and for βi = 1 we obtain Eeff

i = ED
i , i.e., weak

material. For 0 < βi < 1 we get an intermediate stiffness expressed as what is called
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the Reuss lower bound on stiffness of a mixture of materials, corresponding to springs
in series; see, e.g., [4].

The total amount of material degradation in the structure is controlled by the
inequality constraint

∑
ai�iβi ≤ D; that is, the total volume of degraded material is

limited by D, where D is some part of the total volume V of the structure (cf. (A3)).
The objective function measures the total displacement of the structure along

the force vector f : if fTu is small, then the structure is “stiff”; i.e., its nodal points
hardly move along the applied forces. The term fTu is called compliance.

In this way, formulation (P1) is a model for predicting local material degradation
in a structure in a worst case sense. That means, given some global limitation of
degradation (by D), that we look for that degradation contribution in the truss bars
that causes the total structure to be as weak as possible.

Of course, degradation is a time-dependent process and (P1) models the (maxi-
mally possible) degradation process of a particular time point only. Thus for progres-
sive degradation, i.e., for computing the evolution of degradation in the structure, we
have to solve a sequence of problems of type (P1). This is the topic of section 5.

(ii) Continuum elastic structures. For continuum structures, (P1) constitutes
the problem form obtained after discretization with finite elements.

Remark 1.2. Substituting yi := (1 − βi)
1
Ei

+ βi
1
ED

i

for all i = 1, . . . ,m, problem

(P1) becomes

max
y∈Rm, u∈Rn

1
2f

Tu

s.t.
m∑
i=1

1
yi
K̃iu = f,

1
Ei
≤ yi ≤ 1

ED
i

for all i = 1, . . . ,m,

m∑
i=1

ciyi ≤ D̃

with suitable values for ci, K̃i, and D̃. Thus formulation (P1) is a special form of a
problem with equality constraints of the type

∑
1
yi
K̃iu = f .

Due to the interpretation of problem (P1) in Application 1.1, we call β the degra-
dation distribution or degradation field. The constraint

∑
ai�iβi ≤ D is called “degra-

dation volume constraint.”

2. Problem investigation and analysis of degradation behavior. In this
section we provide several useful problem properties that are directly derived from
the particular given problem structure of (P1). Moreover, this will lead to an inter-
pretation of the mechanical degradation behavior modeled by problem (P1).

We define the following functions and notations:

BD :=
{
β ∈ Rm

∣∣∣ 0 ≤ βi ≤ 1 for all i,
m∑
i=1

ai�iβi ≤ D
}
,

ψ̃(β, u):=
{
fTu− 1

2

m∑
i=1

[
(1− βi)

1
Ei

+ βi
1
ED

i

]−1

ai�iu
TKiu

}
,

ψ(β) :=max
u∈Rn

{
1
2f

Tu
∣∣∣ m∑
i=1

[
(1− βi)

1
Ei

+ βi
1
ED

i

]−1

ai�iKiu = f
}
.
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Proposition 2.1.
(i) For all β ≥ 0 we have the identity ψ(β) = maxu∈Rn ψ̃(β, u).
(ii) The function ψ̃ is concave on [0, 1]m × Rn and differentiable.
(iii) The function ψ is finite and concave on [0, 1]m.
(iv) Problem (P1) always possesses a solution.
Proof. By (A2) the set

D :=
{
δ ∈ Rm | ED

i

ED
i
−Ei

< δi for all i
}

is well defined. It’s easy to see that BD ⊂ D and that

(1− δi)
1

Ei
+ δi

1

ED
i

> 0 for all δ ∈ D.(2.1)

To avoid technical difficulties, we prove assertions (i) to (iii) for the open set D instead
of [0, 1]m (note [0, 1]m ⊂ D; see above).

Let δ ∈ D be arbitrary. By assumption (A1) and by (2.1), a vector u∗ maximizes
the function ψ̃(δ, . ) if and only if

∑
[(1− δi)

1
Ei

+ δi
1
ED

i

]−1ai�iKiu = f (by (A4) this

is solvable). By this, explicit calculation of the optimal function value yields 1
2f

Tu∗,
and (i) is proved.

The proof of (ii) is a straightforward calculation: The Hessian of ψ̃ is negative
semidefinite. Differentiability is obvious.

By (i), ψ is the pointwise supremum function of the concave functions ψ̃( . , u),
and by (ii) ψ̃ is concave as a function in both variables (δ, u). Moreover, for each fixed
δ the supremum in (i) is attained by (A4). Therefore, ψ is concave as well.

By (i) we conclude for all δ ∈ D that ∞ > ψ(δ). Since D is open, the concavity
of ψ (cf. (ii)) yields that ψ is finite and continuous on D. Together with BD ⊂ D this
shows that the supremum of ψ on BD is attained since BD is a compact set. By (i)
this means that there exists a solution of (P1).

By Proposition 2.1(i), problem (P1) may be written in the variable β as

max
β∈BD

ψ(β) .(P1′)

This is a convex, differentiable, and linearly constrained problem. (If rank(
∑

Ki) =
n, then the differentiability of ψ easily follows from an implicit-function theorem.
The case rank(

∑
Ki) < n can be deduced from the first case by using the standard

projection onto the nullspace of
∑

Ki.) Alternatively, Proposition 2.1(i) and (ii) show
that (P1) may also be rewritten in the form

max
β∈BD, u∈Rn

ψ̃(β, u),(P1′′)

which again is convex, smooth, and nonlinear with only linear constraints.
Remark 2.2. It is perhaps surprising that problem (P1) can be rewritten as

the convex problem (P1′) (resp., (P1′′)). This is due to the special structure of
the problem. We note that—though convex—formulations (P1′) and (P1′′) may not
be suitable for numerical computations in practical applications: the number m of
elements will be of the order several thousands (n is of the same order), and this
will cause standard solvers to break down. More tractable formulations are studied
below.
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Application 2.3. In engineering, the formulation (P1′′) is referred to as a for-
mulation in potential energy since the term −ψ̃(β, u) is the potential energy of the
structure under the displacements u.

Supplementary to Proposition 2.1(iv) it can be proved (analogously to a proof in
[1]) that there is always a solution β∗ with

∑
ai�iβ

∗
i = D; i.e., there exists an optimal

degradation distribution making use of the maximally permitted amount of degraded
material. This is sensible from a modeling point of view.

The following theorem reformulates (P1) (resp., (P1′), (P1′′)) as a partly dual
problem. This derivation gives insight into the degradation behavior of particular
parts of the structure. For this, it is necessary to isolate an energy term for each so-
called “member” of the structure. The energy contained in each structural member
is called member strain energy.
Theorem 2.4 (formulation in member strain energies). For the optimal function

value of (P1) we have

max
β∈BD

ψ(β) = max
u∈Rn

min
Λ≥0

{
fTu− 1

2

m∑
i=1

ai�iΨi(u,Λ) + ΛD

}
,(P1SE)

where for all i = 1, . . . ,m

Ψi(u,Λ) :=




Eiu
TKiu if uTKiu ≤ 2Λ

ED
i

Ei(Ei−ED
i

)
,

ED
i u

TKiu+ 2Λ if uTKiu ≥ 2Λ Ei

ED
i

(Ei−ED
i

)
,

2

√
2ΛEiED

i

Ei − ED
i

√
uTKiu− 2ΛED

i

Ei − ED
i

otherwise.

Proof. We start with the application of Proposition 2.1(i) and get

max
β∈BD

ψ(β)

= max
u∈Rn

max
β∈[0,1]m,

∑
ai�iβi≤D

{
fTu− 1

2

m∑
i=1

[
(1− βi) 1

Ei
+ βi 1

ED
i

]−1

ai�iu
TKiu

}

(introduce the Lagrangian multiplier Λ ≥ 0 for the degradation volume constraint,
and apply Lagrangian relaxation)

= max
u∈Rn

max
β∈[0,1]m

inf
Λ≥0

{
fTu− 1

2

m∑
i=1

[
(1− βi) 1

Ei
+ βi 1

ED
i

]−1

ai�iu
TKiu

−Λ
m∑
i=1

ai�iβi + ΛD
}

(since the inner term in brackets is concave in β by Proposition 2.1(ii), we may apply
a well-known minmax theorem (see, e.g., [11, Cor. 37.3.2]) interchanging maxβ with
infΛ)

= max
u∈Rn

inf
Λ≥0

{
fTu− 1

2

m∑
i=1

ai�i min
βi∈R, βi∈[0,1]

{[(1− βi) 1
Ei

+ βi 1

ED
i

]−1uTKiu+ 2Λβi}
+ΛD

}
.

It can now be verified that for all fixed u, Λ, and i,

min
βi∈[0,1]

{[(1− βi) 1
Ei

+ βi 1

ED
i

]−1uTKiu+ 2Λβi} = Ψi(u,Λ)
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λ

Ψi(λu0,Λ)

Fig. 2.1. Specific member strain energy Ψi for proportionally increasing displacements u ≡ λu0.

with Ψi from above. Finally, it is easy to see that the infimum over Λ is attained for
each fixed u.

Application 2.5. Theorem 2.4 allows the following interpretation of the model.
The degraded structure has a specific potential energy (“specific” meaning per volume
unit; see Figure 2.1) corresponding to a nonlinear material, which at low strains
(measured by uTKiu) is healthy with Young’s modulus Ei, while at high strains it is
completely degraded with Young’s modulus ED

i (see also Application 3.4).

3. Formulations in stresses. In this section, we assume (in addition to (A1))
that each matrix Ki is given as a symmetric dyadic product; i.e., we assume that
there exist vectors b1, . . . , bm ∈ Rn such that

Ki =
1

�2i
bib

T
i for all i = 1, . . . ,m.(A5)

By collecting all vectors bi as columns in a matrix, we get

B := (b1b2 · · · bm) ∈ Rn×m.

Application 3.1. The dyadic structure in (A5) is valid for truss structures (see,
e.g., [6]). Then the vector bi contains the cosines of the angle between the ith bar and
the axis of a local coordinate system (i.e., in two or three dimensions). The matrix B is
called the compatibility matrix since it translates bar forces into nodal forces, and BT

translates nodal displacements into bar elongations. For other discretized structural
models the stiffness matrix is the product Ki = BiB

T
i of a (low-rank) matrix Bi

corresponding to a discrete divergence operator. In the following we concentrate, for
simplicity, on the dyadic case for trusses. The derivations can also be performed for
the more general case, as well as for their continuum equivalents (cf. [2]).

Using the dyadic form above, we can reformulate problem (P1) (resp., (P1′) or
(P1′′)) to (see Theorem 3.3 below)

min
q∈Rm, Λ∈R

{
1
2

m∑
i=1

�i
aiEi

q2
i +

1
2

m∑
i=1

ai�imax{0, Ei−ED
i

EiED
i

q2i
a2
i

− 2Λ}+ ΛD
}

s.t. Bq = f,

Λ ≥ 0.

(D1)
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This problem is a dual of (P1) (see below). The contained “partial duality” with
respect to (w.r.t.) u is considered separately in the following proposition.
Proposition 3.2. Let Ē1, . . . , Ēm be positive real numbers. Then

max
u∈Rn

{
fTu− 1

2

m∑
i=1

Ēiai�iu
TKiu

}
= min
q∈Rm

{
1
2

m∑
i=1

�i
aiĒi

q2
i | Bq = f

}
.

Proof. Both quadratic problems are dual to each other: The vector u of the max-
problem simply plays the role of Lagrange multipliers for the linear constraints Bq = f
in the min-problem (note that by (A4) and (A5) the feasible set of the min-problem
is nonempty).
Theorem 3.3 (dual problem: formulation in complementary energy). Problems

(P1) and (D1) are related in the following way:
(i) Problem (D1) possesses a solution.
(ii) The optimal function values coincide, i.e.,

max (P1) = min (D1) .

(iii) A couple (q∗,Λ∗) ∈ Rm ×R is optimal for problem (D1) if and only if there
exist u∗ ∈ Rn, ρ∗, δ∗ ∈ Rm, and κ∗ ∈ R such that with

r∗i = max
{
0,

Ei − ED
i

2EiED
i

q∗2i
a2
i

− Λ∗
}

for all i = 1, . . . ,m(3.1)

the following conditions are satisfied:

�i
aiEi

q∗i − bTi u
∗ + δ∗i

Ei − ED
i

EiED
i a

2
i

q∗i = 0 for all i = 1, . . . ,m,(3.2)

ai�i − ρ∗i − δ∗i = 0 for all i = 1, . . . ,m,(3.3)

D −
m∑
i=1

δ∗i − κ∗ = 0,(3.4)

riρ
∗
i = 0 for all i = 1, . . . ,m,(3.5)

δ∗i
( Ei − ED

i

2EiED
i a

2
i

q∗2i − Λ∗
)
= δ∗i ri for all i = 1, . . . ,m,(3.6)

Λ∗κ∗ = 0,(3.7)

ρ∗i ≥ 0 for all i = 1, . . . ,m,(3.8)

δ∗i ≥ 0 for all i = 1, . . . ,m,(3.9)

κ∗ ≥ 0,(3.10)

Bq∗ = f,(3.11)

Λ∗ ≥ 0 .(3.12)

(iv) Let (q∗,Λ∗) be optimal for (D1), and let u∗ ∈ Rn, ρ∗, δ∗ ∈ Rm, κ∗ ∈ R be
corresponding multipliers as in (iii). Then (β∗, u∗) is optimal for problem (P1), where

β∗
i :=

δ∗i
ai�i

for all i = 1, . . . ,m.(3.13)

In particular,

β∗
i =




1 if
q∗2
i

a2
i

>
2EiE

D
i

Ei−ED
i

Λ∗,

0 if
q∗2
i

a2
i

<
2EiE

D
i

Ei−ED
i

Λ∗.
(3.14)
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Proof. By (A4) and (A5) there exists a feasible point (q̄, Λ̄) of (D1). For any
(qT ,Λ)T ∈ Rm+1 we denote the objective function of problem (D1) by Γ,

Γ(q,Λ) := 1
2

m∑
i=1

�i
aiEi

q2
i +

1
2

m∑
i=1

ai�imax
{
0,

Ei − ED
i

EiED
i

q2
i

a2
i

− 2Λ
}
+ ΛD.

Then, clearly,

Γ(q,Λ) ≥ 1
2

m∑
i=1

�i
aiEi

q2
i + ΛD for all (qT ,Λ)T ∈ Rm+1.

Therefore, each sequence (qj ,Λj)j∈N of feasible points with ‖(qjT ,Λj)T ‖2 −→ +∞
leads to limj→∞ Γ(q,Λ) = +∞. This shows that for any feasible point, e.g., for (q̄, Λ̄)
from above, the set

Z(q̄, Λ̄) :=
{
(qT ,Λ)T ∈ Rm+1 | Bq = f, Λ ≥ 0, Γ(q,Λ) ≤ Γ(q̄, Λ̄)

}
is bounded. Since Γ is continuous, we even get that Z(q̄, Λ̄) is a compact set. Since
we may consider problem (D1) as minimization on the set Z(q̄, Λ̄), we have proved
that the minimum is attained, i.e., (i).

For the proof of (ii) we take as a starting point Proposition 2.1(i) together with
Proposition 3.2 for each fixed β ∈ BD:
max (P1)

= max
β∈BD

min
q∈Rm:Bq=f

{
1
2

m∑
i=1

�i
ai

[
(1− βi)

1

Ei
+ βi

1

ED
i

]
q2
i

}

(analogously to the proof of Theorem 2.4: apply minmax theorem and introduce
multiplier Λ ≥ 0 for volume constraint)

= inf
q∈Rm:Bq=f

max
β∈[0,1]m

inf
Λ≥0

{
1
2

m∑
i=1

�i
ai

[
(1− βi)

1

Ei
+ βi

1

ED
i

]
q2
i + Λ

(
D −

m∑
i=1

ai�iβi

)}

(apply minmax theorem for fixed q and use the separability of maximization over
the βi)

= inf
q∈Rm:Bq=f

inf
Λ≥0

{
1
2

m∑
i=1

�i
aiEi

q2
i +

1
2

m∑
i=1

ai�imax
{
0,

Ei − ED
i

EiED
i

q2
i

a2
i

− 2Λ
}
+ ΛD

}

= min (D1).

This proves (ii) (note that infq,Λ is attained by (i)).
With the auxiliary variables r1, . . . , rm ∈ R, the problem (D1) can be equivalently

rewritten in the form

min
q∈Rm, Λ∈R, r∈Rm

{
1
2

m∑
i=1

�i
aiEi

q2
i +

m∑
i=1

ai�iri + ΛD
}

s.t. Bq = f,

−ri ≤ 0 for all i = 1, . . . ,m,

Ei−ED
i

2EiED
i

q2i
a2
i

− Λ− ri ≤ 0 for all i = 1, . . . ,m,

Λ ≥ 0 .

(3.15)
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By (A4) and (A5) there is a q̄ ∈ Rm with Bq̄ = f . This shows that the feasible
set of (3.15) is nonempty (choose ri and Λ large enough). If (q∗,Λ∗, r∗) is optimal
for problem (3.15), then it is clear that (3.1) is satisfied. Since the equality con-
straints in (3.15) are linear, it is easy to prove that a type of generalized Slater’s
constraint qualification is satisfied. Therefore, the Karush–Kuhn–Tucker (KKT) op-
timality conditions are satisfied in (q∗,Λ∗, r∗) with suitable multipliers u∗, ρ∗, δ∗, κ∗.
These conditions are listed in (3.2) to (3.12).

Vice versa, let (3.2) to (3.12) be satisfied. Since (3.15) is a convex problem (in
the variables (q,Λ, r)), the point (q∗,Λ∗, r∗) is a global minimizer. Thus (3.1) must
be satisfied. This proves (iii).

The proof of (iv) is a rather long but simple exercise only using conditions (3.2)
to (3.12) and the definition of β∗. We only sketch the main steps of an exact proof:
Feasibility of (β∗, u∗) for (P1) is derived from conditions (3.2) to (3.4) and (3.8) to
(3.11). Thus—since (q∗,Λ∗) is optimal for (D1) by assumption, and by (i) and (ii)—it
suffices to verify the identity

1
2f

Tu∗ = 1
2

m∑
i=1

�i
aiEi

q∗2i +

m∑
i=1

ai�ir
∗
i + Λ∗D,(3.16)

where r∗ is defined by (3.1). We start by using (3.2) and get

1
2

m∑
i=1

�i
aiEi

q∗2i +

m∑
i=1

ai�ir
∗
i + Λ∗D

=
m∑
i=1

(
1
2b
T
i u

∗q∗i − 1
2δ

∗
i

Ei − ED
i

a2
iEiE

D
i

q∗2i
)
+

m∑
i=1

ai�ir
∗
i + Λ∗D

(use (3.6), (3.11), (3.3), and (3.4); then apply (3.5) and (3.7))

= 1
2f

Tu∗ −
m∑
i=1

r∗i (ai�i − ρ∗i )− Λ∗(D − κ∗) +
m∑
i=1

ai�ir
∗
i + Λ∗D

= 1
2f

Tu∗ .

This shows (3.16), and thus (β∗, u∗) is optimal for (P1). In particular, if r∗i > 0, then
(3.5) shows ρ∗i = 0, and by (3.3) we get δ∗i = ai�i, and thus β∗

i = 1. Analogously, if
r∗i = 0 > ( 1

2 (Ei − ED
i )q

∗2
i /(a2

iEiE
D
i )− Λ∗), then (3.6) yields δ∗i = 0, i.e., β∗

i = 0. By
the definition of r∗i , this shows the rest of assertion (iv).

This theorem shows that formulation (D1) is a “proper” dual of (P1) as the
solution of (P1) (up to a scaling) is given directly by the multipliers of problem (D1).

Application 3.4. For truss structures the equality constraint Bq = f in Theo-
rem 3.3 expresses the equilibrium of forces, i.e., relating internal bar forces q with the
external loads f (applied at the nodal points). Moreover, problem (D1) is a so-called
complementary energy principle (cf. Proposition 3.2), here for the degraded truss.
Thus Theorem 3.3(ii) expresses the same mechanical duality for the degraded truss as
does Proposition 3.2 for a truss consisting of nondegradable, linearly elastic material.

The objective function of (D1) can be written as the sum

m∑
i=1

ai�iΞi(q,Λ) + ΛD,
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(a)

qi

Ξi(q,Λ) (b)

εi(u)

qi
ai

Fig. 3.1. Specific member complementary energy Ξi (a) and stress-strain diagram (b).

where for all i = 1, . . . ,m

Ξi(q,Λ) =
1
2 max

{ 1

Ei

q2
i

a2
i

,
1

ED
i

q2
i

a2
i

− 2Λ
}

is the specific member complementary energy of the degraded truss. Its plot in qi
is shown in Figure 3.1(a). For this complementary energy we have a member stress-
strain diagram (i.e., qi/ai expressed as a function of strains εi(u) = bTi u/�i, where
the displacements u are the multipliers for the equation Bq = f) as shown in Fig-
ure 3.1(b). This illustrates the nonlinear material behavior modeled through the
original formulation (P1).

We finally note that problem (D1) is the dual of problem (P1SE) of Theorem 2.4
when this is written in the form

max
u∈Rn, ε∈Rm: εi=bTi u/�i ∀i

{
fTu− 1

2

m∑
i=1

ai�iΨ
R

i,Λ(εi) + ΛD

}
,

where ΨR

i,Λ is given by Ψi( . ,Λ) through the substitution uTKiu = ε2i .
Also, (P1SE) and (D1) have the same stress-strain diagram, and this diagram is

a plot of the derivatives of ΨR

i,Λ; cf. Figure 2.1.

4. A QP formulation for trusses. In the particular situation of a truss struc-
ture, we can further manipulate problem (D1) so as to achieve problems that are
numerically more tractable. This seems to be a necessity—at least for larger dimen-
sion m—since the inner nonsmooth terms would destroy any reasonable numerical
performance. We outline in Theorem 4.1 that (D1) is equivalent to the following
quadratic programming problem (QP):

min
q∈Rm, µ∈R, s∈Rm

{
1
2

m∑
i=1

�i
aiEi

q2
i +

1
2

m∑
i=1

ai�is
2
i +

1
2 (D − V )µ2

}
s.t. Bq = f,

0 ≤ µ ≤ si for all i = 1, . . . ,m,

−si ≤
√
Ei−ED

i

ai
√
EiED

i

qi ≤ si for all i = 1, . . . ,m.

(D1QP)
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In what follows we call the third group of constraints the stress constraints, because
for trusses qi/ai denotes the stress of the ith bar, which here is limited by the values

±
√
EiED

i si/
√
Ei − ED

i .
We already mention that (D1QP) is a nonconvex quadratic problem since the

Hessian of the objective function is a diagonal matrix that has only positive entries
apart from one negative coefficient (D − V ) (cf. (A3)).

The following theorem parallels Theorem 3.3. Because of lack of space we suppress
the pathological case µ∗ = 0 in assertion (iii).
Theorem 4.1 (dual problem: formulation as QP).
(i) The quadratic programming problem (D1QP) possesses a solution.
(ii) The optimal function values of problems (D1QP) and (D1) coincide, i.e.,

min (D1QP) = min (D1).

(iii) Let (q∗, µ∗, s∗) be a KKT point of (D1QP) with multipliers u∗ ∈ Rn for
the equilibrium constraints and multipliers δ−∗, δ+∗ ∈ Rm for the stress constraints.
Moreover, we assume µ∗ > 0.

Then (q∗, 1
2 (µ

∗)2) is a global optimizer of problem (D1), and (β∗, u∗) is a global
optimizer of problem (P1), where

β∗
i :=




√
EiED

i

�i|q∗i |
√
Ei−ED

i

(δ+∗
i + δ−∗

i ) if (δ+∗
i + δ−∗

i ) > 0,

0 if (δ+∗
i + δ−∗

i ) = 0.

(4.1)

In particular,

β∗
i =




1 if
|q∗i |
ai

>

√
EiED

i√
Ei−ED

i

µ∗,

0 if
|q∗i |
ai

<

√
EiED

i√
Ei−ED

i

µ∗.
(4.2)

Moreover, (q∗, µ∗, s∗) is a global optimizer of (D1QP).
Proof. We take as our starting point (3.15). Then the substitutions

µ :=
√
2Λ, si :=

√
2Λ + 2ri for all i = 1, . . . ,m(4.3)

show that for each (q,Λ, r) that is feasible for (3.15),

m∑
i=1

ai�iri + ΛD = 1
2

m∑
i=1

ai�is
2
i +

1
2 (D − V )µ2 .(4.4)

Vice versa, the reverse substitutions

Λ := 1
2µ

2, ri :=
1
2s

2
i − 1

2µ
2 for all i = 1, . . . ,m(4.5)

apply, yielding (4.4) for any µ ≥ 0. The inequality constraints in problem (3.15)
become

µ2 ≤ s2
i ,

Ei − ED
i

EiED
i

q2
i

a2
i

≤ s2
i for all i = 1, . . . ,m.(4.6)

By taking square roots and deleting redundant constraints we get the constraints
in (D1QP). Summarizing, problems (D1) and (D1QP) are equivalent through the
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substitutions (4.3) and (4.5). This shows (ii). Together with Theorem 3.3(i) and
substitutions (4.3) we obtain the proof of (i). For the proof of (iii) lengthy but simple
calculations show that the KKT conditions of (D1QP) become (3.1) to (3.12).

Remark 4.2. As already mentioned above, problem (D1QP) is nonconvex, though
Theorem 4.1 proves its equivalence to the convex problem (D1). This indicates that
convexity is somehow hidden in (D1QP). Indeed, the supplementary assertion in
Theorem 4.1(iii) tells us that the KKT conditions are sufficient as in convex prob-
lems. It is known that for QP formulations the strong assumptions on convexity
of the objective function can be weakened while sufficiency of KKT conditions re-
mains valid (see, e.g., [5]). This is the case here (apart from the situation µ∗ = 0,
which requires a sophisticated treatment). Formulation (D1QP) gives a nice tool for
numerical computations: Efficient and well-tuned implementations exist, and thus
we can easily accept 2m instead of m variables. However, the method used must
be able to deal with the nonconvexity of (D1QP) (see also Example 5.1 for more
comments).

5. Progressive degradation and numerical optimization. Problem (P1)
represents the degradation of the structure corresponding to one finite interval of
possible global degradation (given by D). Modeling of progressive degradation as
in a discrete time series requires that such finite interval models have to be solved
successively. Here we say that at any step in a progressive degradation the result
of the prior step gives a lower bound on the degradation that follows. Thus if the
degradation parameter at step k − 1 is given as βk−1 (the solution of (P1)), the next
step of degradation is given as βk, where βk ≥ βk−1 has to be guaranteed. By this,
βk − βk−1 ≥ 0 will be an increment in member degradation, and its amount (i.e.,
the length of the time-step) is controlled by the constant D = Dk representing the
permitted degradation volume interval of time-step k. For the total model to make
sense, the sum of all global increments should satisfy

∑
Dk ≤ V . In addition, we

also consider time-dependent loads; i.e., the acting forces change from step to step,
f = fk.

Summarizing, we get the following procedure for modeling progressive degrada-
tion. Choose the number K of total degradation steps, and choose degradation vol-
ume intervals D1, . . . , DK , one for each degradation step, such that D̄ :=

∑
Dk ≤ V .

Moreover, let the load vectors f1, . . . , fK ∈ Rn be given which apply at the structure
during time-steps k = 1, . . . ,K, respectively. Put β̄0 := 0 ∈ Rm.

For each degradation step k = 1, . . . ,K solve the problem (in variables βk, uk)

max
βk∈Rm, uk∈Rn

1
2f

kTuk

s.t.
m∑
i=1

[
(1− β̄k−1

i − βki )
1
Ei

+ (β̄k−1
i + βki )

1
ED

i

]−1

ai�iKiu
k = fk,

0 ≤ βki ≤ 1− β̄k−1
i for all i = 1, . . . ,m,

m∑
i=1

ai�iβ
k
i ≤ Dk,

(P1k)

and put β̄k := β̄k−1+βk. Then β̄k corresponds to the degradation field that contains
degradation during all the steps 1, . . . , k, while βk denotes the incremental degradation
field occurring in the particular step k.

Example 5.1. We consider a simple two-dimensional truss example of the main-
span truss supporting a railway bridge. This truss is shown in Figure 5.1. It consists
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1 2 3 4 5 6 7 8 9 10

Fig. 5.1. Structure and loads.

Table 5.1
Time dependent load nodes.

Time-steps Force nodes
1 to 3 1
4 to 6 1 2
7 to 9 1 2 3

10 to 12 1 2 3 4
13 to 15 2 3 4 5
16 to 18 3 4 5 6
19 to 21 4 5 6 7
22 to 24 5 6 7 8
25 to 27 6 7 8 9
28 to 30 7 8 9 10
31 to 33 8 9 10
34 to 36 9 10
37 to 39 10

of m = 77 bars and 28 nodes. One support node (left; cf. Figure 5.1) is completely
fixed while the other support node (right) allows for a horizontal displacement, leading
to n = (28 · 2)− 3 = 53 degrees of freedom for the nodal displacements.

We consider all truss bars to consist of the same material, so Ei := 1.0 for all
i = 1, . . . ,m. We regard the material as fully degraded if its stiffness is only 10% of
the original one; i.e., we put ED

i := 0.1 for all i = 1, . . . ,m. We compute K = 39 steps
until half of the total volume V :=

∑
ai�i of the structure represents fully degraded

material, i.e., Dk := V/(2K) for all k = 1, . . . ,K, and D̄ = 1
2V .

We consider vertical forces mimicking the weight of a train running over the
bridge, causing the degradation. One of the forces is doubled, simulating a heavy lo-
comotive. By modeling degradation as progressing “faster” than the load changes, we
perform three subsequent degradation steps before changing the loads. In Figure 5.1
the loads are displayed by dashed arrows while their movement in time is indicated by
a small horizontal dotted arrow. The numbers in Figure 5.1 correspond to Table 5.1,
which shows the nodes loaded in each time-step. The node number is underlined,
which corresponds to the doubled force. The situation in Figure 5.1 shows the loads
applied during time-steps k = 16, 17, 18.

In Figure 5.2 the results of all steps are displayed. For each time-step we have
used the formulation (D1QP) which was tackled by the routine E04NAF (from the
NAG library [10]), which is able to deal with indefinite QPs. A solution of (P1) was
then obtained via Theorem 4.1.
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1 14 27

2 15 28

3 16 29

4 17 30

5 18 31

6 19 32

7 20 33

8 21 34

9 22 35

10 23 36

11 24 37

12 25 38

13 26 39

Fig. 5.2. Progressive degradation pattern for maximal degradation of a bridge with moving loads.

For each step k we show the state of the structure, i.e., the effective material
stiffness constants Eeff

i including the accumulated degradation β̄k. The computed
degradation is indicated by a gray scale: black bars mean nondegraded material (i.e.,
β̄ki = 0), while white means fully degraded material (i.e., β̄ki = 1). Values of Eeff

i in
between are indicated by a linear gray scale from black to white.

One can see how degradation spreads from left to right “through the struc-
ture” as the train is running over the bridge. Note that all degradation pictures
represent global solutions of the problems (P1k) for k = 1, . . . ,K, respectively (cf.
Theorem 4.1).

6. Relation to an alternative degradation model. In this section we briefly
compare our approach with an alternative method for including the internal parameter
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in the model: The range of material stiffness parameters between given values ED
i

and Ei is here linearly parameterized by an internal variable αi (such a scheme is
investigated in many works in solid mechanics; see, e.g., [7, 8]). For fixed αi, the
effective material constant is thus given by Eeff

i = (1− αi)Ei + αiE
D
i (corresponding

to the so-called Voigt upper bound on stiffness of mixtures of material; see, e.g., [4]).
As above, we get the material constant Eeff

i = Ei if αi = 0, and we obtain Eeff
i = ED

i if
αi = 1. Again, total degradation in the structure is controlled by a volume constraint.
This leads to the following model problem for a single time-step of degradation:

max
α∈Rm, u∈Rn

1
2f

Tu

s.t.
m∑
i=1

[
(1− αi)Ei + αiE

D
i

]
ai�iKiu = f,

0 ≤ αi ≤ 1 for all i = 1, . . . ,m,

m∑
i=1

ai�iαi ≤ D.

(P2)

Parallel to the definitions in section 2 we put

φ(α) := max
u∈Rn

{
1
2f

Tu
∣∣∣ m∑
i=1

[
(1− αi)Ei + αiE

D
i

]
ai�iKiu = f

}
.

Moreover, almost analogously to Proposition 2.1 we may prove Proposition 6.1.
Proposition 6.1.
(i) For all α ≥ 0,

φ(α) = max
u∈Rn

{
fTu− 1

2

m∑
i=1

[
(1− αi)Ei + αiE

D
i

]
ai�iu

TKiu

}
.

(ii) The function φ is convex on Rm.
(iii) Problem (P2) always possesses a solution.
Parallel to formulation (P1′) we get the following reformulation of (P2):

max
α∈BD

φ(α).(P2′)

Remark 6.2. Note that due to the convexity of φ (cf. Proposition 6.1(ii)) the
formulation (P2′) is a nonconvex problem (because we are max imizing). Thus model
(P2′) (resp., (P2)) is not as attractive as formulation (P1′) (resp., (P1)) for numerical
purposes.

A problem closely related to (P2) has been considered in [1], where an algorithm
is proposed that finds a local optimizer of the formulation corresponding to (P2′) in
a finite number of steps. However, we cannot expect these computed local optima to
be global ones.

Completely analogously to Theorem 2.4 we get Theorem 6.3.
Theorem 6.3 (formulation in member strain energies). For the optimal value of

problem (P2) we have

max
α∈BD

φ(α) = max
u∈Rn

min
Λ≥0

{
fTu− 1

2

m∑
i=1

ai�iΦi(u,Λ) + ΛD

}
,
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(a)

εi(u)

Φi(u,Λ) (b)

εi(u)

qi
ai

Fig. 6.1. Specific member strain energy Φi (a) and member stress-strain diagram (b).

where for all i = 1, . . . ,m

Φi(u,Λ) :=

{
Eiu

TKiu if uTKiu ≤ 2Λ
Ei−ED

i

,

ED
i u

TKiu+ 2Λ otherwise.

Application 6.4. For trusses, the bar strain energy is displayed in Figure 6.1(a),
which parallels Figure 2.1. One can see the nonconvex nature hidden in problem (P2)
(contrary to (P1); cf. Remark 6.2). Analogously to Figure 3.1(b), the stress-strain
diagram corresponding to Φi is displayed in Figure 6.1(b). We see the nonlinear
material behavior degrading at a certain stage of strain (determined by Λ).

The problem in inverse stiffness is in a weak sense the convexification of the
problem with linear interpolation. To see this, consider the transformation T (α) :=
(T1(α), . . . , Tm(α))

T , where

Ti(α) :=
αiE

D
i

(1− αi)Ei + αiED
i

for all i = 1, . . . ,m.(6.1)

Then the following holds. (The details are basic analysis and thus are skipped for
brevity.)
Theorem 6.5 (relations of (P1) and (P2)).
(i) max(P2) ≤ max(P1).
(ii) Problem (P1) can be regarded as an outer convex approximation of (P2) in

the sense that

(P2) ≡ max
α∈BD

φ(α) = max
β∈T (BD)

ψ(β) ≈ max
β∈BD

ψ(β) ≡ (P1),

where T (BD) ⊂ conv(T (BD)) ⊂ BD (and “conv” denotes the convex hull).
The relation between the problems is further highlighted by noting that for the

specific strain energy functions for the degraded structures defined in Theorems 2.4
and 6.3 we have that Ψi( . ,Λ) : R

n −→ R is differentiable and convex, and it is the
convex envelope of Φi( . ,Λ) : R

n −→ R (also compare Figure 2.1 with Figure 6.1(a)).
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ON MINIMIZING AND CRITICAL SEQUENCES IN NONSMOOTH
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Abstract. Let f be a bounded below, lower semicontinuous function from a Banach space into
R ∪ {+∞}. We study the relationships between minimizing and critical sequences of f , where the
criticality condition is given in terms of some subdifferential ∂. Here the objective function f is not
supposed to be convex or smooth. Our work extends that of Auslender and Crouzeix and that of
Chou, Ng, and Pang.

Key words. asymptotically well-behaved functions, critical sequences, minimizing sequences,
stationary sequences, subdifferential, well behavior

AMS subject classifications. 26B25, 26A96, 90C30, 90C33
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1. Introduction. The question of determining conditions ensuring that a crit-
ical (or stationary, cf. Definition 3.1) sequence of a given function is minimizing is
crucial for algorithms. Recall that a sequence (xn) of some normed vector space X is
said to be critical (or stationary) for a differentiable function f on X if (f ′(xn))→ 0,
where f ′ is the derivative of f ; it is said to be minimizing if (f(xn)) → inf f(X).
This question has been considered in the convex case by Auslender [2], Auslender and
Crouzeix [4], Auslender, Cominetti, and Crouzeix [5], Lemaire [26], and Angleraud [1].
Here we tackle the case of a nonconvex, nonsmooth function f , a more intricate case.
The problem of minimizing f over a feasible subset F of X, where F is a closed subset
of X, can be reduced to the preceding unconstrained problem by using different tech-
niques such as the penalization method. The problem also becomes an unconstrained
one if f is replaced by fF defined by fF = f on F and fF = +∞ elsewhere (i.e.,
fF := f + ιF , where ιF := 0F is the indicator function of F ). In both cases the objec-
tive function becomes nonsmooth, even if the initial data are very smooth. This is the
reason why we treat the nonsmooth case from the outset. For the sake of versatility,
we use an unspecified subdifferential satisfying some basic properties, owing to the
facts that a given problem often imposes a particular space as a natural framework
and that not all subdifferentials have nice properties in an arbitrary space. Thus the
choice of a subdifferential may be dictated by the problem at hand. Since we avoid
any specific construction, the reader interested in the unconstrained, smooth case only
will not be confused by particular constructions or long developments; readers may
suppose throughout that ∂f(x) = {f ′(x)} .
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Our results also have their origin in [11], where the authors considered smooth
functions andX = Rn and focused their attention on the constrained case (whereas we
only deal with the unconstrained case, possibly after one of the reductions described
above). Moreover, we study the condition (which is weaker than usual convexity)

lim
n→∞

f(yn)− f(zn)

‖yn − zn‖ = 0(1.1)

whenever (yn), (zn) are critical sequences and are such that yn �= zn for each n. For
f satisfying this condition, any critical sequence (xn) for f is minimizing if and only
if, for some sequence (λn)↘ inf{f(x) : x ∈ X}, one has

sup
n

dist(xn, L(λn)) < +∞,

where L(λn) := {x : f(x) ≤ λn} and for x ∈ X and a subset S of X dist(x, S) :=
dS(x) := inf {‖x− y‖ : y ∈ S} . This characterization and others displayed in section 6
extend results of [4], where the authors considered convex functions. In [17], the study
of the relationships between minimizing sequences and stationary sequences was given
in terms of the lower (Dini–) Hadamard directional derivatives for functions defined
on a special class of Banach spaces (admitting a Lipschitz smooth bump function).
Here we use a condition on the subdifferentials related to variational principles.

The class of functions satisfying condition (1.1) (we call them C-convex functions)
has some analogy with the class of Legendre functions (i.e., the class of functions
for which the Legendre transform is well defined) as it contains the class of convex
functions and the class of quadratic functions. Note that when ∂(−f)(x) = −∂f(x)
for each x (and this property occurs when f is Lipschitzian and one takes the Clarke’s
subdifferential [12] or the moderate subdifferential of Michel and Penot [30], [31]),
the class of C-convex functions also contains the class of concave functions. It also
contains functions which are neither convex nor concave and, more generally, the
function x �→ (x + r)n for any positive integer n and any r ∈ R. Under appropriate
assumptions, it also contains the important class of distance functions that is known to
play a crucial role in nonsmooth analysis. Since this class enjoys reasonable stability
properties (in particular under composition with mappings of class C1), this class is
rich enough. In fact, if ∂ is the Fenchel subdifferential, or the Plastria subdifferential,
any function is C-convex. Moreover, the smaller the subdifferential ∂ is, the larger is
the class of C-convex functions. Of course, the Fenchel (resp., Plastria) subdifferential
is an extreme instance, which is of interest essentially in the class of convex (resp.,
quasi-convex) functions.

We also consider related classes of functions such as the class of critical functions,
which is a natural class for studying the relationships between critical sequences and
minimizing sequences.

Let us end this introduction with an observation pertaining to constrained prob-
lems, which could give rise to further study. When f is a function of class C1, for
most subdifferentials ∂, the subdifferential of the function fF := f + ιF introduced
above is given by

∂fF (x) = f ′(x) + ∂ιF (x) = f ′(x) +N(F, x),

where N(F, x) is the normal cone to F at x ∈ F (in a sense related to ∂ by the formula
N(F, x) := ∂ιF (x)). Therefore (xn) is a critical sequence in the sense of Definition 3.1
below if and only if the distance dist(−f ′(xn), N(F, xn)) of −f ′(xn) to N(F, xn) goes
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to 0. This remark enables one to detect a link between our approach and the results
of [11]. However, that paper relied on the notion of residual functions and on the
study of error bounds, which are somewhat outside the subject of the present paper;
see [3], [25], [27], [33], [42] for recent contributions and references on this important
topic which appeared after the first version of the present paper had been written.

2. Subdifferentials. Throughout we consider lower semicontinuous (l.s.c.) ex-
tended real-valued functions f defined on a Banach space X whose dual space is
denoted by X∗. As usual, we write B(x, r) for the open ball with center x and radius
r and BX∗ for the closed unit ball in the dual space X∗ of X, and we set

domf := {x ∈ X : −∞ < f(x) < +∞}.
Since we deal with nonconvex, nondifferentiable functions, we have to replace

the derivative by a subdifferential. However, the reader who is just interested in the
smooth case may suppose throughout that only differentiable functions are considered
and take as the subdifferential at x of a function f the singleton {f ′(x)}. There are
several ways of presenting subdifferentials (see, for instance, [6], [21], [23], [41], and
their references). As noticed by several authors, a unified approach through a set of
general properties is convenient: in such a way specific constructions can be avoided.
In what follows we denote by X a class of normed vector spaces (n.v.s), for instance,
the class of all Banach spaces, the class of separable spaces, or the class of Asplund
spaces. For X in X , F (X) denotes a subset of the set of functions from X to
R

· = R∪{∞}.
We consider a subdifferential ∂ associated with the classes X ,F as a mapping

which associates to any X in X , f ∈ F (X), x ∈ X a subset ∂f (x) of X∗. In the
usual examples that follow, a number of useful calculus rules are satisfied. Here we
do not impose such rules. However, we will occasionally use some of them.

Given a subdifferential ∂ associated with the classes X ,F , given X in X , let S (X)
be the family of subsets S of X such that the distance function dS to S belongs in
F (X) ; then the normal cone to S can be introduced as

N(S, x) := R+∂dS(x).

If F (X) is the class of l.s.c. functions on X and if S is closed, an alternative definition
uses the indicator function ιS of S. If F (X) is the class of Lipschitzian functions on
X, the subdifferential can be extended to any l.s.c. function f by setting

∂f(x) := {x∗ ∈ X∗ : (x∗,−1) ∈ N(Ef , xf )} ,
where Ef = {(x, r) : r ≥ f(x)} is the epigraph of f and xf := (x, f(x)).

Examples. The main examples that are frequently used, besides the Fenchel–
Moreau subdifferential, the lower subdifferential of Plastria, the proximal subdiffer-
ential, the subdifferential of Clarke [12], and the moderate subdifferential of Michel
and Penot [31], are the following ones.

(1) The infradifferential of Gutiérrez f at x is the set ∂≤f(x) of all vectors x∗

satisfying

f(u) ≥ f(x) + 〈x∗, u− x〉 ∀u ∈ {v : f(v) ≤ f(x)}.
(2) The Fréchet subdifferential of f at x is the set ∂−f(x) of all vectors x∗ satis-

fying

lim inf
‖u‖→0+

‖u‖−1(f(x+ u)− f(x)− 〈x∗, u〉) ≥ 0.
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(3) The Hadamard subdifferential ∂!, which consists of all x∗ satisfying

〈x∗, u〉 ≤ df(x;u) := lim inf
(t,v)→(0+,u)

t−1(f(x+ tv)− f(x)) ∀ u ∈ X.

(4) The viscosity subdifferentials, which are obtained by taking the set of deriva-
tives at x of differentiable functions g verifying g ≤ f, g(x) = f(x). Such a process
defines several classes, since the differentiability assumption can be given in different
senses.

(5) The Ioffe subdifferential. For a Lipschitzian function f and a vector subspace
W ⊂ X containing u ∈ X, one sets

∂W f(u) = {u∗ : 〈u∗, w〉 ≤ df(u,w) ∀w ∈W}

and one defines the approximate subdifferential of f at x by

∂̂f(x) =
⋂
W∈L

lim sup
u→x, u∈W

∂W f(u)
⋂

cBX∗ ,

where L is the collection of finite dimensional linear subspaces of X and c is any
number greater than the Lipschitz rate of f near x. In the general case, one defines
∂f(x) as above using the normal cone to the epigraph of f.

(6) The limiting or stabilized subdifferentials. Using any subdifferential as a start-
ing point, one can define a new subdifferential ∂ called the limiting or stabilized
subdifferential associated with ∂. Namely, one says that x∗ belongs to ∂f(x) if it is
a weak∗ cluster point of a sequence (x∗

n) such that x∗
n ∈ ∂f(xn) for each n, where

(xn)→ x and (f(xn))→ f(x). A similar definition holds for normal cones.
(7) The extended Clarke subdifferential of f at x is the set ∂0f(x) of all x∗ ∈ X∗

such that x∗ ≤ f0(x, ·), where

f0(x, v) := lim sup
(t,w)→(0+,x)
f(w)<∞

t−1(f(w + tv)− f(w)).

This is not the most sensible way of extending the classical definition to non-
locally Lipschitz functions (see [12] for better proposals). However, we will use this
notion as a bound, imposing an assumption of the form ∂f(x) ⊂ ∂0f(x) in some
statements. The fact that ∂0f(x) is usually very large makes this assumption rather
mild.

Additional properties of subdifferentials will be needed. The following notion
which has been pointed out recently [42], [43] proves to be a convenient substitute to
a combination of a variational principle with a fuzzy sum rule.

Definition 2.1. A subdifferential ∂ is said to be variational on a Banach space
X for a class F (X) if for any bounded below l.s.c. function f ∈ F (X) and for any
ε, λ, ρ ∈ P :=]0,∞[ and for any x ∈ X such that f(x) < inf f(X) + λρ there exist
w ∈ B(x, ρ) and w∗ ∈ ∂f(w) such that ‖w∗‖ ≤ λ, f(w) ≤ f(x) + ε.

As observed in [42], this property is satisfied when ∂ is reliable in the sense
of the following definition, which can be considered as a variant of the notion of
trustworthiness due to Ioffe [20]. Thus, this property holds whenever a sum rule of
weak type (even weaker than the one considered in [41]) is satisfied. In fact, as shown
below, it suffices to combine Ekeland’s variational principle with a fuzzy sum rule (or
even a basic fuzzy principle in the sense of [24]) to get this property. When f is convex
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and ∂ is the Fenchel subdifferential, it is a consequence of the Brøndsted–Rockafellar
theorem [10] that ∂ is variational.

Definition 2.2 (see [37], [40]). Given a class of spaces X , a class of functions
F , and a subdifferential ∂ associated with the classes X , F , a Banach space X in X is
said to be a ∂-reliable space (or a ∂-F-reliable space if there is any risk of confusion)
if for any l.s.c. function f : X → R ∪ {∞} in F(X), for any convex Lipschitzian
function g ∈ F(X), for any x ∈ dom f at which f + g attains its infimum, and for
any ε > 0 one has

0 ∈ ∂f(u) + ∂g(v) + εBX∗

for some u, v ∈ B(x, ε) such that | f(u)− f(x) |< ε. We also say that ∂ is reliable on
X (for the class F).

If ∂ is the Fréchet or the Hadamard subdifferential, any Asplund space is ∂-
reliable; in particular, any reflexive Banach space and any Banach space whose dual
is separable is ∂-reliable. If ∂ is some viscosity subdifferential and if X has a smooth
enough bump function [13], then X is ∂-reliable. If ∂ is the Clarke subdifferential or
the Ioffe subdifferential, then any Banach space is ∂-reliable. For the class of l.s.c.
convex functions and the usual subdifferential ∂ of convex analysis, any Banach space
is ∂-reliable. The same is true for the Hadamard subdifferential and the class of
tangentially convex functions, a function f being tangentially convex if its Hadamard
lower derivative at any point x is convex. Let us observe that quite often X and F(X)
are given and one chooses a subdifferential ∂ such that X is reliable for ∂ in order to
have the useful property described in the preceding definition.

We are ready to prove that a reliable subdifferential is variational.
Proposition 2.3. Given a member X of a class of spaces X , a class of functions

F , and a subdifferential ∂ associated with the classes X , F is variational on X if it
is reliable on X.

Proof. Given a bounded below l.s.c. function f ∈ F(X), ε, λ, ρ, γ ∈ P :=]0,∞[
with γ ≤ λρ and x ∈ X such that f(x) < inf f(X) + γ, taking α > 0 such that
γ < (λ − α)(ρ − α), the Ekeland’s variational principle yields some u ∈ B(x, ρ − α)
such that f(u) ≤ f(x), f(u) ≤ f(v)+(λ−α)‖v−u‖ for each v ∈ X. Since the function
h given by h(v) := f(v) + (λ − α)‖v − u‖ attains its minimum on X at u, and since
∂ is reliable on X, one can find w, z ∈ B(u, α), w∗ ∈ ∂f(w), z∗ ∈ (λ − α)BX∗ such
that f(w) ≤ f(u) + ε, ‖w∗ + z∗‖ ≤ α. Then we have ‖w∗‖ ≤ λ, w ∈ B(x, ρ).

We will make occasional use of the following rule which is more exacting than
reliability, but we will impose it for two specific functions only.

Definition 2.4. Given a subdifferential ∂, two functions g, h in F(X) are said
to satisfy the fuzzy sum rule if for any x in the domain of their sum f , any x∗ ∈
∂f(x), and any ε > 0, there exist y, z ∈ B(x, ε), y∗ ∈ ∂g(y), z∗ ∈ ∂h(z) such that
| g(y)− g(x) |< ε, | h(z)− h(x) |< ε, ‖y∗ + z∗ − x∗‖ < ε.

We can also say that ∂ satisfies the fuzzy sum rule for g and h.A related property is
contained in the following definition; it could be restricted to two functions, as above.

Definition 2.5. The subdifferential ∂ is said to satisfy the fuzzy composition
rule if for any X, Y in X , for any g ∈ F(Y ), and any continuously differentiable map
h : X → Y with a surjective derivative at each point, then f := g ◦ h ∈ F (X) and for
any x ∈ X, x∗ ∈ ∂f(x), and any ε > 0 there exist y ∈ B(h(x), ε), y∗ ∈ ∂g(y), such
that | g(y)− g(h(x)) |< ε, ‖AT y∗ − x∗‖ < ε, where A = h′(x).

If for any x ∈ X one has ∂f(x) ⊂ h′(x)T (∂g(h(x))), one says that ∂ satisfies the
composition rule.
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3. Critical and minimizing sequences. In what follows we suppose that a
class of spaces X , a class of functions F , and a subdifferential ∂ associated with the
classes X ,F are given. Having a notion of subdifferential, it is natural to extend to
nonsmooth functions the notions of critical sequence and of critical point.

Definition 3.1. Given a subdifferential ∂ relative to the classes X ,F , a member
X of X , and a function f in F(X), we say that a point x of X is a critical point if
0 ∈ ∂f(x). A real number r is a critical value of f if there exists a critical point x
such that r = f(x). A sequence (xn) is critical or, more precisely, ∂-critical for f if
there exists a sequence (x∗

n) such that

x∗
n ∈ ∂f(xn) and (x∗

n)→ 0.(3.1)

A critical sequence is often called stationary, but we prefer to keep this term for the
case when (xn) is critical for f and −f . Note that a critical sequence (xn) may be such
that none of the xn’s is critical. This situation occurs in most numerical experiences
with optimization algorithms. Moreover, a critical sequence may not approach a
critical point. As recalled above, a sequence (xn) is called a minimizing sequence if
(f(xn)) → inf f (:= infx∈X f(x)) (see [17]). Note that minimizing sequences always
exist and that critical sequences do not always exist but frequently appear in using
algorithms. Thus, relating both notions is an important matter.

The following theorem from [36] refines a recent result in [11] which extends a
method known in the differentiable case [15, p. 455]. It shows that for any minimizing
sequence of f one can always find “nearby” a sequence that is both critical and
minimizing. We give a proof for completeness.

Theorem 3.2. Let X be a Banach space in X , let ∂ be a variational subdifferential
∂ for X, and let f ∈ F(X) be bounded below and l.s.c. Let (xn) be a minimizing
sequence for f. Then there exist sequences (wn) and (w∗

n) with w∗
n ∈ ∂f(wn) for each

n such that
(a) limn→∞f(wn) = inf f ;
(b) limn→∞ ‖xn − wn‖ = 0;
(c) limn→∞w∗

n = 0.
Proof. Since the sequence (xn) is minimizing, there exist sequences (εn), (δn) ↓ 0

such that εn < δn for each n and

f(xn) ≤ inf
x∈X

f(x) + εn ∀n.

Thus, as ∂ is variational, for λn = ρn = δ
1
2
n > 0, there exists wn ∈ X, w∗

n ∈ X∗ such
that

(i) ‖xn − wn‖ ≤ λn;
(ii) f(wn) ≤ f(xn) + εn;
(iii) w∗

n ∈ ∂f(wn) with ‖w∗
n‖ ≤ λn.

Therefore (a)–(c) hold.
Now let us turn to the question, Under which conditions is a minimizing sequence

(xn) critical? Simple examples in R show it is not always the case. In order to present
a positive answer, let us introduce a suitable uniform continuity condition on the map
∂f . We formulate it in the framework of set-valued analysis, but we are conscious
that the main realistic cases of application concern the single-valued case.

Definition 3.3. Let X,Y be metric spaces and let F : X ⇒ Y be a multifunction.
We say that it is uniformly upper semicontinuous near a sequence (xn) of X if for
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any ε > 0, there exist δ > 0, m such that, for all n ≥ m, w ∈ B(xn, δ) one has

F (w) ⊆ F (xn) +B(0, ε).

Example 3.1. (a) If F is a uniformly continuous mapping, then it is uniformly
upper semicontinuous near any sequence (xn) of X.

(b) If F is a mapping that is continuous at some x ∈ X and if (xn) → x, then
F is uniformly upper semicontinuous near the sequence (xn). This example can be
extended to multimappings that are continuous for the Pompeiu–Hausdorff metric.

(c) The function f on R given by f(x) = x2 sinx for x ∈ ⋃k∈Z [(3k − 1)π, 3kπ],
f(x) = 0 otherwise, is not uniformly continuous on R, but it is uniformly upper
semicontinuous near the sequence (xn) given by xn = (3k + 1)π.

(d) If F = ∂f , where f is the one-variable function given by f(x) =| x |, then F
is uniformly upper semicontinuous near any critical sequence (xn) of f.

(e) Consider the Weierstrass function f(x) =
∑∞
n=0 b

n cos(anπx), where 0 < b < 1
and a is an odd integer with ab > 1 + 3

2π. It is well known that f is continuous and
nowhere differentiable [16, pp. 404–405]. One can show that ∂0f(x) = R for any
x ∈ R. Thus the subdifferential mapping of f , x �−→ ∂0f(x) is uniformly upper
semicontinuous.

(f) Another example for the uniform upper semicontinuity of the map x �→ ∂f(x)
is the function f : R→ R ∪ {+∞} defined by

f(r) =

{
1
n , r = n, n ∈ N\{0},
+∞ otherwise.

Then f is a l.s.c. function with an unbounded minimizing sequence (n) such that
f(n) → inf f = 0. Note that ∂f(n) = R for all n ∈ N whenever ∂ is larger than the
Fréchet subdifferential. Hence the subdifferential map x �→ ∂f(x) is uniformly upper
semicontinuous near any critical sequence.

Lemma 3.4. Let X and f be as in Theorem 3.2 and suppose that the subdiffer-
ential map ∂f is uniformly upper semicontinuous near a minimizing sequence (xn).
Then (xn) is critical: there exists x∗

n ∈ ∂f(xn) such that (‖x∗
n‖)→ 0.

Proof. By Theorem 3.2, we can take sequences (wn), (w
∗
n) satisfying (a), (b), and

(c). Let (εk) ↓ 0. For each εk, by the upper semicontinuity condition, there exist
δk > 0 and mk such that

∂f(x) ⊆ ∂f(xn) +B(0, εk)

whenever n ≥ mk and ‖xn − x‖ < δk. We do this for each k, and we manage to have
(δk) ↓ 0. Since ‖xn − wn‖ → 0, there exists nk ≥ mk such that

‖xn − wn‖ < δk ∀n > nk,

and so,

w∗
n ∈ ∂f(wn) ⊆ ∂f(xn) +B(0, εk) ∀n > nk.(3.2)

We may suppose that (nk) is increasing. Therefore, for nk < n ≤ nk+1 we can pick
x∗
n ∈ ∂f(xn) such that

‖x∗
n − w∗

n‖ ≤ εk.

By (c) it follows that (x∗
n)→ 0.
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4. Critical functions and minimizing sequences. Extending a notion stud-
ied by Auslender [2], Auslender and Crouzeix [4], and Auslender, Cominetti, and
Crouzeix [5] (where these authors considered the convex case, with X = Rn), an l.s.c.
function f on X into (−∞,+∞] is said to be (asymptotically) well behaved if all of its
critical sequences are minimizing (see [42]). We write f ∈ W. For convex functions,
this behavior can be characterized in terms of an estimate of the distance between
critical sequences and the level sets (see [4] for details). Here we go a little further by
dealing with functions that are not necessarily convex: we shall consider a class larger
than the class of convex l.s.c. asymptotically well-behaved functions studied in [4].

In the present section we study a class of functions that is closely linked with the
study of critical sequences.

Definition 4.1. A function f : X → (−∞,+∞] is said to be ∂-critical, or
critical for the subdifferential ∂, or, in short, critical if there is no risk of confusion,
if for any critical sequence (xn) the sequence (f(xn)) of values converges in R.

Let us stress that this notion depends on the choice of the subdifferential. The
one-variable function f given by f(x) = min(ex, e−x) is critical for the Fréchet and the
Hadamard subdifferentials but is not critical for the Clarke subdifferential or for the
moderate subdifferential of Michel and Penot. Note that this function has no critical
point for the Hadamard subdifferential (hence no minimizer). Also, the function f
given by f(x) := min(x+, 1), where x+ = max(x, 0), is critical for the Fenchel–Moreau
subdifferential but not for the lower subdifferential of Plastria.

Clearly, not all functions are critical: sin, cos, arctan are not critical functions
when one considers the class of differentiable functions and takes as subdifferential
the derivative. However, the class of critical functions contains significant elements,
as the following examples and results show.

Example 4.1. Let f be a quadratic function with positive definite Hessian on
a Hilbert space. Then, by the Lax–Milgram theorem, f is critical. In fact f is
well behaved, and any bounded below well-behaved convex function is critical for the
Fenchel–Moreau subdifferential (hence for most subdifferentials).

Example 4.2. If f is a quadratic function with positive semidefinite Hessian A on
a Hilbert space X, it may happen that f is not critical. In fact, taking X = -2 with
its canonical basis (en), setting xn = nen, and assuming that Aen = n−2en, we see
that (xn) is critical for f given by f(x) = (Ax | x), but not minimizing.

Example 4.3. Let S be a nonempty closed subset of an arbitrary Banach space
X and let f := dS be the distance function to S. Take for subdifferential the Fréchet
subdifferential ∂−. Since for any x ∈ X\S, x∗ ∈ ∂−f(x) one has ‖x∗‖ = 1 (see [9],
[39]) any critical sequence (xn) is eventually in S and (f(xn))→ 0. Thus f is a critical
function.

Example 4.4. Let f : W → R be a ∂-invex function on an open subset W of X;
this means that there exists a mapping v : W ×W → X such that f(w) − f(x) ≥
〈x∗, v(w, x)〉 for each (w, x) ∈ X2 and each x∗ ∈ ∂f(x). In the differentiable case
(and for ∂f(x) = {f ′(x)}), this class of functions has been the subject of numerous
studies; it has the pleasant property that any critical point is a minimizer. Suppose
further that v is bounded or else that it is bounded on bounded subsets of W and
each critical sequence is bounded. Then f is ∂-critical: since for each critical sequence
(xn) of f there is a constant m such that ‖v(xp, xq)‖ ≤ m for any p, q ∈ N, taking
x∗
n ∈ ∂f(xn) such that (x∗

n) → 0, we get |f(xp)− f(xq)| ≤ mmax(
∥∥x∗

p

∥∥ ,∥∥x∗
q

∥∥) → 0,
so that (f(xn)) is a Cauchy sequence, and hence it converges.

Other examples can be given by applying the stability properties below or the
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criteria given in the next section.
An immediate consequence of the preceding definition is the following property,

which is also shared by convex functions, pseudoconvex functions, and invex func-
tions.

Proposition 4.2. A critical function has at most one critical value. Conversely,
if f is a function of class C1, if its derivative f ′ is proper at 0 (i.e., if any critical
sequence has a cluster point), and if f has at most one critical value, then f is critical.

Proof. Let us show that f is constant on the set Z of critical points of f. Given x,
x′ ∈ Z, let us define the sequence (xn) by x2p = x, x2p+1 = x′. Then (xn) is critical.
It follows that f(x) and f(x′) must coincide with the limit of (f(xn)).

For the converse, we suppose that ∂f(x) = {f ′(x)}, a natural (and implicit)
assumption when f is of class C1. Given a critical sequence (xn), taking a subsequence
if necessary, we may assume that (xn) converges; then (f(xn)) converges to the unique
critical value of f.

As observed above, any well-behaved function is critical if it is bounded below.
The following result presents a partial converse.

Proposition 4.3. Let f ∈ F(X) be a l.s.c. function bounded below on X and let
∂ be a variational subdifferential on F(X). Then, if f is critical, any critical sequence
is minimizing: f is well behaved.

Proof. Let (xn) be a critical sequence. We know from Theorem 3.2 that there
exists a minimizing sequence (wn) which is also a critical sequence. The sequence (zn)
given by z2n = xn, z2n+1 = wn is critical. Our assumption on f ensures that (f(zn))
converges to lim f(wn) = inf f(X). Thus (f(xn))→ inf f(X).

The interest of the class of critical functions lies in the simplicity of its definition
and its links with well behavior. Also, it enjoys some stability properties. Let us start
with a composition property. Here we use the openness index (or Banach constant
[22]) of a linear mapping A : X → Y, given by

open(A) := sup{inf{‖u‖ : A(u) = v} : v ∈ Y, ‖v‖ = 1}.

Proposition 4.4. Let h : X → Y be a continuously differentiable map between
two Banach spaces and let g ∈ F(Y ). Suppose there exists a constant c > 0 such that
for each x ∈ X one has open(h′(x)) < c. Suppose either ∂ satisfies the composition
rule or ∂ satisfies the fuzzy composition rule and g is uniformly continuous. Then, if
g is critical, the function f := g ◦ h is critical.

Proof. Let c > 0 be as above. Given x ∈ X, let A := h′(x). For each v ∈ Y there
exists u ∈ A−1(v) satisfying ‖u‖ ≤ c‖v‖. Thus, if x∗ = AT (y∗) for some y∗ ∈ Y ∗ one
has

〈y∗, v〉 = 〈y∗, A(u)〉 = 〈x∗, u〉 ≤ c‖x∗‖‖v‖,

so that ‖y∗‖ ≤ c‖x∗‖. Let (xn) be a critical sequence for f and let x∗
n ∈ ∂f(xn) be such

that (x∗
n) → 0. Using the fuzzy composition rule we can find (yn) in Y, y∗n ∈ ∂g(yn)

such that (yn − h(xn)) → 0,
(
x∗
n − h′(xn)T (y∗n)

) → 0. What precedes shows that
(y∗n)→ 0. As g is critical, (g(yn)) converges. As g is uniformly continuous, it follows
that (f(xn)) = (g(h(xn))) converges. When the exact composition rule holds, we can
take yn = h(xn) and there is no need to suppose that g is uniformly continuous.

Proposition 4.5. Let f = h ◦ g, where g : X → R is critical and h : R → R

is differentiable. Suppose there exists a > 0 such that h′(r) ≥ a for each r ∈ R and
suppose ∂f(x) ⊂ h′(g(x))∂g(x) for each x ∈ X. Then f is critical.
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Proof. Let (xn) be a critical sequence for f and let x∗
n ∈ ∂f(xn) be such that

(x∗
n) → 0. Using our assumption, we can find y∗n ∈ ∂g(xn) such that x∗

n = h′(rn)y∗n
with rn := g(xn). Since (h

′(rn)) is bounded below by a, the sequence (xn) is critical
for g. Thus (f(xn)) converges, g being critical and h being continuous.

Let us observe that the relation ∂f(x) ⊂ h′(g(x))∂g(x) is satisfied by a number
of subdifferentials such as the Fréchet and the Hadamard subdifferentials; if h is of
class C1 it is also satisfied by the Clarke subdifferential.

Now let us turn to stability with respect to addition. We first consider the case
of separable functions.

Proposition 4.6. Let X := Y × Z be the product of two Banach spaces and let
g, h be l.s.c. critical functions on Y and Z, respectively. Let f := g+h, where g is the
function given by g(y, z) = g(y) and h(y, z) = h(z). Suppose ∂g(y, z) ⊂ ∂g(y) × {0},
∂h(y, z) ⊂ {0} × ∂h(z), and the fuzzy sum rule is satisfied by ∂ for these functions.
Then f is critical.

Proof. Our assumption implies that if (xn) = (un, vn) is a critical sequence of f ,
and if (x∗

n) → 0 is such that x∗
n ∈ ∂f(xn) for each n, then we can find (yn, zn) ∈

X, (y∗n, z
∗
n) ∈ X∗ with (g(yn) − g(un)) → 0, (h(zn) − h(vn)) → 0, y∗n ∈ ∂g(yn), and

z∗n ∈ ∂h(zn) such that x∗
n = w∗

n + (y∗n, 0) + (0, z∗n) for some sequence (w
∗
n)→ 0 in X∗.

Then (yn) and (zn) are critical for g and h, respectively, so that (h(yn)) and (g(zn))
converge. It follows that (f(xn)) converges.

In order to present another stability result, let us recall that a closed convex cone
Q in a Banach space Y is said to be normal if for any sequences (yn), (zn) in Q such
that (yn + zn) → 0 one has (yn) → 0. It is known that if Y is the dual of a Banach
space X and if Q is the dual cone

P ∗ := {x∗ ∈ X∗ : ∀ x ∈ P x∗(x) ≥ 0}
of closed convex cone P in X, then Q is normal in Y if and only if P is generating in
X (in the sense that P − P = X); cf. [32, Proposition 3.5 and Theorem 5.16], [44],
[48]. Let us also recall that the (pre)order induced by P is defined by x ≤ x′ if and
only if x′ − x ∈ P.

Proposition 4.7. Let P be a closed convex cone in X such that the dual cone
P ∗ is normal (equivalently, such that P is generating in X). Let ∂ be a subdifferential
on X contained in the Clarke subdifferential ∂0 or in the infradifferential ∂≤. Let g, h
be l.s.c. functions on X that are nondecreasing for the order induced by P. Suppose g
and h satisfy the fuzzy sum rule for ∂. Then, if g and h are critical, their sum f :=
g + h is critical.

Proof. We first note that for each z ∈ X and each z∗ ∈ ∂h(z) we have z∗ ∈ P ∗.
When ∂h(z) ⊂ ∂≤h(z) this follows from the fact that for each w ∈ −P we have

〈z∗, w〉 ≤ h(z + w)− h(z) ≤ 0.

When ∂h(z) ⊂ ∂0h(z) this follows from the fact that for each w ∈ −P we have

〈z∗, w〉 ≤ h0(z, w) ≤ 0.

By assumption, we note that, if (xn) is a critical sequence of f = g + h, and if
(x∗
n) → 0 is such that x∗

n ∈ ∂f(xn) for each n, then we can find yn, zn ∈ X with
(g(yn) − g(xn)) → 0, (h(zn) − h(xn)) → 0, y∗n ∈ ∂g(yn), and z∗n ∈ ∂h(zn) such that
x∗
n = w∗

n+ y∗n+ z∗n for some sequence (w∗
n)→ 0. Then, with the order induced by P ∗,

0 ≤ y∗n = x∗
n − w∗

n − z∗n ≤ x∗
n − w∗

n → 0,
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hence (y∗n) → 0, so that (yn) is a critical sequence of g. Similarly (zn) is a critical
sequence of h. Since g and h are critical, there exist real numbers cg, ch such that
(g(yn))→ cg, (h(zn))→ ch. Thus (f(xn))→ cf := cg + ch, and f is critical.

Taking successively the class of differentiable functions and the class of closed
convex functions we get the following consequences.

Corollary 4.8. Let X be an arbitrary Banach space. Let P be a generating
closed convex cone in X. Let g, h be differentiable functions on X that are nonde-
creasing for the order induced by P. Then, if g and h are critical, their sum f := g+h
is critical.

Corollary 4.9. Let X be an arbitrary Banach space. Let P be a generating
closed convex cone in X. Let g, h be nondecreasing functions on X and g be differen-
tiable in the sense of Fréchet (resp., Hadamard). Then, if g and h are critical, their
sum f := g + h is critical for the Fréchet (resp., Hadamard) subdifferential.

Proof. The result stems from the relation ∂f(x) = g′(x) + ∂h(x), which is valid
under our assumptions. It would hold for any subdifferential ∂ for which this relation
is satisfied.

Corollary 4.10. Let X be a reflexive Banach space. Let P be a generating
closed convex cone in X. Let g, h be closed convex functions on X which are non-
decreasing for the order induced by P. Then, if g and h are critical, their sum f :=
g + h is critical.

Proof. In such a case the fuzzy sum rule is satisfied (see [38] for a recent contri-
bution).

5. Critically convex functions. In the present section we introduce a class of
functions for which the characterization of well behavior in terms of sublevel sets can
be extended.

Definition 5.1. A function f from X into R ∪{+∞} is said to be critically
convex, in short C-convex, if it satisfies the following property: for any pair of critical
sequences (xn), (yn) with xn �= yn one has

lim
n→∞

|f(xn)− f(yn)|
‖xn − yn‖ = 0.(5.1)

Again, for the Fréchet subdifferential, any distance function is critically convex.
(It may not be so for other subdifferentials.) Other important examples of critically
convex functions are given in the following lemmas.

Let us first note obvious relationships with the class of critical functions.
Proposition 5.2. (a) If f is of class C1 and critical and if any critical sequence

has a cluster point (in particular, if X is finite dimensional and if any critical sequence
is bounded), then f is C-convex.

(b) If f is C-convex, if f has at least one critical point, and if any critical sequence
of f is bounded, then f is critical.

Proof. (a) Let (xn), (yn) with xn �= yn be a pair of critical sequences of f. Taking
subsequences if necessary, we may assume that (xn) and (yn) converge to some x and
y, respectively. When x �= y, since (f(xn)) and (f(yn)) have the same limit, condition
(5.1) is satisfied. When x = y, the mean value theorem yields some zn ∈ [xn, yn] such
that |f(xn)− f(yn)| = |f ′(zn)(xn − yn)| ≤ ‖f ′(zn)‖ ‖xn − yn‖ . Since (zn) → x and
since x is a critical point, we have ‖f ′(zn)‖ → 0, and condition (5.1) is satisfied.

(b) Let (xn) be a critical sequence of f and let z be a critical point of f. Let us
prove that any subsequence (xi)i∈I of (xn) contains a subsequence (xk)k∈K such that
(f(xk))k∈K converges to f(z). That will show that (f(xn)) converges to f(z). The
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conclusion is obvious if J := {j ∈ I : xj = z} is infinite. Otherwise we take K = I\J
so that we have xk �= z for k ∈ K. Then, denoting by r the radius of a ball centered
at z containing the critical sequence (xn) and taking for (yn) the constant sequence
with value z, we have

| f(xk)− f(z) |≤ εkr

for some sequence (εk) with limit 0. Thus (f(xk))k∈K converges to f(z) and the whole
sequence converges to f(z).

A proof similar to the preceding one establishes the following variant.
Proposition 5.3. If f is C-convex and has a critical sequence (zn) whose values

are bounded, and if any critical sequence of f is bounded, then f is critical.
Proof. In the preceding proof one replaces f(z) by f(zk), where (f(zk)) is a

subsequence of (f(zn)) which converges in R.
The following result partially justifies the terminology we adopt.
Lemma 5.4. If f is convex and ∂f is the subdifferential of convex analysis, then

f is C-convex.
In fact, the proof below shows that for the Fenchel subdifferential, any function

is C-convex. However, this subdifferential is essentially adapted to the class of convex
functions. A similar observation holds for the next lemma.

Proof. Let (xn), (yn) be two critical sequences with xn �= yn. We choose x∗
n ∈

∂f(xn), y
∗
n ∈ ∂f(yn) with (x∗

n)→ 0 and (y∗n)→ 0. Then, as ∂f is the subdifferential
of convex analysis, one has

y∗n(xn − yn) ≤ f(xn)− f(yn) ≤ x∗
n(xn − yn)

so that, setting r ∨ s = max(r, s), one gets

|f(xn)− f(yn)| ≤ (‖x∗
n‖ ∨ ‖y∗n‖) ‖xn − yn‖ .

Thus, limn→∞ ‖xn − yn‖−1 |f(xn)− f(yn)| = 0.
Lemma 5.5. If f is quasi-convex and if ∂ is the lower subdifferential ∂< of

Plastria, then f is C-convex.
Proof. Let (xn), (yn) be two critical sequences with xn �= yn and let x∗

n ∈ ∂f(xn),
y∗n ∈ ∂f(yn) with (x∗

n) → 0 and (y∗n) → 0. Without loss of generality, we may
suppose f(xn) < f(yn). Then the definition of the lower subdifferential ∂< yields
f(xn)− f(yn) ≥ y∗n(xn − yn), hence

−‖y∗n‖ ‖xn − yn‖ ≤ y∗n(xn − yn) ≤ f(xn)− f(yn) < 0,

so that limn→∞ ‖xn − yn‖−1 |f(xn)− f(yn)| = 0.
The following example makes a link with the notion of ∂-invexity considered in

the preceding section.
Example 5.1. Let f be a ∂-invex function on an open subset W of X with

associated mapping v : f(w) − f(x) ≥ 〈x∗, v(w, x)〉 for each (w, x) ∈ X2 and each
x∗ ∈ ∂f(x). Suppose there exists a constant k > 0 such that ‖v(w, x)‖ ≤ k ‖w − x‖
for each (w, x) ∈ X2; this condition is obviously satisfied in the convex case for which
one takes v(w, x) = w − x. Then f is C-convex.

Whenever ∂ satisfies ∂(−f)(x) = −∂f(x) for f locally Lipschitzian (this is the
case for the Clarke subdifferential and for the moderate subdifferential of Michel
and Penot [30], [31]), any continuous concave function is also C-convex. Note that
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whenever the subdifferential reduces to the ordinary derivative for a function of class
C1 one can exhibit C-convex functions that are neither convex nor concave, such as
the one-variable functions x �→ xk (k ≥ 1) or x �→ xk | x |s for k a positive even integer
and s ∈ [0, 1[. These examples are special cases of the following criterion. (Note that
for a polynomial function of several variables, coercivity can be ensured by requiring
that the higher order term is coercive; for the square of a one-variable polynomial of
positive degree, this condition is automatic.)

Example 5.2. Let X be finite dimensional and let f : X → R be of class C1

and such that x → ‖f ′(x)‖ is coercive (or semicoercive in the sense of [39] that
lim inf‖x‖→∞ ‖f ′(x)‖ > infx∈X ‖f ′(x)‖). Then, if f has at most one critical value, it
is C-convex. This criterion follows from Proposition 5.2 and the fact that f is critical.

Note that the nonsmooth nonconvex function x �→ || x | −1| is also C-convex.
The following class of examples is important too.
Lemma 5.6. Any quadratic function is C-convex.
The derivative of a quadratic function being affine, the result is a consequence of

the following lemma in which the segment with end points x, y is denoted by [x, y].
Lemma 5.7. Let f be defined and differentiable on an open convex subset and

such that the following property is satisfied: if (xn) and (yn) are critical sequences,
then any sequence (zn) such that zn ∈ [xn, yn] is critical. Then f is C-convex.

Proof. The result follows from the mean value theorem: if (xn) and (yn) are
critical sequences, then for some sequence (zn) such that zn ∈ [xn, yn] one has

| f(xn)− f(yn) |=| f ′(zn)(xn − yn) |≤ ‖f ′(zn)‖‖xn − yn‖
and (f ′(zn))→ 0.

The example of the exponential function on R shows that nonquadratic functions
may satisfy the preceding condition. However, it is convex, but the functions f, g, h
given by f(x) = lnx, g(x) = 1/x, and h(x) = ex(sinx + cosx + 3) are examples of
functions satisfying the preceding condition without being convex or quadratic.

Let us present some stability results for the class of C-convex functions that are
similar to the results for critical functions but often require reinforced assumptions.

Proposition 5.8. Let P be a generating closed convex cone in X. Let ∂ be a
subdifferential on X contained in the Clarke subdifferential ∂0 or in the infradifferen-
tial ∂≤. Let g, h be functions on X that are nondecreasing for the order induced by P
and satisfy the fuzzy sum rule. Then, if g and h are C-convex, their sum f := g + h
is C-convex.

Proof. Let (xn) and (x′
n) be critical sequences of f = g + h such that rn :=

‖xn − x′
n‖ > 0 for each n. The proof of Proposition 4.7 shows that we can find

sequences (yn), (zn) that are critical for g and h, respectively, and are such that

‖yn − xn‖ ≤ 2−nrn, ‖zn − xn‖ ≤ 2−nrn,

| g(yn)− g(xn) |≤ 2−nrn, | h(zn)− h(xn) |≤ 2−nrn,

and sequences (y′n) and (z
′
n) which have similar properties with (xn) replaced by (x

′
n).

Then

‖xn − x′
n‖ ≥ ‖yn − y′n‖ − 2−n+1rn

and (1+ 2−n+1)rn ≥ ‖yn − y′n‖, and similarly r−1
n ≤ (1 + 2−n+1)‖zn − z′n‖−1, so that

r−1
n | f(xn)− f(x′

n) |
≤ (1 + 2−n+1)(‖yn − y′n‖−1 | g(yn)− g(y′n) | +‖zn − z′n‖−1 | h(zn)− h(z′n) |) + 2−n+1,
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hence r−1
n (f(xn)− f(x′

n))→ 0 as g and h are C-convex.
Similarly, we have a stability property for a sum of separable functions.
Proposition 5.9. Let X := Y × Z be the product of two Banach spaces and let

g, h be l.s.c. C-convex functions on Y and Z, respectively. Let f := g+h, where g is the
function given by g(y, z) = g(y) and h(y, z) = h(z). Suppose ∂g(y, z) ⊂ ∂g(y) × {0},
∂h(y, z) ⊂ {0} × ∂h(z), and the fuzzy sum rule is satisfied by ∂ for these functions.
Then f is C-convex.

Proposition 5.10. Suppose ∂ satisfies the fuzzy composition rule. Let h : X →
Y be a differentiable map between two Banach spaces which is Lipschitzian with rate
- and such that for some c > 0 one has open(h′(x)) < c for each x ∈ X. Then, for
any C-convex function g on Y, the function f := g ◦ h is C-convex.

Proof. Let (xn) and (x′
n) be critical sequences of f = g ◦ h such that rn :=

‖xn−x′
n‖ > 0 for each n. If sn := ‖h(xn)−h(x′

n)‖ is 0 for n in an infinite subset N of
N, then r−1

n | f(xn)− f(x′
n) |= 0 for each n ∈ N. Thus, without loss of generality, we

may suppose that sn > 0 for each n ∈ N. The fuzzy composition rule and the proof
of Proposition 4.4 show that there exist critical sequences (yn), (y

′
n) for g such that

‖yn − h(xn)‖ ≤ 2−nsn, ‖y′n − h(x′
n)‖ ≤ 2−nsn,

| g(yn)− g(h(xn)) |≤ 2−nsn, | g(y′n)− g(h(x′
n)) |≤ 2−nsn.

Thus

| f(xn)− f(x′
n) |

‖xn − x′
n‖

≤ -
| g(yn)− g(y′n) |
‖yn − y′n‖

+ 2−n+1-→ 0

as g is C-convex.
Proposition 5.11. Let f = h◦g, where g : X → R is C-convex and h : R→ R

is differentiable and Lipschitzian. Suppose there exists a > 0 such that h′(r) ≥ a for
each r ∈ R and suppose ∂f(x) ⊂ h′(g(x))∂g(x) for each x ∈ X. Then f is C-convex.

Proof. Let (xn), (x′
n) be critical sequences for f. The proof of Proposition 4.5

shows that these sequences are critical for g. If - is the Lipschitz rate of h we get

| f(xn)− f(x′
n) |

‖xn − x′
n‖

≤ -
| g(xn)− g(x′

n) |
‖xn − x′

n‖
→ 0

as g is C-convex.
In several cases of interest, critical sequences are bounded or their values are

bounded. In such cases, the following variants of C-convexity coincide with the genuine
notion of C-convexity. In turn, these variants will serve to get verifiable criteria.

Definition 5.12. The function f is said to be boundedly critically convex (BC-
convex) if it satisfies the following property: for any pair of bounded critical sequences
(xn), (yn) with xn �= yn one has

lim
n→∞

|f(xn)− f(yn)|
‖xn − yn‖ = 0.(5.2)

The class of BC-convex functions being larger than the class of C-convex functions,
we get that any convex function and any quadratic function is BC-convex for any
subdifferential that coincides with the Fenchel–Moreau subdifferential on the class of
convex functions and that reduces to the derivative when the function is of class C1.
Moreover, any function whose critical sequences are unbounded is BC-convex. (The
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exponential function on R is an example of such a function.) On the other hand, one-
variable polynomial functions are C-convex if and only if they are BC-convex (since
their critical sequences are bounded).

Proposition 5.13. Suppose X is reflexive and ∂-reliable and suppose f is l.s.c.
and satisfies the following assumptions:

(a) f is constant on the set Z of its critical points;
(b) if (zn) is a critical sequence weakly converging to some z, then z ∈ Z and

(f(zn))→ f(z);
(c) for any critical point z, any sequence (zn) weakly converging to z and any

z∗n ∈ ∂f(zn), one has (z∗n)→ 0.
Then f is BC-convex.
Proof. Suppose on the contrary that there exist bounded critical sequences (xn)

and (yn) and c > 0 such that

| f(xn)− f(yn) |≥ c‖xn − yn‖ > 0(5.3)

for each n. Without loss of generality we may suppose f(xn) − f(yn) > 0. Taking
subsequences if necessary, we may suppose (xn) and (yn) converge weakly. By (b)
their respective limits x and y belong to Z. Conditions (a) and (b) ensure that (f(xn)−
f(yn)) → 0, so that relation (5.3) implies that x = y := z. Let (δn) be a sequence of
positive numbers with limit 0. Using the mean value theorem of [34], which, among
other ones [6], [29], is adapted to the present setting, for each n we can find zn ∈ X,
z′n ∈ [xn, yn], and z∗n ∈ ∂f(zn) such that ‖zn − z′n‖ < δn, | f(zn)− f(z′n) |< δn, and

z∗n(xn − yn) ≥ f(xn)− f(yn)− δn‖xn − yn‖.

Then (zn) converges weakly to z and we have

‖z∗n‖‖xn − yn‖ ≥ c‖xn − yn‖ − δn‖xn − yn‖,

a contradiction with condition (c).
Clearly, condition (a) is necessary for f to be BC-convex. Let us note that

condition (c) implies that any critical point z is continuously critical in the sense that
∂f(z) = {0} and ∂f(·) is upper semicontinuous for the weak topology on X, a rather
stringent assumption. This assumption is satisfied when f is of class C1 and X is
finite dimensional.

Corollary 5.14. Suppose X is finite dimensional and f is of class C1 and is
constant on the set of its critical points. Then f is BC-convex.

A variant of the preceding proposition deals with C-convexity.
Proposition 5.15. Suppose X is ∂-reliable and suppose f is l.s.c. and satisfies

the following assumptions:
(a) f is BC-convex;
(b) if (zn) is a critical sequence, then (f(zn)) is bounded;
(c) for any critical sequence (wn) such that (‖wn‖) → ∞ and for any zn ∈ X,

z∗n ∈ ∂f(zn) such that (zn − wn) is bounded, one has (z∗n)→ 0.
Then f is C-convex.
Proof. Suppose on the contrary that there exist critical sequences (xn) and (yn)

and c > 0 such that

| f(xn)− f(yn) |≥ c‖xn − yn‖ > 0 for each n.
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Without loss of generality, since f is BC-convex, we may suppose (‖xn‖), (‖yn‖)→∞
and f(xn) − f(yn) > 0. Again using the mean value theorem, given a sequence (δn)
of positive numbers with limit 0, for each n we can find zn ∈ X, z′n ∈ [xn, yn], and
z∗n ∈ ∂f(zn) such that ‖zn − z′n‖ < δn, | f(zn)− f(z′n) |< δn, and

z∗n(xn − yn) ≥ f(xn)− f(yn)− δn‖xn − yn‖.

Then, as (f(xn)) and (f(yn)) are bounded by assumption (b), (xn − yn) is bounded
and thus (zn − xn) is bounded too. It follows from (c) with wn = xn that (z∗n) → 0,
and we have

‖z∗n‖‖xn − yn‖ ≥ c‖xn − yn‖ − δn‖xn − yn‖,

a contradiction.

6. Characterizations of minimizing sequences in terms of sublevel sets.
In the present section we relate minimizing sequences and the distance to the sublevel
sets of a function. We do not intend to give results of practical interest for algorithms.
We just explore the role of convexity in results that deal with crucial questions about
minimizing sequences and error estimates. For λ ∈ R, we use L(λ) or Lf (λ) to denote
the λ-sublevel set of f , that is,

L(λ) := {x : f(x) ≤ λ}.

Since f is assumed to be l.s.c., each λ-sublevel set is closed. The following result
provides an answer to the question, When is a critical sequence minimizing?

Proposition 6.1. Let X be a ∂-variational Banach space and let f be a C-convex
l.s.c. function on X (to R ∪ {+∞}) which is bounded below. Let (xn) be a critical
sequence. Then (xn) is a minimizing sequence if and only if there exists a sequence
(λn)↘ inf f such that

sup
n∈N

dist(xn, L(λn)) < +∞.(6.1)

Note that in this statement we cannot change “there exists” into “for any” as
shown by the example f(x) = e−x, xn = n, λn = e−2n. Also note that the assumption
that f is C-convex is crucial: for f(x) = cos(2πx2), xn = n, λn = −1, one has
dist(xn, L(λn)) ≤ d(xn, yn)→ 0, where yn := (n2 + 1

2 )
1/2 but (xn) is not minimizing.

Proof. As necessity is obtained by taking λn = f(xn), it is enough to show
sufficiency. Let (xn) be a critical sequence such that (6.1) holds for some (λn)↘ inf f.
Take yn ∈ L(λn) such that

‖xn − yn‖ < dist(xn, L(λn)) +
1

n
.(6.2)

Then f(yn) ≤ λn → inf f, that is, (yn) is minimizing. It follows from Theorem 3.2
that there exist sequences (wn) and (w∗

n) such that
(i) (wn) is minimizing;
(ii) w∗

n ∈ ∂f(wn), (w
∗
n)→ 0;

(iii) ‖yn − wn‖ → 0.
It follows from (5.1) that there exists some (δn) ↓ 0 with

|f(xn)− f(wn)| ≤ δn ‖xn − wn‖ for each n
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(considering separately the case xn = wn and the case xn �= wn). Then

|f(xn)− f(wn)| ≤ δn(‖xn − yn‖+ ‖yn − wn‖)→ 0

as n→∞. Thus (xn) is minimizing because (wn) is so by (i).
Let us turn now to criteria for a sequence to be minimizing which may be consid-

ered as valid for convex functions only. Recall that the ε-approximate subdifferential
of a function f : X → R ∪ {+∞} at x is defined by

∂εf(x) := {x∗ ∈ X∗ : x∗(y − x) ≤ f(y)− f(x) + ε, ∀y ∈ X}.

In general, this notion is used only for convex functions. However, it has a meaning for
any function. For instance, if (xn) is a minimizing sequence of an arbitrary function
f, then there exists a sequence (εn) → 0 such that 0 ∈ ∂εnf(xn) for each n. Let us
note that this notion is a global one and not a local one.

Lemma 6.2. Let X be a Banach space and let f : X → R∪ {+∞} be a function.
Let (εn), (xn), (x

∗
n) be sequences such that εn ≥ 0, (εn) → 0, x∗

n ∈ ∂εnf(xn), and
(x∗
n)→ 0. Then (xn) is a minimizing sequence for f if and only if for any λ > inf f,

one has

sup
n∈N

dist(xn, L(λ)) < +∞.(6.3)

Proof. It suffices to prove sufficiency. Assume by way of contradiction that there
exist scalars α > β > inf f and a subsequence (xnk

) of (xn) such that f(xnk
) > α for

all k. Take yk ∈ L(β) such that

‖xnk
− yk‖ < dist(xnk

, L(β)) +
1

k
.(6.4)

By the definition of ∂εf, one has that∥∥x∗
nk

∥∥ ‖xnk
− yk‖ ≥ x∗

nk
(xnk

− yk)
≥ f(xnk

)− f(yk)− εnk

> α− β − εnk

(6.5)

for large k. This is not possible as (εnk
) → 0, (

∥∥x∗
nk

∥∥) → 0, and (‖xnk
− yk‖) is

bounded by (6.4) and (6.3).
The following result establishes the equivalence between the conditions (6.1), (6.3)

and a condition of Auslender and Crouzeix for critical sequences of a convex function.
Here f is an arbitrary function.

Proposition 6.3. Let X be a Banach space and let f : X → R∪{+∞} be a l.s.c.
function. Let (εn), (xn), (x

∗
n) be sequences such that εn ≥ 0, (εn)→ 0, x∗

n ∈ ∂εnf(xn),
and (x∗

n)→ 0. Then the following conditions are equivalent:
(a) there exists a sequence (λn)→ inf f such that

sup
n∈N

dist(xn, L(λn)) < +∞;

(b) for any λ > inf f,

sup
n∈N

dist(xn, L(λ)) < +∞;
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(c) for any λ > inf f, there exists c > 0 such that for all n,

dist(xn, L(λ)) ≤ c(f(xn)− λ)+;(6.6)

(d) for any λ > inf f, there exists h : R+ → R+ locally bounded such that
lim supr→∞ r−1h(r) <∞ and for all n,

dist(xn, L(λ)) ≤ h(f(xn)− λ);(6.7)

(e) (xn) is a minimizing sequence of f.
Proof. By Lemma 6.2, (b) and (e) are equivalent. As (a) obviously implies (b)

and is satisfied with λn = f(xn) when (e) holds, the equivalence of (a) and (e) follows.
If λ > inf f and (xn) is minimizing, then xn ∈ L(λ) for large n. Hence (e) implies (c).
Clearly, (c) implies (d) as h(r) := r+ := max(r, 0) is a special case of the assumption
of (d). Finally, we show that (d) implies (b). Assume by way of contradiction that
there exists λ0 > inf f such that

sup
n∈N

dist(xn, L(λ0)) = +∞.(6.8)

By (d), take h satisfying (6.7) with λ = λ0. By (6.7), (6.8), considering a subsequence
if necessary, we may assume that

lim
n→∞ f(xn) = +∞.(6.9)

Take yn ∈ L(λ0) such that ‖xn − yn‖ ≤ dist(xn, L(λ0)) +
1
n . It follows that

‖x∗
n‖h(f(xn)− λ0) ≥ ‖x∗

n‖ (‖xn − yn‖ − 1
n )≥ x∗

n(xn − yn)− 1
n ‖x∗

n‖
≥ f(xn)− f(yn)− εn − 1

n ‖x∗
n‖

≥ f(xn)− λ0 − εn − 1
n ‖x∗

n‖ ,

where the third inequality holds because x∗
n ∈ ∂εnf(xn). Dividing by the positive

number f(xn)− λ0 (with n large), we have

‖x∗
n‖ lim sup

n
(f(xn)− λ0)

−1h(f(xn)− λ0) ≥ 1− nεn + ‖x∗
n‖

n(f(xn)− λ0)
,

which is impossible as the left-hand side converges to zero and the right-hand side
converges to 1 by (6.9) and the assumption that (‖x∗

n‖)→ 0.
The conditions in (c) and (d) are error bounds conditions. We refer to [27], [11],

and [33] and their bibliographies for more information about the significance and the
uses of such estimates.

7. Links with well-set problems. The following notion of well-set function
was introduced in [8] (see also [7], [42]) as a modification of the famous notion of
Tychonov well-posed problems (see [14], [45]). It takes into account the fact that
the set of minimizers of a function f may contain more than one point while the
minimization problem of f can be considered as an easy, gentle problem.

Definition 7.1. A function f on X is said to be metrically well-set (M-well-set)
if its set of minimizers S is nonempty and if for any minimizing sequence (xn) one
has (dist(xn, S))→ 0.
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It is easy to see [35] that f is M-well-set if and only if there exists a modulus µ
(i.e., a one-variable nondecreasing function that has limit 0 at 0) such that d(x, S) ≤
µ(f(x)− inf f).

The following variant was introduced by Lemaire [26] (essentially in the convex
case).

Definition 7.2. A function f on X is said to be very well behaved if its set of
minimizers S is nonempty and if for any critical sequence (xn) one has (dist(xn, S))→
0. We denote by V(X) the set of very well behaved functions on X.

The following propositions describe some relationships between these two notions.

Proposition 7.3. Suppose ∂ is variational for X and F(X). If f is l.s.c.,
bounded below, and very well behaved, then f is M-well-set.

Proof. Let f ∈ V(X) be l.s.c. and bounded below. Given a minimizing sequence
(xn) of f, we can find a sequence (wn) that is critical and such that (d(wn, xn))→ 0.
Since f ∈ V(X) we have (d(wn, S))→ 0. Thus (d(xn, S))→ 0.

A partial converse is as follows.

Proposition 7.4. If a critical function f is M-well-set, then it is very well
behaved.

Proof. Let f be a critical function that is M-well-set and let (xn) be a critical
sequence of f . Since any minimizer z of f (and the set S of such points is nonempty)
is critical, we have (f(xn))→ min f. Thus (xn) is minimizing, and as f is M-well-set
we have (d(xn, S))→ 0.

Corollary 7.5. If a well-behaved function f is M-well-set, then it is very well
behaved.

The following observation completes the preceding results and partially justifies
the terminology.

Proposition 7.6. If f is very well behaved and if f is uniformly continuous
around S, then f is critical and well behaved.

Proof. Let f ∈ V(X). The uniform continuity of our assumption means that for
each ε > 0 there exists δ > 0 such that for each x ∈ S and for each w ∈ X satisfying
d(w, x) < δ one has | f(w)− f(x) |< ε. It implies that for each critical sequence (xn)
we have (f(xn))→ min f since (d(xn, S))→ 0 as f is in V(X).

In particular, for a variational subdifferential and for a Lipschitzian function f
whose set of minimizers S is nonempty, one has that f is very well behaved if and
only if f is well behaved and M-well-set.
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H. Poincaré Anal. Non Linéaire, 6 (1989), pp. 101–121.



1018 L. R. HUANG, K. F. NG, AND J.-P. PENOT

[5] A. Auslender, R. Cominetti, and J.-P. Crouzeix, Convex functions with unbounded level
sets and applications to duality theory, SIAM J. Optim., 3 (1993), pp. 669–687.

[6] D. Aussel, J.-N. Corvellec, and M. Lassonde, Mean value property, and subdifferential
criteria for l.s.c. functions, Trans. Amer. Math. Soc., 347 (1995), pp. 4147–4161.

[7] E. Bednarczuk and J.-P. Penot, On the position of the notions of well-posed minimization
problems, Bollet. Un. Mat. Ital. B (7), 6 (1992), pp. 665–683.

[8] E. Bednarczuk and J.-P. Penot, Metrically well-set minimization problems, Appl. Math.
Optim., 26 (1992), pp. 273–285.

[9] J. M. Borwein and J. R. Giles, The proximal normal formula in Banach space, Trans. Amer.
Math. Soc., 302 (1987), pp. 371–381.

[10] A. Brøndsted and R. T. Rockafellar, On the subdifferentiability of convex functions, Proc.
Amer. Math. Soc., 16 (1965), pp. 605–611.

[11] C.-C. Chou, K.-F. Ng, and J.-S. Pang, Minimizing and stationary sequences of constrained
optimization problems, SIAM J. Control Optim., 36 (1998), pp. 1908–1936.

[12] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983.
[13] R. Deville, G. Godefroy, and V. Zizler, A smooth variational principle with applications

to Hamilton–Jacobi equations in infinite dimensions, J. Funct. Anal., 111 (1993), pp. 197–
212.

[14] A. L. Dontchev and T. Zolezzi, Well-Posed Optimization Problems, Lecture Notes in Math.
1543, Springer-Verlag, Berlin, 1991.

[15] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), pp. 443–474.
[16] E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier’s Series,

Vol. II, Dover, New York, 1957.
[17] L. R. Huang and X. B. Li, Minimizing Sequences in Nonsmooth Optimization, preprint.
[18] L. R. Huang and K. F. Ng, Second-order necessary and sufficient conditions in nonsmooth

optimization, Math. Programming, 66 (1994), pp. 379–402.
[19] L. R. Huang and K. F. Ng, On second order directional derivatives in nonsmooth opti-

mization, in Recent Advances in Nonsmooth Optimization, D. Z. Du, L. Qi, and R. S.
Womersley, eds., World Scientific, Singapore, 1995, pp. 159–171.

[20] A. D. Ioffe, On subdifferentiability spaces, Ann. New York Acad. Sci., 410 (1983), pp. 107–119.
[21] A. D. Ioffe, Calculus of Dini subdifferentials of functions and contingent coderivatives of

set-valued maps, Nonlinear Anal., 8 (1984), pp. 517–539.
[22] A. D. Ioffe, On the local surjection property, Nonlinear Anal., 11 (1987), pp. 565–592.
[23] A. D. Ioffe, Codirectional compactness, metric regularity and subdifferential calculus, in Con-

structive, Experimental and Nonlinear Analysis, M. Théra, ed., Canad. Math. Soc. Ser.
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Abstract. A general critical point theory for continuous functions defined on metric spaces has
been recently developed. In this paper a new subdifferential, related to that theory, is introduced.
In particular, results on the subdifferential of a sum are proved. An example of application to PDEs
is sketched. Detailed applications to PDEs are developed in separate papers.
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1. Introduction. In the last 20 years, several efforts have been devoted to ex-
tending the classical critical point theory of [10, 31, 32, 36] to some classes of nondiffer-
entiable functions. The case of locally Lipschitzian functions was treated in [9], while
suitable families of lower semicontinuous functions were considered in [18, 20, 30] and
in [37].

More recently, a general critical point theory, for continuous functions f defined on
metric spaces, has been independently developed, with some variant, in [14, 16, 21]
and in [27, 28, 29]. It is based on a generalized notion of norm of the derivative,
denoted by |df |. This theory contains both the classical and the locally Lipschitz
cases. Moreover, in [16, 21] some classes of lower semicontinuous functions are also
considered, including those of [18, 20] and of [37].

This abstract framework has been applied to several problems in PDEs and vari-
ational inequalities. For instance, consider a functional f : H1

0 (Ω) → R of the form

f(u) =
1

2

∫
Ω

n∑
i,j=1

aij(x, u)Dxi
uDxj

u dx−
∫

Ω

G(x, u) dx,

where Ω is an open subset of Rn. Under reasonable assumptions on aij and G, the
functional f turns out to be continuous. However, f is not locally Lipschitzian, unless
the aijs are independent of u or n = 1. We refer the reader to [2, 4, 5, 6, 7, 8, 13,
15, 19, 23] and references therein for papers applying the theory of [14, 16, 21] to
functionals that are not locally Lipschitzian.

Although the abstract approach seems to be satisfactory from the point of view
of nonsmooth critical point theory, it is clear that |df |, being a generalization of the
norm of the derivative, cannot have a rich calculus. Therefore, when f is defined on
a normed space, it is more comfortable to work with a subdifferential, provided that
it is suitable for critical point theory. For instance, if we know that

|df | (x) < +∞ =⇒ (
∂f(x) �= ∅ and |df | (x) ≥ min {‖α‖ : α ∈ ∂f(x)}),(1.1)
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then the condition |df | (x) = 0 implies 0 ∈ ∂f(x) and for every sequence (xh) with
|df | (xh) → 0 we may find a sequence αh → 0 with αh ∈ ∂f(xh). Thus each crit-
ical point result in terms of |df | implies a corresponding result in terms of such a
subdifferential.

Now, if f is locally Lipschitzian, then (1.1) holds true for the Clarke subdifferential
(see [21, Theorem (2.17)]). On the other hand, it is well known that, in such a case,
the Clarke subdifferential is suitable for critical point theory: it was just the tool used
in [9]. On the contrary, if f is, say, only continuous, the situation is quite different.
Consider, for instance, the function f : R → R defined by f(x) = x − √|x|. Then
we have |df | (0) = 0—it must be so, if we want to keep the mountain pass theorem
[1] also for continuous functions. On the contrary, the Clarke subdifferential of f
at 0 is empty and, of course, the same result a fortiori holds if we consider other
subdifferentials, like those of [17, 25], which are even smaller than that of Clarke.

A related example can be built up in the following way: let

C =
{
(x, y) ∈ R2 : y = f(x)

}
and let α : R2 → R be defined by α(x, y) = y. Again we have

∣∣d (α|C
)∣∣ (0, 0) = 0. On

the other hand, since α is a continuous linear functional, we may expect a formula
like

∂ (α+ IC) (0, 0) = α+NC (0, 0) ,

where IC denotes the indicator function of C and NC (0, 0) the normal cone to C at
(0, 0). Such a formula is in fact true, say, for Clarke’s calculus and will hold also
for the notions we are going to introduce, according to Corollary 5.3. Thus, to get
(0, 0) ∈ ∂ (α+ IC) (0, 0), it is necessary to have (0,−1) ∈ NC (0, 0). But for the Clarke
normal cone we have

NC (0, 0) =
{
(λ, µ) ∈ R2 : µ ≥ 0

}
.

At this point it may seem hard to reconcile all these requirements. In fact, for several
subdifferentials (see, e.g., [26]) the construction may be performed in three steps:

(i) definition of the subdifferential when the function is locally Lipschitzian;
(ii) definition of the normal cone NC (x) to a subset C at x ∈ C as the weak∗

closure of
⋃
s>0 (s ∂�C(x)), where �C(ξ) = inf {‖ξ − y‖ : y ∈ C};

(iii) definition of the subdifferential in the general case through the formula

∂f(x) :=
{
α ∈ X∗ : (α,−1) ∈ Nepi(f) (x, f(x))

}
,

where epi (f) is the epigraph of f .
Now, if we keep these three points, it seems to be necessary, for our purposes, to
enlarge the Clarke subdifferential even in the locally Lipschitz case, which may appear
unconvenient.

The aim of this paper is to introduce new notions of tangent cone, normal cone,
and subdifferential, which are conveniently related to |df | (in particular, (1.1) holds
according to Theorem 4.13) and thus suitable for critical point theory. Actually, our
subdifferential agrees with that of Clarke in the locally Lipschitz case and point (iii)
above is still true. Thus we violate point (ii). Our strategy will be to define first
the tangent cone by a modification of the geometric construction of [12], then the
normal cone in a standard way, and finally the subdifferential through (iii). A more
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direct approach to the subdifferential will also be presented, via a modification of the
construction of [35].

In section 2 we recall, in a form suitable for our purposes, some notions from
[16, 21, 29]. In section 3 and section 4 we introduce the main definitions and provide
some general properties. As we have already mentioned, a subdifferential may be
useful because of its calculus rules. Therefore, in section 5 we prove some results on
the subdifferential of a sum f +g. We are in particular interested in the case in which
f is a general functional, while g is either locally Lipschitzian or is the indicator of
some “nice” set (see Corollaries 5.3, 5.4, and 5.9). Finally, in section 6 we study
the abstract notions we have introduced in the case of functionals of the calculus of
variations, like those we have mentioned before. We will see, at least in that case, that
our subdifferential is not too large, although it is possibly larger than Clarke’s. We
also sketch, following [24], an application to nonlinear PDEs. For detailed applications
of our subdifferential to variational problems involving PDEs, we refer the reader to
[22, 24].

The main definitions and some results of this paper were announced in [19].

2. The weak slope. In this section we recall, following an equivalent approach,
some notions from [16, 21, 29].

Let X be a metric space endowed with the metric d, and let f : X → R be a
function. If Y ⊆ X, we denote by Y , int (Y ), and ∂Y the closure, the interior, and the
boundary of Y in X, respectively. We also denote by Br (x) the open ball of center x
and radius r and we set

epi (f) = {(x, λ) ∈ X × R : f(x) ≤ λ} .
In the following, X × R will be endowed with the metric

d ((x, λ) , (y, µ)) =
(
d(x, y)2 + (λ− µ)2

) 1
2

and epi (f) with the induced metric. Finally, as in [17] we define a continuous function
Gf : epi (f) → R by Gf (x, λ) = λ.

Definition 2.1. For every x ∈ X with f(x) ∈ R, we denote by |df | (x) the
supremum of the σ’s in [0,+∞[ such that there exist δ > 0 and a continuous map

H : (Bδ (x, f(x)) ∩ epi (f))× [0, δ] → X

satisfying

d(H((ξ, µ), t), ξ) ≤ t , f(H((ξ, µ), t)) ≤ µ− σt,

whenever (ξ, µ) ∈ Bδ (x, f(x)) ∩ epi (f) and t ∈ [0, δ].
The extended real number |df | (x) is called the weak slope of f at x.
The next proposition shows that the above definition agrees with that of [16, 21,

29] when f is real valued and continuous.
Proposition 2.2. Let f : X → R be a continuous function. Then |df | (x) is the

supremum of the σ’s in [0,+∞[ such that there exist δ > 0 and a continuous map

H : Bδ (x)× [0, δ] → X

satisfying

d(H(ξ, t), ξ) ≤ t , f(H(ξ, t)) ≤ f(ξ)− σt,

whenever ξ ∈ Bδ (x) and t ∈ [0, δ].
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Proof. If

H : (Bδ (x, f(x)) ∩ epi (f))× [0, δ] → X

is a map as in Definition 2.1, taking into account the continuity of f we may define

K : Bδ′ (x)× [0, δ′] → X

by K(ξ, t) = H((ξ, f(ξ)), t) for some small δ′ > 0. It is easy to see that K has the
properties required in the statement of the proposition.

Conversely, let

K : Bδ (x)× [0, δ] → X

be a map as in the statement of the proposition. Then

H : (Bδ (x, f(x)) ∩ epi (f))× [0, δ] → X

defined by H((ξ, µ), t) = K(ξ, t) has the properties required by Definition 2.1, as

f (H((ξ, µ), t)) = f (K(ξ, t)) ≤ f(ξ)− σt ≤ µ− σt.

Therefore equality holds.
The next proposition shows that our notion agrees with that of [16, 21], also

in the general case. Observe that |dGf | (x, λ) ≤ 1 for any (x, λ) ∈ epi (f), as Gf is
Lipschitzian of constant 1.

Proposition 2.3. For every x ∈ X with f(x) ∈ R, we have

|df | (x) =




|dGf | (x, f(x))√
1− |dGf | (x, f(x))2

if |dGf | (x, f(x)) < 1,

+∞ if |dGf | (x, f(x)) = 1.

Proof. First we prove that

|df | (x) ≥




|dGf | (x, f(x))√
1− |dGf | (x, f(x))2

if |dGf | (x, f(x)) < 1,

+∞ if |dGf | (x, f(x)) = 1.

(2.1)

If |dGf | (x, f(x)) = 0, the assertion is evident. Otherwise, let 0 < σ < |dGf | (x, f(x)).
Since Gf is continuous, there exists

H : (Bδ (x, f(x)) ∩ epi (f))× [0, δ] → epi (f)

as in Proposition 2.2. Let δ′ > 0 be such that δ′ < δ
√
1− σ2 and let

K : (Bδ′ (x, f(x)) ∩ epi (f))× [0, δ′] → X

be defined by

K((ξ, µ), t) = H1

(
(ξ, µ),

t√
1− σ2

)
,



1024 INES CAMPA AND MARCO DEGIOVANNI

where H1 is the first component of H. The map K is clearly continuous and

d(K((ξ, µ), t), ξ)2 = d

(
H1

(
(ξ, µ),

t√
1− σ2

)
, ξ

)2

≤ t2

1− σ2
−
∣∣∣∣H2

(
(ξ, µ),

t√
1− σ2

)
− µ

∣∣∣∣
2

≤ t2

1− σ2
− σ2t2

1− σ2
= t2 .

Moreover, we have

f(K((ξ, µ), t)) = f

(
H1

(
(ξ, µ),

t√
1− σ2

))
≤ H2

(
(ξ, µ),

t√
1− σ2

)

= Gf
(
H
(
(ξ, µ),

t√
1− σ2

))
≤ Gf (ξ, µ)− σ√

1− σ2
t

= µ− σ√
1− σ2

t.

Therefore it is

|df | (x) ≥ σ√
1− σ2

and inequality (2.1) follows from the arbitrariness of σ.
Now let us prove the opposite inequality. If |df | (x) = 0 or |dGf | (x, f(x)) = 1, the

assertion is evident. Otherwise, let 0 < σ < |df | (x) and let

H : (Bδ (x, f(x)) ∩ epi (f))× [0, δ] → X

be as in Definition 2.1. Define

K : (Bδ (x, f(x)) ∩ epi (f))× [0, δ] → epi (f)

by

K((ξ, µ), t) =
(
H
(
(ξ, µ),

t√
1 + σ2

)
, µ− σ√

1 + σ2
t

)
.

Since

f

(
H
(
(ξ, µ),

t√
1 + σ2

))
≤ µ− σ√

1 + σ2
t,

we actually have K((ξ, µ), t) ∈ epi (f). Of course, K is continuous and

d(K((ξ, µ), t), (ξ, µ)) =
(
d

(
H
(
(ξ, µ),

t√
1 + σ2

)
, ξ

)2

+

(
σ√

1 + σ2
t

)2
) 1

2

≤
(

t2

1 + σ2
+

σ2t2

1 + σ2

) 1
2

= t.

Moreover we have

Gf (K((ξ, µ), t)) = µ− σ√
1 + σ2

t = Gf (ξ, µ)− σ√
1 + σ2

t.
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Therefore, it is

|dGf | (x, f(x)) ≥ σ√
1 + σ2

,

namely,

σ ≤ |dGf | (x, f(x))√
1− |dGf | (x, f(x))2

.

From the arbitrariness of σ, the assertion follows.

3. Tangent and normal cones. Throughout this section, X will denote a real
normed space and C a subset of X.

Definition 3.1. For every x ∈ C, we denote by TC (x) the set of the v’s in X
such that for every ε > 0 there exist δ > 0 and a continuous map

V : (Bδ (x) ∩ C)×]0, δ] → Bε (v)

satisfying ξ + tV(ξ, t) ∈ C whenever ξ ∈ Bδ (x) ∩ C and t ∈]0, δ].
We say that TC (x) is the tangent cone to C at x.
If we drop the continuity condition on V, we get exactly the tangent cone in

the sense of Clarke (see [12, Theorem 2.4.5]). Therefore, TC (x) is contained in the
tangent cone in the sense of Clarke.

Theorem 3.2. For every x ∈ C, the set TC (x) is a closed convex cone in X
with vertex at the origin.

Proof. It is easy to see that TC (x) is a closed cone with vertex at the origin.
If v0, v1 ∈ TC (x) and ε > 0, let V0 : (Bδ0 (x) ∩ C)×]0, δ0] → B ε

2
(v0) and V1 :

(Bδ1 (x) ∩ C)×]0, δ1] → B ε
2
(v1) be as in Definition 3.1. Choose 0 < δ ≤ min{δ0, δ1}

satisfying ‖ξ+ tV0(ξ, t)−x‖ < δ1 whenever ‖ξ−x‖ < δ and 0 < t ≤ δ. Then the map

V : (Bδ (x) ∩ C)×]0, δ] → X

defined by

V(ξ, t) = V0(ξ, t) + V1(ξ + tV0(ξ, t), t)

is continuous and satisfies

‖V(ξ, t)− v0 − v1‖ ≤ ‖V0(ξ, t)− v0‖+ ‖V1(ξ + tV0(ξ, t), t)− v1‖ <
ε

2
+

ε

2
= ε,

ξ + t (V0(ξ, t) + V1(ξ + tV0(ξ, t), t)) = (ξ + tV0(ξ, t)) + tV1(ξ + tV0(ξ, t), t) ∈ C,

so that (v0 + v1) ∈ TC (x).
Definition 3.3. For every x ∈ C, we set

NC (x) := {ν ∈ X∗ : 〈ν, v〉 ≤ 0 ∀v ∈ TC (x)} .

We say that NC (x) is the normal cone to C at x.
Of course, NC (x) is a convex cone with vertex at the origin and is weak∗ closed

in X∗. Moreover, NC (x) contains the normal cone in the sense of Clarke (see [12,
Chapter 2.4]).
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Theorem 3.4. Assume that C is convex. Then, for every x ∈ C, TC (x) and
NC (x) agree with the tangent and normal cones in the sense of convex analysis, i.e.,
we have

TC (x) =
⋃
s>0

s (C − x),

NC (x) = {ν ∈ X∗ : 〈ν, y − x〉 ≤ 0 ∀y ∈ C} .
Proof. Let s > 0 and y ∈ C. Given ε > 0, let δ > 0 be such that δs ≤ min{ε, 1}.

If we define V : (Bδ (x) ∩ C)×]0, δ] → Bε (s(y − x)) by

V(ξ, t) = s(y − ξ),

then V is continuous and satisfies

‖V(ξ, t)− s(y − x)‖ = s‖ξ − x‖ < sδ ≤ ε.

From the convexity of C it also follows that

ξ + tV(ξ, t) = ξ + ts(y − ξ) ∈ C,

so s(y − x) ∈ TC (x). Since TC (x) is closed in X, we deduce that

⋃
s>0

s (C − x) ⊆ TC (x) .

The opposite inclusion is obvious, as TC (x) is contained in the tangent cone in
the sense of Clarke.

The formula for NC (x) follows from that for TC (x).
Now we want to investigate some particular situations in which our notions agree

with those of Clarke. For this purpose, let us recall a well-known concept (see, e.g.,
[12, Chapter 2.4]).

Definition 3.5. For every x ∈ C, we denote by HypC (x) the set of the v’s in
X such that there exists δ > 0 satisfying

(Bδ (x) ∩ C) + ]0, δ] · Bδ (v) ⊆ C.(3.1)

We say that HypC (x) is the hypertangent cone to C at x.
If v ∈ HypC (x) and δ satisfies (3.1), it is readily seen that(

Bδ (x) ∩ C
)
+ ]0, δ] · Bδ (v) = (Bδ (x) ∩ C) + ]0, δ] · Bδ (v) ⊆ int (C) ,(3.2)

Bδ (x) ∩ int (C) = Bδ (x) ∩ C, Bδ (x) ∩ int
(
C
)
= Bδ (x) ∩ int (C) .(3.3)

Theorem 3.6. Let x ∈ C with HypC (x) �= ∅. Then TC (x) agrees with the cor-
responding tangent cone in the sense of Clarke and we have HypC (x) = int (TC (x))
and TC (x) = HypC (x).

Proof. If we denote by T̃C(x) the tangent cone in the sense of Clarke, we clearly

have HypC (x) ⊆ TC (x) ⊆ T̃C(x). Then the assertion follows from Rockafellar’s
Theorem (see, e.g., [12, Theorem 2.4.8]).

Lemma 3.7. Let D be another subset of X and let x ∈ C ∩D with HypC (x) �= ∅.
Assume there exists r > 0 such that Br (x) ⊆ C ∪D and Br (x) ∩D ∩ int (C) = ∅.
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Then

HypD (x) = −HypC (x) .

Proof. Let v ∈ HypC (x) and, according to (3.2), let ε ∈]0, r] be such that

(Bε (x) ∩ C)+]0, ε] · Bε (v) ⊆ int (C) .

Take δ > 0 with

(Bδ (x) ∩D)+]0, δ] · Bδ (−v) ⊆ Bε (x) ⊆ Br (x) .

We want to show that

(Bδ (x) ∩D)+]0, δ] · Bδ (−v) ⊆ D.

By contradiction, let ξ ∈ Bδ (x) ∩D, t ∈ ]0, δ] and w ∈ Bδ (v) with ξ − tw ∈ C. Then

ξ = (ξ − tw) + tw ∈ int (C) ,

which contradicts Br (x) ∩D ∩ int (C) = ∅. Therefore −HypC (x) ⊆ HypD (x).
In particular, HypD (x) �= ∅. Moreover, from (3.3) it follows that Bε (x) ∩ C ∩

int (D) = ∅. Therefore the opposite inclusion also follows.
Theorem 3.8. Let x ∈ C ∩ ∂C with HypC (x) �= ∅. Then the following facts

hold:
(i) HypC (x) + T∂C (x) = HypC (x) ;
(ii) T∂C (x) agrees with the corresponding tangent cone in the sense of Clarke

and we have T∂C (x) = TC (x) ∩ (−TC (x)); in particular, T∂C (x) is a closed linear
subspace of X.

Proof. Denote by T̃∂C(x) the tangent cone in the sense of Clarke. First of all, we
want to show that

HypC (x) + T∂C (x) = HypC (x) + T̃∂C(x) = HypC (x) .(3.4)

Since 0 ∈ T∂C (x) and T∂C (x) ⊆ T̃∂C(x), it is sufficient to prove that

HypC (x) + T̃∂C(x) ⊆ HypC (x) .

Let v0 ∈ HypC (x) and let δ0 > 0 be as in Definition 3.5. Let also v1 ∈ T̃∂C(x) and
let δ1 > 0 be such that

∀ξ ∈ Bδ1 (x) ∩ ∂C, ∀t ∈]0, δ1], ∃w ∈ B δ0
2

(v1) : ξ + tw ∈ ∂C.(3.5)

Finally, let

δ2 = min

{
δ0
2
,

δ0

1 + 1
2δ0 + ‖v1‖

, δ1

}
.

We claim that

(Bδ2 (x) ∩ ∂C)+]0, δ2] · Bδ2 (v0 + v1) ⊆ C.(3.6)
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Actually, if ξ ∈ Bδ2 (x) ∩ ∂C, t ∈]0, δ2], and v ∈ Bδ2 (v0 + v1), let w ∈ B δ0
2

(v1) be as

in (3.5). We have ξ + tw ∈ ∂C ⊆ C and also ξ + tw ∈ Bδ0 (x), as

‖ξ + tw − x‖ = ‖ξ + tw − tv1 + tv1 − x‖
≤ ‖ξ − x‖+ t‖w − v1‖+ t‖v1‖
< δ2 + δ2

δ0
2
+ δ2‖v1‖ ≤ δ0.

On the other hand, v − w ∈ Bδ0 (v0), as

‖v − w − v0‖ = ‖v − v0 − v1 + v1 − w‖
≤ ‖v − v0 − v1‖+ ‖v1 − w‖ < δ2 +

δ0
2

≤ δ0.

Therefore, according to (3.2), we have

ξ + tv = (ξ + tw) + t(v − w) ∈ C

and (3.6) follows.
Now let δ > 0 be such that

δ + δ2 + δ‖v0‖+ δ‖v1‖ ≤ δ2.

According to (3.2) and (3.3), to prove that v0 + v1 ∈ HypC (x) it is sufficient to show
that (

Bδ (x) ∩ C
)
+]0, δ] · Bδ (v0 + v1) ⊆ Bδ0 (x) ∩ C.

Let ξ ∈ Bδ (x) ∩ C, t ∈]0, δ], and v ∈ Bδ (v0 + v1). Clearly, we have ξ + tv ∈ Bδ0 (x).
If, by contradiction, ξ+ tv �∈ C, there exists τ ∈ [0, t[ with ξ+ τv ∈ ∂C. Of course we
have 0 < t− τ ≤ δ2 and v ∈ Bδ2 (v0 + v1). Moreover, it is

‖ξ + τv − x‖ ≤ ‖ξ − x‖+ τ‖v − v0 − v1‖+ τ‖v0‖+ τ‖v1‖
< δ + δ2 + δ‖v0‖+ δ‖v1‖ ≤ δ2.

From (3.6) we deduce that

ξ + tv = (ξ + τv) + (t− τ)v ∈ C,

whence a contradiction. Therefore (3.4) follows.

Since sv0 ∈ HypC (x) for any s > 0, we also have T̃∂C(x) ⊆ TC (x). Now let
D = X \ C. From (3.3) it follows that Bδ0 (x) ∩ ∂C=Bδ0 (x) ∩ ∂D. Combining this
fact with Lemma 3.7, we deduce that

T̃∂C(x) = T̃∂D(x) ⊆ TD (x) = −TC (x) ;

hence

T∂C (x) ⊆ T̃∂C(x) ⊆ TC (x) ∩ (−TC (x)) .

Finally, let z ∈ TC (x) ∩ (−TC (x)) and let again v0 ∈ HypC (x). Given ε > 0,
let ε′ ∈]0, 1] with ε′‖v0‖ < ε. From Lemma 3.7 we deduce that z + ε′v0 ∈ HypC (x)
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and z − ε′v0 ∈ HypD (x). Let δ3 > 0 be associated with v0, z + ε′v0 and z − ε′v0,
according to Definition 3.5, and let δ4 > 0 with

δ4 + δ4‖z‖+ δ4‖v0‖ ≤ δ3.

If ξ ∈ Bδ4 (x) ∩ ∂C and 0 < t ≤ δ4, we have

ξ + t(z + ε′v0) ∈ int (C) .

Therefore, if ξ + tz �∈ int (C), there exists τ+ ∈ [0, 1[ with

ξ + t(z + τ+ε′v0) ∈ ∂C.

Such a τ+ is unique. Otherwise, if 0 ≤ τ+
1 < τ+

2 < 1 have this property, it follows
that

‖ξ + tz + tτ+
1 ε′v0 − x‖ ≤ ‖ξ − x‖+ t‖z‖+ t‖v0‖

< δ4 + δ4‖z‖+ δ4‖v0‖ ≤ δ3;

hence

ξ + t(z + τ+
2 ε′v0) = (ξ + tz + tτ+

1 ε′v0) + t(τ+
2 − τ+

1 )ε′v0 ∈ int (C) ,

which is absurd. Therefore we may define a continuous map τ+ : C+ → [0, 1[ with

C+ = {(ξ, t) ∈ (Bδ4 (x) ∩ ∂C)×]0, δ4] : ξ + tz �∈ int (C)}
such that

ξ + t(z + τ+(ξ, t)ε′v0) ∈ ∂C,

ξ + tz ∈ ∂C =⇒ τ+(ξ, t) = 0.

In a similar way, it is possible to define a continuous map τ− : C− → [0, 1[ with

C− =
{
(ξ, t) ∈ (Bδ4 (x) ∩ ∂C)×]0, δ4] : ξ + tz ∈ C

}
such that

ξ + t(z − τ−(ξ, t)ε′v0) ∈ ∂C,

ξ + tz ∈ ∂C =⇒ τ−(ξ, t) = 0.

Moreover we have

‖z ± τ±(ξ, t)ε′v0 − z‖ ≤ ε′‖v0‖ < ε.

Therefore we may define a continuous map Z : (Bδ4 (x) ∩ ∂C)×]0, δ4] → Bε (z) by

Z(ξ, t) =
{

z + τ+(ξ, t)ε′v0 if ξ + tz �∈ int (C),

z − τ−(ξ, t)ε′v0 if ξ + tz ∈ C.

From the construction it follows that ξ+tZ(ξ, t) ∈ ∂C, so that z ∈ T∂C (x). Therefore

TC (x) ∩ (−TC (x)) ⊆ T∂C (x)

and the proof is complete.
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4. The subdifferential. Throughout this section, X will denote a real normed
space and f : X → R a function. The linear space X × R will be endowed with the
norm

‖(x, λ)‖ = (‖x‖2 + λ2
) 1

2 .

Definition 4.1. For every x ∈ X with f(x) ∈ R, we set

∂f(x) :=
{
α ∈ X∗ : (α,−1) ∈ Nepi(f) (x, f(x))

}
.

We say that ∂f(x) is the subdifferential of f at x.
If C ⊆ X and IC denotes the indicator function of C, namely,

IC(ξ) =

{
0 if ξ ∈ C,

+∞ if ξ ∈ X \ C,

it is easy to see that ∂IC(x) = NC (x) for every x ∈ C. Moreover, ∂f(x) contains the
subdifferential in the sense of Clarke (see [12]).

Theorem 4.2. Assume that f is convex. Then, for every x ∈ X with f(x) ∈ R,
∂f(x) agrees with the subdifferential of convex analysis, i.e., we have

∂f(x) = {α ∈ X∗ : f(y) ≥ f(x) + 〈α, y − x〉 ∀y ∈ X} .

Proof. The proof follows from Theorem 3.4.
Definition 4.3. Let x ∈ X with f(x) ∈ R. For every v ∈ X and ε > 0 let

f0
ε (x; v) be the infimum of the r’s in R such that there exist δ > 0 and a continuous

map

V : (Bδ (x, f(x)) ∩ epi (f))×]0, δ] → Bε (v)

satisfying

f (ξ + tV((ξ, µ), t)) ≤ µ+ rt

whenever (ξ, µ) ∈ Bδ (x, f(x)) ∩ epi (f) and t ∈ ]0, δ] (we agree that inf ∅ = +∞).
Let also

f0 (x; v) := sup
ε>0

f0
ε (x; v) = lim

ε→0+
f0
ε (x; v) .

We say that f0 (x; v) is the generalized directional derivative of f at x with respect
to v.

Again, if we drop the continuity condition on V, we get exactly the generalized
directional derivative in the sense of Rockafellar (see [12, 35]). Therefore f0 (x; v) is
greater than or equal to the generalized directional derivative of Rockafellar.

Proposition 4.4. Let f : X → R be continuous and let x ∈ X. Then for every
v ∈ X and ε > 0 we have that f0

ε (x; v) is the infimum of the r’s in R such that there
exist δ > 0 and a continuous map V : Bδ (x)×]0, δ] → Bε (v) satisfying

f(ξ + tV(ξ, t)) ≤ f(ξ) + rt

whenever ξ ∈ Bδ (x) and t ∈ ]0, δ].
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Proof. The proof is a variant of that of Proposition 2.2. Therefore, we omit
it.

Theorem 4.5. For every x ∈ X with f(x) ∈ R we have

Tepi(f) (x, f(x)) = epi
(
f0 (x; ·)) .

Proof. Let (v, r) ∈ Tepi(f) (x, f(x)), let ε > 0, and let

W : (Bδ (x, f(x)) ∩ epi (f))× ]0, δ] → Bε (v, r)

be a map as in Definition 3.1. Then the first component

W1 : (Bδ (x, f(x)) ∩ epi (f))× ]0, δ] → Bε (v)

is continuous and satisfies

f (ξ + tW1((ξ, µ), t))− µ

t
≤ W2((ξ, µ), t) < r + ε.

It follows that f0
ε (x; v) ≤ r + ε, hence f0 (x; v) ≤ r by the arbitrariness of ε.

Conversely, let f0 (x; v) ≤ r. Given ε > 0, let

V : (Bδ (x, f(x)) ∩ epi (f))× ]0, δ] → B ε√
2
(v)

be a continuous map satisfying

f(ξ + tV((ξ, µ), t))− µ

t
≤ r +

ε√
2
.

Define

W : (Bδ (x, f(x)) ∩ epi (f))× ]0, δ] → X × R
by

W((ξ, µ), t) =

(
V((ξ, µ), t), r + ε√

2

)
.

Then W is continuous and satisfies W((ξ, µ), t) ∈ Bε (v, r). Moreover one has

f(ξ + tV((ξ, µ), t)) ≤ µ+ t

(
r +

ε√
2

)
,

namely, (ξ, µ) + tW((ξ, µ), t) ∈ epi (f). Therefore (v, r) ∈ Tepi(f) (x, f(x)).
Corollary 4.6. For every x ∈ X with f(x) ∈ R, the function{

v  −→ f0 (x; v)
}

is convex, lower semicontinuous, and positively homogeneous of degree 1. Moreover it
is f0 (x; 0) ∈ {0,−∞}.

Proof. It follows from Theorem 4.5.
Corollary 4.7. Let x ∈ X with f(x) ∈ R. Then the following facts hold:
(i) ∂f(x) =

{
α ∈ X∗ : 〈α, v〉 ≤ f0 (x; v) ∀v ∈ X

}
;

(ii) ∂f(x) = ∅ ⇐⇒ f0 (x; 0) = −∞;
(iii) ∂f(x) is convex and weak∗ closed in X∗;
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(iv) if ∂f(x) �= ∅, it is

∀v ∈ X : f0 (x; v) = sup {〈α, v〉 : α ∈ ∂f(x)} .
Proof. Statement (i) follows from Theorem 4.5. The other properties are conse-

quences of (i) and Corollary 4.6.
Now let us recall a well-known notion (see, e.g., [12, Definition 2.9.2]).
Definition 4.8. Let x ∈ X with f(x) ∈ R. We set

∀v ∈ X : f+ (x; v) := lim sup
(ξ, µ) → (x, f(x))
(ξ, µ) ∈ epi (f)

w → v, t → 0+

f(ξ + tw)− µ

t
,

Df (x) :=
{
v ∈ X : f+ (x; v) < +∞}

.

The function f is said to be directionally Lipschitzian at x if Df (x) �= ∅.
Theorem 4.9. Let x ∈ X with f(x) ∈ R. Assume that f is directionally Lip-

schitzian at x.
Then ∂f(x) and f0 (x; ·) agree with the corresponding notions of Clarke–

Rockafellar and we have

Df (x) = int
({

v ∈ X : f0 (x; v) < +∞})
,

∀v ∈ Df (x) : f+ (x; v) = f0 (x; v) .

Proof. From [12, Proposition 2.9.3] we deduce that Hypepi(f) (x, f(x)) �= ∅. There-
fore ∂f(x) and f0 (x; ·) agree with the corresponding notions of Clarke–Rockafellar
by Theorems 3.6 and 4.5. The last formulas follow from [12, Theorem 2.9.5].

Corollary 4.10. Let f : X → R be locally Lipschitzian and let x ∈ X. Then
∂f(x) and f0 (x; ·) agree with the corresponding notions of Clarke.

Remark 4.11. If we consider the function f : R → R and the subset C of R2

mentioned in the introduction, it is easy to see that TC (0, 0) = {(0, 0)} while ∂f(0)
and NC (0, 0) are the whole space. Therefore our notions of subdifferential, tangent
cone, and normal cone do not agree, in general, with those of Clarke. Nevertheless,
when f is locally Lipschitzian, the two approaches turn out to be equivalent. This is
possible, as we do not impose, for instance, that

v ∈ TC (x) ⇐⇒ (�C)
0
(x; v) ≤ 0,

where �C is the Lipschitzian function defined by

�C(ξ) = inf {‖ξ − y‖ : y ∈ C} .
This is closely related to the fact that, in our approach, condition (ii) mentioned in
the introduction is not fulfilled.

In the next result we state without proof some simple calculus rules.
Theorem 4.12. The following facts hold:
(i) For every x ∈ X with f(x) ∈ R and for every s > 0 we have

∀v ∈ X : (sf)0 (x; v) = sf0 (x; v) ,

∂(sf)(x) = s∂f(x).
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(ii) If Y is another real normed space, ϕ : Y → X a diffeomorphism, and y ∈ Y
is such that f (ϕ(y)) ∈ R, then we have

∀w ∈ Y : (f ◦ ϕ)
0
(y;w) = f0 (ϕ(y);ϕ′(y)w) ,

∂ (f ◦ ϕ) (y) = {α ◦ ϕ′(y) : α ∈ ∂f (ϕ(y))} .

Now we can prove the main result which has motivated the introduction of a new
subdifferential.

Theorem 4.13. For every x ∈ X with f(x) ∈ R the following facts hold:
(i) we have

∀ε > 0 : sup
{−f0

ε (x; v) : v ∈ X, ‖v‖ ≤ 1
} ≤ (1 + ε) |df | (x),

sup
{−f0 (x; v) : v ∈ X, ‖v‖ ≤ 1

} ≤ |df | (x);

(ii) |df | (x) < +∞ ⇐⇒ ∂f(x) �= ∅;
(iii) |df | (x) < +∞ =⇒ |df | (x) ≥ min{‖α‖ : α ∈ ∂f(x)}.
Proof. (i) Let ε > 0 and v ∈ X with ‖v‖ ≤ 1. To prove the first inequality, it is

sufficient to show that

f0
ε (x; v) ≥ −(1 + ε) |df | (x).(4.1)

If f0
ε (x; v) ≥ 0, the assertion is evident. Otherwise, let f0

ε (x; v) < r < 0 and let

V : (Bδ (x, f(x)) ∩ epi (f))×]0, δ] → Bε (v)

be as in Definition 4.3. Define

H : (Bδ (x, f(x)) ∩ epi (f))× [0, δ] → X

by

H((ξ, µ), t) =




ξ +
t

1 + ε
V
(
(ξ, µ),

t

1 + ε

)
if t �= 0,

ξ if t = 0.

Since ∥∥∥∥V
(
(ξ, µ),

t

1 + ε

)∥∥∥∥ ≤
∥∥∥∥V

(
(ξ, µ),

t

1 + ε

)
− v

∥∥∥∥+ ‖v‖ < ε+ 1,

it is easy to see that H is continuous. Moreover we have

‖H((ξ, µ), t)− ξ‖ ≤ t,

f(H((ξ, µ), t)) ≤ µ+
r

1 + ε
t,

so that |df | (x) ≥ − r
1+ε . It follows that r ≥ −(1 + ε) |df | (x), hence (4.1) by the

arbitrariness of r.
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The second inequality in (i) is a consequence of the first one.
(ii) and (iii) Assume that |df | (x) < +∞. Combining property (i) with Corol-

lary 4.6, we see that

∀v ∈ X : f0 (x; v) ≥ − |df | (x)‖v‖.

From [37, Lemma 1.3] we deduce that there exists α ∈ ∂f(x) with ‖α‖ ≤ |df | (x).
Therefore ∂f(x) �= ∅ and (iii) holds.

Finally, suppose that |df | (x) = +∞. Let ε, σ > 0 and let

H : (Bδ (x, f(x)) ∩ epi (f))× [0, δ] → X

be a map as in Definition 2.1. Set δ′ = min
{
δ, 2δ

ε

}
and define

V : (Bδ′ (x, f(x)) ∩ epi (f))×]0, δ′] → X

by

V((ξ, µ), t) = H (
(ξ, µ), ε2 t

)− ξ

t
.

Of course, V is continuous and V((ξ, µ), t) ∈ Bε (0), as

‖V((ξ, µ), t)‖ ≤
ε
2 t

t
< ε.

Moreover

f(ξ + tV((ξ, µ), t)) = f
(
H
(
(ξ, µ),

ε

2
t
))

≤ µ− εσ

2
t,

so that f0
ε (x; 0) ≤ − ε

2σ. By the arbitrariness of σ, it follows that f0
ε (x; 0) = −∞,

hence f0 (x; 0) = −∞ by the arbitrariness of ε. Therefore ∂f(x) = ∅.
Example 4.14. The inequality in (iii) may be strict, even if f is Lipschitzian (so

that the usual Clarke subdifferential is involved). The first counterexample in this
sense has been provided in [33]. As a variant, consider f : R2 → R defined by

f(x, y) = a

∣∣∣∣y −m|x|
∣∣∣∣− σx

with a,m, σ > 0 and am ≥ σ. Then 0 ∈ ∂f(0, 0), but |df | (0, 0) > 0.

5. The subdifferential of a sum. Throughout this section, X will denote a
real Banach space and f : X → R a function.

The next result is an adaptation to our setting of Rockafellar’s theorem (see, e.g.,
[12, Theorem 2.9.8]).

Theorem 5.1. Let g : X → R ∪ {+∞} be a function, and let x ∈ X with
f(x) ∈ R and g(x) ∈ R. Assume that the restriction of g to {ξ ∈ X : g(ξ) < +∞} is
continuous and that there exists v0 ∈ Dg (x) with f0 (x; v0) < +∞.

Then the following facts hold:
(i) for every v ∈ X we have

(f + g)
0
(x; v) ≤ f0 (x; v) + g0 (x; v) ;
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(ii) ∂f(x) + ∂g(x) is weak∗ closed in X∗ and we have

∂(f + g)(x) ⊆ ∂f(x) + ∂g(x).

(We agree that +∞+ (−∞) = −∞+ (+∞) = +∞.)
Proof. (i) Consider first v ∈ Dg (x) with f0 (x; v) < +∞. By Theorem 4.9, we

have g+ (x; v) = g0 (x; v). Given r > f0 (x; v), s > g0 (x; v), and ε > 0, let δ ∈]0, ε] be
such that

∀ξ ∈ Bδ (x) , ∀t ∈]0, δ], ∀w ∈ Bδ (v) : g(ξ + tw) ≤ g(ξ) + st.

Then let δ′ ∈]0, δ] and let V : (Bδ′ (x, f(x)) ∩ epi (f))×]0, δ′] → Bδ (v) be a continuous
map satisfying

f(ξ + tV((ξ, µ), t)) ≤ µ+ rt.

Finally, let δ′′ ∈]0, δ′] be such that

∀(ξ, µ) ∈ Bδ′′ (x, f(x) + g(x)) ∩ epi (f + g) : ‖ξ − x‖2 + (µ− g(ξ)− f(x))2 < δ′2.

Define

W : (Bδ′′ (x, f(x) + g(x)) ∩ epi (f + g))×]0, δ′′] → Bε (v)

by

W((ξ, µ), t) = V((ξ, µ− g(ξ)), t).

Of course, W is continuous and we have

f(ξ + tW((ξ, µ), t)) + g(ξ + tW((ξ, µ), t))

= µ+ f(ξ + tV((ξ, µ− g(ξ)), t))− (µ− g(ξ))

+ g(ξ + tV((ξ, µ− g(ξ)), t))− g(ξ) ≤ µ+ (r + s)t,

so that (f + g)0ε (x; v) ≤ r + s. From the arbitrariness of ε, it follows that (f +
g)0 (x; v) ≤ r + s. Going to the limit as r → f0 (x; v) and s → g0 (x; v), we conclude
that

(f + g)0 (x; v) ≤ f0 (x; v) + g0 (x; v) .

Now let v ∈ X with f0 (x; v) < +∞ and g0 (x; v) < +∞ and let

vh =

(
1− 1

h

)
v +

1

h
v0.

From Theorem 4.9, it follows that f0 (x; vh) < +∞ and vh ∈ Dg (x). From the
previous step, we deduce that

(f + g)0 (x; vh) ≤ f0 (x; vh) + g0 (x; vh) ,

hence the assertion, going to the limit as h → ∞.
(ii) If f0 (x; 0) = −∞ or g0 (x; 0) = −∞, from (i) we deduce that (f +g)0 (x; 0) =

−∞; hence

∂ (f + g) (x) = ∂f(x) + ∂g(x) = ∅.
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Therefore, let f0 (x; 0) = g0 (x; 0) = 0. Define ϕ,ψ : X → R ∪ {+∞} by ϕ(v) =
f0 (x; v) and ψ(v) = g0 (x; v). From Corollary 4.6 we know that ϕ and ψ are convex
and lower semicontinuous with ϕ(0) = ψ(0) = 0. Moreover, from Theorem 4.9 and (i)
we deduce that

v0 ∈ Dom(ϕ) ∩ int (Dom (ψ)) ,

∀v ∈ X : (f + g)0 (x; v) ≤ ϕ(v) + ψ(v).

It follows that Dom (ψ) − Dom(ϕ) = X; hence, taking into account [3, Corollary
(2.1)],

∂ (f + g) (x) ⊆ ∂ (ϕ+ ψ) (0) = ∂ϕ(0) + ∂ψ(0) = ∂f(x) + ∂g(x).

In particular, ∂f(x) + ∂g(x) is weak∗ closed in X∗.
The next example shows that the continuity condition for g on

{ξ ∈ X : g(ξ) < +∞}
cannot be omitted.

Example 5.2. Define f, g : R2 → R by

f(x, y) =

{
0 if x ≤ −y2,

−1 if x > −y2,

g(x, y) =




0 if x ≥ y2,

1 if (x, y) =
(
0, 1

n

)
, n ≥ 1,

2 otherwise.

Then (1, 0) ∈ Df (0, 0) ∩Dg (0, 0), but we have

f0 ((0, 0); (1, 0)) = g0 ((0, 0); (1, 0)) = 0,

∂ (f + g) (0, 0) = R2,

so that

∂ (f + g) (0, 0) �⊆ ∂f(0, 0) + ∂g(0, 0).

On the other hand, f is only upper semicontinuous, while g is only lower semicontin-
uous.

Corollary 5.3. Let g : X → R be locally Lipschitzian and let x ∈ X with
f(x) ∈ R.

Then the following facts hold:
(i) for every v ∈ X we have (f + g)

0
(x; v) ≤ f0 (x; v) + g0 (x; v);

(ii) ∂f(x) + ∂g(x) is weak∗ closed in X∗ and we have

∂(f + g)(x) ⊆ ∂f(x) + ∂g(x).

Moreover, if g is of class C1, then equality holds in (i) and (ii).



SUBDIFFERENTIAL CALCULUS 1037

Proof. Since Dg (x) = X, we have 0 ∈ Dg (x), f
0 (x; 0) < +∞, and the locally

Lipschitz case follows from Theorem 5.1. If g is of class C1, from Corollary 4.10 we
deduce that ∂g(x) = {g′(x)}. Then it is sufficient to apply the previous case also to
the decomposition f = (f + g) + (−g).

Corollary 5.4. Let C ⊆ X and let x∈C with f(x)∈R. Assume there exists
v0∈HypC (x) with f0 (x; v0) < +∞.

Then the following facts hold:
(i) for every v ∈ TC (x) we have (f + IC)

0 (x; v) ≤ f0 (x; v);
(ii) ∂f(x) + NC (x) is weak∗ closed in X∗ and we have

∂(f + IC)(x) ⊆ ∂f(x) + NC (x) .

Proof. Let g = IC . It is readily seen that (v0, 1) ∈ Hypepi(g) (x, 0). From [12,
Proposition 2.9.3] it follows that v0 ∈ Dg (x). From Theorem 5.1 we deduce (ii).
Moreover, if v ∈ TC (x), we have (v, 0) ∈ Tepi(g) (x, 0); hence g0 (x; v) ≤ 0. Then (i)
also follows.

Definition 5.5. Let x ∈ X with f(x) ∈ R. For every v ∈ X and ε > 0 let

f
0

ε (x; v) be the infimum of the r’s in R such that there exist δ > 0 and a continuous
map

H : (Bδ (x, f(x)) ∩ epi (f))× [0, δ] → X

satisfying H((ξ, µ), 0) = ξ,∥∥∥∥H((ξ, µ), t1)−H((ξ, µ), t2)

t1 − t2
− v

∥∥∥∥ < ε,

f(H((ξ, µ), t)) ≤ µ+ rt

whenever (ξ, µ) ∈ Bδ (x, f(x)) ∩ epi (f) and t, t1, t2 ∈ [0, δ] with t1 �= t2. (We agree
that inf ∅ = +∞.)

Let also

f
0
(x; v) := sup

ε>0
f

0

ε (x; v) = lim
ε→0+

f
0

ε (x; v) .

Remark 5.6. This variant of the generalized directional derivative will be used to
express a qualification condition in Theorem 5.8 and in Corollary 5.9.

It is easy to see that the map

V((ξ, µ), t) = H((ξ, µ), t)− ξ

t

satisfies the properties required by Definition 4.3. Therefore we always have

f0 (x; v) ≤ f
0
(x; v) .

Moreover, we will see in the next theorem that, for a restricted class of functions f ,

the condition f0 (x; v) < +∞ is equivalent to f
0
(x; v) < +∞.

Theorem 5.7. Assume that f = f0 + f1, where f0 : X → R is convex and
f1 : X → R is locally Lipschitzian, and let x ∈ X with f(x) ∈ R.
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Then we have

∀v ∈ X : f
0
(x; v) < +∞ ⇐⇒ f0 (x; v) < +∞,

∀y ∈ X : f(y) < +∞ =⇒ f
0
(x; y − x) < +∞.

Proof. If L is a Lipschitz constant for f1 in a neighborhood of x, it is readily seen
that

∀v ∈ X : f
0
(x; v) ≤ f0

0
(x; v) + L , f0 (x; v) ≥ f0

0 (x; v)− L.

Therefore it is sufficient to treat the case f1 = 0.
First of all, we show that

∀v ∈ X : f
0
(x; v) = f0 (x; v) .(5.1)

Let r > f0 (x; v), ε > 0, and let V : (Bδ (x, f(x)) ∩ epi (f))×]0, δ] → B ε
2
(v) be a map

as in Definition 4.3. Set w = x+ δV((x, f(x)), δ), take

0 < δ′ ≤ min

{
δ,

δε

2

}
,

and define H : (Bδ′ (x, f(x)) ∩ epi (f))× [0, δ′] → X by H((ξ, µ), t) = ξ+(t/δ)(w− ξ).
We have∥∥∥∥H((ξ, µ), t1)−H((ξ, µ), t2)

t1 − t2
− v

∥∥∥∥ =

∥∥∥∥w − ξ

δ
− v

∥∥∥∥
≤ ‖x− ξ‖

δ
+ ‖V((x, f(x)), δ)− v‖

<
δ′

δ
+

ε

2
≤ ε

and

f(H((ξ, µ), t)) ≤
(
1− t

δ

)
f(ξ) +

t

δ
f(w) ≤ µ+

t

δ
(f(w)− µ)

≤ µ+
t

δ
(f(x) + rδ − f(x) + δ′) = µ+ t

(
r +

δ′

δ

)
.

It follows that f
0

ε (x; v) ≤ r + (δ′/δ), hence f
0

ε (x; v) ≤ r by the arbitrariness of δ′.
Finally, we deduce that f

0
(x; v) ≤ r by the arbitrariness of ε and (5.1) follows from

the arbitrariness of r.
Now, if y ∈ X and f(y) < +∞, we have (y − x, f(y) − f(x)) ∈ Tepi(f) (x, f(x))

by Theorem 3.4; hence f0 (x; y − x) < +∞ by Theorem 4.5. Therefore the proof is
complete.

Theorem 5.8. Let C ⊆ X and let x ∈ C ∩ ∂C with f(x) ∈ R. Assume there
exist v+, v− ∈ HypC (x) such that

f
0
(x; v+) < +∞, f

0
(x;−v−) < +∞.
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Then the following facts hold:
(i) (f + I∂C)

0
(x; v) ≤ f0 (x; v) for any v ∈ T∂C (x) ;

(ii) ∂ (f + I∂C) (x) �= ∅ =⇒ ∂f(x) �= ∅.
Proof. (i) Let v ∈ T∂C (x). If f0 (x; v) = +∞, the fact is obvious. Otherwise, let

r > f0 (x; v). Given ε > 0 and

0 < ε′ ≤ min

{
1,

ε

3‖v+‖ ,
ε

3‖v−‖
}
,

it follows from Lemma 3.7 and Theorem 3.8 that w+ = v + ε′v+ ∈ HypC (x) and
w− = v − ε′v− ∈ Hyp

X\C (x). Let δ > 0 be such that

(
Bδ (x) ∩ C

)
+]0, δ] · Bδ (v+) ⊆ int (C) ,

(
Bδ (x) ∩ C

)
+]0, δ] · Bδ (w+) ⊆ int (C) ,

(
Bδ (x) ∩X \ C

)
+]0, δ] · Bδ (−v−) ⊆ X \ C,

(
Bδ (x) ∩X \ C

)
+]0, δ] · Bδ (w−) ⊆ X \ C.

Given s+ > f
0
(x; v+) and s− > f

0
(x;−v−), let

ε′′ = min

{
δ

2
,
ε

3

}
,

let δ′ ∈]0, δ], and let

H+ : (Bδ′ (x, f(x)) ∩ epi (f))× [0, δ′] → X,

H− : (Bδ′ (x, f(x)) ∩ epi (f))× [0, δ′] → X,

V : (Bδ′ (x, f(x)) ∩ epi (f))×]0, δ′] → Bε′′ (v)

be three continuous maps such that H+((ξ, µ), 0) = ξ, H−((ξ, µ), 0) = ξ,∥∥∥∥H+((ξ, µ), t1)−H+((ξ, µ), t2)

t1 − t2
− v+

∥∥∥∥ < ε′′,

f(H+((ξ, µ), t)) ≤ µ+ s+t,

∥∥∥∥H−((ξ, µ), t1)−H−((ξ, µ), t2)
t1 − t2

+ v−

∥∥∥∥ < ε′′,

f(H−((ξ, µ), t)) ≤ µ+ s−t,

f(ξ + tV((ξ, µ), t)) ≤ µ+ rt
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for any (ξ, µ) ∈ Bδ′ (x, f(x)) ∩ epi (f), t ∈]0, δ′] and t1, t2 ∈ [0, δ′] with t1 �= t2. Set
K((ξ, µ), t) = ξ + tV((ξ, µ), t) and choose δ′′ ∈]0, δ′] such that

δ′′ (2ε′′ + 1 + ‖v+‖+ ‖v−‖+ ‖v‖) ≤ δ,

‖K((ξ, µ), t)− x‖2 + (µ+ rt− f(x))2 < δ′2

for any (ξ, µ) ∈ Bδ′′ (x, f(x)) ∩ epi (f) and t ∈]0, δ′′].
If (ξ, µ) ∈ Bδ′′ (x, f(x)) ∩ epi (f), t ∈]0, δ′′] and ξ ∈ ∂C, we have

H+((K((ξ, µ), t), µ+ rt), ε′t)

= ξ + t

(
V((ξ, µ), t) + ε′

H+((K((ξ, µ), t), µ+ rt), ε′t)−K((ξ, µ), t)
ε′t

)
∈ int (C) ,

as ∥∥∥∥V((ξ, µ), t) + ε′
H+((K((ξ, µ), t), µ+ rt), ε′t)−K((ξ, µ), t)

ε′t
− w+

∥∥∥∥

≤ ε′
∥∥∥∥H+((K((ξ, µ), t), µ+ rt), ε′t)−K((ξ, µ), t)

ε′t
− v+

∥∥∥∥+ ‖V((ξ, µ), t)− v‖

< ε′ε′′ + ε′′ ≤ δ.

Therefore, if K((ξ, µ), t) �∈ int (C), there exists τ+ ∈ [0, 1[ such that

H+((K((ξ, µ), t), µ+ rt), ε′τ+t) ∈ ∂C.

We claim that such a τ+ is unique. By contradiction, let τ+
1 and τ+

2 be such that
0 ≤ τ+

1 < τ+
2 < 1 and

H+((K((ξ, µ), t), µ+ rt), ε′τ+
j t) ∈ ∂C.

We have

H+((K((ξ, µ), t), µ+ rt), ε′τ+
2 t) = H+((K((ξ, µ), t), µ+ rt), ε′τ+

1 t)

+ε′(τ+
2 − τ+

1 )t
H+((K((ξ, µ), t), µ+ rt), ε′τ+

2 t)−H+((K((ξ, µ), t), µ+ rt), ε′τ+
1 t)

ε′(τ+
2 − τ+

1 )t
.

But H+((K((ξ, µ), t), µ+ rt), ε′τ+
1 t) ∈ Bδ (x), as

‖H+((K((ξ, µ), t), µ+ rt), ε′τ+
1 t)− x‖

≤ ε′τ+
1 t

∥∥∥∥H+((K((ξ, µ), t), µ+ rt), ε′τ+
1 t)−K((ξ, µ), t)

ε′τ+
1 t

− v+

∥∥∥∥
+t‖V((ξ, µ), t)−v‖+‖ξ−x‖+‖ε′τ+

1 tv++tv‖ < δ′′ε′′+δ′′ε′′+δ′′+δ′′‖v+‖+δ′′‖v‖ ≤ δ.
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Moreover 0 < ε′
(
τ+
2 − τ+

1

)
t < δ and

H+((K((ξ, µ), t), µ+ rt), ε′τ+
2 t)−H+((K((ξ, µ), t), µ+ rt), ε′τ+

1 t)

ε′(τ+
2 − τ+

1 )t
∈ Bδ (v+) .

It follows that

H+((K((ξ, µ), t), µ+ rt), ε′τ+
2 t) ∈ int (C) ,

which is absurd.
Therefore we may define a continuous map τ+ : C+ → [0, 1[ with

C+ = {((ξ, µ), t) ∈ (Bδ′′ (x, f(x)) ∩ epi (f))×]0, δ′′] : ξ ∈ ∂C, K((ξ, µ), t) �∈ int (C)}

such that for every ((ξ, µ), t) ∈ C+ the following facts hold:

H+((K((ξ, µ), t), µ+ rt), ε1τ
+((ξ, µ), t)t) ∈ ∂C,

K((ξ, µ), t) ∈ ∂C =⇒ τ+((ξ, µ), t) = 0.

On the other hand, if (ξ, µ) ∈ Bδ′′ (x, f(x)) ∩ epi (f), t ∈]0, δ′′] and ξ ∈ ∂C, as
previously we have

H−((K((ξ, µ), t), µ+ rt), ε′t) ∈ X \ C.

In a similar way we may define a continuous map τ− : C− → [0, 1[ with

C− =
{
((ξ, µ), t) ∈ (Bδ′′ (x, f(x)) ∩ epi (f))×]0, δ′′] : ξ ∈ ∂C, K((ξ, µ), t) ∈ C

}
such that for every ((ξ, µ), t) ∈ C− the following facts hold:

H−((K((ξ, µ), t), µ+ rt), ε′τ−((ξ, µ), t)t) ∈ ∂C,

K((ξ, µ), t) ∈ ∂C =⇒ τ−((ξ, µ), t) = 0.

Consider now the continuous map

V ′ : (Bδ′′ (x, f(x)) ∩ epi (f) ∩ (∂C × R))×]0, δ′′] → Bε (v)

defined by

V ′((ξ, µ), t) =
H+((K((ξ, µ), t), µ+ rt), ε′τ+((ξ, µ), t)t)− ξ

t

if K((ξ, µ), t) �∈ int (C) and

V ′((ξ, µ), t) =
H−((K((ξ, µ), t), µ+ rt), ε′τ−((ξ, µ), t)t)− ξ

t

if K((ξ, µ), t) ∈ C.
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Actually, if K((ξ, µ), t) �∈ int (C), we have

‖V ′((ξ, µ), t)− v‖

≤ ε′
∥∥∥∥H+((K((ξ, µ), t), µ+ rt), ε′τ+((ξ, µ), t)t)−K((ξ, µ), t)

ε′t
− v+

∥∥∥∥
+ ε′‖v+‖+ ‖V((ξ, µ), t)− v‖ < ε′ε′′ + ε′′ + ε′‖v+‖ ≤ ε,

and a similar inequality holds when K((ξ, µ), t) ∈ C. Moreover

f(ξ + tV ′((ξ, µ), t)) ≤ µ+ rt+max{s+, s−, 0}ε′t.
It follows that

(f + I∂C)
0
ε (x; v) ≤ r +max {s+, s−, 0} ε′;

hence, going to the limit as ε′ → 0+,

(f + I∂C)
0
ε (x; v) ≤ r.

Then assertion (i) follows from the arbitrariness of r and ε.

(ii) Since (f + I∂C)
0
(x; 0) > −∞ implies f0 (x; 0) > −∞, the assertion follows

from Corollary 4.7.
As a corollary, we can now deduce a Lagrange multipliers theorem. When f

belongs to suitable functional classes, related results are contained in [8, 11].
Corollary 5.9. Let U be an open subset of X and let x ∈ ∂U with f(x) ∈ R.

Assume that ∂U is of class C1, and denote by ν(x) ∈ X∗ \{0} an outer normal vector
to U at x. Suppose there exist v+, v− ∈ X such that

〈ν(x), v+〉 < 0, 〈ν(x), v−〉 < 0,

f
0
(x; v+) < +∞, f

0
(x;−v−) < +∞.

Then the following facts hold:
(i) (f + I∂U )

0
(x; v) ≤ f0 (x; v) for any v ∈ T∂U (x);

(ii) ∂f(x) + Rν(x) is weak∗ closed in X∗ and we have

∂ (f + I∂U ) (x) ⊆ ∂f(x) + Rν(x).

Proof. (i) If we set C = U , it is readily seen that ∂C = ∂U and

HypC (x) = {v ∈ X : 〈ν(x), v〉 < 0} ,

T∂U (x) = {v ∈ X : 〈ν(x), v〉 = 0} .
Then the assertion is a particular case of Theorem 5.8.

(ii) If f0 (x; 0) = −∞, from (i) we deduce that (f + I∂U )
0
(x; 0) = −∞. By

Corollary 4.7 we have

∂f(x) = ∅, ∂ (f + I∂U ) = ∅,
so that (ii) clearly follows.
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Otherwise, observe that the functions f0 (x; ·) and IT∂U (x) are convex, lower semi-
continuous, and with values in R ∪ {+∞}. Moreover, we have

Dom
(
f0 (x; ·))− T∂U (x) = X.

From [3, Corollary (2.1)] it follows that

∂
(
f0 (x; ·) + IT∂U (x)

)
(0) = ∂

(
f0 (x; ·)) (0) + ∂IT∂U (x)(0).

On the other hand,

∂
(
f0 (x; ·)) (0) + ∂IT∂U (x)(0) = ∂f(x) + Rν(x),

so that ∂f(x) + Rν(x) is weak∗ closed in X∗.
Let now α ∈ ∂(f + I∂U )(x). From (i) we deduce that

∀v ∈ T∂U (x) : 〈α, v〉 ≤ f0 (x; v) .

Since f0 (x; 0) = 0, we have

α ∈ ∂
(
f0 (x; ·) + IT∂U (x)

)
(0);

hence

α ∈ ∂f(x) + Rν(x)

and the proof is complete.
Example 5.10. Define a lower semicontinuous function f : R3 → R ∪ {+∞} by

f(x, y, z) =




−√
xy if x ≥ 0 and y ≥ 0,

√−y if x ≥ 0 and y ≤ 0,

+∞ otherwise

and set

C =
{
(x, y, z) ∈ R3 : |y| ≤ z

}
.

Then the assumptions of Theorem 5.8 are satisfied with respect to the origin, but

∂ (f + I∂C) (0, 0, 0) �⊆ ∂f(0, 0, 0) + N∂C (0, 0, 0) .

More precisely, we have

(f + I∂C)
0
((0, 0, 0); (u, v, w)) =

{
0 if u ≥ 0 and v = w = 0,

+∞ otherwise,

f0 ((0, 0, 0); (u, v, w)) =

{ −√
uv if u ≥ 0 and v ≥ 0,

+∞ otherwise,

and T∂C (0, 0, 0) = {(u, 0, 0) : u ∈ R}, according to Theorem 3.8. Therefore it follows
that (0, 0, 0) ∈ ∂ (f + I∂C) (0, 0, 0), while (0, λ, µ) �∈ ∂f(0, 0, 0) for any λ, µ ∈ R.
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6. Functionals of the calculus of variations and PDEs. In this section we
consider a typical functional of the calculus of variations for which the generalized
directional derivative and the subdifferential can be estimated in a useful way. In
particular, the subdifferential has the expression one may expect and, therefore, is not
too large. Moreover we sketch, following [24], an example of application to nonlinear
PDEs.

Let Ω be an open subset of Rn, let 1 ≤ p < n and let L : Ω × R × Rn → R be a
function such that

(i) for almost everywhere (a.e.) x ∈ Ω the function {(s, ξ)  −→ L(x, s, ξ)} is of
class C1 on R× Rn;

(ii) for every (s, ξ) ∈ R×Rn the function {x  −→ L(x, s, ξ)} is measurable on Ω.
Let f : W 1,p

0 (Ω) → R be the functional defined by

f(u) =

∫
Ω

L(x, u,∇u) dx,

where, as in [34], we agree that f(u) = +∞ whenever∫
Ω

(L(x, u,∇u))
+

dx =

∫
Ω

(L(x, u,∇u))
−

dx = +∞.

Assume there exist a ∈ L1
loc(Ω) and b ∈ L∞

loc(Ω) such that

|DξjL(x, s, ξ)| ≤ a(x) + b(x)
(
|s| np

n−p + |ξ|p
)
,

|DsL(x, s, ξ)| ≤ a(x) + b(x)
(
|s| np

n−p + |ξ|p
)
,

for a.e. x ∈ Ω and every s ∈ R, ξ ∈ Rn.
From the Sobolev theorem, it is easy to deduce that

DξjL(x, u,∇u) ∈ L1
loc(Ω), DsL(x, u,∇u) ∈ L1

loc(Ω)

for every u ∈ W 1,p
0 (Ω), so that

−
n∑
j=1

Dxj

[
DξjL(x, u,∇u)

]
+DsL(x, u,∇u)

defines a distribution on Ω.
Theorem 6.1. Let u ∈ W 1,p

0 (Ω) with f(u) ∈ R. Then the following facts hold:
(i) For every v ∈ C∞

c (Ω) we have

f0 (u; v) ≤ f
0
(u; v) ≤

∫
Ω

( n∑
j=1

DξjL(x, u,∇u)Dxj
v +DsL(x, u,∇u) v

)
dx.

(ii) If ∂f(u) �= ∅, we have

−
n∑
j=1

Dxj

[
DξjL(x, u,∇u)

]
+DsL(x, u,∇u) ∈ W−1,p′(Ω),

∂f(u) =


−

n∑
j=1

Dxj

[
DξjL(x, u,∇u)

]
+DsL(x, u,∇u)


 .
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Proof. (i) Let v ∈ C∞
c (Ω), let ε > 0, and let

r >

∫
Ω

n∑
j=1

DξjL(x, u,∇u)Dxjv +DsL(x, u,∇u) v dx.

There exists δ > 0 such that

∀w ∈ W 1,p
0 (Ω) : ‖w − u‖1,p < δ =⇒∫

Ω

n∑
j=1

DξjL(x,w,∇w)Dxjv +DsL(x,w,∇w) v dx < r,

where ‖ · ‖1,p denotes the norm in W 1,p
0 (Ω). Let δ′ > 0 be such that δ′+ δ′‖v‖1,p < δ,

and let

H : (Bδ′ (u, f(u)) ∩ epi (f))× [0, δ′] → W 1,p
0 (Ω)

be defined by H((w, µ), t) = w+ tv. For every w ∈ W 1,p
0 (Ω) with ‖w−u‖1,p < δ′ and

f(w) < +∞ and every t ∈ [0, δ′] we have

L(x,w + tv,∇w + t∇v) = L(x,w,∇w)

+ t

[∫ 1

0

( n∑
j=1

DξjL(x,w + ϑtv,∇w + ϑt∇v)Dxjv

+ DsL(x,w + ϑtv,∇w + ϑt∇v)v

)
dϑ

]
.

It follows that f(w + tv) < +∞ and∫
Ω

L(x,w + tv,∇w + t∇v) dx =

∫
Ω

L(x,w,∇w) dx

+ t

[∫ 1

0

∫
Ω

( n∑
j=1

DξjL(x,w+ϑtv,∇w+ϑt∇v)Dxjv

+ DsL(x,w + ϑtv,∇w + ϑt∇v)v

)
dxdϑ

]

≤
∫

Ω

L(x,w,∇w) dx+ rt,

hence

f(H((w, µ), t)) ≤ f(w) + rt ≤ µ+ rt.

Therefore we have f
0

ε (x; v) ≤ r and the assertion follows from the arbitrariness of r
and ε.

(ii) Let α ∈ ∂f(u) ⊆ W−1,p′(Ω). For every v ∈ C∞
c (Ω) we have

〈α, v〉 ≤ f0 (x; v) ≤
∫

Ω

n∑
j=1

DξjL(x, u,∇u)Dxjv +DsL(x, u,∇u) v dx.

Since we may exchange v with −v, we deduce that
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∀v ∈ C∞
c (Ω) :

∫
Ω

n∑
j=1

DξjL(x, u,∇u)Dxj
v +DsL(x, u,∇u) v dx = 〈α, v〉

and the assertion follows.

Now let Ω be a bounded open subset of Rn with n ≥ 3, let 2 < q < 2n
n−2 , let

a ∈ L1(Ω), and let g : R→ R be an odd continuous function with compact support.

Theorem 6.2. The semilinear elliptic problem

{ −∆u = |u|q−2u+ a(x)g(u) in Ω,

u = 0 on ∂Ω
(6.1)

admits a sequence (uh) of weak solutions with ‖uh‖W 1,2
0

→ ∞.

The above result is a special case of [24, Theorem 6.2]. If a ∈ L
2n

n+2 (Ω), then it
follows from a celebrated theorem of Ambrosetti and Rabinowitz [1, 32, 36]. To have
a sketch of the proof, consider, as usual, the functional f : W 1,2

0 (Ω) → R defined by

f(u) =
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

(
1

q
|u|q + a(x)G(u)

)
dx , G(s) =

∫ s

0

g(t) dt.

If a ∈ L
2n

n+2 (Ω), then f turns out to be of class C1 and classical critical point theory
applies. On the contrary, if a ∈ L1(Ω) we can ensure only the continuity of f .
However, nonsmooth critical point theory still yields the existence of a sequence (uh)
in W 1,2

0 (Ω) with |df | (uh) = 0 and ‖uh‖W 1,2
0

→ ∞. From Theorem 4.13 it follows that

0 ∈ ∂f(uh). Then Theorem 6.1 allows us to conclude that each uh is a weak solution
of (6.1).

On the contrary, we do not know if there exist u’s in W 1,2
0 (Ω) with 0 ∈ ∂Cf(u),

where ∂C denotes Clarke’s subdifferential.
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Abstract. Global optimization algorithms are typically terminated with an ε-approximate
solution after a finite number of iterations. This paper shows how existing infinitely convergent
branch-and-bound algorithms can be augmented to guarantee finite termination with an exact global
solution for problems having extreme point solutions.
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1. Introduction. Nonlinear programming distinguishes between the notions of
global convergence (convergence from any starting point) and local convergence (order
or rate of convergence in a neighborhood of a local solution). Global convergence is
crucial from a theoretical point of view (to ensure that the limit point is stationary),
while a high order of convergence is desirable from a practical standpoint (to reduce
computing time). Cauchy’s gradient method of steepest descent is globally conver-
gent, while Newton’s method enjoys second-order (quadratic) local convergence when
started sufficiently close to a local minimizer (under certain conditions). Most algo-
rithms are designed to satisfy a descent property which guarantees objective function
decrease at each iteration. Newton’s method in its purest form does not satisfy this
descent property, but enforcing a line search in the Newton direction is one variant
that does. A locally convergent descent algorithm (or even a simple descent rou-
tine that guarantees nonworsening objective values) can be augmented (every finite
number of iterations) with an additional spacer step (of a known globally conver-
gent method) to obtain a globally convergent variant that possesses the same local
convergence behavior.

The counterpart issues in global optimization are convergence (to ensure that the
limit point is a global minimizer) and finite convergence to an exact (as opposed to an
ε-approximate) global minimizer. A finitely convergent algorithm, however, may not
be the fastest or the most computationally efficient. Some of the best algorithms can
make rapid progress to a neighborhood of a global optimizer and then spend most of
the time identifying and verifying a global minimizer. Such algorithms are typically
terminated with an ε-approximate global optimum after a finite number of iterations.

This paper is concerned with studying problem structures and mechanisms con-
ducive to finite convergence of branch-and-bound global optimization algorithms. In
particular, our aim is to establish how existing infinitely convergent descent algo-
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rithms can be augmented to achieve finite convergence for certain classes of problems
that possess extreme-point global optimizers. We note that such an augmentation
preserves the underlying convergence process of the overall procedure while serving to
enhance the speed of convergence to an exact (not ε-approximate) global minimizer.
Two specialized algorithmic approaches are presented. The first method assumes
pseudoconcave or bilinear polynomial objective functions being minimized over poly-
hedral feasible sets, and the second method extends the results to the more general
case of any problem that has an extreme-point global minimizer.

A number of authors have addressed the issue of finite termination in both the
nonlinear programming and the global optimization literature. Concave minimiza-
tion is perhaps the most studied problem with respect to finite convergence, including
works by Benson [4], Benson and Sayin [5], Hamami and Jacobsen [10], Nast [16], and
Tam and Bam [21], to name only a few. A recent paper by Shectman and Sahinidis
[18], more closely related to the work herein, developed a branching technique that
partitions the problem, based on the incumbent solution when it is contained in the
relative interior of the current node subproblem’s bounding region, to yield a finite
procedure for separable concave minimization problems. Good computational results
are reported by also incorporating a number of domain reduction strategies. Cutting
plane approaches have been augmented to be finitely convergent for quasi-concave
minimization problems by Majthay and Whinston [15] and for separably constrained
bilinear programs by Sherali and Shetty [19], based on a scheme for finitely exploring
the facial structure of polytopes. Here the concept of extreme faces that generalizes
extreme points is developed, and methodologies for detecting and deleting extreme
faces are designed to compose finitely convergent methods. Sherali and Tünçbilek [20]
developed a finitely convergent branch-and-bound algorithm for location-allocation
problems using squared Euclidean distance-based separation penalties by partition-
ing on the dichotomy that a variable either is basic and strictly between its bounds
(nondegenerate) or is at one of its bounds, at any basic feasible solution. Each of
these dichotomous conditions was shown to permit certain domain reduction strate-
gies that were integrated into the algorithm. While the foregoing procedures are
inherently finite, our primary concern in this paper is to develop means for convert-
ing given infinitely convergent algorithms into finitely convergent procedures for the
stated classes of problems.

Al-Khayyal and Falk [2] employed an auxiliary subproblem as a spacer step to
accelerate convergence to nonextreme-point global optimizers for bilinear programs
over general (nonseparable) polyhedra. Later, Al-Khayyal [1] noted that this same
procedure, without modification, is finite when applied to linear complementarity
problems. Al-Khayyal and Kyparisis [3] established that the key property for finite-
ness appears to be that the target minimizer is an isolated local solution, and they
developed first-order sufficient conditions for when an infinitely convergent algorithm
can be made finite by the solution of an auxiliary spacer step subproblem. Shapiro
and Al-Khayyal [17] extend some of these results by showing that first-order suffi-
cient conditions for strict local optimizers guarantee isolated local solutions provided
a constraint qualification holds and the feasible set is nearly convex at the solution.

In this paper we introduce a novel construction for ensuring the finite convergence
of branch-and-bound methods for minimizing pseudoconcave polynomial objective
functions over polyhedral sets, bilinear functions over separably constrained polyhe-
dral sets, and general objective functions that guarantee extreme-point optimality
(such as quasi-concave functions) over polytopes. The principal notion introduced
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here is an extension of the purification scheme of Charnes and Kortanek [6], which is
used in Khachiyan’s ellipsoid algorithm (see Gacs and Lovász [8]) as well as in Kar-
markar’s [14] interior point method and its many variants, from the context of linear
programming to the domain of nonlinear (nonconvex) optimization. This permits
the fathoming of nodes once lower and upper bounds are within a specified tolerance
without losing the exact optimum (as in ε-approximation methods) and, in some con-
texts, permits the collapsing of variable intervals into one of the end-points, thereby
producing a finite algorithm for finding global solutions.

The remainder of this paper is organized as follows. In the next section, we prove
that incorporating a purification step, within any branch-and-bound algorithm that
conforms with a stated Property 1, yields a finite procedure for separably constrained
bilinear programs or for global optimization problems having pseudoconcave objective
functions. In section 3, we examine any objective function that enjoys extreme-point
global optimality and augment Property 1 to include algorithms that enforce a longest
edge interval bisection every finitely many iterations. For this class of problems and
algorithms, we propose an augmentation routine that guarantees finite convergence
to a global minimizer. Finally, in section 4, we address the issue of selecting a value
for a key parameter on which our analysis is largely based. For brevity, we assume in
what follows that the reader is familiar with the main concepts of branch-and-bound
algorithms for global optimization as presented in a number of sources including
[13, 12, 22].

2. Polynomial and bilinear programs. Consider the problem, which will be
referred to as Problem P,

minimize{f(x) : x ∈ X},(2.1)

where the feasible set X := {x : Ax = b,−∞ < l ≤ x ≤ u < ∞} is nonempty, A is a
real m × n matrix with rank m < n, and we assume that the data A, b, l, and u are
all integer. (An appropriate scaling can convert a problem in rational data into an
equivalent one in all-integer data.)

In this paper we will first consider polynomial functions f of degree δ with all-
integer coefficients and exponents, and we will study the finite convergence of branch-
and-bound algorithms for solving Problem P that satisfy the following property.

Property 1. The algorithm
(i) partitions each node into a finite number of subproblems;
(ii) selects nodes for partitioning via the least lower bound rule; and
(iii) is infinitely convergent in the sense that if it does not terminate finitely with

an optimum, then along any infinite path in the branch-and-bound tree generated,
the difference between the incumbent solution value and the lower bounds generated
tends to zero.

We will show that if the following assumption holds true, then any algorithm for
Problem P that satisfies Property 1 can be made to terminate finitely.

Assumption 1. Either f is pseudoconcave, or P is a separably constrained bilinear
program.

Toward this end, we first introduce a particular polynomial-time step within the
algorithm. Noting that in the cited cases there exists an extreme-point solution to P ,
this step finds an extreme point of X that has at least as good an objective value as
any feasible solution. In analogy with a similar procedure used in the context of linear
programming (cf. Charnes, Kortanek, and Raike [7]), we refer to this as a purification
step.
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Given a point x̃ ∈ X, this step finds an x̄ ∈ vert(X), where vert(X) denotes the
set of vertices of X, such that f(x̄) ≤ f(x̃).

Purification step.
Case (i). f is pseudoconcave on X.
If there are n linearly independent defining hyperplanes of X that are binding

at x̃, then x̃ ∈ vert(X); stop with x̄ = x̃. Else, find a direction d �= 0 lying in the
null space of the constraints that are binding at x̃. Assume that ∇f(x̄)td ≤ 0, else,
replace d by −d so that this condition holds true. Move along d until this motion
is blocked by a defining constraint of X, and repeat this step with x̃ equal to this
resulting solution.

Case (ii). P is a separably constrained bilinear program.
In this case, suppose that x = (u, v), and that X = U × V , where x ∈ X ⇔

u ∈ U and v ∈ V . Given x̃ = (ũ, ṽ) ∈ U × V , if this is not an extreme point, then
alternately solve P as a linear program over u and over v, with the other variable
vector fixed as in the current solution, each time finding an optimal extreme point
solution over U and V , respectively, until an extreme point x̄ = (ū, v̄) of U × V is
obtained. (This step can be further continued, if so desired, until the value of f fails
to improve, i.e., a fixed point of the algorithmic map is obtained. However, this is not
necessary for the required purification step, and moreover, such a fixed point might
not be obtained in a polynomial number of steps.)

Lemma 2.1. Both cases of the foregoing Purification Step will result in an extreme
point x̄ ∈ X such that f(x̄) ≤ f(x̃), with this step being executable in polynomial time.

Proof. In Case (i), given d such that ∇f(x̃)td ≤ 0, by the pseudoconcavity of
f , f(x̃ + λd) ≤ f(x̃) ∀ λ ≥ 0. Hence, the revised x̃ found by the procedure has
an objective value that is at least as good as that at x̃. Moreover, at least one
additional linearly independent defining hyperplane of X is binding at this revised
solution. Since this step would be repeated at most n times, and since each step is
polynomially bounded, the assertion holds true in this case.

Furthermore, in Case (ii), since we solve at most two linear programs over X,
where the sizes of these problems are polynomially related to the size of Problem P ,
and since each linear program does not worsen the objective value, the assertion again
holds true. This completes the proof.

The following result prescribes the design of a finitely convergent variant of a
given algorithm that satisfies Property 1.

Theorem 2.2. Consider Problem P and suppose that Assumption 1 holds true.
Define

L ≥ 1 + log2 | det
max
|�,(2.2)

where |detmax | is the largest determinant of a basis of A in absolute value. Suppose
that a branch-and-bound algorithm that satisfies Property 1 is used to solve Problem P ,
where an extreme-point incumbent solution yielding an upper bound UB is maintained
by using the foregoing Purification Step, if necessary, and where a node is fathomed
if its lower bound LB satisfies UB − LB ≤ 2−2δL. Then this algorithm will finitely
converge to a global optimal solution of Problem P .

Proof. Since the given algorithm is infinitely convergent, and since an ε-termination
criterion is being used, where ε ≡ 2−2δL > 0, the algorithm will terminate finitely.
Hence, noting the existence of an extreme-point optimum under Assumption 1 and
that the given UB at any stage is equal to f(x̄), where x̄ ∈ vert(X) by the Purifi-
cation Step, we only need to show that whenever we fathom a node for which the
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lower bound LB satisfies UB−LB ≤ 2−2δL, then this node does not admit a feasible
solution x̂, where x̂ ∈ vert(X) and f(x̂) < f(x̄). On the contrary, if such a solution
x̂ exists, then let D1 and D2, respectively, be the absolute values of the determinants
of bases representing the basic feasible solutions x̄ and x̂. By the nature of f and
the data of Problem P , the values f(x̄) and f(x̂) are of the form N1/D

δ
1 and N2/D

δ
2,

where N1 and N2 are integers. Since f(x̂) < f(x̄), we have

UB − LB ≥ f(x̄)− f(x̂) ≥ 1

(D1D2)δ
> 2−2δL,(2.3)

which contradicts UB − LB ≤ 2−2δL. This completes the proof.
Remark 1. By the proof of Theorem 2.2, it should be evident that the key to

deriving a finite variant of an infinitely convergent branch-and-bound algorithm for
solving Problem P by our approach lies in two aspects. First, there should exist some
discrete set among which incumbent solutions and an optimum to Problem P reside.
In our case, this is ensured by Assumption 1 along with the Purification Step (Lemma
1). Second, there should exist some ε > 0 such that for any two elements x̄ and x̂ of
the aforementioned discrete set,

if f(x̄) �= f(x̂), then we have |f(x̄)− f(x̂)| > ε.(2.4)

In our analysis, this was ensured by the nature of f and X that led to (2.3), which
corresponds to (2.4) with ε ≡ 2−2δL.

Note that we might have other forms of f that are not polynomial or integer
valued for integer x but for which (2.4) holds true. For example, consider the concave
function f(x) = ln(etx), where e = (1, 1, . . . , 1)t and where etx is positive on X. In
this case, let U = maximum{etx : x ∈ X}. For any pair of vertices x̄ and x̂ of X such
that f(x̄) �= f(x̂), since etx̄ and etx̂ differ by more than 2−2L by the same argument
as in the proof of Theorem 2.2, we have by the concave nature of ln(·) that

|f(x̄)− f(x̂)| > [ln(U)− ln(U − 2−2L)] ≡ ε.(2.5)

Hence, (2.4) is satisfied, and so, Theorem 2.2 would hold true for this function f
as well. Note that this is generalizable to the composite objective function g[h(x)],
where h : �n → � is a concave function that satisfies the property asserted for f in
(2.1), and where g : �n → � is an increasing, concave function. In this case, (2.4)
holds true with ε = g(U) − g(U − 2−2δL), where U ≥ max{h(x) : x ∈ X}. However,
minimizing g[h(x)] would be equivalent to minimizing h(x) itself.

3. Alternative scheme for achieving finiteness. Consider any algorithm
that satisfies Property 1, and suppose that this is achieved by performing interval
bisections on the longest interval every N iterations. (We will refer to such an al-
gorithm as satisfying Property 1′.) Furthermore, assume that the objective function
enjoys extreme point optimality (e.g., when f is quasi-concave) but is not necessarily
polynomial or integer valued as assumed before.

At any stage of the algorithm, commencing with variable intervals [lj , uj ], j =
1, . . . , n, let [l′j , u

′
j ] denote the current interval bounds, and define

Sl := {j : l′j = lj}, Su := {j : u′
j = uj}, and S0 := {j : l′j = u′

j}.
Now, in the bounding step of the algorithm, in addition to checking the ubiquitous

fathoming criterion UB ≥ LB, suppose that we augment this step by the following
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routine that is executed before computing the lower bound LB. In what follows we
denote

X ′ := {x : Ax = b, l′ ≤ x ≤ u′}.
Augmentation routine.
Step (i). If |Sl ∪ Su| < n−m, fathom the node subproblem.
Step (ii). If |Sl ∪ Su| = n −m and Sl ∩ Su = ∅, then if the solution obtained by

letting xj be nonbasic at its lower (respectively, upper) bound for j ∈ Sl (respectively,
j ∈ Su) yields a basic feasible solution for X, compute this solution and update the
incumbent, if necessary. In any case, given that the first two conditions of Step (ii)
hold true, fathom the node subproblem.

Step (iii). For any j ∈ Sl ∪ Su, if

(u′
j − l′j) ≤ 2−L,(3.1)

then fix

x′
j = l′j and u′

j = l′j if j ∈ Sl,(3.2)

x′
j = u′

j and l′j = u′
j if j ∈ Su.(3.3)

Update S0. If |S0| ≥ n−m, test whether fixing xj = l′j = u′
j ∀j ∈ S0 yields a basic

feasible solution, and if so, update the incumbent solution, if necessary, and fathom
the node subproblem. Furthermore, if S0 = Sl ∪ Su, fathom the node subproblem.
Naturally, if fixing xj = l′j = u′

j ∀j ∈ S0 yields infeasibility, fathom the node
subproblem.

Theorem 3.1. The Augmentation Routine described above is valid for the forego-
ing class of problems. Moreover, incorporating it within a branch-and-bound algorithm
satisfying Property 1′ yields a finitely convergent procedure.

Proof. If |Sl ∪ Su| < n − m, then X ′ does not contain any vertex of X and
so the node subproblem may be fathomed since we are only interested in evaluating
extreme points of X in order to detect a global optimum. Similarly, if |Sl ∪ Su| =
n−m and Sl ∩ Su = ∅, then X ′ can contain at most one vertex of X as identified by
Step (ii), and again this step is valid.

Next consider Step (iii) and suppose that (3.1) holds true. Suppose that j ∈ Sl.
(The case of j ∈ Su is similar.) Note that if x̂ is an extreme point of X and x̂ ∈ X ′,
then either x̂j = l′j = lj or else x̂j is basic and x̂j > l′j = lj . But any basic variable
for a basic feasible solution to X which is not integral has a fractionality that is at
least 1/|detmax | > 2−L. Hence, since l′j = lj is integral, we must have that xj either
is nonbasic at lj or is basic and degenerate at the value lj at any vertex of X that
is feasible to X ′. Therefore, we may set xj = l′j and revise u′

j = l′j , consequently
letting j belong to S0. The validity of the remainder of Step (iii) under the condition
S0 ≥ n−m then follows because of the extreme-point optimality property as above.

Finally, consider the finiteness of the algorithm. Along any branch of nested
intervals in the branch-and-bound tree, if the conditions of Steps (i) and (ii) do not
hold, we must finitely obtain Sl ∩ Su = ∅ and (3.1) holding true for each j ∈ Sl ∪ Su,
where |Sl ∪ Su| ≥ n − m, because of the interval bisection step that is performed
finitely often. But then (3.2)–(3.3) would yield S0 = Sl ∪ Su and |S0| ≥ n −m, and
Step (iii) would fathom this node subproblem. Hence, only a finite enumeration tree
can be generated, and this completes the proof.
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Remark 2. Note that the key to the finiteness argument lies in the fact that we
can fathom a node subproblem that does not admit at least n−m variables to lie at
their original bounds, yielding a basic feasible solution, and in the strategy that any
interval that contains an original bound as one of the end-points can be collapsed into
this bound once the interval length satisfies condition (3.1).

Note that the focus of the foregoing discussion is on converting a given infinitely
convergent algorithm into a finite one for the stated class of problems (which, inci-
dentally, subsumes the one considered by Shectman and Sahinidis [18]). There exists
an alternative mechanism that possibly can be used to design finitely convergent al-
gorithms for problems that yield extreme-point optimal solutions. This is based on
adopting the partitioning strategy of branching on the dichotomy that any variable
xj is either at the value lj or at the value uj , or is basic in the interval (lj , uj) at
an optimal solution. The first two conditions fix a given variable in value, while the
last condition can be imposed on at most m variables for any basic feasible solution.
This leads to a finite total enumeration tree which can then be further curtailed by
the computation of suitable bounds. Note that the lower bounding scheme should be
suited to this type of a partitioning process in order to avoid (close to) a total enumer-
ation of extreme points. Sherali and Tünçbilek [20] described such a procedure in the
context of solving a nonconvex location-allocation problem using squared Euclidean
distance-based separation penalties.

Corollary 3.2. If A is unimodular (e.g., if X represents network flow con-
straints, whence A is totally unimodular), then the value 2−L in (3.1) can be replaced
by ε for any 0 < ε < 1, and furthermore, for any j /∈ Sl ∪ Su, if [l′j , u

′
j ] contains a

single integer q, then we can set l′j = u′
j = q, and if this interval contains no integer,

then we may fathom the node subproblem.

Proof. The proof follows that of Theorem 3.1, noting that the unimodularity of A
and the integrality of the data describing X ensures that variables are integer-valued
for any vertex of X.

4. Derivation of a value for L. The practical implications of our results de-
pend on the computability of an appropriate L, which is bounded below by a function
of the largest absolute determinant of all bases of A, as in (2.2). A valid value for L
can be computed by appealing to Hadamard’s inequality [9].

Theorem 4.1. Let B be an m×m matrix. Then

|detB| ≤
m∏
j=1

(
m∑
i=1

b2ij

)1/2

.

Furthermore, equality holds if and only if the columns of B are orthogonal.

Proof. The proof was stated and proved as Corollary 7.8.2 in [11].

Letting B·j denote the jth column of B, Hadamard’s inequality can be stated
succinctly as

|detB| ≤
m∏
j=1

‖B·j‖.(4.1)

Since 1 + log2 α� is a monotonically increasing function for all α > 0, then
L = 1 + log2 β� satisfies (2.2) for all β ≥ |detmax |. Now, let B̂·[1], B̂·[2], . . . , B̂·[m] be
the columns of A having the m largest Euclidean norms, in decreasing order. That
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is, for k = 2, . . . ,m,

‖B̂·[k]‖ = max
{
‖B̂·j‖ : j ∈ {1, . . . , n}\{[1], . . . , [k − 1]}

}
,

where [k] denotes the index corresponding to the kth largest norm. Note that these
m largest column norms can be computed in a single pass process that (i) maintains
the current m largest norm columns at any stage and (ii) performs replacement, if
necessary, when the next column’s norm is computed. This process is of complexity
O(mn). If we now define

β =
m∏
j=1

‖B̂·[j]‖,(4.2)

then we have from (4.1) that β ≥ |detmax |, so that L = 1+log2 β� satisfies (2.2). For
the case when the columns B̂·[1], B̂·[2], . . . , B̂·[m] are mutually orthogonal, we would
have from Theorem 4.1 and the foregoing analysis that β = |detmax |, and the bound
(2.2) is tight for L determined as above.

Acknowledgments. The authors are grateful to Earl Barnes and to an anony-
mous referee for useful comments on improving this contribution.
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Abstract. We consider column sufficient linear complementarity problems and study the prob-
lem of identifying those variables that are zero at a solution. To this end we propose a new, computa-
tionally inexpensive technique that is based on growth functions. We analyze in detail the theoretical
properties of the identification technique and test it numerically. The identification technique is par-
ticularly suited to interior-point methods but can be applied to a wider class of methods.
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1. Introduction. We consider the linear complementarity problem (LCP)

y = Mx+ q, x ≥ 0, y ≥ 0, xTy = 0,

where the matrix M ∈ Rn×n and the vector q ∈ Rn are given. Throughout the paper
we assume that

M is a column sufficient (CS) matrix

(see [1, 2]); i.e., we assume that

xi(Mx)i ≤ 0 ∀i =⇒ xi(Mx)i = 0 ∀i.
We recall that positive semidefinite matrices and sufficient (or, equivalently, P∗-)
matrices are CS, so that the class of CS LCPs includes all the classes of LCPs for
which interior-point methods have been extensively studied. We denote by S the
solution set of an LCP. This set is always closed and it is known to be convex for
every q if and only if M is a CS matrix [1, Theorem 3.5.8]. We further make the
blanket assumption that S is nonempty.

In this paper we are interested in techniques that identify the variables that are
zero at a solution of an LCP. Obviously, the zero variables at a solution may be
different from the zero variables at another solution. Therefore, in order to make our
aim more precise, we define the following three index sets:

B := {i|x∗
i > 0 for at least one (x∗, y∗) ∈ S},

N := {i| y∗i > 0 for at least one (x∗, y∗) ∈ S},
J := {i|x∗

i = y∗i = 0 ∀(x∗, y∗) ∈ S}.
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The following proposition describes two properties of these index sets which are well
known in the case of a positive semidefinite matrix M .

Proposition 1.1.
(i) The index sets B, N , and J form a partition of {1, . . . , n}.
(ii) A point z∗ = (x∗, y∗) ∈ S belongs to the relative interior riS of the solution

set S if and only if

x∗
B > 0, x∗

N = 0, x∗
J = 0, y∗B = 0, y∗N > 0, y∗J = 0.(1.1)

Proof. (i) It is obvious that B∪N ∪J = {1, . . . , n}. So we only have to show that
B, N , and J are pairwise disjoint. In turn, since it is easy to see by the definition of
these sets that B∩J = ∅ = N ∩J , we only have to show that B∩N = ∅. Suppose by
contradiction that an index i belongs to both B and N . Then there exist two points
(x̄, ȳ) and (x̂, ŷ), both belonging to the solution set S, such that x̄i > 0 and ŷi > 0.
Consequently we have ȳi = 0 and x̂i = 0. Since M is CS, S is convex. Therefore, the
point (x(t), y(t)) = t(x̄, ȳ) + (1− t)(x̂, ŷ) belongs to S for every t ∈ (0, 1). But by the
relations established above we have xi(t) > 0 and yi(t) > 0, thus contradicting the
fact that (x(t), y(t)) belongs to S.

(ii) The proof is identical to the one given in [3, Theorem 2.2] for monotone
complementarity problems. A closer look at that proof shows that the monotonicity
is used there only to establish the convexity of the solution set. Since the convexity
of S holds under the assumption that M is CS, the proof goes through.

Point (ii) of the above proposition shows that, in the relative interior of the set S,
the set of zero variables is invariant with respect to the solution. We recall that, under
very mild assumptions, interior-point methods generate sequences of points such that
every accumulation point is in the relative interior of S and so these solutions share
the same zero-nonzero structure; see, e.g., [14, 16].

Our aim is to identify this structure or, equivalently, the sets B, N , and J . The
correct identification of these sets is important from both theoretical and computa-
tional points of view. In fact, the knowledge of the zero-nonzero structure may allow
us, on the one hand, to easily recover an exact solution from the approximated one
provided by an interior-point method and, on the other hand, to improve the efficiency
of interior-point methods and column generation techniques [3].

The identification of the zero variables in interior-point methods for linear pro-
grams has been the subject of intense research in the past 10 years, and we refer the
reader to [3] for an exhaustive review. It is now accepted that the technique originally
proposed by Tapia [18] for nonlinear programs enjoys the most interesting properties
in the context of interior-point methods for linear programming (LP) [3].

This technique has also been extended to the case of LCPs [3, 4, 9, 14]. Then,
however, a further difficulty can occur. In contrast to linear programs, where we
always have J = ∅, this is no longer true for LCPs. Problems with J = ∅ are called
nondegenerate, while those for which J �= ∅ are termed degenerate. Degeneracy makes
the identification of the sets B, N , and J more difficult [4, 9, 14].

In this paper we present a new technique for identifying the sets B, N , and J .
We show that, given a point z = (x, y) belonging to a certain set Zε, we are able to
correctly identify B, N , and J . The set Zε is defined in such a way that virtually all
interior-point methods will generate, under standard assumptions, a sequence whose
points eventually belong to this set, thus ensuring finite identification. We want to
stress from the outset two peculiarities which, in our view, are significant. First,
the class of problems we are able to deal with is considerably broader than the ones
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considered in previous works. Second, unlike other works on the same subject, we do
not make reference to a specific (although general) algorithmic scheme, so that the
results obtained can be applied to a class of methods wider than the interior-point
one.

The approach we use in this paper is reminiscent of the one proposed in [5]
for general nonlinear programs. However, there is a major difference: one of the
key assumptions in [5] is that the solution of interest is an isolated solution. This
assumption is not sensible in the LCP case, and we therefore drop it by fully exploiting
the structure of the problem. Furthermore, we are able to obtain particularly simple
expressions for the growth functions (see section 3) and convergence rates estimates
(see sections 4 and 5) that have no parallel in [5].

The paper is organized as follows. First, we introduce some further notation. In
the next section we present the basic identification results of the paper. Sections 3
and 4 address some more technical points related to the identification technique.
In section 5 we specialize some of the results to an interior-point framework, while
numerical experiments are reported in section 6. In section 7 we make some final
comments.

Throughout the paper ‖ · ‖ denotes the Euclidean norm and

dist(z|S) := inf{‖w − z‖ |w ∈ S}
the Euclidean distance of the point z from the set S. We define the set Z by

Z := {z = (x, y) ∈ Rn+n | z satisfies conditions (C1)–(C3)},
where

(C1) xB ≥ δ, yN ≥ δ,
(C2) ‖z‖ ≤ C,
(C3) ‖r‖ ≤ η‖Xy‖ with X := diag(x1, . . . , xn) and r := r(z) := y − (Mx+ q),

and where δ > 0, C > 0, and η ≥ 0 are constants such that the intersection of Z and
the solution set S is nonempty. Given a positive constant ε, we shall also consider
the following set Zε:

Zε := Z ∩ {z|dist (z|S) ≤ ε}.
In this paper we show that, given a point z in Zε, with ε sufficiently small, we can

correctly identify the sets B, N , and J . The set Z comprises those points belonging
to a compact set (condition (C2)) that are neither “too close” to the boundary of S
(condition (C1)) nor “too much infeasible” in the terminology of interior-point meth-
ods (condition (C3)). The set Zε is just the part of Z that is not “too distant” from
the solution set. We note that under standard, mild assumptions the vast majority
of existing interior-point methods for LCPs will produce a sequence of points which
belongs to Z (for suitable δ, C, and η) and to Zε (for any fixed positive ε) eventu-
ally. To see this, we may refer to [14], where a general framework is introduced that
covers a large number of interior-point methods for monotone LCPs. It can easily
be seen that within this framework the conditions (C1)–(C3) are satisfied. In partic-
ular, condition (C2) is explicitly stated in property (a) of that framework, whereas
condition (C3) can be directly obtained from property (d). Moreover, condition (C1)
follows from [14, Lemma 2.2]. For LCPs with P∗-matrices an infeasible interior-point
method is considered in [16]. Using Theorems 2.3 and 4.1 of [16], one can verify that
any sequence generated by this infeasible interior-point method eventually satisfies
conditions (C1)–(C3) for suitable δ, C, and η.
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2. Identification results. This section contains the basic identification results
of the paper. We shall show that, given any point z in Zε, if ε is sufficiently small, we
can correctly identify the sets B, N , and J . To this end we need some preliminary
results and definitions.

Proposition 2.1. For any z = (x, y) ∈ Rn × Rn, it holds that

|xi| ≤ dist(z|S) ∀i ∈ N ∪ J , |yi| ≤ dist(z|S) ∀i ∈ B ∪ J .

Proof. Let z⊥ = (x⊥, y⊥) denote the orthogonal projection of z = (x, y) onto
S. (We recall that S is a nonempty, closed, and convex set, so that the orthogonal
projection onto this set is uniquely defined.) Since (1.1) holds for all z∗ ∈ riS it
follows that x∗

N∪J = 0 and y∗B∪J = 0 ∀ z∗ ∈ S, so that

x⊥
N∪J = 0, y⊥B∪J = 0.

Thus, we get for i ∈ N ∪ J

|xi| = |xi − 0| = |xi − x⊥
i | ≤ ‖x− x⊥‖ ≤ ‖z − z⊥‖ = dist(z|S).

Similar reasonings can be repeated for yi, i ∈ B ∪ J . This completes the proof.
The following two definitions are fundamental for our subsequent considerations.

Definition 2.2. A function ρ : Rn+n → [0,∞) is called a growth function on Z
if there is a constant c1 ≥ 1 such that

1

c1
dist(z|S) ≤ ρ(z) ≤ c1dist(z|S)(2.1)

∀z ∈ Z.
Note that Definition 2.2 implies that ρ(z) is equal to 0 if and only if z is a solution

of the LCP. Growth functions are also known as residual functions and have a wide
use in mathematical programming. The inequalities in (2.1) show that ρ can be used
as a surrogate for the distance function, and it should therefore be expected to be
easier to calculate than the distance function itself. Growth functions can be used, for
example, to define stopping rules for algorithms or to study their convergence rates;
they also play a fundamental role in the study of penalty functions. The interested
reader can find a detailed survey of this topic in [15]. In the next section we show
that in the case of CS LCPs, it is always possible, by using the conditions (C1)–(C3),
to obtain very simple growth functions.

Our interest in growth functions is due to their role in the definition of indicator
functions as defined below.

Definition 2.3. Let ρ : Rn+n → [0,∞) be a growth function on Z and α ∈ (0, 1)
be fixed. Then the function S : R×Z → R defined by

S(ξ, z;α) :=




ξ

ξ − ρ(z)α
if ξ �= ρ(z)α,

0 otherwise

is called an indicator function.

The following proposition justifies the name indicator function and motivates our
interest in indicator functions.
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Proposition 2.4. For any α ∈ (0, 1) it holds that

lim
ε→0,z∈Zε

S(xi, z;α) = 1 ∀i ∈ B,(2.2)

lim
ε→0,z∈Zε

S(xi, z;α) = 0 ∀i ∈ N ∪ J ,(2.3)

lim
ε→0,z∈Zε

S(yi, z;α) = 1 ∀i ∈ N ,(2.4)

lim
ε→0,z∈Zε

S(yi, z;α) = 0 ∀i ∈ B ∪ J .(2.5)

Proof. The fact that 0 ≤ dist(z|S) ≤ ε→ 0 and the right inequality in (2.1) imply
ρ(z)→ 0. This and condition (C1) yield (2.2).

Suppose now that i ∈ N ∪ J . We need to consider only those (xi, z) with
S(xi, z;α) �= 0. The very definition of the indicator function S then implies that
xi �= 0. Using the left inequality of (2.1) and Proposition 2.1, we therefore have∣∣∣∣xi − ρ(z)α

xi

∣∣∣∣ ≥ ρ(z)α

|xi| − 1 ≥ dist(z|S)α
cα1 |xi|

− 1 ≥ |xi|
α−1

cα1
− 1.(2.6)

Proposition 2.1 and dist(z|S) ≤ ε→ 0 imply xi → 0. Thus, by (2.6), it follows that

lim
ε→0,z∈Zε

1

|S(xi, z, α)| = lim
ε→0,z∈Zε

∣∣∣∣xi − ρ(z)α

xi

∣∣∣∣ =∞;

i.e., (2.3) is valid.
The limits (2.4) and (2.5) can be proved similarly.
The above result suggests that we introduce the following approximations to the

sets B, N , and J . Let θ ∈ (0, 1/2) and α ∈ (0, 1) be fixed and ρ be a given growth
function on Z; define

B(z;α) := {i |S(xi, z;α) ≥ 1− θ},
N (z;α) := {i |S(yi, z;α) ≥ 1− θ},
J (z;α) := {i | max{S(xi, z;α), S(yi, z;α)} ≤ θ}.

Note that these three sets are pairwise disjoint, but they do not necessarily form a
partition of {1, . . . , n}. The following result is the principal result of this section and
shows that the sets just defined are indeed reasonable estimates of the sets B, N ,
and J .

Theorem 2.5. Let α ∈ (0, 1) and θ ∈ (0, 1/2) be given. Then there is an ε > 0
such that

B(z;α) = B, N (z;α) = N , J (z;α) = J(2.7)

∀z ∈ Zε.
Proof. Assume the contrary. Then sequences {εk} → 0 and {zk} exist such that,

for every k, zk ∈ Zεk and at least one of the equalities in (2.7) is violated.
Since εk converges to 0, we have that dist(zk|S) also converges to 0, so that

(2.2)–(2.5) hold. This obviously implies that all the equalities in (2.7) hold eventually.
Therefore, we obtain a contradiction and the proof is complete.

Remark 2.6. Using the indicator function and its properties we can easily define
different approximations to the sets B, N , and J . For example, in section 6 we shall
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use the following approximations in the numerical tests:

B′(z;α) := {i| min{S(xi, z;α), 1− S(yi, z;α)} ≥ 1− θ},
N ′(z;α) := {i| min{S(yi, z;α), 1− S(xi, z;α)} ≥ 1− θ},
J ′(z;α) := J (z;α).

It is easy to see that these approximations enjoy the same properties established in
Theorem 2.5 and that B′(z;α) ⊆ B(z;α) and N ′(z;α) ⊆ N (z;α), so that B′(z;α) and
N ′(z;α) may be seen as more restrictive versions of the approximations B(z;α) and
N (z;α).

3. Growth functions. We saw in the previous section that a key role in the
identification of the zero-nonzero pattern of the solutions is played by growth func-
tions. In particular growth functions enter in the definition of indicator functions that,
in turn, are a crucial ingredient in the definition of the estimates B(z;α), N (z;α),
and J (z;α). We can say that our approach hinges on the possibility of defining an
easily computable growth function.

Before presenting a first example of a growth function, we need some preliminary
results. Consider the projection of the solution set S on the space of x-variables and
indicate it by Sx:

Sx := {x ∈ Rn | ∃y ∈ Rn : (x, y) ∈ S}.(3.1)

Since, in view of our general assumptions, the solution set S is nonempty, closed, and
convex, Sx is also nonempty, closed, and convex. The following lemma gives an error
bound result for the set

Zx := {x ∈ Rn | ∃y ∈ Rn : (x, y) ∈ Z},
which, by condition (C2), is bounded.

Lemma 3.1. There is a constant c2 > 0 such that

dist(x|Sx) ≤ c2‖min{x,Mx+ q}‖
∀x ∈ Zx.

Proof. It can be easily derived from [11] that, given a point x̄ ∈ Sx, there exist a
constant κ1 > 0 and a neighborhood Ω of x̄ such that

dist(x|Sx) ≤ κ1‖min{x,Mx+ q}‖ ∀x ∈ Ω.(3.2)

Suppose now that the lemma is false. Then a sequence {xk} contained in Zx exists
such that

dist(xk|Sx) > k‖min{xk,Mxk + q}‖ ∀k ∈ N.(3.3)

Since Zx is bounded, we can assume without loss of generality that {xk} converges
to a point x̄. It is also easy to see that x̄ belongs to Sx for, if this were not true, (3.3)
would imply dist(xk|Sx)→∞, which, in view of the boundedness of Zx, is impossible.

But if x̄ belongs to Sx, we have that eventually (3.3) contradicts (3.2).
Using Lemma 3.1 we can now give an error bound result for the solution set S.
Lemma 3.2. There is a constant c3 > 0 such that

dist(z|S) ≤ c3 (‖min{x, y}‖+ η‖Xy‖)(3.4)

∀z ∈ Z, where η ≥ 0 denotes the constant from condition (C3).
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Proof. Let z ∈ Z with z = (x, y) be given. Since, as noted before, Sx is nonempty,
closed, and convex, there exists an orthogonal projection x⊥ of x ∈ Rn on the set Sx.
By the definition of Sx, there is a vector y⊥ such that z⊥ = (x⊥, y⊥) ∈ S. Thus, we
get

dist(z|S) ≤ ‖z − z⊥‖
≤ ‖x− x⊥‖+ ‖y − y⊥‖
= ‖x− x⊥‖+ ‖M(x− x⊥) + r‖
≤ (1 + ‖M‖)‖x− x⊥‖+ ‖r‖.

(3.5)

Using Lemma 3.1, we have

dist(x|Sx) ≤ c2‖min{x,Mx+ q}‖ = c2‖min{x, y − r}‖,(3.6)

where the equality follows directly from the definition of the vector r in condition
(C3).

Now, taking into account the easily verified relation

|min{a, b+ c}| ≤ |min{a, b}|+ |c| ∀a, b, c ∈ R
and the fact that all norms are equivalent in Rn, it follows that there is a constant
κ2 > 0 such that

‖min{x, y − r}‖ ≤ κ2 (‖min{x, y}‖+ ‖r‖) .(3.7)

Combining the inequalities (3.5)–(3.7) and using (C3), we therefore get

dist(z|S) ≤ (1 + ‖M‖)dist(x|Sx) + ‖r‖
≤ (1 + ‖M‖)c2‖min{x, y − r}‖+ ‖r‖
≤ (1 + ‖M‖)κ2c2‖min{x, y}‖+ (1 + ‖M‖)κ2c2η‖Xy‖+ η‖Xy‖
≤ c3(‖min{x, y}‖+ η‖Xy‖),

where

c3 := (1 + ‖M‖)κ2c2 + 1.

We are now in the position to present a first example of a growth function.
Proposition 3.3. The function ρ1 : R

n+n → [0,∞), defined by

ρ1(z) := ‖min{x, y}‖,
is a growth function on Z.

Proof. Taking into account condition (C2) and that |ab| = |max{a, b}||min{a, b}|
is valid for arbitrary a, b ∈ R, we obtain

‖Xy‖ =
√√√√ n∑

i=1

(xiyi)2 ≤
n∑
i=1

|xiyi| ≤ C

n∑
i=1

|min{xi, yi}| ≤ C
√
nρ1(z),(3.8)

where C > 0 denotes the constant from condition (C2). Using Lemma 3.2 we therefore
have, ∀z ∈ Z,

dist(z|S) ≤ c3ρ1(z) + c3η‖Xy‖ ≤ κ3ρ1(z),
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where κ3 = c3(1 + Cη
√
n). On the other hand, the function ρ1 is globally Lipschitz

continuous on Rn+n (see [10]); let L be its Lipschitz constant. Then, denoting by z⊥

the orthogonal projection of z onto S, we get

ρ1(z) = |ρ1(z)− ρ1(z
⊥)| ≤ L‖z − z⊥‖ = Ldist(z|S)

for each z ∈ Z. Hence, ρ1 satisfies Definition 2.2 with c1 := max{κ3, L}.
Using the previous proposition it is now easy to build other growth functions. In

the next corollary we give two more examples.
Corollary 3.4. The functions ρ2, ρ3 : R

n+n → [0,∞) defined by

ρ2(z) :=

∥∥∥∥
(√

x2
1 + y2

1 − x1 − y1, . . . ,
√
x2
n + y2

n − xn − yn

)∥∥∥∥
and

ρ3(z) := ‖min{x, y}‖+ ‖Xy‖

are growth functions on Z.
Proof. It is known (see [19]) that a positive constant κ4 exists such that

1

κ4
ρ1(z) ≤ ρ2(z) ≤ κ4ρ1(z) ∀z ∈ R2n.

From these relations and from Proposition 3.3 it then easily follows that ρ2 is a growth
function on Z.

We next examine ρ3. Because of Proposition 3.3 and (3.8), it follows immediately
from the definitions of ρ1 and ρ3 that

1

c1
dist(z|S) ≤ ρ1(z) ≤ ρ3(z) ≤ (1 + C

√
n)ρ1(z) ≤ c1(1 + C

√
n)dist(z|S)

∀z ∈ Z; i.e., ρ3 is a growth function.

4. Rates of convergence. The main point to consider when assessing the qual-
ity of estimates B(z, α), N (z, α), and J (z, α) is: How large is the region where these
estimates coincide with the sets they approximate? Unfortunately, it seems difficult
to give theoretical results in this direction, and the only way we know to treat this
point is through numerical experiments. However, in an effort to get some theoretical
insight into this problem, some researchers turned to the study of the convergence
rates of the indicator function values when z tends to the solution set S. In this
section we consider this issue. On the other hand, we think that the importance of
these results should not be overestimated since the connection between convergence
rates and the wideness of the region of correct identification is, from the theoretical
point of view, loose.

We first state a technical lemma.
Lemma 4.1. The inequality

0 ≤ ξ

ξ − r
− 1 ≤ 4r

ξ

holds ∀ξ, r ∈ R with ξ > 0 and 0 ≤ r ≤ 0.75ξ.
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Proof. The left inequality is obvious. On the other hand, the inequality on the
right-hand side is equivalent to

r

ξ − r
≤ 4r

ξ
,

which, in turn, is equivalent to

rξ ≤ 4r(ξ − r) = 4rξ − 4r2

since ξ > 0 and ξ − r > 0. Now, this inequality is satisfied if and only if

0 ≤ 3ξ − 4r,

and this is true because r ≤ 0.75ξ by assumption.
The following result relates the convergence rate of the indicator functions to the

convergence rate of the distance of the point z to the solution set S.
Theorem 4.2. Let α ∈ (0, 1) be given. Then, for z ∈ Z sufficiently close to S,

it holds that

|S(xi, z;α)− 1| = O(dist(z|S)α) ∀i ∈ B,(4.1)

|S(yi, z;α)− 1| = O(dist(z|S)α) ∀i ∈ N ,(4.2)

|max{S(xi, z;α), S(yi, z;α)}| = O(dist(z|S)1−α) ∀i ∈ J .(4.3)

Proof. We prove (4.1) by applying Lemma 4.1 with ξ := xi and r := ρ(z)α. So
let i ∈ B be an arbitrary but fixed index. Since we need to consider only z ∈ Zε
with dist(z|S) ≤ ε sufficiently small, r = ρ(z)α ≤ 0.75xi = 0.75ξ follows for these z
because of condition (C1) and (2.1). Moreover, ξ = xi > 0 is obvious. Therefore,
Lemma 4.1 can be applied and yields, having condition (C1) and (2.1) in mind,

|S(xi, z;α)− 1| = xi
xi − ρ(z)α

− 1 ≤ 4

xi
ρ(z)α ≤ 4

δ
cα1 dist(z|S)α ∀i ∈ B.(4.4)

The proof of (4.2) is similar and we omit it.
Now, consider an arbitrary but fixed i ∈ J . To prove (4.3) we first show that

|S(xi, z;α)| = O(dist(z|S)1−α). Since only those z ∈ Zε with S(xi, z;α) �= 0 need
to be considered, the definition of the indicator function S immediately implies that
xi �= 0. Since i ∈ J , this means that z is not a solution of the LCP, so that ρ(z) > 0.
Using

ρ(z) ≤ c1dist(z|S) ≤ c1ε

∀z ∈ Zε, we therefore obtain the existence of a sufficiently small ε > 0 such that

c1ρ(z) = [c1ρ(z)
1−α]ρ(z)α < ρ(z)α

holds ∀z ∈ Zε. Now Proposition 2.1 and (2.1) imply that

|xi| ≤ dist(z|S) ≤ c1ρ(z) < ρ(z)α

∀z ∈ Zε with z = (x, y). Thus, we can introduce a(z) := ρ(z)α/|xi| and observe that,
by Proposition 2.1, (2.1), and ρ(z) > 0,

0 <
1

a(z)
≤ cα1 dist(z|S)1−α.(4.5)
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This yields a(z) → ∞ for dist(z|S) → 0. Therefore, we have, for z ∈ Zε with ε
sufficiently small,

|S(xi, z;α)| =
∣∣∣∣ xi
xi − ρ(z)α

∣∣∣∣ = 1

|1− ρ(z)α/xi| ≤
1

|a(z)| − 1
≤ 2

a(z)
.

Together with (4.5) this gives

|S(xi, z;α)| = O(dist(z|S)1−α).
The same result can be shown for |S(yi, z;α)| in a similar way, so that (4.3) fol-
lows.

5. Rates of convergence and complementarity gap. The result in the pre-
vious section is geometrically very appealing, since it relates the convergence rates
of the indicator functions to the Euclidean distance to the solution set. However, in
connection with interior-point methods, it is also important to relate this distance to
the normalized complementarity gap

µ := µ(z) :=
xTy

n
.

In fact, in interior-point methods a convergence rate is often established for µ (and
not for the distance); see, for example, the recent books [17, 20, 21] for a general
background on interior-point methods.

Instead of the set Z we will now make use of its nonnegative part

Z+ := {z ∈ Z | z ≥ 0}.
Note that virtually every interior-point method will generate sequences {zk} belonging
to Z+ eventually.

Before giving the main result of this section we relate the distance dist(z|S) to
the complementarity gap.

Proposition 5.1. If J �= ∅, there is a constant c4 > 0 such that

dist(z|S) ≤ c4
√
µ(5.1)

∀z ∈ Z+. If, instead, J = ∅, then there is a constant c5 > 0 such that

dist(z|S) ≤ c5µ(5.2)

∀z ∈ Z+ sufficiently close to S.
Proof. From Lemma 3.2, we have

dist(z|S) ≤ c3 (‖min{x, y}‖+ nηµ) .(5.3)

Since min{a, b} ≤ √ab is valid for arbitrary a, b ≥ 0 and since z ≥ 0, we obtain that

‖min{x, y}‖2 =
n∑
i=1

min2{xi, yi} ≤
n∑
i=1

xiyi = xTy = nµ.

This and (5.3) gives

dist(z|S) ≤ c3
(√

n+ nη
√
µ
)√

µ.
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In view of condition (C2), there is a constant κ5 > 0 such that

√
µ =

√
xTy

n
≤ κ5

∀z = (x, y) ∈ Z+. Hence, it follows that

dist(z|S) ≤ c4
√
µ

for c4 := c3(
√
n+ nηκ5).

If J = ∅, we have B ∪ N = {1, . . . , n} by Proposition 1.1. Thus, condition (C1)
gives

min{xi, yi} ≤ xiyi
δ

for every i and for every z ∈ Z+ sufficiently close to S. Hence, we get from condi-
tion (C1):

‖min{x, y}‖ ≤ 1

δ

( n∑
i=1

x2
i y

2
i

)1/2

≤ 1

δ

n∑
i=1

xiyi =
n

δ
µ.

Inequality (5.2) now follows from (5.3) by taking c5 := c3(n/δ + nη).
Note that Proposition 5.1 depends on the column sufficiency of the matrix M be-

cause we use both Lemma 3.2 (which presupposes convexity of S) and Proposition 1.1.
If the matrix M is assumed to be positive semidefinite, Proposition 5.1 can be

derived from known error bound results. We refer the reader to [13, 14] for the case
J �= ∅ and to [12] for J = ∅. Here we have proved Proposition 5.1 under the mere
conditions that z ∈ Z+ and that M is CS.

In the next theorem we give convergence rates with respect to µ. These conver-
gence rates easily follow from Theorem 4.2 and Proposition 5.1.

Theorem 5.2. Let α ∈ (0, 1) be given. If J �= ∅, then, for z ∈ Z+ and µ → 0,
it holds that

|S(xi, z;α)− 1| = O(µα/2) ∀i ∈ B,
|S(yi, z;α)− 1| = O(µα/2) ∀i ∈ N ,

|max{S(xi, z;α), S(yi, z;α)}| = O(µ(1−α)/2) ∀i ∈ J .

If, instead, J = ∅, then, for z ∈ Z+ and µ→ 0, it holds that

|S(xi, z;α)− 1| = O(µα) ∀i ∈ B,
|S(yi, z;α)− 1| = O(µα) ∀i ∈ N .

Theorems 4.2 and 5.2 clearly show that the convergence rates of the indicator
functions depend on α. In general if we want to maximize the slower convergence rate,
the best value for α is 0.5. On problems which are known to be nondegenerate, for
example in the LP case, a value of α close to 1 may be preferred instead. The different
way in which α influences the convergence rate of nondegenerate and degenerate
indices also suggests the idea of using two different values of α: a value close to 1
in the definition of B(z;α) and N (z;α), and a value close to 0 in the definition of
J (z;β) (where we used the symbol β to point out that this value is different from the
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one used in the approximation of nondegenerate indices). It is not difficult to see that
all the results we proved go through after this minor modification. However, in this
case the sets B(z;α), N (z;α), and J (z;β) need not be everywhere pairwise disjoint,
even if this will always be the case eventually, and this may require the definition of
additional rules to decide to which set to assign an index that belongs to more than
one set among B(z;α), N (z;α), and J (z;β).

6. Numerical results. In order to get a feeling for the practical results that
can be obtained with the new identification technique, in this section we present a
summary of the results of an extensive numerical testing [6]. We report the results
obtained by using

(i) the Tapia indicator [3, 9, 14], probably the best indicator available to date
for linear programs [3];

(ii) the new indicator; and
(iii) the intersection indicator, that is, a combination of the Tapia indicator and

the new indicator.

The Tapia indicator and its characteristics are studied in detail in references [3, 9, 14].
Here we only recall some essential facts:

(a) The Tapia indicator can be applied only to a specific (although broad) class
of interior-point methods for LCPs.

(b) Given a sequence of points {zk} generated by a suitable interior-point method
and converging to the solution set of an LCP, quantities T kx and T ky are associated

with each zk = (xk, yk) so that, under assumptions which are similar to but stronger
than conditions (C1)–(C3) used in this paper,

lim
k→∞

T kx =




1 if i ∈ B,
0.5 if i ∈ J ,
0 if i ∈ N ,

lim
k→∞

T ky =




0 if i ∈ B,
0.5 if i ∈ J ,
1 if i ∈ N .

We tested the three identification strategies mainly on the netlib collection
of LP problems. Although our identification technique can be applied to a much
broader class of problems, we believe that LP represents the major field of appli-
cation of the techniques described in this paper; furthermore, no collection of (CS)
linear complementarity test problems comparable to netlib exists to date. There-
fore, we decided, in this first stage of our numerical experience, to deal almost ex-
clusively with LP. We stress, however, that these tests cover only a special case of
the theory developed in the previous sections. In fact, the Goldman–Tucker theorem
(see [7] or [20] for a more recent reference) shows that any linear program is non-
degenerate, so that in the LP case we never encounter the case J �= ∅. For that
reason, we will also include a short discussion with some numerical results obtained
for LCPs.

For each LP problem, we used the LIPSOL program by Zhang [22, 23] to gen-
erate a sequence of points converging to the solution set of the linear program.
LIPSOL is a MATLAB/FORTRAN implementation of a predictor-corrector infea-
sible interior-point method. We added some lines in this code in order to cal-
culate, at each iteration, approximations of the index sets B and N (recall that
J = ∅). More precisely, within each iteration, we calculate the values S(xki , z

k;α)
and S(yki , z

k;α) after each corrector step and T kx and T ky after each predictor step.
Based on these values, we approximate the index sets B and N at iteration k as
follows.
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(i) For the Tapia indicator we set

BkT := {i| min{T kx , 1− T ky } ≥ 1− θ},
N k
T := {i| min{T ky , 1− T kx } ≥ 1− θ}.

(ii) For the new indicator we set, in a similar way,

BkS := {i | min{S(xki , zk;α), 1− S(yki , z
k;α)} ≥ 1− θ},

N k
S := {i | min{S(yki , zk;α), 1− S(xki , z

k;α)} ≥ 1− θ}.
(iii) Finally, for the intersection indicator, we calculate approximations BkST and

N k
ST by intersecting the previous estimates:

BkST := BkS ∩ BkT ,
N k
ST := N k

S ∩N k
T .

The rationale behind this last estimate is simply that our new indicator and the Tapia
indicator are based on a totally different approach, so that if an index is estimated
to be active (or nonactive) by both indicators then, and only then, we expect this
prediction to be true. Note that the use of two indicators to confirm the information
obtained from each one of them is also advocated in [3].

For all test runs we chose θ = 0.1. Moreover, we set α = 0.5 at the beginning of
each test run and updated α after each step by

α = max{α, 1− 100 ∗ TRERROR},
where TRERROR denotes a certain residual calculated within the LIPSOL program
which, basically, measures the violation of the optimality conditions at the current
iterate. Furthermore, we used ρ1 as a growth function in order to compute S(x

k
i , z

k;α)
and S(yki , z

k;α). In view of our preliminary experience, however, the results do not
change dramatically by using another growth function.

The first problem we have to tackle when analyzing the results is how to assess
the quality of an indicator. While it is intuitively clear that an indicator is good if it
can accurately estimate, at an early stage, the sets B and N , it is not entirely clear the
exact way we should measure this accuracy. In our experiments we chose to consider
the following three quality indices. For simplicity we describe them making reference
only to the new estimates BkS and N k

S , but it is obvious that analogous considerations
can be made with reference to the Tapia indicator and to the intersection indicator.

(1) Percentage of misclassified indices at iteration k. At each iteration a variable,
xi for example, can be classified as either active (i ∈ N k

S ) or nonactive (i ∈ BkS), or it
can be not classified at all (i �∈ N k

S and i �∈ BkS). The percentage of misclassified indices
at iteration k is the number of indices estimated to belong to B (N ) at that iteration
and that instead, at a solution belonging to the relative interior of the solution set,
belong to N (B). In formulas this corresponds to

100

∣∣BkS \ B∣∣+ ∣∣N k
S \ N

∣∣
n

.

(2) Percentage of correctly classified indices at iteration k. This is easily under-
stood to be

100

∣∣BkS ∩ B∣∣+ ∣∣N k
S ∩N

∣∣
n

.
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(3) Percentage of globally correctly classified indices at iteration k. We say that
a certain index is globally correctly identified at iteration k if its identification status
is correct at iteration k and does not change from that iteration on.

Roughly speaking, the first quality index described above measures the excess of
BkS and N k

S over B and N , respectively, while the second index measures the excess
of B and N over BkS and N k

S , respectively. All the indices are correctly classified at
iteration k if the percentage of misclassified indices is 0 and that of correctly classified
ones is 100. However, neither of the two quality indices alone allows us to assess
the quality of the current guessing. The third quality index is similar to the second
one but with a greater emphasis on stability of the indicators. According to one’s
purposes one of the three quality indices above may be more important than the
others, and other indices may be of interest too. However, we think that these three
quality indices, considered together, give a fairly reasonable picture of the behavior
of the indicators.

There is another difficulty we must mention. The evaluation of the above quality
indices assumes the knowledge of B and N , but this is not the case, in general, for
the netlib problems we used. Therefore, we assumed that if in the final iteration
the estimates obtained using the new indicator and the Tapia indicator coincide, i.e.,
if at the last iteration BkS = BkT and N k

S = N k
T hold, then these estimates coincide

with B and N . We ran LIPSOL on all the problems using the default parameters,
but it turns out that on a considerably high percentage of problems the new indicator
and the Tapia one do not coincide at the last iteration. Hence we changed the main
stopping criterion (TOL) of LIPSOL from 10−8 to 10−11. The satisfaction of this more
stringent termination criterion usually required only one or two additional iterations
and increased the number of problems on which the two indicators coincide at the
last iteration.

Unfortunately, it is not always possible to reach this higher accuracy and we
were therefore forced to consider only the 73 problems that were successfully solved
with TOL=10−11. For 9 of these 73 problems we do not have coincidence of the
indications obtained by the new and the Tapia indicator. Since the resulting set
of 64 test problems appears to be significant we have not tried to enlarge this set
of test problems. In the next three subsections we summarize the behavior of the
indicators on the test problem set. Because of lack of space, it is impossible to report
here the complete numerical results. We tried to give a fair representation of these
results by reporting some summary tables that highlight the main features of the
indicators. However, it should always be kept in mind that our comments are based
on the complete set of numerical results. The interested reader can find the complete
and detailed numerical results in the companion report [6].

6.1. Misclassified indices. We recall that the percentage of misclassified in-
dices appears to be particularly important in those cases in which one wants to reduce
the dimension of the problem by fixing variables to 0. In this case a high number of
misclassified indices can adversely affect the efficiency of the procedure (see [3]). More
in general, we tend to view this index as an important one because it tells us how
much we can trust the guessing. It is useless to have a high percentage of correctly
identified indices (something assessed by the indices analyzed in the next two sections)
if these indices are mixed with too many misclassified ones. We also recall that the
misclassified indices should not be confused with the unclassified ones.

We summarize the results in two tables. In Table 6.1 we report the number of
test examples for which we have less than 1% of misclassified variables during the last
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Table 6.1
Number of problems with less than 1% misclassified variables.

Iteration Tapia indicator New indicator Intersection

kf 64 64 64

kf − 1 64 61 64

kf − 2 64 49 64

kf − 3 62 34 62

kf − 4 57 24 58

kf − 5 40 20 52

kf − 6 28 18 47

kf − 7 17 15 40

kf − 8 10 10 31

kf − 9 5 9 28

kf − 10 3 5 27

kf − 11 1 4 22

kf − 12 1 3 17

kf − 13 1 3 13

kf − 14 1 3 11

kf − 15 1 2 8

kf − 16 0 2 7

kf − 17 0 1 5

kf − 18 0 1 3

kf − 19 0 0 3

kf − 20 0 0 2

kf − 21 0 0 2

kf − 22 0 0 1

kf − 23 0 0 1

Table 6.2
Number of problems with no misclassified variables (intersection indicator).

Iteration kf kf − 1 kf − 2 kf − 3 kf − 4 kf − 5 kf − 6 kf − 7 kf − 8 kf − 9

64 64 62 51 40 20 12 6 4 3

24 iterations. In this table, and in the following ones, kf denotes the final iteration,
and so kf − 1 is the last but one iteration, and so on.

We see that the Tapia indicator has a better behavior than the new indicator.
Indeed, for the majority of test examples the Tapia indicator has less than 1% of
misclassified variables in the last five iterations, whereas for the new indicator there
is a considerable number of problems with more than 1% misclassified variables even
three or four steps before the final iteration.

The most interesting conclusion one can draw from Table 6.1, however, is the
superior behavior of the intersection indicator. In view of its very definition, it is
clear that this indicator has fewer misclassified variables than the other two indica-
tors; however, it is not clear, a priori, that such a good behavior could be obtained.
Actually, the analysis of the complete numerical results [6] shows that the number
of misclassified variables by the intersection indicator is very small at almost all it-
erations and for almost all test examples. To further illustrate the behavior of the
intersection indicator, in Table 6.2, we report how many test problems have no mis-
classified variables in the last 10 iterations when using the intersection indicator.
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Table 6.3
Number of problems with 50% correct identification.

Iteration Tapia indicator New indicator Intersection

kf 64 64 64

kf − 1 64 64 64

kf − 2 64 64 64

kf − 3 64 64 64

kf − 4 64 61 58

kf − 5 63 58 52

kf − 6 61 57 46

kf − 7 57 54 37

kf − 8 48 51 32

kf − 9 46 48 27

kf − 10 41 44 23

kf − 11 30 37 20

kf − 12 25 33 18

kf − 13 24 27 15

kf − 14 22 27 14

Table 6.4
Number of problems with 100% correct identification.

Iteration Tapia indicator New indicator Intersection

kf 64 64 64

kf − 1 51 46 42

kf − 2 18 14 13

kf − 3 2 2 0

The numbers provided by this table are still very encouraging and show that a
suitable combination of the new and the Tapia indicator provides useful information.

6.2. Correctly identified indices. As we already observed, this is the second
index essential to assessing the quality of an indicator. Table 6.3 shows for how many
test examples we have at least 50% correctly identified indices in the last 15 iterations.
We do not consider iterations before kf −14 because, by the results reported in Table
6.1, before this iteration for most problems the number of misclassified indices is
higher than 1% so that the information provided by the indicators is not reliable.
Table 6.4 is analogous to Table 6.3, but in this case we consider problems for which
all classified indices are correctly classified.

From Tables 6.3 and 6.4 we see that the new indicator and the Tapia one have a
similar behavior, although the new indicator seems able to better classify indices in
early stages, while the Tapia indicator behaves better when close to a solution. By its
very definition the intersection indicator is expected to have the worst behavior with
respect to the percentage of correctly classified indices. However, the performance
of this percentage is still more than acceptable, and furthermore the results of this
section should always be read in the light of the results of the previous section showing
that the intersection indicator is “slower” than the other two but more reliable.

Looking at the complete results we may also note that there is a surprisingly high
number of problems where more than 50% of indices are correctly classified already
in the very first iterations.
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Table 6.5
Globally correctly identified variables at first iteration.

% Tapia indicator New indicator Intersection

0–10 37 9 42

10–20 4 7 1

20–30 4 13 3

30–40 6 7 7

40–50 10 7 8

50–60 3 8 3

60–70 0 6 0

70–80 0 1 0

80–90 0 6 0

90–100 0 0 0

Table 6.6
Globally correctly identified variables at iteration kf − 4.

% Tapia indicator New indicator Intersection

0–10 0 0 0

10–20 0 0 0

20–30 0 0 0

30–40 0 1 2

40–50 0 2 4

50–60 1 6 6

60–70 2 6 7

70–80 9 11 14

80–90 10 22 18

90–100 42 16 13

6.3. Globally correctly identified indices. Also for this quality index we
report two tables to summarize the results. This quality index is similar to the
previous one with a greater emphasis on stability of the indicators. To give the reader
a different point of view, however, the tables we report have a different structure
than those of section 6.2. In Table 6.5 we report, for each indicator, the number of
problems for which the percentage of globally correctly identified indices at the first
iteration is between 0% and 10%, 10% and 20%, and so on. The same kind of data is
reported in Table 6.6 for the iteration kf − 4.

Obviously the globally correct classification of indices is more difficult than the
simple correct identification of a certain number of indices. However, the qualitative
behavior that emerges from the two tables and also from the analysis of the complete
numerical results is very similar to the one described in the previous subsection: The
new indicator behaves (considerably) better in early stages than the Tapia indicator,
which, however, is superior eventually. The intersection indicator is obviously worse
than the other two indicators, even if not drastically so, but the information it provides
should be regarded as more reliable.

6.4. LCPs. In addition to our numerical results obtained for linear programs
based on a suitable modification of the LIPSOL solver, we also wanted to see the
behavior of the indicators when applied to LCPs, mainly because here we may have
J �= ∅. To this end, we implemented an infeasible interior-point method in MATLAB
using the framework from [4]. As test problems, we used some convex optimization
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problems from [8] as well as several randomly generated problems. The overall behav-
ior of the different indicators seems to be very similar for most of these test problems;
however, we also observed that J = ∅ for almost all these test problems.

In the following, we therefore report some more details on only one particular
example which has a nonempty index set J . This example is of dimension n = 30
and is constructed as follows. Let

x∗ := (1, . . . , 1︸ ︷︷ ︸
15×

, 0, . . . , 0︸ ︷︷ ︸
15×

)T , y∗ := (0, . . . , 0︸ ︷︷ ︸
20×

, 1, . . . , 1︸ ︷︷ ︸
10×

)T

be a given solution of the LCP; let D be the positive semidefinite diagonal matrix

D := diag(0, . . . , 0︸ ︷︷ ︸
5×

, 1, . . . , 1︸ ︷︷ ︸
25×

);

let A be an n× n matrix with randomly distributed entries aij ∈ [0, 10]; and define

X := ATA+ I.

Then X is nonsingular. Hence

M := XTDX

is a positive semidefinite matrix with the same number of zero and positive eigenvalues
as D (by Sylvester’s law of inertia); i.e., M has 5 zero and 25 positive eigenvalues.
Finally, let us define

q := y∗ −Mx∗.

This guarantees that (x∗, y∗) is indeed a solution of the LCP which violates the strict
complementarity condition x∗

i + y∗i > 0 for i = 16, . . . , 20.

We illustrate the behavior of the Tapia indicator and the new indicator for one
particular instance of this example in Figures 6.1 and 6.2, respectively. These figures
give the values of T kx and S(xki , z

k;α).

From these figures, it is obvious that the Tapia indicator has somewhat unpre-
dictable behavior even in a small neighborhood of a solution, whereas the new indi-
cator behaves much more smoothly and seems to provide considerably more reliable
information than the Tapia indicator. The reason for this significant difference is not
totally clear to us. Maybe it is because J �= ∅ for this example. However, it might
also have to do with the fact that the Tapia indicator depends on an accurate solution
of a linear system which typically becomes almost singular close to the solution set,
and that the MATLAB linear system solver is less robust than the FORTRAN solver
called within the LIPSOL program for the LP test problems.
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Fig. 6.1. Behavior of the Tapia indicator for a degenerate LCP.
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Fig. 6.2. Behavior of the new indicator for a degenerate LCP.
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7. Summary and conclusions. In this paper we introduced a new technique
for identifying the status of variables in the relative interior of the solution set of a CS
LCP by using the information available in “nearby” points. The theoretical properties
of the new indicator appear to be interesting. The technique we propose may be the
only available option for some classes of problems (CS LCPs which are not monotone,
for example) or algorithms (smoothing techniques, for example).

We tested the technique on LP problems in an interior-point framework and
compared its behavior to the Tapia indicator. The results are encouraging and, in
our opinion, indicate the practical viability of our approach. The combination of the
new indicator with the Tapia one appears to be particularly promising. Since the
computational cost of our technique is very low, this combination certainly deserves
further study, at least in the LP case. However, the numerical results we report should
be regarded as preliminary. In fact, on the one hand, the behavior of the new technique
can probably be improved by considering different choices for the parameters α, θ (for
example, a different α can be used for each index or in the definition of the sets Bk,
N k, and J k) and for the indicator function; on the other hand, the behavior of the
identification technique on wider classes of problems should also be investigated.

Finally, the use of identification techniques to actually facilitate the solution of
LCPs is an issue that certainly deserves careful examination and that we intend to
study in the near future. We refer the interested reader to [3] for a good introduction
to this kind of problem.

Acknowledgment. The authors would like to thank Jun Ji for some very helpful
discussions on interior-point methods for P∗-matrix LCPs.
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Abstract. This paper proposes a preconditioner for the conjugate gradient method (CG) that
is designed for solving systems of equations Ax = bi with different right-hand-side vectors or for
solving a sequence of slowly varying systems Akx = bk. The preconditioner has the form of a
limited memory quasi-Newton matrix and is generated using information from the CG iteration.
The automatic preconditioner does not require explicit knowledge of the coefficient matrix A and is
therefore suitable for problems where only products of A times a vector can be computed. Numerical
experiments indicate that the preconditioner has most to offer when these matrix-vector products
are expensive to compute and when low accuracy in the solution is required. The effectiveness of
the preconditioner is tested within a Hessian-free Newton method for optimization and by solving
certain linear systems arising in finite element models.
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1. Introduction. We describe a technique for automatically generating precon-
ditioners for the conjugate gradient (CG) method. It is designed either for solving a
sequence of linear systems

Ax = bi, i = 1, . . . , t,(1.1)

in which the coefficient matrix is constant but the right-hand side varies, or for solving
a sequence of systems

Akx = bk, k = 1, . . . , t,(1.2)

where the matrices Ak vary slowly and the right-hand sides bk are arbitrary. We
assume in both cases that the coefficient matrices are symmetric and positive definite.

The automatic preconditioner makes use of quasi-Newton updating techniques.
It requires that the first problem in (1.1) or (1.2) be solved by the unpreconditioned
CG method and, based on the information generated during this run, generates a
preconditioner for solving the next linear system in the sequence. More precisely,
if {xi} and {ri} denote the sequence of iterates and residuals generated by the CG
method when applied to the first of the systems in (1.1) or (1.2), we compute and
store the vectors

si = xi+1 − xi, yi = ri+1 − ri, i = l1, . . . , lm,(1.3)
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corresponding to m iterates of the CG process, where m is an integer selected by the
user. We then use these vectors to define a limited memory BFGS matrix H, which
we call the quasi-Newton preconditioner and which will be used to precondition the
CG method when applied to the next problem in the sequence (1.1) or (1.2). The
parameter m determines the amount of memory in the preconditioner and is normally
chosen to be much smaller than the number of variables so that the cost of applying
the preconditioner is not too large.

The first question is how to select the m vectors (1.3) to be used in the definition
of the quasi-Newton matrix. The two strategies that have performed best in our tests
are to select the last m vectors generated during the CG iteration or to take a uniform
sample of them. In this paper we will concentrate on the second strategy: we will
save m vectors that are approximately evenly distributed throughout the CG run.
A detailed description of the quasi-Newton preconditioner will be given in the next
section, after we have reviewed the main ideas of limited memory BFGS updating.

Our main interest is in accelerating the CG iteration used in Hessian-free
Newton methods for nonlinear optimization. There one needs to solve systems of the
form (1.2), where Ak is the Hessian of the objective function at the current iterate.
Hessian-free Newton methods assume that the Hessian of the objective function is
not known explicitly but that products of Ak with a vector can be approximated by
finite differences of gradients or by means of automatic differentiation. In either case
these products can be very expensive to compute. After showing that the automatic
preconditioner appears to be quite useful in a Hessian-free Newton method, we explore
its behavior in a different context by testing it in the solution of linear systems arising
in finite element models. In these tests we consider problems of both the forms (1.1)
and (1.2).

The idea of saving information from the CG iteration in the form of a quasi-
Newton matrix is not new. Nash [15] constructs a limited memory matrix with mem-
ory m = 2, which is different from the one proposed here, to precondition the lin-
ear system of equations arising in the Hessian-free Newton method for optimization.
O’Leary and Yeremin [21] explore the use of (full-memory) quasi-Newton matrices
as preconditioners for the solution of closely related linear systems. Byrd, Nocedal,
and Zhu [6] propose an optimization algorithm in which information corresponding to
the last m iterations of the CG method is used to update a limited memory matrix.
However, in that algorithm the limited memory matrix is used only to compute a
search direction and not as a preconditioner for the CG method. The motivation for
the automatic preconditioner proposed in this paper arose while performing numerical
tests with a Hessian-free Newton method for large scale optimization. We observed
that the two-step preconditioner of Nash was effective only in a few test problems but
that the technique proposed here gave improvements over a wide range of problems.
The objective of this paper is to suggest that the automatic preconditioner is well
suited not only to optimization but also within a wider context. Therefore we present
our discussion in the framework of the general problems (1.1)–(1.2).

2. The quasi-Newton preconditioner. In the BFGS updating formula for
minimizing a function f (see, e.g., [7, 8, 10]) we are given a symmetric and positive
definite n×n matrix Hk that approximates the inverse of the Hessian of f and a pair
of n-vectors sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk) satisfying the condition
sTk yk > 0. Using this we compute a new inverse Hessian approximation Hk+1 by
means of the updating formula

Hk+1 = V Tk HkVk + ρksks
T
k ,(2.1)
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where

ρk = 1/yTk sk, Vk = I − ρkyks
T
k .(2.2)

We say that the matrix Hk+1 is obtained by updating Hk once using the correction
pair {sk, yk}.

Even if Hk is sparse, the new BFGS matrix Hk+1 will generally be dense so that
storing and manipulating it is prohibitive when the number of variables is large. To
circumvent this problem, the limited memory approach makes use of an alternative
representation of the updating process in which the quasi-Newton matrices are not
explicitly formed.

It follows from (2.1)–(2.2) that if an initial matrix H̄ is updated m times using
the BFGS formula and the m pairs {si, yi}, i = k − 1, . . . , k −m, then the resulting
matrix H(m) can be written as

H(m) =
(
V Tk−1 · · ·V Tk−m

)
H̄ (Vk−m · · ·Vk−1)

+ρk−m
(
V Tk−1 · · ·V Tk−m+1

)
sk−msTk−m (Vk−m+1 · · ·Vk−1)

+ρk−m+1

(
V Tk−1 · · ·V Tk−m+2

)
sk−m+1s

T
k−m+1 (Vk−m+2 · · ·Vk−1)

...

+ρk−1sk−1s
T
k−1.(2.3)

Thus instead of forming H(m) we can store the scalars ρi and the vectors {si, yi}, i =
k − 1, . . . , k −m, which determine the matrices Vi. A recursive formula described in
[13, 19] takes advantage of the symmetry in (2.3) to compute the product H(m)v for
any vector v with only 4mn floating point operations.

The so-called L-BFGS method described in [19, 12, 9] updates Hessian approxi-
mations as follows. We first choose a sparse (usually diagonal) initial Hessian approx-
imation H̄ and define the first m approximations through (2.3) as H(1), . . . , H(m).
At this stage the storage is full, and to construct the new Hessian approximation, we
first delete the oldest correction pair from the set {si, yi} to make room for the newest
one, {sk, yk}. The new Hessian approximation H(m + 1) is defined by (2.3), using
the new set of pairs {si, yi}. This process is repeated during all subsequent iterations:
the oldest correction pair is removed to make space for the newest one.

In this paper we are interested in solving positive definite linear systems Ax = b,
and therefore the function to be minimized is the quadratic 1

2x
TAx − bTx, whose

gradient is equal to the residual r(x) = Ax − b. Therefore when using the BFGS
updating formula to minimize this quadratic, it is appropriate to define sk and yk
by (1.3). To find a preconditioner for solving a sequence of problems of the form
(1.1) with a constant coefficient matrix but different right-hand sides, we proceed as
follows. We solve the first of the systems using the unpreconditioned CG method.
We save m correction pairs {si, yi} generated during this CG iteration and use (2.3)
to define the preconditioner to be H(m). We solve the rest of the linear systems in
(1.1) using the preconditioned CG method with this fixed preconditioner.

A similar approach can be used for solving the sequence of slowly varying linear
systems (1.2). An alternative, in this case, is to generate a new preconditioner during
the solution of every linear system so that the preconditioner is always based on the
most recently solved system in the sequence (1.2). We will report results using both
approaches.
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We have experimented with various strategies for selecting the correction pairs to
be saved. In analogy with nonlinear optimization we can simply save the last m pairs.
But a strategy that is more effective in some cases is to save the correction pairs at reg-
ular intervals. Suppose that m > 1 and that ncg denotes the number of CG iterations
performed during the solution of the first linear system. If we define ν = �ncg/(m−1)�,
then we would like to save the pairs {sk, yk} for k = 0, ν, 2ν, . . . , (m−1)ν. Even though
this cannot be done in practice since the number ncg of CG iterations is not known
beforehand, in the appendix (section 6) we describe an algorithm that dynamically
stores the correction pairs so that they are as evenly distributed as possible. This
algorithm requires no extra storage or computation and in our tests gives essentially
the same results as saving the correction pairs at exactly uniform intervals.

Following the L-BFGS algorithm, we will always choose the initial matrix H̄ in
(2.3) to be

H̄ =
sTl yl
yTl yl

I,(2.4)

where l denotes the last correction pair generated in the CG cycle.
We conclude this section by noting that limited memory updating is flexible

enough to accommodate information generated at any stage during the solution of
the sequence of problems (1.1) or (1.2). In particular the preconditioner could con-
tain correction pairs corresponding to different linear systems, but we will not explore
this possibility here.

3. Application to the Hessian-free Newton method. In this section we
investigate the effectiveness of the automatic preconditioner within a Hessian-free
Newton method for solving the unconstrained optimization problem

minimize f(x).(3.1)

Here f is a twice continuously differentiable function of n variables. Our experiments
will be performed using Nash’s implementation [16, 17] of the Hessian-free Newton
algorithm, which we now briefly review.

Given the current estimate xk of the optimal solution of (3.1), we generate a
search direction pk by approximately minimizing the quadratic model

Qk(pk) = ∇f(xk)T pk + 1

2
pTk∇2f(xk)pk.(3.2)

The new iterate is then defined to be xk+1 = xk + αkpk, where the step size αk is
computed by means of a line search procedure; in our code we used the line search
routine developed by Moré and Thuente [14].

The approximate solution of (3.2) is obtained by applying the CG method to the
system

∇2f(xk)p = −∇f(xk),(3.3)

starting from the initial guess p
(0)
k = 0 and terminating if a direction of negative

curvature is detected or if the following stopping test is satisfied:

i

(
1− Qk(p

(i−1)
k )

Qk(p
(i)
k )

)
≤ 0.5,(3.4)
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Table 1
Performance of the Hessian-free Newton method for various values of the memory parameter

m in the preconditioner.

m = 0 m = 4 m = 8 m = 16
Problem iter fg cg iter fg cg iter fg cg iter fg cg

Cvar-2 51 52 871 51 52 760 48 49 578 41 42 610
Penalty-3 25 29 142 21 25 71 20 24 72 20 24 72
Tridiag 24 25 166 24 25 119 20 21 83 20 21 83
QOR 13 14 52 13 14 32 13 14 32 13 14 32
SQRT(2) 37 43 640 34 43 416 31 37 380 36 42 359

Total 150 163 1871 143 159 1398 132 145 1145 130 143 1156

where {p(i)} denotes the sequence of CG iterates. This test aims to terminate the CG
iteration when the reduction in the quadratic model is judged to be so small that the
improvement in the quality of the search direction is not likely to offset the cost of
computing it.

In the Hessian-free Newton method [20, 17] it is assumed that the elements of the
Hessian matrix ∇2f are not available. One must therefore compute the matrix-vector
products required by the CG iteration by automatic differentiation or, as will be done
in our tests, approximate them by finite differences,

∇2f(xk)v ≈ ∇f(xk + hv)−∇f(xk)
h

,(3.5)

where h = (1 + ||xk||2)√εM and εM denotes unit roundoff. The computational cost
of a matrix-vector product in the CG iteration therefore equals the cost of a gradient
evaluation. (Current software for automatic differentiation will normally be at least
as expensive as finite differences.)

We make use of the automatic preconditioner as follows. During the first iteration
of the Hessian-free Newton method we apply the unpreconditioned CG method to
compute the first search direction and build a quasi-Newton preconditioner H(m),
as discussed in section 2 and using the uniform sampling strategy described in the
appendix. This preconditioner is used to compute the next search direction, and
during this second iteration we construct a new preconditioner H(m). This process
is repeated during every iteration of the Hessian-free Newton method: the search
direction is always computed by means of the preconditioned CG method using the
preconditioner constructed at the previous iteration. The starting point for every CG

run is p
(0)
k = 0.

3.1. Experiments with selected problems. We begin by focusing on the
five problems listed in Table 1 whose Hessian matrices possess five distinct classes
of eigenvalue distributions. Liu, Marazzi, and Nocedal [11] describe these eigenvalue
distributions and how they evolve as the iterates approach the solution. Other char-
acteristics of the five problems are discussed in Nash and Nocedal [18]. The number
of variables in all these test problems is n = 100. All the numerical results reported in
this paper were performed on a DEC ALPHA2100 workstation with 128 Mb of main
memory and using double precision FORTRAN; machine accuracy is approximately
10−16.

The optimization iteration was terminated when

||∇f(xk)||2 ≤ 10−5 max{1, ||xk||2}.(3.6)
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Table 2
Average number of CG iterations per Newton step for the results of Table 1.

Problem m = 0 m = 4 m = 8 m = 16

Cvar-2 17.0 14.9 12.0 14.9
Penalty-3 5.7 3.4 3.6 3.6
Tridiag 6.9 5.0 4.2 4.2
QOR 4.0 2.5 2.5 2.5
SQRT(2) 17.3 12.2 12.3 10.0

The results are summarized in Table 1 for various values of the memory parameter
m in the preconditioner. We report the number of iterations (iter) of the Hessian-
free Newton method, the number of function and gradient evaluations (fg) performed
during the line search, and the number of CG iterations (cg). Recall that every
iteration of the CG method requires one gradient evaluation.

Our main interest in these results lies in the number of CG iterations; the number
of function or gradient evaluations in the line search and the number of iterations of
the Hessian-free Newton method vary somewhat randomly due to the nonlinearities in
the problem and due to the inner termination test (3.4). We observe from Table 1 that
a substantial reduction in the number of CG iterations was obtained, in all problems,
for m = 8.

No further gains were achieved by increasing m to 16 (or beyond). The reason for
this is partly explained by Table 2, which reports the average number of CG iterations
per Newton iteration. Note that since the preconditioner makes use of the correction
pairs generated by the CG method, and since Table 2 shows that the average number
of CG iterations is small, increasing the storage beyond 10 corrections will have no
effect most of the time. This explains, in particular, why for several problems the
results for m = 8 and m = 16 are identical.

Table 1 suggests that the preconditioner is successful. To quantify its effectiveness
in a more controlled setting, we performed the following tests using problems cvar-2
and penalty-3 (similar results are obtained with the other test problems). For each
function we selected an intermediate iterate generated by the Hessian-free Newton
method and at that point computed the Hessian matrix using finite differences. This
iterate was selected so that the Hessians were positive definite at that point. For each
of the two problems, we solved the 51 linear systems

Ax = bi, i = 0, . . . , 50,(3.7)

where A denotes the Hessian matrix and where the right-hand-side vectors bi were
randomly generated with components in the interval [0, 1]. We solved the first sys-
tem Ax = b0 using unpreconditioned CG and constructed preconditioners H(m) for
various values of m. We then solved the remaining systems Ax = bi, i = 1, . . . , 50,
using the preconditioned CG method. In all cases, the starting point was x0 = 0 and
the CG iteration was terminated by means of the residual test recommended in [2]:

||rk||∞ ≤ (||A||∞||xk||∞ + ||b||∞)TOL.(3.8)

In Table 3 we report the results for two values of the parameter TOL.
We observe that for a tight tolerance, TOL1 = 10−7, the benefit of the precon-

ditioner can be modest, as in the problem cvar-2, but that for the relaxed tolerance,
TOL2 = 10−3, the savings in the number of CG iterations are substantial. These
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Table 3
Solving systems with a fixed coefficient matrix and multiple right-hand sides. Number of CG

iterations for two tolerances, TOL1 = 10−7 and TOL2 = 10−3.

Cvar-2 Penalty-3
m TOL1 TOL2 TOL1 TOL2

0 61 37 26 12
4 71 7 22 5
8 54 6 15 2
12 52 3 15 2
18 49 3 15 2
20 46 1 15 2

results are typical of what we have observed using other coefficient matrices and right-
hand-side vectors. They suggest that the quasi-Newton preconditioner is well suited
in settings similar to that of the Hessian-free Newton method, where the stopping
test for the CG iteration often demands low accuracy.

In all these tests we have reported only the number of CG iterations, not comput-
ing times. This is because our objective in introducing the automatic preconditioner
is to reduce the number of gradient evaluations that often render Hessian-free
Newton methods impractical. We should mention, however, that the cost of applying
the preconditioner, which is 4mn floating point operations, may constitute a substan-
tial portion of the optimization process if the evaluation of the gradient is inexpensive.
We will return to this point in the next section.

As mentioned in section 2, the preconditioner saves the correction pairs at uniform
intervals throughout the CG run. If instead we build the preconditioner by using the
last m pairs of the CG iteration, the results described in this section would not be
quite as good as, but would overall be similar to, the ones obtained with the uniform
sampling technique. In the next section, however, we will report experiments in which
saving the last m correction pairs is a significantly inferior strategy.

3.2. Extensive tests. We now test the efficacy of the automatic preconditioner
by solving a set of unconstrained problems from the CUTE collection [4]. We will use
this experiment to report on one of the many variants of the sampling techniques we
have tried. In addition to collecting m correction pairs during the CG cycle using
the sampling technique, we will also store the correction pair produced by the outer
iteration of the optimization algorithm,

sk = xk+1 − xk, yk = ∇fk+1 −∇fk.

The results obtained with this strategy are shown in Table 4. Without storing the
outer correction pair the results are slightly less successful and will not be reported
here.

In these experiments the preconditioner is successful not only in reducing the
total number of CG iterations but also in improving the reliability of our optimization
method.

We conclude our numerical study in the optimization setting by considering two
problems from the MINPACK-2 collection [1]. The preconditioner was the same as
the one used to generate the results in Table 4. We now also report CPU time to
illustrate the effect of the preconditioner on the Newton iteration. The results are
presented in Table 5.
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Table 4
Performance of the Hessian-free Newton method on a set of problems from the CUTE collection.

The code -2 indicates that more than 3000 CG iterations were performed. The code -3 indicates that
the line search routine performed more than 20 iterations without decreasing the objective function.

m = 0 m = 4 m = 8
Problem n iter fg cg iter fg cg iter fg cg

ARWHEAD 1000 6 7 15 6 7 12 6 7 12
BDQRTIC 100 16 17 69 15 16 52 17 18 52
BROYDN7D 1000 114 267 1061 105 273 634 106 273 712
CRAGGLVY 1000 20 20 98 22 22 68 23 23 74
DIXMAANA 1500 6 6 14 6 6 13 6 6 13
DIXMAANE 1500 22 23 266 22 23 198 23 24 186
DIXMAANG 1500 21 21 209 27 29 200 29 31 182
DIXMAANH 1500 21 21 207 26 26 184 24 24 158
DIXMAANI 1500 -2 -2 -2 64 65 2616 63 64 2572
DIXMAANL 1500 -2 -2 -2 227 229 2749 213 215 2586
DQDRTIC 1000 6 6 16 6 6 13 6 6 13
DQRTIC 500 -2 -2 -2 22 24 45 22 24 45
EIGENALS 110 38 39 233 36 39 218 29 32 147
EIGENBLS 110 -2 -2 -2 124 193 1020 135 198 1039
EIGENCLS 462 -2 -2 -2 128 177 1491 121 172 1528
ENGVAL1 1000 11 11 25 9 9 18 9 9 18
FREUROTH 1000 11 17 28 11 14 22 11 14 22
GENROSE 500 -2 -2 -2 366 669 1982 365 646 2000
MOREBV 1000 5 6 70 5 6 67 5 6 68
NONDQUAR 100 56 67 323 62 101 392 56 91 320
PENALTY1 1000 -3 -3 -3 41 46 84 41 46 84
PENALTY3 100 -3 -3 -3 23 31 59 23 31 59
QUARTC 1000 -3 -3 -3 24 27 49 24 27 49
SINQUAD 1000 67 84 248 22 35 58 22 35 58
SROSENBR 1000 9 10 22 9 10 19 9 10 19
TQUARTIC 1000 3 3 8 3 3 7 3 3 7
TRIDIA 1000 46 46 1306 35 35 570 34 34 575

Table 5
Performance of the Hessian-free Newton method on two problems from the MINPACK-2 collec-

tion of problems. CPU time is reported in seconds.

m = 0 m = 4 m = 8
Problem n iter fg cg cpu iter fg cg cpu iter fg cg cpu

MinSurA 2500 16 19 178 19 15 19 101 14 15 18 103 16
G-L 2D 400 136 149 2948 83 76 93 1716 55 58 65 1308 46

4. Experiments with finite element matrices. Our numerical experiments
with nonlinear optimization test problems suggest that the quasi-Newton precondi-
tioner holds much promise. To continue our evaluation of its performance, we would
like to test it on matrices that have different eigenvalue distributions from the ones
studied so far and that are representative of an important class of applications. To
this end we have selected several linear systems arising in the finite element models of
Belytschko et al. [3]. The first two matrices used in our experiments, A10 , A11 , were
obtained from a one-dimensional model consisting of a line of two-node elements with
support conditions at both ends and a linearly varying body force. A10

has dimension
n = 50 and A11 has dimension n = 451. The right-hand-side vector in these systems,
which we denote by c0, is defined by

c10 = cn0 = 0, ci0 = i/(n− 1)× 102, i = 2, . . . , n− 1,(4.1)
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Table 6
Characteristics of the finite element test problems. 1D: one-dimensional; 2D: two-dimensional.

Problem Origin n λmin λmax

A10 1D 50 1.0 .20× 1010

A11 1D 451 1.0 .18× 1011

A20 2D 170 1.0 .13× 109

A21 2D pert 170 1.0 .13× 109

A22 2D pert 170 1.0 .14× 109

A23 2D pert 170 1.0 .14× 109

A24 2D pert 170 1.0 .14× 109

A25 2D pert 170 1.0 .15× 109

where superscripts indicate components of a vector.

The third matrix used in our tests, A20
, is the stiffness matrix from a two-

dimensional finite element model of a cantilever beam. The beam is fixed at one
end, and a shear load is applied at the other end. The finite element mesh consists of
an even array of elements in the x- and y-coordinates [3]. The right-hand-side vector
for this two-dimensional model will be denoted by d0; it has zeros in all positions
except that

d34
0 = d68

0 = d102
0 = d136

0 = d170
0 = −8000.(4.2)

We also generated five matrices A21 , . . . , A25
by perturbing the mesh for the cantilever

model A20 along one of the coordinate directions. The size of the perturbation in-
creases linearly with every new matrix in the sequence: it is 1% in A21 and 10% in
A25 .

The characteristics of the matrices are shown in Table 6, where λmin and λmax
denote their extreme eigenvalues.

The first matrix, A10 , has one eigenvalue of size λ = 1 and one of size λ =
.2×107; the rest are distributed in a wide gap and cluster near the largest eigenvalue,
λ = .2 × 1010. The second matrix A11 has a similar eigenvalue distribution, except
that the smallest eigenvalue λ = 1 has multiplicity 2. The matrix A20 from the two-
dimensional model has a cluster of 10 eigenvalues at λ = 1; the next eigenvalue is
located at λ = .54 × 104, and the rest form several clusters between λ = 107 and
λ = .13 × 109. We illustrate the eigenvalue distributions of these test matrices in
Figure 1.

In the experiments with finite element matrices reported next, the CG iteration
was terminated using the residual test (3.8), where the value of the parameter TOL
will be specified later on. The preconditioner was constructed using the uniform
sampling strategy described in the appendix.

4.1. Multiple right-hand sides. We first tested the efficiency of the quasi-
Newton preconditioner in solving a sequence of problems (1.1), in which the coef-
ficient matrix is constant but the right-hand side varies. To do so, we applied the
unpreconditioned CG method to the first system Ax = b0. The information gener-
ated during this run was used to construct five quasi-Newton preconditioners H(m)
for m = 4, 8, 12, 16, 20, as described in section 2. For each preconditioner H(m), we
solved the remaining systems Ax = bi, i = 1, . . . , 50, using the preconditioned CG
method. The first right-hand-side vector b0 was defined as c0 or d0, depending on
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n = 50: Eigenvalues A10
� �!

.20 E 10.10 E 1 .20 E 7

n = 451: Eigenvalues A11
� �!

.18 E 11.10 E 1 0.22 E 6

n = 170: Eigenvalues A20
� �!

.13 E 9.10 E 1 0.54 E 4

n = 50: Eigenvalues H(16)A10
� �!

.17 E 1.10 E-8 .26 E 0

n = 50: Eigenvalues H(49)A10
� �!

.10 E 1.19 E -8

Fig. 1. Eigenvalue distributions of three finite element matrices and the effect of preconditioning
on A10 .

whether the matrices correspond to the one- or two-dimensional models (see (4.1)–
(4.2)). The other 50 right-hand sides, b1, . . . , b50, were obtained according to the
following recursion, which starts with j = 0. Using bj as a “seed,” we obtain bj+1

by introducing perturbations of size ±5%, with random signs, to each of the nonzero
components of bj .

The results are presented in Table 7. We report the average number of CG
iterations (rounded to the nearest integer) needed to meet the stopping test (3.8)
with TOL = 10−7. We present results for two initial points, x0 = 0 and x0 = 102e,
where e = (1, 1, . . . , 1)T .

We observe that the preconditioner is successful in reducing the number of CG
iterations in both the one-dimensional and two-dimensional models. To illustrate
how the preconditioner transforms the spectrum of the coefficient matrix A10 , we plot
in Figure 1 the eigenvalues of H(m)A10

for m = 16, 49, as well as the spectrum of
the original matrix A10

. We note that even though H(16)A10
is only slightly better

conditioned than A10 , its eigenvalues are more tightly clustered. We also observe that



AUTOMATIC PRECONDITIONING BY QUASI-NEWTON UPDATING 1089

Table 7
Results for finite element matrices using multiple right-hand sides. The table reports average

numbers of CG iterations for 50 runs, using different values of the memory parameter m, and for
two different initial points.

A10 A11 A20

x0 = 0 x0 = 102e x0 = 0 x0 = 102e x0 = 0 x0 = 102e
m iter iter iter iter iter iter
0 49 25 447 225 56 93
4 43 22 291 185 48 68
8 23 12 126 89 26 56

12 16 6 125 80 28 36
16 12 4 62 41 27 30
20 12 5 63 41 21 24

the condition number ofH(49)A10 is .52×107 with just one eigenvalue λ = 0.19×10−8

and a cluster of 49 eigenvalues λ = 1; this is expected, given the properties of quasi-
Newton updating and the fact that A10 is of dimension 50.

It is natural to ask whether the preconditioner provides a reduction in cpu time—
and not just in CG iterations—in these finite element test problems. It turns out that
since our test matrices are very sparse, the cost of applying the preconditioner is too
high to offset the reduction in the number of CG iterations in these experiments.
More specifically, the product Av, which is the most computationally expensive part
of the unpreconditioned CG method, requires approximately 3n multiplications for
the one-dimensional model and 14n multiplications for the two-dimensional model. In
contrast, the product of the preconditioner H(m) and a vector requires 4mn multipli-
cations independently of the matrix structure. As a result, one is not able to obtain
reductions in cpu time for any of the values of m listed in Table 7. Nevertheless, these
results indicate that for matrices having the same eigenvalue distribution as our test
matrices, but with a substantial number of nonzero elements, significant reductions
in computing time can be achieved with the quasi-Newton preconditioner. For the
rest of the paper we will continue to assume that the cost of computing Av is much
higher than the cost of applying the quasi-Newton preconditioner, and we will report
only the number of CG iterations.

4.2. Slowly varying systems. Next we consider the family of problems A2k
x =

bk for k = 0, 1, . . . , 5, using the perturbations of the two-dimensional finite element
matrix A20 . We solve the first system A20x = b0 using unpreconditioned CG, and
we construct five quasi-Newton preconditioners H(m) for m = 4, 8, 12, 16, 20. Each
of these is used to solve the five remaining systems using the preconditioned CG
method. The CG iteration was stopped by (3.8) with TOL = 10−7. The first right-
hand-side vector is defined to be d0 (see (4.2)), and the remaining right-hand sides
d1, . . . , d5 were constructed as before by adding, every time, perturbations of ±5% to
the nonzero elements in each of the vectors in the sequence {dj}.

In the first set of experiments, reported in Table 8, the same starting point x0

was used for all the systems A2k
x = bk. We experimented with two choices for this

starting point, x0 = 0 and x0 = 102e. In the second set of experiments, reported
in Table 9, the initial point for solving each system A2k

x = bk was chosen to be the
solution of the previous system, A2k−1

x = bk−1. Recall that the system A20 is always
solved by unpreconditioned CG.

Table 8 shows that the preconditioner is effective. The fact that the number of
iterations increases slightly as we move along a row of the table is not surprising. Since
the preconditioner was generated from the first matrix A20 , and the matrices A2k

differ
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Table 8
Results on a sequence of slowly varying linear systems arising from the two-dimensional finite

element model. The table presents the number of iterations of the preconditioned CG method needed
to solve each of the systems.The starting point for solving all the systems is given by x0.

x0 = 0 x0 = 102e
m A20 A21 A22 A23 A24 A25 A20 A21 A22 A23 A24 A25

4 56 50 51 51 52 53 93 70 71 72 73 75
8 56 27 28 29 31 31 93 58 59 61 62 63

12 56 20 22 22 26 27 93 37 37 38 39 40
16 56 19 21 22 23 24 93 32 32 32 34 36
20 56 18 19 20 26 28 93 25 26 26 28 30

Table 9
A variation of the results in Table 8. The initial point for solving system A2kx = bk is now

taken as the solution of the previous system, A2k−1
x = bk−1. The initial point for the first system

A20x = b0 is given by x0.

x0 = 0 x0 = 102e
m A20 A21 A22 A23 A24 A25 A20 A21 A22 A23 A24 A25

4 56 41 41 46 47 46 93 4 5 4 4 5
8 56 20 24 25 26 26 93 4 4 7 4 5

12 56 17 18 19 19 20 93 5 6 8 9 9
16 56 17 18 15 21 18 93 5 7 8 9 10
20 56 17 18 15 19 17 93 5 5 7 8 8

more and more from it as the subscript k increases, the preconditioner becomes “older”
for each new system. Table 9 indicates that using the solution of A2k−1

x = bk−1 as
the initial point for the new system A2k

x = bk has been advantageous.
We repeated the tests of Tables 8 and 9, refreshing the preconditioner after every

solution. To be more precise, during the solution of each system A2k
x = bk we

constructed a preconditioner and used it to solve the next system A2k+1
x = bk+1

(as in the Hessian-free Newton method). We made an exception to this strategy
when the CG method required only one or two iterations to meet the stopping test,
since building a preconditioner with m = 1, 2 is not useful. In this case we used the
preconditioner most recently generated. The results are given in Tables 10 and 11.

The results of Tables 10 and 11 are better than those of Tables 8 and 9, particularly
in that there is no longer a trend for the number of CG iterations to increase as
we move along a row of the table. Nevertheless the gains are less significant than
one would expect. We should note that when the preconditioner is built during an
unpreconditioned CG run, the number of CG iterations is larger and the pairs {sk, yk}
represent a better sample than that obtained during a preconditioned CG run. Indeed,
if the preconditioner is so effective that the number of CG iterations is very small,
then collecting information from this run may not be advantageous, as we mentioned
above. Our conclusion is that the decision of when to refresh the preconditioner is
not simple, and dynamic strategies that balance the currency of the information with
the amount of information available could be quite effective. We will, however, not
pursue this question here.

Tables 8–11 indicate that using the previous solution as the starting point for a
new run (a “hot start”) sometimes, but not always, leads to a substantial reduction
of CG iterations. We should also point out that the results for x0 = 0 in Table 11
show that the hot start benefits from preconditioning, as can be seen by reading the
results one column at a time. But for x0 = 102e in Table 9, preconditioning does not
help the hot start strategy.
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Table 10
A variation of the results given in Table 8. A new preconditioner is now computed after every

solution. The right-hand-side vectors were the vectors bi. The starting point for solving all the
systems is given by x0.

x0 = 0 x0 = 102e
m A20 A21 A22 A23 A24 A25 A20 A21 A22 A23 A24 A25

4 56 50 44 51 55 49 93 70 73 67 73 68
8 56 27 34 41 33 33 93 58 49 52 47 51

12 56 20 31 37 24 31 93 37 41 42 43 37
16 56 19 31 21 37 27 93 32 32 32 34 36
20 56 18 26 23 32 22 93 25 43 30 31 32

Table 11
A variation of the results given in Table 9. A new preconditioner is now computed after every

solution. The initial point for solving system A2kx = bk is taken as the solution of system A2k−1
x =

bk−1. The initial point for the first system A20x = b0 is given by x0.

x0 = 0 x0 = 102e
m A20 A21 A22 A23 A24 A25 A20 A21 A22 A23 A24 A25

4 56 41 38 48 40 59 93 4 3 1 1 2
8 56 20 37 32 34 33 93 4 2 1 2 1

12 56 17 26 32 27 39 93 5 5 5 4 2
16 56 17 24 24 28 26 93 5 4 6 3 2
20 56 17 19 14 19 16 93 5 4 4 4 2

4.3. Comparing sampling strategies. We will now perform some tests to
compare the strategy of saving correction pairs at uniform intervals during the CG
run with that of saving the lastm pairs. In the first experiment we use the matrix A10

from the one-dimensional finite element model and solve systems of the form (1.1),
where the matrix is fixed and the right-hand sides vary. The initial point was x0 = 0,
and the right-hand sides were chosen to have random components in the interval [0, 1].
The preconditioner is first constructed using the last m iterations of the CG method.
The results are presented in the second and third columns of Table 12 for two values
of the tolerance TOL in (3.8). It is remarkable that the preconditioner is extremely
effective when TOL = 10−7, which is a fairly tight accuracy, but that it gives only
modest gains when TOL = 10−9. We then modified the right-hand sides by setting
their first and last components to zero. The results, which are markedly different, are
given in the last two columns of Table 12.

We can explain these results by considering the properties of the matrix A10 ,
which is given by

A10 =




1 0 0 0 · · · 0 0
0 a −a/2 0 · · · 0 0
0 −a/2 a −a/2 · · · 0 0
0 0 −a/2 a · · · 0 0

...
0 0 0 0 · · · −a/2 a



,

where a = 10−9. Since the first row is eT1 , the first component of the solution x equals
the first component b1 of the right-hand-side vector. It is not difficult to show that
since all the entries in b are not greater than 1, all other components of x are of order
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Table 12
Constructing the preconditioner using the last m correction pairs. Number of CG iterations for

two types of right-hand-side vectors b and for two levels of accuracy TOL.

b random b random, b1 = bn = 0

m TOL = 10−7 TOL = 10−9 TOL = 10−7 TOL = 10−9

0 50 50 48 49
4 7 39 45 46
8 6 34 41 42

12 6 29 37 38
16 6 27 34 34
20 5 25 29 30

Table 13
Constructing the preconditioner sampling m correction pairs. Number of CG iterations for two

types of right-hand-side vectors b and for two levels of accuracy TOL.

b random b random, b1 = bn = 0

m TOL = 10−7 TOL = 10−9 TOL = 10−7 TOL = 10−9

0 50 50 48 49
4 10 34 36 44
8 25 35 37 33

12 17 22 19 24
16 12 18 14 19
20 15 18 13 16

10−6. Therefore, for these random right-hand-side vectors we can expect the solutions
to be closely aligned with the first coordinate direction e1. Since the preconditioner is
able to incorporate the curvature along e1, it forces the CG iteration to immediately
point towards the solution. As a result the CG iteration will terminate quickly if
the required accuracy is not too high. These are the most favorable conditions for
the automatic preconditioner. But if the tolerance is set to be TOL = 10−9, the
components of the solution along the other coordinate directions will need to be
estimated well, and the limited memory preconditioner is only able to provide some
of the needed information.

The solution will no longer be closely aligned with e1 if the first component of the
right-hand-side vector is set to zero. One can show that in this case the solution will
have significant components along all the coordinate directions, except for the first
component, which is zero. The problem thus becomes particularly difficult for limited
memory preconditioning. This is confirmed by the last two columns of Table 12,
which show very modest gains in performance. Note also that the performance is now
insensitive to the stopping tolerance.

In Table 13 we repeat the tests reported in Table 12 but using a uniform sampling
strategy. The latter clearly performs better than saving the last m pairs, except for
the first case (b random TOL = 10−7), which, as we have explained, represents a
special case.

To continue our comparison of sampling strategies, we repeat in Table 14 the
experiments of Table 7 with the two-dimensional finite element matrix A20 , using two
different starting points. We compare the strategy of saving the last m pairs (“last”)
with that of uniform sampling. It is clear that the latter performs much better in this
experiment.

Our computational experience, both in the optimization setting and in finite
element calculations, is that saving the last m corrections usually gives comparable
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Table 14
Average number of iterations of the CG method for the matrix A20 and multiple right-hand

sides. Comparison of two sampling strategies in the formation of the preconditioner: saving the last
m iterations and sampling at uniform intervals. Results for two starting points are given.

x0 = 0 x0 = 102e
m Last Uniform Last Uniform
0 56 56 93 93
4 74 48 90 68
8 71 26 87 56

12 56 28 83 36
16 44 27 77 30
20 43 21 72 24

Table 15
Results for test matrix A10 using multiple right-hand sides. The table reports the number of

iterations to achieve convergence for 50 runs, using different values of the memory parameter m
and of the CG iteration limit maxCG. Initial point x(0) = 0.

maxCG m = 4 m = 8 m = 16
10 42 41 41
20 38 33 32
30 31 26 22
40 31 22 16
50 43 24 13

performance to the uniform sampling technique. But as we have just shown, there
are cases when uniform sampling is superior. It is difficult to provide theoretical
arguments in favor of either strategy, but we now report the results of controlled tests
that further support the uniform sampling technique.

4.4. On the sample size. When the number of correction pairs available to
form the preconditioner is small, the two strategies (uniform sampling and using the
last m corrections) will clearly give similar results. Therefore, in the following tests
we will force the CG algorithm to perform an increasingly large number of iterations
and observe the effect that this has on the quality of the preconditioner.

More specifically we study whether the preconditioner benefits from having a
larger sample of corrections to choose from for a given amount of memory m. In
the tests described next, we will consider the solution of a sequence of finite element
systems with multiple right-hand sides. We will fix the value of m, apply the unpre-
conditioned CG for a fixed number maxCG of CG iterations to the first system in the
sequence, and build the preconditioner using the sampling technique. We then solve
the rest of the linear systems using this preconditioner, terminating the CG iteration
by means of (3.8). To study the benefit of a larger sample size, we repeat this test for
various values of maxCG.

The results are given in Tables 15–17. Note that, for a given value of m, the
preconditioners differ in that they use an increasingly wide sample of CG iterations.
We observe that if the amount of memory is small (m = 4) the quality of the precon-
ditioner appears to be independent of the sample size maxCG. But for larger values of
m the sample size has a beneficial effect.

5. Final remarks. We have presented a quasi-Newton preconditioner for accel-
erating the conjugate gradient method when this is applied to a sequence of linear
systems with positive definite coefficient matrices. Our numerical experiments indi-
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Table 16
The experiment reported in Table 15 using the test matrix A11 .

maxCG m = 4 m = 8 m = 16
250 245 209 198
300 254 192 159
350 246 160 113
400 275 114 69
450 287 125 60

Table 17
The experiment reported in Table 15 using the test matrix A20 .

maxCG m = 4 m = 8 m = 16
20 57 52 50
30 49 43 41
40 32 25 22
50 48 26 19
60 48 26 19

cate that the preconditioner may be useful when the coefficient matrices A are not
very sparse or when A is not explicitly available and products of A times vectors
are expensive to compute. The motivation for this work arose from the desire to
accelerate the CG iteration used in a Hessian-free Newton method for nonlinear opti-
mization, and in that context the new preconditioner appears to provide substantial
savings. Our experiments with finite element models suggest that the preconditioner
may prove to be useful in other areas of application, but more research is required to
establish this firmly.

We have experimented with several other strategies for selecting the correction
pairs. One idea that deserves to be mentioned is to use the m pairs with the smallest
Rayleigh quotient,

sTi yi
‖si‖2 .

Even though this strategy has not proved to be more successful in our tests than the
other selection schemes described in the paper, it may be effective in some areas of
application.

6. Appendix. We now present a formal description of the sampling algorithm
(mentioned in section 2) that collects the pairs {sk, yk} as uniformly as possible,
with the restriction that at most m pairs be stored at any stage. We denote the set
of correction pairs that have been stored as P. We will assume that m is an even
number since this simplifies the algorithm and is not restrictive in practice.

The sampling algorithm runs parallel to the CG method. Once a pair {sk, yk} has
been computed by the CG method, the sampling algorithm examines the iteration
index k and decides if the pair should be included in P. When a new pair is accepted,
the algorithm checks the available space, and if the number of pairs in P is m, then
a pair is chosen to leave P. The algorithm is started by inserting into P the first
m pairs generated by the CG process. After this, the entering and leaving pairs are
chosen to keep an almost uniform distribution at any time.
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Algorithm SAMPLE.
Choose an even number m; set k ← 0 and cycle← 1.
REPEAT:

Starting
while k < m,

• get {sk, yk}
• Add {sk, yk} to P
• k ← k + 1

end while
Deletion/Insertion.
if k can be expressed as k = (m2 + l− 1)2cycle for an integer l of the form

l = 1, 2, . . . , m2 , then
• Store l
• Compute the subscript of the leaving pair as k′ = (2l − 1)2cycle−1

• Delete {sk′ , yk′} from P
• Add {sk, yk} to P
• if l = m

2 , then set cycle← cycle+ 1
end if
k ← k + 1

END REPEAT
Note that the first pair (k = 0) generated in the CG iteration always remains in

P. This has no particular significance, and it is easy to change the algorithm so that
this is not the case.

We now discuss some properties of the sampling algorithm. After the initial-
ization, in which the first m pairs are stored, the algorithm performs deletion and
insertion operations controlled by the variable cycle. For a given value of cycle, the
algorithm stores m2 new pairs spaced by a distance of 2cycle and deletes the same num-
ber of pairs. Deletion takes place in such a way that the space created between two
consecutive pairs is 2cycle. Therefore when cycle attains a new value, the distribution
ceases to be uniform and there is a transition period during which a new uniform
distribution is generated; this is achieved at the end of the second loop. It follows
that the larger m is, the longer it will take to move from one uniform distribution to
the next.
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Abstract. We consider a new class of multiplier interior point methods for solving variational
inequality problems with maximal monotone operators and explicit convex constraint inequalities.
Developing a simple Lagrangian duality scheme which is combined with the recent logarithmic-
quadratic proximal (LQP) theory introduced by the authors, we derive three algorithms for solving
the variational inequality (VI) problem. This provides a natural extension of the methods of multi-
pliers used in convex optimization and leads to smooth interior point multiplier algorithms. We prove
primal, dual, and primal-dual convergence under very mild assumptions, eliminating all the usual
assumptions used until now in the literature for related algorithms. Applications to complementarity
problems are also discussed.
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1. Introduction. Given an operator T , point to set in general, and a closed
convex subset C of Rn, the variational inequality (VI) problem consists of finding a
pair x∗ ∈ C and g∗ ∈ T (x∗) such that

〈x− x∗, g∗〉 ≥ 0 ∀x ∈ C,(1.1)

where 〈·, ·〉 denotes the usual inner product of Rn. Our analysis will focus on the
case where T is a maximal monotone mapping from R

n into itself (see section 2 for
definitions and properties) and the constraints set C is explicitly defined by

C := {x ∈ Rn : F (x) ≤ 0},(1.2)

where F (x) := (f1(x), . . . , fm(x))T , with fi : Rn → R ∪ {+∞}, i = 1, . . . ,m, given
proper closed convex functions. The analysis developed in this paper can also handle
additional affine equality constraints, but for simplicity of exposition this will not be
discussed here.

It is well known (cf. section 2) that the VI problem (1.1) can be alternatively
formulated as finding the zero of an appropriately defined maximal monotone operator
Π, namely, find x∗ such that 0 ∈ Π(x∗). One method to find the zero of a maximal
monotone operator Π is the proximal point algorithm; see, e.g., [22], [29], [19]. It
generates a sequence {xk} via the iteration
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x0 ∈ Rn, 0 ∈ Π(xk) + c−1
k (xk − xk−1),(1.3)

where ck ≥ c > 0. Recently, several works have concentrated on the generalization
of the proximal algorithm based on “entropic proximal terms,” and they have led to
interior proximal point methods for variational inequality problems; see, e.g., [6], [14],
[15], [16], [33]. Roughly speaking, the motivation for using these generalized proximal
methods is that they allow for elimination of the constraints in a natural way within
the use of an appropriate proximal-like term, and this allows for developing easier to
implement and more efficient algorithms than the one obtained within the classical
quadratic proximal framework. In all previously mentioned works, convergence of the
resulting interior proximal methods was proved under restrictive assumptions either
on the problem’s data (e.g., requiring pseudomonotonicity and paramonotonicity of
the operator) or on the entropic proximal term and/or on both. Very recently we
proposed in [7] a new type of proximal interior method which was proven to be globally
convergent to a solution of VI with linear constraints, under the sole assumption that
the set of solutions of VI is nonempty. This method is based on a logarithmic-quadratic
proximal (LQP) term which enjoys several useful properties and is not in the class of
proximal terms used in the works previously alluded to.

In all the above mentioned works the corresponding proximal methods were de-
veloped to solve the primal formulation of the variational inequality problem (1.1).
The purpose of this work is twofold. First we develop general new theoretical results
for VI problems which are needed in our analysis but are also of independent interest.
In particular, a new general tool based on recession analysis for maximal monotone
operators is derived to prove existence results and a complete and transparent La-
grangian duality scheme for VI problems is developed under minimal hypothesis; see
sections 2 and 3. Building on these theoretical results, we analyze proximal interior
methods based on the LQP term, when applied to the dual and primal-dual formu-
lations of VI. Rockafellar [29], [30] was among the first to realize that the classical
quadratic proximal framework can be usefully applied to the primal-dual formulation
of VI problems to generate multiplier type algorithms. Further results in that di-
rection were developed by Gabay [18]. More recently, Eckstein and Ferris [17] have
suggested using a Bregman type proximal term to produce new types of multiplier
methods for the special case of monotone complementarity problems with box con-
straints. A key feature of these methods, which differs from the ones derived with
the classical quadratic proximal scheme, is that one obtains algorithms with smooth
Lagrangians (given enough smoothness in the original problems data), where the main
iterative step can be solved via Newton type algorithms. Thus, the proposed methods
in [17] are akin to similar smooth Lagrangian methods developed for solving convex
programming problems; see, e.g., [11], [10], [16], [20], [21], [25], [26], [32]. In this paper
we consider the more general VI problem given in (1.1) but within the framework of
the recent LQP theory developed by the authors to appropriate dual formulations of
VI. This leads to new methods of multipliers (also called augmented Lagrangians) for
solving VI problems. We also emphasize that the use of the LQP theory allows us
to derive in fact C∞ Lagrangians, as opposed to the ones obtained in [17] via the
Bregman proximal theory and multiplier methods with stronger convergence results
under very mild assumptions. Thus, the current paper may be viewed as a natural
continuation and extension of our recent works [7], [8]. The former work deals with
the LQP method for solving the primal formulation (1.1) but with C being a poly-
hedral set, i.e., when F is an affine map, and the latter deals with a more general
class of proximal terms and related algorithms, including as a special case the LQP
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method for solving convex optimization problems.
To construct our algorithms, we first need to develop an appropriate duality

framework for VIs with convex constraints. We will thus introduce a Lagrangian
duality scheme for VIs, which differs from (and for our purposes, is more appropriate
than) the well-known duality framework of Mosco [24], which has also been used
and improved in [18], [17]. This duality theory takes its origin in [3], [9] and is
developed in section 3, after some background material and a new recession formula
for maximal monotone operators given in section 2. We show that one can construct a
dual and primal-dual formulation of the VI problem via appropriate operators which
are shown to be maximal monotone under very mild assumptions. Using the duality
framework of section 3 and combining it with the LQP theory, we produce in section
4 two new methods of multipliers with interior multipliers updates, based on the
dual and primal-dual formulations of VI. Convergence of these methods is established
under mild assumptions on the problem’s data. In the course of our analysis, we
also complement some convergence results of the LQP method as given in [7], when
applied to the primal formulation (1.1) when C is a polyhedral set. We give some
concluding remarks in section 5.

2. Preliminaries on maximal monotone operators. We give in this section
some important facts and results on maximal monotone operators which will be needed
in our analysis. For more details on monotone operators we refer the reader to the
recent monograph [31, Chapter 12].

A point to set valued map (or multifunction) A : Rn
→→ R

n is an operator which
associates with each point x ∈ Rn a set (possibly empty) A(x) ⊆ Rn. The inverse
of any operator always exists and is denoted by A−1(y) := {x ∈ Rn|y ∈ A(x)}, and
obviously we have (A−1)−1 = A. The domain and range of A are defined by

domA := {x|A(x) �= ∅},
rgeA := {y|∃x : y ∈ A(x)} = domA−1.

When A is single valued (a function) we shall write A(x) = {y} or simply A(x) = y.
An operator A is said to be monotone if

〈x′ − x, y′ − y〉 ≥ 0 ∀y′ ∈ A(x′), ∀y ∈ A(x), ∀x, x′ ∈ domA.

A monotone operator is said to be maximal if its graph is not properly contained in
the graph of any other monotone operator, in other words, if

〈x− x′, y − y′〉 ≥ 0 ∀x′ ∈ domA ∀y′ ∈ A(x′) =⇒ y ∈ A(x).

The normal cone operator associated with a closed convex set C is defined by

NC(x) =

{ {y : 〈y, v − x〉 ≤ 0 ∀v ∈ C} if x ∈ C,
∅ otherwise.

Clearly, domNC = C and we always have NC(x) = {0} when C ≡ R
n or when

x ∈ intC, the interior of C. It is well known [27] that the normal cone operator NC is
a maximal monotone operator on Rn; in fact NC = ∂δ(·|C), where δ(·|C) is a closed
proper convex function defined by δ(x|C) = 0 if x ∈ C and +∞ otherwise, and ∂h
denotes the subdifferential of a proper closed convex function h.

Proposition 2.1.
(i) A−1 is maximal monotone if and only if A is maximal monotone.
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(ii) Let Ai, i = 1, 2 be maximal monotone. Then A1 + A2 is also maximal
monotone under either one of the following conditions:

(a) intdomA1 ∩ domA2 �= ∅,
(b) ri(domA1) ∩ ri(domA2) �= ∅, where ri stands for relative interior.

(iii) Given any maximal monotone operator A : Rn
→→ R

n, the solution set A−1(0)
of the generalized equation 0 ∈ A(x) is closed and convex. Moreover, A−1(0) is
nonempty and bounded if and only if 0 ∈ int(domA−1) = int(rgeA).

(iv) Let A : Rn × Rd → R
n × Rd be maximal monotone. Fix x ∈ Rn and define

B : Rd → R
d by

B(z) := {w|∃v : (v, w) ∈ A(x, z)}.

If x is such that there exists y ∈ Rd with (x, y) ∈ ri(domA), then B is also maximal
monotone.

Proof. See Chapter 12 of [31].
For a nonempty closed convex set C in Rn, we denote by C∞ the recession cone

of C. For a closed and proper convex function h : RN → R ∪ +{∞}, the recession
function h∞ of h is defined by

epi (h∞) = (epih)∞, where epih = {(x, r) ∈ RN × R : h(x) ≤ r},

and the following useful formula holds:

h∞(d) = sup{〈c, d〉|c ∈ domh∗} = σdomh∗(d),(2.1)

where σS denotes the support functional of a set S and h∗ stands for the conjugate
function of h; see [27]. Following [1], the recession function of a multivalued map A
on Rn is defined by

fA∞(d) := sup{〈c, d〉|c ∈ rgeA} = σrgeA(d).(2.2)

The recession function of a multivalued map is particularly useful to establish existence
of solutions for variational problems. Indeed, recall that by Minty’s theorem [23],
the interior of the range of a maximal monotone operator A is convex. Then using
Proposition 2.1(iii) and [27, Theorem 13.1] one has that for any maximal monotone
operator A on Rn, the solution set A−1(0) is nonempty and bounded (hence compact)
if and only if

∀d �= 0, fA∞(d) > 0.(2.3)

The next proposition will be of particular importance in our analysis and extends
a recent result derived in [4, Proposition 2.1].

Proposition 2.2. Let h : RN → R ∪ {+∞} be a closed proper convex function
and let A be monotone with domh ⊂ domA and such that A+∂h is maximal monotone.
Then

fA+∂h
∞ (d) = sup{〈c, d〉|c ∈ A(x), x ∈ domh}+ h∞(d).(2.4)

Proof. (i) Define Â(x) := A(x) if x ∈ domh and ∅ otherwise. Then, since
domÂ = domh and dom∂h ⊂ domh, we obtain

dom(A+ ∂h) = dom(Â+ ∂h) = dom∂h, rge(A+ ∂h) = rge(Â+ ∂h),
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and hence,

fA+∂h
∞ (d) = f Â+∂h

∞ (d) ∀d.(2.5)

Now, since Â+ ∂h is also maximal monotone, then invoking [13, Theorem 4, and its
variant 3, p. 176], one has

rge(Â+ ∂h) = conv(rgeÂ) + domh∗,

where the upper bar denotes the closure operation and conv stands for convex hull.
Using the above relation in definitions (2.2) and (2.5) we then have

fA+∂h
∞ (d) = sup{〈c, d〉|c ∈ rge(Â+ ∂h)}

= sup{〈c, d〉|c ∈ conv(rgeÂ) + domh∗}
= sup{〈c, d〉|c ∈ conv(rgeÂ) + domh∗}
= sup{〈u, d〉|u ∈ conv(rgeÂ)}+ sup{〈v, d〉|v ∈ domh∗}
= sup{〈u, d〉|u ∈ A(x), x ∈ domh}+ h∞(d),

where in the third and the last equality we use the fact that for any nonempty set
S the support function σS = σconvS = σconvS , and for the second term of the last
equality we use (2.1).

An important application of the above result is to the special case when ∂h :=
∂δ(·|C) = NC , with domh = C ⊂ domA, as recently derived in [4]. Recalling that
δ∞(·|C) = δ(·|C∞), using Proposition 2.2 together with (2.3) implies that the solution
set (A+NC)−1(0) is nonempty and compact if and only if

fA,C∞ (d) > 0 ∀d �= 0,(2.6)

with

fA,C∞ (d) := sup{〈c, d〉|c ∈ A(x), x ∈ C} if d ∈ C∞, +∞ otherwise.(2.7)

In the rest of this paper maximal monotone operators will play a prominent
role and will be used as abstract tools to reformulate equivalent formulations of VI
problems.

In terms of NC , we can rewrite the VI problem (1.1) as the one of finding the
zero of the generalized equation

(PVI) 0 ∈ T (x) +NC(x).(2.8)

Problem (PVI) will thus be considered as another equivalent primal formulation of
the VI problem given in (1.1). The set of solutions of (PVI), namely (T +NC)−1(0),
will be denoted by X.

3. Duality for variational inequalities. We begin by recalling the classical
and well-known duality framework for VIs as suggested by Mosco [24]. We then give a
simple Lagrangian duality scheme for the VI problem which appears more appropriate
for algorithmic purposes. Thus, this part of the section can be considered as a short
summary of known results that do not seem to have been explicitly outlined in the
literature. In the last part of this section, we then give conditions under which the
dual and primal-dual operators remain maximal monotone.
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3.1. Duality via Mosco’s scheme. Let c : Rn → R∪{+∞} be a closed proper
convex function, A a maximal monotone multivalued map on Rn, and consider the
following general variational problem:

0 ∈ A(x) + ∂c(x).(3.1)

Note that our variational problem (PVI) is a special case of (3.1) with the choice
A = T, c = δ(·|C). In [24], Mosco studied problems of the form (3.1) and shows that
one can always associate a dual problem with (3.1), defined by

0 ∈ −A−1(−y) + (∂c)−1(y).(3.2)

Now, since (∂c)−1 = ∂c∗ (see [27]), then the dual (3.2) can be equivalently rewritten
as

0 ∈ −A−1(−y) + ∂c∗(y).(3.3)

It was shown in [24] that x solves (3.1) if and only if y ∈ −A(x) solves (3.2) or
(3.3).

For a more general dual framework involving the sum of two general operators,
we refer the reader to the recent work [2] and also to [17].

The dual terminology for the pair of problems (3.1)–(3.2) is justified by the fact
that the above scheme is akin to the Fenchel duality scheme used in convex optimiza-
tion problems. Indeed, consider the special case where A = ∂b, the subdifferential
map of some closed convex function b : Rn → R∪{+∞}. Then, under appropriate reg-
ularity assumptions [27], the relations (3.1)–(3.2) are nothing else but the optimality
conditions for the Fenchel primal-dual pair of convex optimization problems

min{b(x) + c(x) : x ∈ Rn}, min{b∗(−y) + c∗(y) : y ∈ Rn}.
Applying the above scheme to our VI problem (PVI), i.e., with A = T, c(x) =

δ(x|C) and using the facts that ∂c∗(y) = ∂δ∗(y|C) = N−1
C (y), a dual problem associ-

ated with (PVI) is then

0 ∈ −T−1(−y) +N−1
C (y).(3.4)

The main difficulty with the above framework is that it requires constructing the
inverse operators T−1 and N−1

C to formulate a dual problem, a task which can be
very difficult. However, we note that for the special case of box constraints, i.e., when
C = {x ∈ Rn : l ≤ x ≤ u}, an explicit computation of N−1

C is available, as recently
shown in [17].

We thus consider now another duality scheme for (PVI), which even though is in
fact formally equivalent to Mosco’s scheme, will be more appropriate for our algorith-
mic purposes.

3.2. Lagrangian duality for VI. The duality scheme given here is in the spirit
of the classical Lagrangian duality framework for constrained optimization problems.
It will permit us to take advantage of the particular structure of the set C described
by convex inequalities and to develop explicit algorithms.

The starting point is the simple and well-known observation that x∗ is a solution
of VI if and only if

x∗ ∈ argmin{〈g∗, x− x∗〉 : x ∈ C},(3.5)
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where g∗ ∈ T (x∗) and C = {x : fi(x) ≤ 0, i = 1, . . . ,m}.
In the rest of this paper we assume that each fi : Rn → R ∪ {+∞} is a closed

proper convex function and that E := ∩mi=1domfi is an open set. Note that this
assumption is needed to properly handle convex programs within the formalism of
extended valued functions; see [27, p. 273].

Formally, we can thus associate with the convex optimization problem

min{〈g∗, x− x∗〉 : fi(x) ≤ 0, i = 1, . . . ,m},(3.6)

a Lagrangian defined by L : Rn × Rm → R

L(x, u;x∗) :=



〈g∗, x− x∗〉+

∑m
i=1 uifi(x) if x ∈ E, u ∈ Rm+ ,

−∞ if u �∈ Rm+ ,
+∞ otherwise,

(3.7)

where u ∈ Rm+ is the dual multiplier attached to the constraints, and a dual problem
defined by

sup
u≥0

inf{L(x, u, x∗) : x ∈ E}.(3.8)

By the standard saddle point optimality theorem [27] we know that (x∗, u∗) ∈ E×Rm+
is a saddle point of L if and only if x∗ ∈ E and u∗ ≥ 0 are, respectively, optimal for
the primal and dual problems (3.6)–(3.8) with no duality gap, that is, with equal
optimal values. Note that here ∂(〈g∗, x−x∗) + δ(x|E))|x=x∗ = g∗ +NE(x∗) and since
E is open NE(x∗) = {0}. Translating this to our pair of problems (3.6)–(3.8) gives

0 ∈ g∗ +

m∑
i=1

u∗i ∂fi(x
∗),(3.9)

0 ∈ −F (x∗) +NR
m
+

(u∗),(3.10)

with g∗ ∈ T (x∗) (recalling that the primal optimal value of (3.6) is zero). We also
know (cf. [27, Corollary 28.2.1]) that under Slater’s condition

∃z ∈ Rn : fi(z) < 0, i = 1, . . . ,m

there exists a Kuhn–Tucker vector u. The relations (3.9)–(3.10) are just the KKT
optimality conditions for (3.6) which are necessary and sufficient for optimality, and
thus u∗ can be interpreted as the solution of a Lagrangian dual VI which can be
defined as follows. For each u ∈ Rm+ , set

M(u) :=

{
x ∈ Rn : 0 ∈ T (x) +

m∑
i=1

ui∂fi(x)

}
,(3.11)

G(u) := {−F (x) : x ∈M(u)},(3.12)

TD(u) := G(u) +NR
m
+

(u).(3.13)

The dual VI problem associated with VI is then

(DVI) find u∗ ∈ Rm+ , d∗ ∈ G(u∗) : 〈d∗, u− u∗〉 ≥ 0 ∀u ∈ Rm+ ,
which can also be written using (3.13) as

(DVI) 0 ∈ TD(u∗).(3.14)
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Likewise, we can then associate a primal-dual formulation of VI via (3.9)–(3.10):

(PDVI) (0, 0) ∈ S(x∗, u∗),(3.15)

where the operator S is defined on Rn × Rm+ by

S(x, u) :=

{
(y, w) ∈ Rn × Rm+ |y ∈ T (x) +

m∑
i=1

ui∂fi(x), w ∈ −F (x) +NR
m
+

(u)

}
,

(3.16)
if (x, u) ∈ domS = (domT ∩ (∩mi=1domfi))× Rm+ �= ∅, and ∅ otherwise.

From the above discussion we have thus shown that we have essentially three
equivalent representations for the VI problem (1.1) or (2.8). More precisely we have
proved the following.

Theorem 3.1. Suppose that Slater’s condition holds for the constraint set C.
Then, x∗ ∈ Rn solves (PVI) if and only if there exists u∗ ∈ Rm+ such that (x∗, u∗)
solves (PDVI).

To be able to apply the proximal theory to the three formulations of VI, we need
to guarantee that the corresponding operators are maximal monotone. The rest of
this section is thus devoted to establishing conditions in terms of the problem’s data,
under which maximal monotonicity is preserved.

3.3. Maximal monotonicity. For convenience we will often use the following
notations:

TP := T +NC ,

TD := G+NR
m
+
,

TS := S,

and we denote by X,U,Z the set of solutions of (PVI), (DVI), and (PDVI), re-
spectively. The primal operator poses no problems. From Proposition 2.1(ii)(a) the
maximal monotonicity of TP is preserved under the condition dom T ∩ intC �= ∅.

We now turn to the dual operator TD. First, we show the easy part, namely, that
TD is monotone on Rm+ .

Proposition 3.1. Let T : Rn
→→ R

n be monotone. Then, the dual operator
TD = G+NR

m
+
is monotone on Rm+ .

Proof. Since NR
m
+

is monotone, the monotonicity of TD will follow by proving

that G is monotone. Let (u, u′), (v, v′) be arbitrary points in G. By definition of G
given in (3.12), ∃(x, u), (y, v) such that

u′ = −F (x), x ∈M(u); v′ = −F (y), y ∈M(v), u, v ≥ 0.

Since fi are convex using the subgradient inequality for each fi, and since u, v ≥ 0
and F (x) = (f1(x), . . . , fm(x))T , one easily obtains

〈u− v, u′ − v′〉 = 〈u− v, F (y)− F (x)〉

≥ 〈y − x,
m∑
i=1

ui∂fi(x)−
m∑
i=1

vi∂fi(y)〉

= 〈y − x, y′ − x′〉, x′ ∈ T (x), y′ ∈ T (y)

≥ 0,
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where the third equality follows by using x ∈ M(u), y ∈ M(v) with M(·) defined in
(3.11), and the last inequality is from the monotonicity of T .

To establish the maximal monotonicity of TD we first establish that TS is maximal
monotone. This result is in fact known for the case of T single valued continuous and
fi given finite convex and differentiable functions; see [30]. We extend this to our more
general framework, and for completeness we include a proof of this slight extension.

Proposition 3.2. Let T : Rn
→→ R

n be maximal monotone such that domT ∩
(∩mi=1domfi) �= ∅. Then the primal-dual operator TS = S defined in (3.16) is maximal
monotone.

Proof. The operator TS defined in (3.16) can be decomposed as follows. Let

A(x, u) =

{
T (x)× {0} if x ∈ domT ,
∅ otherwise

and

B(x, u) =

{ {{∑m
i=1 ui∂fi(x)} × {−F (x) +NR

m
+

(u)} if x ∈ ∩mi=1domfi, u ∈ Rm+ ,
∅ otherwise.

Then we have S = A + B. Since T is maximal monotone, it is easy to see that A
is also maximal monotone. On the other hand, defining l : ∩mi=1domfi × Rm+ → R

by l(x, u) =
∑m
i=1 uifi(x), then we have B(x, u) = ∂xl(x, u) × −∂̂ul(x, u), which is

maximal monotone [27, Corollary 34.2.2 and Corollary 37.5.2], where ∂̂ denotes the
upper subdifferential. Invoking Proposition 2.1(ii)(a) on the operators A,B then gives
the desired result.

We also need the following result establishing the boundedness of the dual solution
set.

Proposition 3.3. Let T : Rn
→→ R

n be maximal monotone. Suppose that X �= ∅,
and there exists z ∈ domT satisfying Slater’s condition. Then, the solution set U of
(DVI) is nonempty. In addition, if the solution set of X of VI is bounded, then the
solution set U of (DVI) is also bounded.

Proof. Under the given assumptions, from Theorem 3.1 we have x∗ ∈ X and
∃u∗ ≥ 0 such that (3.9)–(3.10) hold, which by (3.11) means that x∗ ∈ M(u∗). As a
consequence, we have using (3.10)

〈G(u∗), u− u∗〉 = 〈−F (x∗), u− u∗〉 ≥ 0 ∀u ≥ 0,

and hence u∗ ∈ U . Now, if U is not bounded, then there would exist a sequence
{uk, xk, gk, gki , i = 1, . . . ,m} with uk ≥ 0, xk ∈ X, gk ∈ T (xk), gki ∈ ∂fi(x

k), i =
1, . . . ,m such that

||uk|| → ∞, uk||uk||−1 → ū �= 0, xk → x̄,

and (3.9)–(3.10) hold at (xk, uk), i.e.,

0 ∈ gk +

m∑
i=1

uki g
k
i , uki ≥ 0, uki fi(x

k) = 0, fi(x
k) ≤ 0, i = 1, . . . ,m.

Using the subgradient inequality for the convex function fi, multiplying by uki ≥ 0,
and summing we obtain

m∑
i=1

uki fi(z) ≥ 〈z − xk,
m∑
i=1

uki g
k
i 〉 ∀z ∈ domT.
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But since xk ∈M(uk), then the above inequality reduces to

m∑
i=1

uki fi(z) ≥ 〈z − xk,−gk〉 ∀z ∈ domT

≥ 〈xk − z, g〉, g ∈ T (z), z ∈ domT since T is monotone.(3.17)

Since we assumed that X is bounded, dividing the last inequality by ||uk|| and passing
to the limit we obtain ∀ z: ∑m

i=1 ūifi(z) ≥ 0, and hence with z satisfying Slater’s
condition for C, and recalling that ū �= 0, this is impossible.

We can now establish the desired result.
Proposition 3.4. Suppose that X is nonempty and bounded, that there exists z ∈

domT satisfying Slater’s condition, and that TS is maximal monotone (see Proposition
3.2 for conditions). Then the dual operator TD is maximal monotone.

Proof. From Proposition 2.1(i), we have TD maximal monotone if and only if T−1
D

is maximal monotone. Using the definition of TD, (3.11), (3.12), and (3.16) we have

T−1
D (w) = {u|w ∈ G(u) +NR

m
+

(u)}
= {u|∃x : w ∈ −F (x) +NR

m
+

(u), x ∈M(u)}
= {u|∃x : (x, u) ∈ S−1(0, w)}.

Since we assumed that TS := S is maximal monotone, invoking Proposition 2.1(iv), we
thus have that T−1

D is maximal monotone if (0, 0) ∈ ridomS−1. By Proposition 2.1(iii),
the latter condition will be satisfied if the solution set Z of (PDVI), i.e., S−1(0, 0), is
nonempty and bounded. But by Theorem 3.1 we have S−1(0, 0) ⊂ X × U and since
we assumed that X is bounded, then by Proposition 3.3 U is also bounded and the
result is proved.

Remark 3.1. Note that a similar result was recently proved in [4], but only under
the restrictive assumption that T is strongly monotone as well as some other technical
assumptions on fi.

We end this section with a result needed in the convergence analysis and which is
also of independent interest. In the context of optimization problems, this result cor-
responds to asymptotic KKT conditions guaranteeing that a sequence is minimizing.

Recall that when C is the convex set defined in (1.2), then the recession cone of
C is given by

C∞ = {d : (fi)∞(d) ≤ 0, i = 1, . . . ,m}.

Proposition 3.5. Let T : Rn
→→ R

n be maximal monotone such that TP =
T+NC is maximal monotone. Suppose that X is nonempty and compact and that C ⊂
domT . Let uk be a bounded sequence in Rm+ and consider a sequence {xk, gk, gki , i =
1, . . . ,m} with gk ∈ T (xk), gki ∈ ∂fi(xk), i = 1, . . . ,m such that

εk := gk +

m∑
i

uki g
k
i → 0,(3.18)

lim sup
k→∞

fi(x
k) ≤ 0 ∀i,(3.19)

uki fi(x
k)→ 0 ∀i.(3.20)

Then the sequence {xk} is bounded, and each limit point of the sequence {xk} solves
VI.
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Proof. The proof is by contradiction. Suppose that the sequence {xk} is not
bounded, then without loss of generality, one can assume that

‖ xk ‖→ +∞, xk

‖ xk ‖ → x̄ �= 0.

Let ε > 0; then from (3.19) for k sufficiently large we have

fi

(
xk

||xk|| ||x
k||
)
||xk||−1 ≤ ε||xk||−1.(3.21)

Since by [12] for any function f we have

f∞(d) = inf

{
lim inf

n→+∞ f(tnxn)/tn | tn → +∞, xn → d

}
,

passing to the limit in (3.21), we then obtain that (fi)∞(x̄) ≤ 0 ∀i = 1, . . . ,m, which
means that x̄ ∈ C∞. Now, ∀g ∈ T (x), x ∈ C, using arguments similar to the one
used in Proposition 3.3, we obtain using the definition of εk given in (3.18)

〈g, xk〉 ≤ 〈g, x〉+ 〈gk, xk − x〉

≤ 〈g, x〉+ 〈εk, xk − x〉 −
〈

m∑
i=1

uki fi(x
k), x− xk

〉
.

Dividing the latter inequality by ||xk||, passing to the limit, and using (3.18)–(3.20)
we thus obtain 〈g, x̄〉 ≤ 0, i.e., from (2.7) that fT,C∞ (x̄) ≤ 0, which contradicts the
assumption that X is compact.

Now let x∞ be a limit point of {xk}. Then using εk = gk +
∑m
i=1 u

k
i g
k
i , the

convexity of fi and the monotonicity of T we obtain

〈g1, x− xk〉 ≥
m∑
i=1

uki fi(x
k) + 〈εk, x− xk〉 ∀x ∈ C, ∀g1 ∈ T (x).

Then, passing to the limit in the above inequality, together with (3.18)–(3.20) we thus
get

〈x− x∞, g1〉 ≥ 0 ∀g1 ∈ T (x).

But since x∞ ∈ C, we also have 〈x − x∞, g2〉 ≥ 0 ∀g2 ∈ NC(x), x ∈ C. Therefore it
follows that

〈g, x− x∞〉 ≥ 0 ∀g ∈ TP (x) = T (x) +NC(x), ∀x ∈ C.
Since TP is maximal monotone, this implies that 0 ∈ TP (x∞), i.e., x∞ ∈ X.

4. Interior proximal and multiplier methods for VI. The three formu-
lations VI via the primal, dual, and primal-dual operators reduce to the problem of
finding the zero of a specific maximal monotone operator in each case. We will develop
below the corresponding algorithms which are based on the LQP method recently in-
troduced by the authors in [7]. We thus begin by recalling some results from [7] on
the log-quadratic function and the corresponding interior proximal algorithm which
was developed for solving the primal version of VIs over polyhedral sets.
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4.1. The LQP algorithm. Let ν > µ > 0 be given fixed parameters, and define

ϕ(t) =

{
ν
2 (t− 1)2 + µ(t− log t− 1) if t > 0,
+∞ otherwise.

(4.1)

Associated with ϕ we define for any v ∈ Rp++

d(u, v) =

{ ∑p
i=1

ν
2 (ui − vi)2 + µ(v2

i log vi
ui

+ uivi − v2
i ) if u ∈ Rp++,

+∞ otherwise.
(4.2)

The functional d defined in (4.2) can be rewritten as

d(u, v) =

p∑
j=1

v2
jϕ(ujv

−1
j ) ∀u, v > 0.(4.3)

Second-order homogeneous functionals of the form (4.3) with other choices of the
kernel ϕ and their role in the development of interior multiplier methods for solving
convex problems have been recently studied in [8]. For simplicity of exposition, in this
paper we consider only the important special case (4.2). Likewise our analysis is pre-
sented only with exact versions of the algorithms. Our results, however, remain valid
for many other choices of the kernel ϕ with d given in (4.3) and within approximate
algorithms as done in [7], [8]. The next theorem recalls some important properties of
ϕ and d; see [7], [8] for proofs.

Theorem 4.1. Let ϕ be given in (4.1) and d as defined in (4.2). Then
(i) ϕ is a differentiable strongly convex function on R++ with modulus ν > 0.
(ii) limt→0 ϕ

′(t) = −∞.
(iii) For any u, v > 0 we have d(u, v) ≥ µ||u − v||2 and d(u, v) = 0 if and only
if u = v.
(iv) The conjugate of ϕ is given by

ϕ∗(s) =
ν

2
t2(s) + µ log t(s)− ν

2
,(4.4)

t(s) := (2ν)−1{(ν − µ) + s+
√

((ν − µ) + s)2 + 4µν} = (ϕ∗)′(s).(4.5)

(v) domϕ∗ = R, and ϕ∗ ∈ C∞(R).
(vi)(ϕ∗)′(s) = (ϕ′)−1(s) is Lipschitz ∀ s ∈ R, with constant ν−1.
(vii) ϕ∗ is strictly convex and increasing on R.
(viii) (ϕ∗)′′(s) < ν−1 ∀s ∈ R.
(ix) (ϕ∗)∞(−1) = 0 and (ϕ∗)∞(1) = +∞ where (ϕ∗)∞ is the recession function
of ϕ∗.
Let P be a polyhedral set on Rm defined by P := {y ∈ Rn : Ay ≤ b}, where A

is a (p, n) matrix, b ∈ Rp, p ≥ n. We suppose that the matrix A is of maximal rank,
i.e., rankA = n, and that the interior of P , intP := {y : Ay < b} is nonempty. Let T
be a maximal monotone set valued map such that domT ∩ intP �= ∅.

We consider the linearly constrained VI problem which we denote by LVI(T,P):

Find a point y∗ ∈ P and g∗ ∈ T (y∗) satisfying 〈g∗, y − y∗〉 ≥ 0 ∀y ∈ P,

which includes as a special case the nonlinear complementarity problem by choosing
A = −Ip the identity matrix of order p = n, and b = 0, i.e., P ≡ Rn+.
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Let ai denote the rows of the matrix A, and define the following quantities:

li(y) = bi − 〈ai, y〉, i = 1, . . . , p,
l(y) = (l1(y), l2(y), . . . , lp(y))T ,
D(y, z) = d(L(y), L(z)).

For each y ∈ intP , z ∈ intP , we have

∇yD(y, z) = −
p∑
i=1

aili(z)ϕ
′(li(y)/li(z)),(4.6)

with ϕ′(t) = ν(t− 1) + µ(1− t−1), t > 0.
To solve LVI(T,P) we consider the following method.
The LQP method.
Start with y0 ∈ intP and generate the sequence {yk} ⊂ intP , satisfying

gk + λ−1
k ∇yD(yk, yk−1) = 0 with gk ∈ T (yk),(4.7)

where λk ≥ λ > 0.
We now state the main result proven in [7].
Theorem 4.2. Let T be a maximal monotone operator on Rn such that domT ∩

intP �= ∅. Then,
(i)Existence. For each λk > 0, yk−1 ∈ intP , there exists a unique yk ∈ intP
satisfying (4.7).
(ii) Convergence. If the set of solutions of LVI(T,P), denoted by Y is nonempty,
then the sequence {yk} generated by LQP converges to a solution y∗ ∈ Y .
We emphasize, that to the best of our knowledge, the LQP method for solving

LVI is the first interior proximal method for which existence and global convergence of
the sequence {yk} to a solution of LVI(T,P) can be established under these very mild
assumptions. This is in sharp contrast with other interior proximal methods recently
studied in the literature which require severe restrictions such as pseudomonotonicity
and paramonotonicity of the operator T as well as some further restrictions on the
proximal distance functional d; see, e.g., [14], [16], and references therein.

4.2. The primal log-quadratic method. We first complement here some of
the results derived in [7] to solve LVI(T,P), for the case of polyhedral constraints, and
in particular when P = R

p
+, namely, to solve the complementarity problem. More

precisely, the result below shows that LQP also solves a corresponding dual varia-
tional inequality problem (DVI) associated with the linearly constrained VI problem
LVI(T,P), much like in the spirit of penalty/barrier methods, see, e.g., [4], except
that here we obtain a convergence result for any fixed penalty parameter λk ≥ λ > 0,
in contrast with the penalty/barrier methods, where the penalty parameters must be
driven to infinity to obtain convergence (compare with [4]).

Define

vki := −li(yk−1)ϕ′(li(yk)/li(y
k−1)), i = 1, . . . , p.(4.8)

The iteration (4.7) can thus be simply rewritten using (4.6) as

AT vk = −λkgk with gk ∈ T (yk).(4.9)

Theorem 4.3. Suppose that the solution set of LVI(T,P) is nonempty and that
T is maximal monotone with domT ∩ intP �= ∅. Let {yk} be the sequence generated
by LQP and set P := R

p
+. Then
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(i) the sequence {yk} converges to a solution of y∗ of LVI(T,P). Furthermore, we
have

lim inf
k→∞

gki ≥ 0, lim
k→∞

yki v
k
i = 0, i = 1, . . . , p.(4.10)

(ii) In addition, suppose that P ⊂ intdomT , or that P ⊂ domT with T single
valued and continuous, and λk ≤ λ̄. Then the sequence {λ−1

k vk} with vk defined
in (4.8) is bounded, and each limit point of the sequence λ−1

k vk is a solution of
the corresponding DVI problem.

Proof. (i) The convergence of {yk} to a solution y∗ ≥ 0 of LVI(T,Rp+) is from
Theorem 4.2. When P = R

p
+, (4.8)–(4.9) reduces to: for each i = 1, . . . , p,

vki = −yk−1
i ϕ′(yki /y

k−1
i ),(4.11)

vki = λkg
k
i .(4.12)

Since ϕ′(t) = ν(t − 1) + µ(1 − t−1), and t−1 − 1 ≥ 1 − t ∀t > 0, we obtain using
(4.11)–(4.12)

gki ≥ λ−1
k (ν + µ)(yk−1

i − yki ).(4.13)

Since {λ−1
k } is bounded and {yk} converges, it follows that lim infk→∞ gki ≥ 0 ∀i =

1, . . . , p, proving the first relation in (4.10). Furthermore, we also have

yki v
k
i = −yki yk−1

i ϕ′(yki /y
k−1
i ),

= (νyki + µyk−1
i )(yk−1

i − yki ),

and hence limk→∞ yki v
k
i = 0, i = 1, . . . , p.

(ii) Since yk converges to y∗ ≥ 0 and Rp+ ⊂ intdom T, then T is locally bounded

at y∗ and since λ ≤ λk ≤ λ̄, it follows from (4.12) that the sequence {λ−1
k vk} is

bounded. The same conclusion holds under the other proposed hypothesis, i.e., when
R
p
+ ⊂ dom T with T single valued and continuous. Let v̄ be a limit point of {λ−1

k vk};
then passing to the limit in (4.12) together with (4.10), we have obtained

y∗ ≥ 0, v̄ ≥ 0, 〈y∗, v̄〉 = 0, v̄ ∈ T (y∗).

This primal method developed for LVI cannot apparently be extended for solving
our original VI problem, namely when C is described via convex inequalities. However,
using the duality framework of section 3, we provide below two methods based on LQP
leading to multiplier and proximal multiplier methods for solving VI given in (1.1) and
which exhibit stronger convergence properties for the resulting primal-dual sequences.
We begin with the dual method.

4.3. The multiplier dual method. In the rest of this subsection we make the
following standing assumptions on the problems data of VI.

Assumption A. (a) T is a maximal monotone operator with ∩mi=1domfi an open
subset of intdomT .

Assumption B. (a) The solution set of VI is nonempty and compact.
(b) Slater’s condition holds for z ∈ domT .

Given ϕ as defined in (4.1), λ > 0, we define for u > 0 the multifunction



DUAL METHODS FOR VARIATIONAL INEQUALITIES 1111

H(x, u, λ) :=

{
T (x) +

∑m
i=1 ui(ϕ

∗)′(λfi(x)/ui)∂fi(x) if x ∈ ∩mi=1domfi,
∅ otherwise.

(4.14)

To solve VI, namely the generalized equation 0 ∈ T (x) +NC(x), we propose the
following method of multipliers.

Multipliers dual method (MDM). Given ϕ defined in (4.1), u0 ∈ Rm++ and
λk ≥ λ > 0, ∀k ≥ 1, generate the sequences {xk, uk} according to

0 ∈ H(xk, uk−1, λk),(4.15)

uki = uk−1
i (ϕ∗)′(λkfi(xk)/uk−1

i ), i = 1, . . . ,m.(4.16)

In order to have that MDM is well defined, we have to prove that the generalized
equation (4.15) has a solution.

Proposition 4.1. Let ϕ be given in (4.1), and suppose that Assumptions A and
B hold. Then ∀λ > 0, ∀u ∈ Rm++:

(i) The operator H(·, u, λ) is maximal monotone on Rn.
(ii) The solution set of 0 ∈ H(x, u, λ), namely H−1(0, u, λ), is nonempty and
compact.
Proof. Fix λ > 0, u > 0, and define g(x) := λ−1

∑m
i=1 uiϕ

∗(λfi(x)/ui). From
Theorem 4.1(ix) we have (ϕ∗)∞(−1) = 0, (ϕ∗)∞(1) = +∞. We can thus apply [5,
Proposition 2.1], to conclude that g is a closed proper convex function with domg =
∩mi=1domfi �= ∅. Furthermore, it holds that

g∞(d) =

{
0 if (fi)∞(d) ≤ 0 ∀i,
+∞ otherwise.

(4.17)

Now, since ∩mi=1domfi is open, using subdifferential calculus one can verify that H =
T + ∂g and then by Assumption A, from Proposition 2.1(ii)(a) it follows that H is
maximal monotone. Furthermore, since domg ⊂ domT we can apply Proposition
(2.2) to obtain

fH∞(d) = sup{〈c, d〉|c ∈ T (x), x ∈ domg}+ g∞(d).

To show that the solution set H−1(0, u, λ) is nonempty and compact, it suffices to
show that (cf. (2.3)) fH∞(d) > 0, for d �= 0, i.e., using (4.17) it suffices to show that

sup{〈c, d〉|c ∈ T (x), x ∈ domg} > 0 when (fi)∞(d) ≤ 0 ∀i.
But, since T +NC is maximal monotone and we assumed that the solution set of VI
is nonempty and compact and C ⊂ ∩mi=1domfi ⊂ domT , we also have using (2.7)

β := sup{〈c, d〉|c ∈ T (x), x ∈ C} > 0,

and hence since C ⊂ domg,

sup{〈c, d〉|c ∈ T (x), x ∈ domg} ≥ β,
and the proof is completed.

In what follows, it will be convenient to use the following notation:

Φ′(a, b) := (a1ϕ
′(b1/a1), . . . , amϕ

′(bm/am))T ∀a, b ∈ Rm++.
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We are now in a position to give our convergence result for the MDM given in
(4.15)–(4.16).

Theorem 4.4. Let {xk, uk} be the sequence generated by MDM and suppose that
Assumptions A and B hold. Then, the dual sequence {uk} globally converges to a
solution u∗ ∈ U of (DVI), while the primal sequence {xk} is bounded and all its limit
points are in the solution set X of VI.

Proof. First, we show that the sequence {xk, uk} generated by MDM is nothing
else but the sequence produced by the LQP method (with P = R

m
+ ) when applied to

solve the DVI problem: 0 ∈ G(u) +NR
m
+

(u). Indeed, from (4.15)–(4.16) we have

0 ∈ T (xk) +

m∑
i=1

uki ∂fi(x
k),(4.18)

F (xk) = λ−1
k Φ′(uk−1, uk),(4.19)

where (4.19) follows from using the relation (vi) of Theorem 4.1. The first inclusion
(4.18) is equivalent to xk ∈ M(uk). Since by definition G(uk) = {−F (xk)|xk ∈
M(uk)}, from (4.16) we have (using Theorem 4.1(vii)) that uk ∈ R

m
++, so that

NR
m
+

(uk) = {0}, and it follows that

γk + λ−1
k Φ′(uk, uk−1) = 0, γk ∈ G(uk).(4.20)

As a consequence of Theorem 4.2(ii) applied with P = R
m
+ , we thus have that the

sequence {uk} globally converges to a solution of DVI, and using Theorem 4.3(i), with
yk := uk, vk := uk, gk = γk = −F (xk), it follows from (4.10) that

lim sup
k→∞

F (xk) ≤ 0 and lim
k→∞

〈uk, F (xk)〉 = 0.

Therefore, invoking Proposition 3.5, we obtain that the sequence {xk} is bounded and
all its limit points are solutions of VI.

Remark 4.1. When T = ∂f0, with f0 closed proper convex, we recover the interior
proximal method of multipliers and convergence results for solving convex programs
as recently derived in [8].

4.4. The primal-dual method. Our third method consists of solving VI via
the equivalent primal-dual formulation (PDVI), namely to solve

0 ∈ S(x, u),(4.21)

where S is defined in (3.16). In this subsection, we assume that S is maximal monotone
(see Proposition 3.2 for the conditions which guarantee maximal monotonicity) and
Slater’s condition holds for z ∈ domT .

To solve (4.21), we need to consider an extension of the LQP method, where
we have now unrestricted variables x ∈ Rn. For this purpose, following Auslender–
Teboulle–Ben-Tiba [7], we consider the distance like functional

D((x, u), (y, w)) :=
1

2
||x− y||2 + d(u,w),

where d is as defined in (4.2) (since here the polyhedral set P = R
m
+ ).

Then the main iteration of LQP becomes the following:
Start with (x0, u0) ∈ Rn × Rm++ and generate {(xk, uk)} ⊂ Rn × Rm++ satisfying

0 ∈ S(xk, uk) + λ−1
k ∇(x,u)D((xk, uk), (xk−1, uk−1)),(4.22)
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where λk ≥ λ > 0.
We can then easily extend Theorem 4.2 (we omit the proof which is very similar

to the one given in [7]) to obtain the following theorem.
Theorem 4.5. Let S be the maximal monotone operator defined in (3.16). Then
(i) there exists a unique pair (xk, uk) ∈ R

n × Rm++ satisfying (4.22) ∀λk >
0, uk−1 > 0.

(ii) If the solution set of PDVI is nonempty, then the sequence {xk, uk} generated
by (4.22) converges to a solution (x∗, u∗) ∈ X × U .

Writing explicitly the iteration (4.22) we obtain

0 ∈ T (xk) +

m∑
i=1

uki ∂fi(x
k) +

xk − xk−1

λk
,(4.23)

0 ∈ F (xk) + λkΦ′(uk, uk−1) +NR
m
+

(uk),(4.24)

which in turn is equivalent (following the same arguments as given in the first part of
the proof of Theorem 4.4) to the following method.

The proximal-multiplier dual method (PMDM). Given ϕ defined in (4.1),
(x0, u0) ∈ Rn × Rm++ and λk ≥ λ > 0 ∀k ≥ 1, generate the sequences {xk, uk}
according to

0 ∈ H(x, uk−1, λk) + λ−1
k (xk − xk−1),(4.25)

uki = uk−1
i (ϕ∗)′(λkfi(xk)/uk−1

i ), i = 1, . . . ,m.(4.26)

This leads to an algorithm for which the new “multiplier multifunction” is now
strongly monotone. Indeed, for fixed uk−1, λk > 0, define

Hk(x) := H(x, uk−1, λk) + λ−1
k (x− xk−1).

Proposition 4.2. Let ϕ be given in (4.1). Suppose that T is a maximal monotone
map and Slater’s condition is satisfied for some z ∈ domT . Then the operator Hk is
maximal monotone and also strongly monotone with modulus λ−1

k , i.e.,

〈x− x′, y − y′〉 ≥ λ−1
k ||x− x′||2 ∀y ∈ Hk(x), y′ ∈ Hk(x′).

Proof. Since Slater’s condition holds for z ∈ domT , then H = T + ∂g, (with
g as defined in Proposition 4.1), and H is maximal monotone. By definition Hk =
H +∇Qk, where Qk(x) := ||x− xk−1||2/(2λk), and since ∇Qk is strongly monotone,
it follows under our assumptions, that Hk shares the same property.

Note that here since the multifunction in (4.25) is maximal monotone and strongly
monotone, it automatically implies the existence and uniqueness of the sequence xk

in (4.25). We thus immediately obtain the following result.
Theorem 4.6. Let T be a maximal monotone operator on Rn. Suppose that

S is maximal monotone and that Slater condition holds for z ∈ domT . Then, if
the solution set of PDVI is nonempty, the primal-dual sequence {xk, uk} generated
by PMDM converges to a primal-dual solution (x∗, u∗) ∈ X × U of VI and DVI,
respectively.

Proof. Under the assumptions which guarantee that S is maximal monotone (cf.
Proposition 3.2), the proof is essentially the same as the one given in Theorem 4.4.
Indeed, from the above discussion, the sequence (xk, uk) generated by PMDM is the
same as the one produced by (4.22) and thus applying here Theorem 4.5 we obtain
that the sequence {xk, uk} converges to a solution of PDVI.
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5. Concluding remarks. We have presented three new methods to solve VI
problems. The resulting algorithms can be viewed as a natural extension of the
proximal-like and related dual multiplier methods used in convex optimization. The
primal-dual method appears attractive, since it guarantees the full convergence of the
primal sequence. At the computational level, the main bulk of the computation in
MDM or PMDM is essentially to solve a system of nonlinear equations. For example,
consider the standard nonlinear complementarity problems, i.e., with T : Rn → R

n

single valued and continuous T (x) := (T1(x), . . . , Tn(x))T and C := R
n
+. In that case

PMDM reduces to the following: ∀i = 1, . . . ,m,

Ti(x
k) − uki (ϕ∗)′(−λkxk/uk−1) + λk(xki − xk−1

i ) = 0,(5.1)

uki = uk−1
i (ϕ∗)′(−λkxk/uk−1

i ), i = 1, . . . ,m,(5.2)

with ϕ∗ explicitly given in Theorem 4.1(iv). By the same theorem ϕ∗ enjoys the useful
properties (v)–(viii), and assuming that T is smooth enough, the system of equations
in the variable xk in (5.1) can thus be solved efficiently via a Newton type method.
Given the current success of smooth multiplier methods in solving efficiently large
scale convex optimization problems, as exhibited by recent numerical experiments
(see, e.g., the recent work [10]), we believe that the methods proposed in this paper
are providing new and promising alternative numerical schemes for solving VIs and
related complementarity problems that are worth further investigations.
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Abstract. We show that the quadratic growth condition and the Mangasarian–Fromovitz con-
straint qualification (MFCQ) imply that local minima of nonlinear programs are isolated stationary
points. As a result, when started sufficiently close to such points, an L∞ exact penalty sequen-
tial quadratic programming algorithm will induce at least R-linear convergence of the iterates to
such a local minimum. We construct an example of a degenerate nonlinear program with a unique
local minimum satisfying the quadratic growth and the MFCQ but for which no positive semidef-
inite augmented Lagrangian exists. We present numerical results obtained using several nonlinear
programming packages on this example and discuss its implications for some algorithms.

Key words. nonlinear programming, quadratic growth, sequential quadratic programming,
degeneracy

AMS subject classifications. 65K05, 90C30
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1. Introduction. Recently, there has been renewed interest in analyzing and
modifying sequential quadratic programming algorithms for constrained nonlinear
optimization for cases where the traditional regularity conditions do not hold [5, 15,
14, 24, 29, 30]. This research has been motivated by the fact that large-scale nonlinear
programming problems tend to be almost degenerate (have large condition numbers
for the Jacobian of the active constraints). It is therefore important to establish
to what extent the convergence properties of the sequential quadratic programming
methods are dependent on the ill-conditioning of the constraints. In this work, we
term as degenerate those nonlinear programs (NLPs) for which the gradients of the
active constraints are linearly dependent. In this case there may be several feasible
Lagrange multipliers.

Many of the previous analysis and rate of convergence results for degenerate NLPs
[5, 15, 14, 24, 29, 30] are based on the validity of some second-order conditions. These
are essentially equivalent to the condition in unconstrained optimization that, for
a critical point of a function f(x) to be a local minimum, fxx � 0 is a necessary
condition and fxx � 0 is a sufficient condition. Here � is the positive semidefinite
ordering. The place of fxx in constrained optimization is taken for these conditions
by Lxx, the Hessian of the Lagrangian, which is now required to be positive definite
on the critical cone for one or all of the Lagrange multipliers [8, 25].

This work differs from previous approaches in that we assume only that
(1) At a local solution x∗ of the constrained NLP, the first-order Mangasarian–

Fromovitz constraint qualification (MFCQ) [19, 20] holds.
(2) The quadratic growth (QG) condition [6, 18] is satisfied,
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f(x) ≥ f(x∗) + σ||x− x∗||2(1.1)

for some σ > 0 and all x feasible in a neighborhood of x∗.
(3) The data of the problem are twice continuously differentiable.

These assumptions are equivalent to a weaker form of the second-order sufficient
conditions [17, 6], which does not require the positive semidefiniteness of the Hessian
of the Lagrangian on the entire critical cone.

We prove that these conditions guarantee that x∗ is an isolated stationary point
(1.3) of the NLP. This extends a result from [25] that required some second-order
sufficient conditions to be satisfied for all multipliers. In particular, our work implies
that if MFCQ holds and the second-order sufficient conditions hold for one multiplier,
then x∗ is a strict local minimum and an isolated stationary point. This is an impor-
tant issue because it will prevent the algorithms considered in this work, which use
only first-order information, from stopping arbitrarily close to x∗, except at x∗, for
certain types of line searches.

We also show that, under the same assumptions, the L∞ exact penalty sequential
quadratic program (SQP) induces at least Q-linear convergence [23] of the penal-
ized objective to f(x∗) and R-linear convergence of the iterates. Finally, we provide
an example of an NLP that satisfies our assumptions for which it is not possible
to construct an augmented Lagrangian such that x∗ will be an unconstrained local
minimum. This may present an adverse case to algorithms based on this assump-
tion, such as Lagrange multiplier methods. However, we show that it is possible to
construct a nondifferentiable function that has x∗ as its minimum, namely, the L∞
penalty function (which can also be inferred from the results in [6]). We describe
our computational experience with several nonlinear programming packages applied
to this example and discuss the expected and observed behavior of LANCELOT [7],
a Lagrange multiplier algorithm.

Our convergence analysis for the L∞ exact penalty function suggests that it is
possible to construct a convergence theory with the more general second-order con-
ditions [17]. This may result in algorithms with superior robustness, because their
properties depend on significantly fewer assumptions.

1.1. Previous work, framework, and notations. We deal with the NLP
problem

min
x

f(x) subject to g(x) ≤ 0,(1.2)

where f : IRn → IR and g : IRn → IRm are twice continuously differentiable.
We call x a stationary point if the following conditions hold for some λ ∈ IRm:

Lx(x, λ) = 0, λ ≥ 0, g(x) ≤ 0, λT g(x) = 0.(1.3)

Here L is the Lagrangian function

L(x, λ) = f(x) + λT g(x).(1.4)

If certain regularity conditions hold (discussed below), then a local solution x∗ of
(1.2) is a stationary point. In that case (1.3) are referred to as the Karush–Kuhn–
Tucker (KKT) conditions.

Since our analysis will be limited to a neighborhood of a point x∗ that is a strict
minimum, we will assume that all constraints are active at x∗, or g(x∗) = 0. Such a
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situation can be obtained by simply dropping the constraints i for which gi(x
∗) < 0,

since this relationship holds in an entire neighborhood of x∗. This does not reduce the
generality of our results, but it simplifies the notation because now we do not have to
refer separately to the active set.

The regularity condition, or constraint qualification, ensures that a linear ap-
proximation of the feasible set in the neighborhood of x∗ captures the geometry of
the feasible set. Often in local convergence analysis of constrained optimization al-
gorithms, it is assumed that the constraint gradients ∇gi(x∗), i = 1, 2, . . . ,m, are
linearly independent, so that the Lagrange multiplier in (1.3) is unique. We assume
instead the MFCQ:

∇gi(x∗)T p < 0 ∀i and some p ∈ IRn.(1.5)

It is well known [11] that MFCQ is equivalent to boundedness of the set M(x∗) of
Lagrange multipliers that satisfy (1.3), that is,

M(x∗) def
= {λ ≥ 0 | (x∗, λ) satisfy (1.3)}.(1.6)

Note thatM(x∗) is certainly polyhedral in any case.
The critical cone at x∗ is [8, 26]

C = {u ∈ IRn|∇gi(x∗)Tu ≤ 0, i = 1, 2, . . . ,m; ∇f(x∗)Tu = 0}.(1.7)

We briefly review some of the second-order conditions in the literature, although
they are not an assumption for our analysis but only a basis for comparison. In the
framework of [8], the second-order sufficient conditions for x∗ to be an isolated local
solution of (1.2) are

∃λ∗ ∈M(x∗), ∃σ > 0 such that vTLxx(x∗, λ∗)v ≥ σ‖v‖22 ∀v ∈ C.(1.8)

If these conditions hold at x∗ for some λ∗, then the quadratic growth condition is
satisfied, irrespective of the validity of the first-order constraint qualification [8, 9].
However, this does not imply that x∗ is an isolated stationary point, as shown by a
simple example [25], which may prevent an optimization algorithm that uses only first
derivative information from reaching x∗ even when started arbitrarily close to x∗.

In [25] it is shown that if MFCQ holds and the relation (1.8) is satisfied for
all λ∗ ∈ M(x∗), then x∗ is an isolated stationary point and a minimum of (1.2).
Also, with these conditions, the exact solution is Lipschitz stable with respect to
perturbations. By compactness of M(x∗), we can choose σ independently of λ∗ in
this case. In [1] it is proven that, under these assumptions, the L∞ exact penalty
SQP will converge Q-linearly to f(x∗), when the descent direction is computed by a
quadratic program (QP) using only first-order information.

A refinement of the second-order conditions was introduced in [17]. In the pres-
ence of MFCQ, those conditions require that

∀u ∈ C, ∃λ∗ ∈M(x∗) such that uT∇xxL(x∗, λ∗)u > 0.(1.9)

Further analysis shows that, in the presence of MFCQ, these conditions are necessary
and sufficient for the QG condition to hold [6, 17, 18, 26]. Also, the exact solution
is Lipschitz stable with respect to certain classes of perturbations [26], though not to
any perturbation (see an example in [12, p. 308]). In this paper we assume only the
QG condition and MFCQ, and thus we do not use the perturbation results.
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If the condition (1.9) holds, but (1.8) does not, then there may be no augmented
Lagrangian with a positive semidefinite Hessian, as we will show with an example.
This is an interesting aspect since it invalidates the usual working assumption of
Lagrange multiplier methods [4].

Finally, we review some of the facts concerning the L∞ nondifferentiable exact
penalty function:

P (x) = max{0, g1(x), g2(x), . . . , gm(x)}.(1.10)

We are looking for an unconstrained minimum of the function

φ(x) = f(x) + cφP (x),(1.11)

where cφ is a sufficiently large constant. Descent directions d of φ(x) at the point x
can be obtained by solving the following QP [4]:

min ∇f(x)T∆+ 1
2∆

TH∆+ cφζ
∆

subject to gj(x) +∇gj(x)T∆ ≤ ζ, j = 0, 1, 2, . . . ,m,
(1.12)

where H is some positive definite matrix and g0(x) ≡ 0 is added for a more compact
notation for ζ ≥ 0. In this paper the analysis will be restricted to the case H = I,
although the same results apply for any other positive definite matrix.

At the current point xk of an iterative procedure that attempts to determine
x∗, the QP (1.12) generates the descent direction dk. The next iterate is x(k+1) =
xk + αkdk, where αk is obtained by a line search procedure. Usual stepsize rules are
the minimization rule, the limited minimization rule, and the Armijo rule [4]. For
these rules, any limit point of {xk} is a stationary point of φ(x), and the descent
procedure is therefore globally convergent in this sense [4].

If, in addition,

cφ >

m∑
j=1

λ∗
j

for some λ∗ ∈ M(x∗), then x∗ is a stationary point of φ(x) [3]. A suitable value for
cφ is not available in the early stages of the algorithm, but a good estimate can be
found via an update scheme [3]. Here we assume that cφ is constant and

cφ >

m∑
j=1

λ∗
j + 2γ(1.13)

for all λ∗ ∈M(x∗), where γ is some prescribed safety factor.
Consider the quadratic program

min ∇f(x)T∆+ 1
2∆

T∆
∆

subject to gj(x) +∇gj(x)T∆ ≤ 0, j = 1, 2, . . . ,m.
(1.14)

We denote the unique solution of this program by d or d(x) and the set of its multipliers
byM(x). At x∗ (1.14) has the same multiplier set as (1.2), which are both denoted
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by M(x∗). Since MFCQ is satisfied at x∗, this QP is feasible in a neighborhood of
x∗. The KKT conditions for this QP require

d+∇f(x) +∇g(x)λ = 0,
λ ≥ 0, g(x) +∇g(x)T d ≤ 0, λT (g(x) +∇g(x)T d) = 0.

(1.15)

With these notations, d = 0 at x = x∗.
At x∗, the QP (1.14) satisfies MFCQ and the second-order sufficient conditions

from [25]. Therefore, there exists cd such that, in a neighborhood of x∗ we have [25]
||d|| ≤ cd||x− x∗|| and, ∀λ ∈M(x), there exists λ∗ ∈M(x∗) such that

||λ− λ∗|| ≤ cd||x− x∗||.(1.16)

Therefore, from the definition of cφ, there exists a neighborhood of x∗ such that

cφ > γ +

m∑
i=1

λi(1.17)

for all multipliers λ ∈M(x). For such x, it can be verified by inspection that (d, ζ = 0)
is a solution of (1.12) [3, p. 195]. We therefore concentrate on the QP (1.14) because,
if cφ is large enough and we are sufficiently close to x∗, it generates the same descent
direction as (1.12), thus sharing its global convergence property.

For some function h : IRn → IRk we denote by c1h, c2h bounds depending on the
first and second derivatives of h. The positive and negative parts of h(x) are h+(x) =
max{h(x), 0}, and, respectively, h−(x) = max{−h(x), 0}, both taken componentwise.
With this notation, h(x) = h+(x) − h−(x). Also, in our notation, ∇gi(x), λ, and
∇g(x)λ are column vectors.

2. Stationary points of NLPs satisfying MFCQ. In this section, we assume
that x is in a sufficiently small neighborhood of x∗, whose size or properties are
specified in each of the following results. In particular, the standing assumptions hold
on all neighborhoods considered here and

∇gi(x)T p < −ζ0 ∀i and x ∈W (x∗).(2.1)

Here p with ||p|| = 1 is one of the vectors satisfying (1.5), ζ0 > 0, and W (x∗) is a
suitable neighborhood of x∗.

Lemma 2.1. There exist ᾱP > 0, cP > 0, such that, ∀x ∈W (x∗),

g(x) ≤ 0, gi(x) = 0 for some i, 1 ≤ i ≤ m⇒ P (x− αp) ≥ cPα ∀α ∈ [0, ᾱP ].

Here P (x) is the usual L∞ penalty function (1.10).
Proof. We have by Taylor’s theorem

gi(x− αp) ≥ −α∇gi(x)T p− c2gα
2 ≥ αζ0 − α2c2g.

We choose

ᾱP =
ζ0
2c2g

.

For 0 ≤ α ≤ αP we have

gi(x− αp) ≥ αζ0 − c2gα
2 = α(ζ0 − αc2g) ≥ α

ζ0
2
.
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The claim follows after choosing cP = ζ0
2 .

The proof of the following lemma can be inferred from [6]. We include it here for
completeness.

Lemma 2.2. There exists a cφ such that

f(x) + cφP (x)− f(x∗) ≥ σ

2
||x− x∗||2(2.2)

for all x in a neighborhood of x∗.
Proof. Let r > 0 be such that B(x∗, r) ⊂ W (x∗). We choose r1 < r

2 such

that α = P (x)
ζ0

< min{ᾱP , r/2} for x ∈ B(x∗, r1). This is always possible because

P (x∗) = 0. We then have that, for any x ∈ B(x∗, r1),

||x+ αp− x∗|| ≤ ||x− x∗||+ α ≤ r

2
+

r

2
= r

and thus x+ αp ∈ B(x∗, r). By the intermediate value theorem, we have that gi(x+
αp) = gi(x) + α∇gi(x + α∗p)T p, where 0 ≤ α∗ ≤ α and thus x + α∗p ∈ B(x∗, r),
implying in turn that ∇gi(x+ α∗p)T p ≤ −ζ0. Therefore gi(x+ αp) ≤ gi(x)− αζ0 =
gi(x)− P (x) ≤ 0. Therefore x+ αp is feasible.

Now take

α1 = min{α̂ ≥ 0 | g(x+ α̂p) ≤ 0}.
If x is infeasible, then α1 > 0 and there exists i such that gi(x + α1p) = 0. Since
x + α1p is feasible, and 0 ≤ α1 ≤ ᾱP , Lemma 2.1 applies (with x + α1p replacing x
and α1 replacing α) to give

P (x) ≥ cPα1.(2.3)

If x is feasible, then α1 = 0 and P (x) = 0, and the previous bound still applies.
From the QG assumption (1.1) and the feasibility of x+ α1p, we must have that

f(x+ α1p)− f(x∗) ≥ σ||x− x∗ + α1p||2

or

f(x)− f(x∗) ≥ σ||x− x∗ + α1p||2 − (f(x+ α1p)− f(x)).(2.4)

By (2.3) and Taylor’s theorem we have

f(x+ α1p)− f(x) ≤ c1fα1 ≤ c1f
cP

P (x).(2.5)

Choose

cφ =
c1f
cP

+
σᾱP

cP
.

Then by (2.3)

cφP (x) =
c1f
cP

P (x) +
σᾱP

cP
P (x) ≥ c1f

cP
P (x) + σᾱPα1 ≥ c1f

cP
P (x) + σα2

1.(2.6)

Using (2.5), (2.4), and (2.6) we get

f(x)− f(x∗) + cφP (x) ≥ σ||x− x∗ + α1p||2 + σα2
1 = σ||x− x∗ + α1p||2 + σ||α1p||2.
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The conclusion follows, because

σ||x− x∗ + α1p||2 + σ||α1p||2 ≥ σ

2
||x− x∗||2

from the Cauchy–Schwartz inequality.
We can assume that cφ from the previous lemma satisfies (1.17); otherwise we

replace it with the right-hand side of (1.17) and the conclusion of the lemma still
holds for the new cφ.

To prove the following results, we will use the results from [16] concerning sets
defined by linear constraints:

P = {x ∈ IRn|aTi x+ bi ≤ 0, i = 1, 2, . . . ,mne, ã
T
j x+ b̃j = 0, j = 1, 2, . . . ,meq}.

(2.7)

For such a set, denote by d(x,P) the distance from a point x ∈ IRn to the set P. Also,
denote by dP(x) the maximum value of the infeasibility:

dP(x) = max{0, aT1 x+ b1, a
T
2 x+ b2, . . . , a

T
mne

x+ bmne
,

|ãT1 x+ b̃1|, |ãT2 x+ b̃2|, . . . , |ãTmeq
x+ b̃meq

|}.
Then there exists a number µ∗(P) > 0 such that

µ∗(P)d(x,P) ≤ dP(x) ∀x ∈ IRn.

The following lemma uses the fact thatM(x∗) is polyhedral and can thus be expressed
in the form (2.7).

Lemma 2.3. Let I be an index set such that there exists a multiplier λ̄ ∈M(x∗)
with λ̄I = 0. Then there exists a constant cI such that ∀λ ∈ M(x∗) there exists a
λ∗ ∈M(x∗) with λ∗

I = 0 and such that ||λ− λ∗|| ≤ cI ||λI ||∞.
For a vector λ we have denoted by λI the restriction of the vector to the index

set I.
Proof. Let MI(x∗) be the set of all λ∗ ∈ M(x∗) such that λ∗

I = 0. Then
ν ∈MI(x∗) satisfies

m∑
j=1

∇gj(x∗)νj = −∇f(x∗),(2.8)

νI = 0,(2.9)

ν ≥ 0.(2.10)

From our assumptions,MI(x∗) is not empty. Thus from [16] there exists a µ∗(MI) >
0 such that

µ∗(MI)d(λ,MI) ≤ dMI (λ).(2.11)

However, since λ ∈ M(x∗) satisfies (1.3), we have that only the constraints λI = 0,
(2.9), are violated. Thus dMI (λ) = ||λI ||∞. The conclusion follows from (2.11) by
taking cI = 1

µ∗(MI) . The proof is complete.

Corollary 2.4. There exists cλ > 0 such that, ∀λ ∈ M(x∗), there exists
λ∗ ∈M(x∗), with λ∗

I = 0 and such that ||λ− λ∗|| ≤ cλ||λI ||∞, whenever
MI(x∗) = {λ̄|λ̄ ∈M(x∗), λ̄I = 0} �= ∅.
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Proof. With the notations of Lemma 2.3, we take

cλ = max
I⊂{1,2,... ,m}

cI for feasibleMI(x∗).(2.12)

Lemma 2.5. There exists a neighborhood W1(x
∗) such that, ∀x ∈ W1(x

∗), λ ∈
M(x), λI = 0 implies that there exists a λ∗ ∈M(x∗) with λ∗

I = 0.
Proof. Assume the contrary. Then there exists a sequence xk → x∗ such that

there exists λk ∈M(x) and an index set I for which λI = 0, but λ∗
I �= 0 ∀λ∗ ∈M(x∗).

Since there is only a finite set of index sets, we can extract an infinite subsequence
for which the above happens for a fixed set I. By extracting another subsequence, we
can assume that λk is convergent, from (1.16) and the fact thatM(x∗) is compact.

But then λk → λ∗ ∈M(x∗) and λ∗
I = 0, a contradiction.

From here on we will use extensively the fact that, for h twice continuously
differentiable, we have

∥∥∥h(x)− h(x∗)− (∇h(x)+∇h(x∗))T

2 (x− x∗)
∥∥∥ ≤ ψ3h(||x− x∗||)||x− x∗||2,

(2.13)

where ψ3h(z) : IR → IR is a continuous function with ψ3h(0) = 0. Indeed by Taylor’s
theorem we have that there exist continuous functions ψ1

3h(z) : IR → IR and ψ2
3h(z) :

IR→ IR with ψ1
3h(0) = ψ2

3h(0) = 0 such that∥∥∥∥h(x)− h(x∗)−∇xh(x
∗)T (x− x∗)− 1

2
(x− x∗)T∇xxh(x

∗)(x− x∗)
∥∥∥∥

≤ ψ1
3h(||x− x∗||)||x− x∗||2,

and ∥∥∥∥ (∇xh(x) +∇xh(x
∗))T

2
(x− x∗)− (∇xh(x

∗) +∇xh(x
∗))T

2
(x− x∗)

−1

2
(x− x∗)T∇xxh(x

∗)(x− x∗)
∥∥∥∥ ≤ ψ2

3h(||x− x∗||)||x− x∗||2.

The relation (2.13) now follows by comparing the last two inequalities and taking
ψ3h(z) = ψ1

3h(z) +ψ2
3h(z). If h were three times continuously differentiable, then ψ3h

would be related to the third derivative of h, from the error formula of trapezoidal
integration [2], which is the origin of our subscript notation.

Theorem 2.6. There exists a constant cσ > 0 such that in a neighborhood of x∗

we have that

||d||2 + P (x) + λT g−(x) ≥ cσ||x− x∗||2,

where (d, λ) is the solution of the QP (1.14).
Proof. From (1.16), there exists a λ∗ ∈M(x∗) such that ||λ− λ∗|| ≤ cd||x− x∗||.

Let I be the set of indices i for which λi = 0. We have ||λ∗
I ||∞ = ||λ∗

I − λI ||∞ ≤
cd||x−x∗||. From Corollary 2.4 and Lemma 2.5 there exists a λ̃ ∈M(x∗) with λ̃I = 0
and ||λ̃− λ∗|| ≤ cλ||λ∗

I ||∞ ≤ cλcd||x− x∗||. As a result

||λ− λ̃|| ≤ ||λ− λ∗||+ ||λ∗ − λ̃|| ≤ (cd + cdcλ)||x− x∗||(2.14)
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and λi = 0⇒ λ̃i = 0. The important consequence of this fact, using the complemen-
tarity relations from (1.15), is that(

λi + λ̃i

)
gi(x) = 2λigi(x) +

(
λ̃i − λi

)
gi(x)

= −
(
λ̃i − λi

)
∇gi(x)T d+ 2λigi(x) ∀i, 1 ≤ i ≤ m.

(2.15)

Indeed, λi > 0 implies gi(x) + ∇gi(x)T d = 0 from (1.15), whereas λi = 0 implies
λ̃i = 0 and all the above equalities are 0.

From Lemma 2.2 we have that
σ

2
||x− x∗||2 ≤ f(x)− f(x∗) + cφP (x)

≤ ψ3f (||x− x∗||)||x− x∗||2 + 1

2
(∇f(x) +∇f(x∗))T (x− x∗) + cφP (x)

= ψ3f (||x− x∗||)||x− x∗||2 + cφP (x)

+
1

2

(
−d−∇g(x)λ−∇g(x∗)λ̃

)T
(x− x∗).

Here (d, λ) is a solution of (1.15), and λ̃ ∈ M(x∗) satisfies (1.3). We also used
(2.13). We now employ the identity ab+ cd = 1

2 ((a+ c)(b+d)+(a− c)(b−d)), (2.14),

and || (∇g(x)−∇g(x∗))T (x− x∗)|| ≤ c2g||x− x∗||2 from Taylor’s theorem to get, by
continuing from the previous equation,

σ

2
||x− x∗||2 ≤ ψ3f (||x− x∗||)||x− x∗||2

+
1

2

(
− d− 1

2
(∇g(x) +∇g(x∗))

(
λ+ λ̃

)

− 1

2
(∇g(x)−∇g(x∗))

(
λ− λ̃

))T

(x− x∗) + cφP (x)

≤ (ψ3f (||x− x∗||) + c2gcd(1 + cλ)||x− x∗||)||x− x∗||2

+ cφP (x)− 1

2
dT (x− x∗)− 1

4

(
(∇g(x) +∇g(x∗))

(
λ+ λ̃

))T
(x− x∗).(2.16)

We denote

λ∗
∞ = max

λ∗∈M(x∗)
max

i=1,2,... ,m
λ∗
i

and

λ∞ = max{λ∗
∞, 1}.(2.17)

From (1.16), ||λ + λ̃||∞ ≤ 4λ∞ for x sufficiently close to x∗. By using the definition
of λ∞, (2.13), (2.15), and (2.14), we get

−1

4

(
(∇g(x) +∇g(x∗))

(
λ+ λ̃

))T
(x− x∗)

= −1

4
(x− x∗)T

(
(∇g(x) +∇g(x∗))

(
λ+ λ̃

))
≤ 2λ∞ψ3g (||x− x∗||) ||x− x∗||2 − 1

2

(
λ+ λ̃

)T
g(x)

= 2λ∞ψ3g (||x− x∗||) ||x− x∗||2 + 1

2

(
λ̃− λ

)T
∇g(x)T d− λT g(x)

≤ 2λ∞ψ3g (||x− x∗||) ||x− x∗||2 + c1g (cd + cdcλ) ||x− x∗||||d||+ λT g−(x),
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since −λT g(x) = λT g−(x)−λT g+(x). Using the above bound in (2.16), together with
− 1

2d
T (x− x∗) ≤ 1

2 ||d||||x− x∗||, we get

σ

2
||x− x∗||2 ≤ (ψ3f (||x− x∗||) + c2gcd (1 + cλ) ||x− x∗||

+2λ∞ψ3g (||x− x∗||)) ||x− x∗||2

+cφP (x) +
1

2
||d||||x− x∗||+ c1g (cd + cdcλ) ||x− x∗||||d||+ λT g−(x)

= cφP (x) + λT g−(x) +B||x− x∗||||d||+ ψ (||x− x∗||) ||x− x∗||2,

where B = 1
2 +c1g(cd+cdcλ) and ψ(||x−x∗||) = (ψ3f (||x− x∗||)+c1gcd (1 + cλ) ||x−

x∗||+ 2λ∞ψ3g (||x− x∗||)).
We can now choose a sufficiently small neighborhood of x∗ such that ψ(||x−x∗||) ≤

σ
4 and subtract the last term of the last relation from the lower bound σ

2 ||x − x∗||2.
We take A = λT g−(x) + cφP (x), and with this new notation, we get that

σ

4
||x− x∗||2 ≤ A+B||d||||x− x∗||.

We treat ||x−x∗|| as a variable and, by using the formulas for the quadratic equation,
we get that

||x− x∗|| ≤ 2

σ

(
B||d||+

√
B2||d||2 +Aσ

)
.

By using the arithmetic-quadratic mean inequality, we get that

||x− x∗||2 ≤ 8

σ2

(
2B2||d||2 +Aσ

)
=

16

σ2
B2||d||2 + 8

σ

(
λT g−(x) + cφP (x)

)
≤ max

{
16

σ2
B2,

8

σ
,
8

σ
cφ

}(||d||2 + P (x) + λT g−(x)
)
.

Choosing

cσ =
1

max
{

16
σ2B2, 8

σ ,
8
σ cφ

} ,
we prove the claim.

Corollary 2.7. x∗ is an isolated stationary point.
Proof. Let x be another stationary point of the NLP in the neighborhood of x∗

where the above theorem holds. Therefore there exists a λ ∈ M(x) satisfying (1.3).
Hence (d = 0, λ) is a solution of (1.15) and d = 0 is the unique solution of the strictly
convex QP (1.14). Since d = 0, x is feasible from (1.14) and P (x) = 0 or g = −g−(x).
Now from the complementarity conditions in (1.15) we get λT g− = −λT g = 0. From
the previous theorem we get x = x∗, which proves the claim.

Corollary 2.8. If the second-order sufficient condition (1.8) is satisfied for one
multiplier, and if MFCQ holds at x∗, then x∗ is an isolated stationary point.

Proof. Since x∗ satisfies the QG condition (1.1) under these assumptions [8, 9]
and MFCQ holds, Corollary 2.7 applies.

3. An example without a locally convex augmented Lagrangian. We
construct an example of an NLP with a unique solution at which the QG condition
(1.1) and MFCQ (1.5) hold but for which (1.8) does not occur for any multiplier
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λ∗ ∈ M(x∗). The example from [17, p. 270] also does not satisfy (1.8) for any
multiplier λ∗ ∈ M(x∗), but it does not have a locally unique solution (ζ1 = ζ2 is a
solution of that example) and cannot satisfy (1.1).

Consider the matrix

Q =

(
1 0
0 −2

)
.

Take u = (
√

3
2 , 1

2 ). We then have that uTQu = 1
4 and ||u||2 = 1. Since the vector

u0 = (1, 0) corresponds to the positive eigenvalue, we have that for any u at an angle
of at most π

6 from u0, u
TQu ≥ 1

4 ||u||2. Consider now the rotation matrix

Uk =

(
cos(kπ4 ) sin(kπ4 )
− sin(kπ4 ) cos(kπ4 )

)
.

Define Qk = UT
k QUk for k = 0, . . . , 3. We then have Q0 +Q2 = Q1 +Q3 = −I2,

since Q0 and Q2 have the same axes of symmetry, but with the eigenvalues switched.
Also, for any u ∈ IR2, there exists a k such that uTQku ≥ 1

4 ||u||2, since the π
3 wide

cones centered at the axis of the positive eigenvalues of Qk now sweep the entire IR2.
Consider now the optimization problem

min
(x,y,z)

z subject to z ≥ (x y)Qk(x y)
T , k = 0, . . . , 3.(3.1)

By the previous observation, we have that z ≥ 1
4 (x

2+y2) on the feasible set; thus

z ≥ 0. Clearly, the only solution of the problem is (0, 0, 0). Since z ≥ z2

4 , if 0 ≤ z ≤ 4,
we have that z ≥ 1

8 (x
2 + y2 + z2) ∀ x, y, z feasible and 0 < z < 4.

Therefore at x∗ = (0, 0, 0) the QC condition is satisfied for the above NLP, with
constant 1

8 . Obviously, MFCQ holds at (0, 0, 0), and a simple calculation following
(1.3) shows that

∑
k=0...3 λk = 1, for λk a multiplier of (3.1). In particular, at least

one multiplier has to be positive. Also, at (0, 0, 0), all constraints are active and their
gradients are (0, 0,−1) for any of them. As a result, the linear constraints in (1.8)
now become either z ≥ 0 or z = 0, with at least one being z = 0. Therefore the
critical cone at x∗ is C = {(x, y, z) ∈ IR3|z = 0}.

Assume that there is a choice λ ∈ M(x∗) such that Lxx, the Hessian of the
Lagrangian, is positive semidefinite on the critical cone:

(x y z)

( ∑
k=0...3 λkQk 0

0 0

) x
y
z


 ≥ 0 ∀(x, y, z) such that z = 0.(3.2)

This is equivalent to ∑
k=0...3

λkQk � 0.(3.3)

Since our construction is invariant to rotations with π
4 (UT

1 Q3U1 = Q0), it follows that
the positive semidefiniteness holds for any circular permutation σ of this multiplier
set: ∑

k=0...3

λσ(k)Qk � 0.(3.4)
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We denote by Ac(4) the set of circular permutations of four elements. Since the set
of positive definite matrices is a convex cone, and∑

σ∈Ac(4)

λσ(k) = 1,

we must have

0 � 1

4

∑
σ∈Ac(4)

∑
k=0...3

λσ(k)Qk =
1

4

∑
k=0...3

Qk

∑
σ∈Ac(4)

λσ(k) =
1

4

∑
Qk = −1

2
I,

which is impossible. Therefore Lxx cannot be positive semidefinite on the critical cone
for any choice λ ∈ M(x∗). Hence the second-order conditions from [8, 25] will not
hold for any choice of the multipliers.

3.1. The augmented Lagrangian approach of LANCELOT. Here we dis-
cuss the expected behavior of LANCELOT [7], a Lagrange multiplier algorithm, when
applied to this example. For this method, the inequalities of the NLP (1.2) are con-
verted into equalities [4, 7]. The feasible set can be represented as [7]

gi(x) + ti = 0, ti ≥ 0 for i = 1, . . . ,m.

The NLP is replaced by a bound-constrained optimization problem. The equality
constraints are incorporated in the objective function based on an estimate λ of the
multipliers and a penalty term,

min f(x) +
∑4

i=1[λi(gi(x) + ti) +
1
µ (gi(x) + ti)

2]
x

subject to ti ≥ 0, i = 1, . . . ,m.

(3.5)

Here µ is the barrier parameter. The objective function in (3.5) is the augmented
Lagrangian. The problem is subjected to an additional trust-region constraint [7] to
enforce global convergence.

The desired outcome is to have µ bounded away from zero and the trust region
inactive as λ approaches M(x∗) and the solution of the above problem approaches
x∗.

If that happens for our example, then, by a continuity argument following the
lower boundedness of µ, (x∗, t = 0) should be a solution of (3.5) for an appropriate
choice of λ, µ. Since (3.5) has linearly independent gradients of the constraints, both
the first- and second-order necessary conditions of the type (1.8) must hold [9]. The
first-order necessary condition results in

∇f(x∗) +∇g(x∗)λ = 0, λ+ ν = 0, ν ≤ 0,

where ν, with components νi ≤ 0, are the multipliers associated with the variables ti.
As a result λ ∈M(x∗). The second-order necessary conditions require that

∇(x,t)(x,t)L|(x∗,0) =

(
Fxx +

∑4
i=1(λiGxx + 2

µ∇gi(x∗)∇gi(x∗)T ) 2
µ∇g(x∗)

2
µ∇g(x∗)T 2

µI4

)

be positive semidefinite on the critical cone C of the NLP (3.5). In this example, C
contains the subspace (δx, δt) with δt = 0. This results in

0 � Fxx +

4∑
i=1

(
λiGxx +

2

µ
∇gi(x∗)∇gi(x∗)T

)
=

( ∑4
i=1 λiQi 0
0 8

µ

)
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since ∇gi(x∗)T = (0, 0,−1) ∀i = 1, . . . ,m or

0 �
( ∑4

i=1 λiQi 0
0 8

µ

)
.

We proved that the last matrix cannot be positive semidefinite for our example
and we thus get a contradiction. This shows that either the trust region will be active
arbitrarily close to x∗ or µ→ 0.

This also shows that the Hessian of the augmented Lagrangian of the equality
constrained problem

Fxx +

4∑
i=1

[
λiGxx +

2

µ
∇gi(x∗)∇gi(x∗)T

]

is not positive semidefinite and thus the augmented Lagrangian of the equality con-
strained problem cannot be locally convex.

4. Linear convergence of the SQP with L∞ penalty P (x). In this section
we analyze the rate of convergence of an SQP algorithm that uses (1.14) to determine
a descent direction for the merit function φ(x) (1.11). The key result is Lemma 4.2,
which bounds below the decrease in φ(x) proportionally to the quantity in Theorem
2.6.

The points x considered in this subsection are assumed to be sufficiently close to
x∗. The notation d and λ ∈ M(x) will refer to the solutions of (1.14) and (1.15).
Also, P (x) is the L∞ penalty function (1.10) and φ(x) = f(x) + cφP (x).

4.1. Proof of the technical results.
Lemma 4.1. There exists c2g > 0 such that

P (x+ αd) ≤ (1− α)P (x) + c2gα
2||d||2 ∀α ∈ [0, 1].

Proof. Since d is a feasible point of (1.14), we have that ∇gi(x)T d ≤ −gi(x) ∀i ∈
{1, . . . ,m}. By Taylor’s remainder theorem

gi(x+ αd) ≤ (1− α)gi(x) + c2gα
2||d||2 ∀α ∈ [0, 1] ∀i = 1, . . . ,m.

Hence

max
1≤i≤m

{gi(x+ αd)} ≤ (1− α) max
1≤i≤m

{gi(x)}+ c2gα
2||d||2

≤ (1− α)P (x) + c2gα
2||d||2 ∀α ∈ [0, 1].

This completes the proof.
Lemma 4.2. There exist ᾱ, 0 < ᾱ ≤ 1, and c2 > 0 such that, for some (λ) ∈

M(x)

φ(x+ αd)− φ(x) ≤ −α1

2

(
(d)T d+ γP (x) + λT g−(x)

)
≤ −c2α(||d||2 + P (x) + λT g−(x)) ∀α ∈ [0, ᾱ].

Proof. Writing the KKT conditions for (1.14), we obtain

d+∇f(x) +
m∑
i=1

λi∇gi(x) = 0
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and, hence,

(d)T d+∇f(x)T d+
m∑
i=1

λi∇gi(x)T d = 0,

(d)T d+∇f(x)T d−
m∑
i=1

λigi(x) = 0,

since, by the complementarity conditions satisfied by the solution of (1.14),
λT∇g(x)T d = −λT g(x) ∀i = 1,m. Therefore, since gi(x) = g+

i (x)− g−i (x),

∇f(x)T d = −(d)T d+
m∑
i=1

λi(g
+
i (x)− g−i (x))

≤ −(d)T d+ P (x)

(
m∑
i=1

λi

)
− λT g−(x)(4.1)

≤ −(d)T d+ (cφ − γ)P (x)− λT g−(x)

by (1.10), (1.17). By Taylor’s remainder theorem,

f(x+ αd) ≤ f(x) + α∇f(x)T d+ c2fα
2||d||2.

Hence, for α ∈ [0, 1], we have that

f(x+ αd) + cφP (x+ αd) ≤ f(x) + α∇f(x)T d+ c2fα
2||d||2

+(1− α)cφP (x) + cφc2gα
2||d||2 ≤ f(x) + (1− α)cφP (x)

+α
(−(d)T d+ (cφ − γ)P (x)− λT g−(x)

)
+ (cφc2g + c2f )α

2||d||2
= f(x) + cφP (x)− α

(
(d)T d+ γP (x) + λT g−(x)

)
+ (cφc2g + c2f )α

2||d||2

from (4.1) and Lemma 4.1. Therefore, for α ∈ [0, 1],

φ(x+ αd)− φ(x) ≤ −α ((d)T d+ γP (x) + λT g−(x)
)
+ (cφc2g + c2f )α

2||d||2.
The result of the statement follows by choosing ᾱ = min{1, 1

2(cφc2g+c2f )} and c2 =
1
2 min{γ, 1}.

Lemma 4.3. There exists a constant c5 such that, ∀λ ∈M(x),

φ(x)− φ(x∗) ≤ c5
(
P (x) + ||x− x∗||2 + λT g−(x) + ||d||2) .

Proof. From (1.15) and the definition of the Lagrangian (1.4) it follows, using
Taylor’s theorem, that for a sufficiently small neighborhood of x, we have

L(x, λ∗)− L(x∗, λ∗)− Σ||x− x∗||2 ≤ 0 ∀λ∗ ∈M(x∗),(4.2)

where Σ = max{c2f , cφc2g}. Also, by (1.16), we can choose λ∗ ∈M(x∗) such that

|g(x)T (λ∗ − λ)| ≤ c1gcd||x− x∗||2.
Since L(x∗, λ∗) = f(x∗) and thus L(x, λ∗) − L(x∗, λ∗) = f(x) − f(x∗) + (λ∗)T g(x),
(4.2) results in

f(x)− f(x∗)− Σ||x− x∗||2 + (λ)T g(x)

= f(x)− f(x∗)− Σ||x− x∗||2 + (λ∗)T g(x) + (λ− λ∗)T g(x)
≤ (λ− λ∗)T g(x) ≤ c1gcd(||x− x∗||2),
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and thus

f(x)− f(x∗) ≤ (Σ + c1gcd)||x− x∗||2 − (λ)T g(x)

≤ (Σ + c1gcd)||x− x∗||2 + λT g−(x).

Therefore

f(x) + cφP (x)− f(x∗) ≤ (Σ + c1gcd)||x− x∗||2 + cφP (x) + λT g−(x).

The conclusion of the lemma follows by choosing c5 = max{Σ+ c1gcd, cφ, 1}.
4.2. Nondifferentiable exact penalty algorithms and the linear conver-

gence theorem. The linearization algorithm [4, p. 372] has the following form:
(1) Set k = 0 and choose x0.
(2) Compute dk from (1.12).
(3) Choose αk from a line search procedure, and set x(k+1) = xk + αkdk.
(4) Set k = k + 1 and return to step 2.

The stepsize αk is chosen by one of the following procedures [4, p. 372].
(a) Minimization rule. Here αk is chosen such that

φ(xk + αkdk) = min
α≥0
{φ(xk + αdk)}.

(b) Limited minimization rule. Here a fixed scalar s > 0 is selected, and αk is
chosen such that

φ(xk + αkdk) = min
α∈[0, s]

{φ(xk + αdk)}.

(c) Armijo rule. Here fixed scalars s, τ , and σ with s > 0, τ ∈ (0, 1), and
σ ∈ (0, 1

2 ) are chosen and we set αk = τmks, where mk is the first nonnegative
integer m for which

φ(xk)− φ(xk + τmsdk) ≥ στms(dk)T dk.

It can be shown that the Armijo rule yields a stepsize after a finite number of itera-
tions.

The following theorem establishes the convergence properties of the linearization
algorithm. The global convergence properties, established in [3, Prop. 4.3.3], are also
stated here for completeness.

Theorem 4.4. Let xk be a sequence generated by the linearization algorithm,
where the stepsize αk is chosen by the minimization rule, limited minimization rule,
or Armijo rule. Then any accumulation point of the sequence xk is a stationary point
of φ(x) = f(x) + cφP (x). If xk → x∗, where x∗ is a strict local minimum of the
problem (1.2) satisfying the local quadratic growth (1.1), the MFCQ (1.5), and with
cφ satisfying (1.17), then φ(xk)→ φ(x∗) Q-linearly and xk → x∗ R-linearly.

Proof. The global convergence properties are proved in [3, Prop. 4.3.3]. For
the rate of convergence, we use the argument from section 1.1 that near x∗, (1.12)
produces the same direction as (1.14), for which we proved our estimates. We prove
the linear convergence statement only for the Armijo rule, the proof being similar for
the other stepsize selection mechanisms. By Lemma 4.2

φ(xk)− φ(xk + αdk) ≥ α 1
2

(
(dk)T dk + γ

2P (xk) + (λk)T g−(xk)
)

≥ α 1
2 (d

k)T dk > σα(dk)T dk
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∀ α ∈ [0, ᾱ]. Since mk is the smallest integer m for which

φ(xk)− φ(xk + τmsdk) ≥ στms(dk)T dk,

it follows that τms ≥ τᾱ. This therefore ensures that the stepsize is at least τᾱ for k
sufficiently large. As a result of Lemma 4.2, we have that

φ(xk)− φ(x(k+1)) ≥ c2τᾱ
(||dk||2 + P (xk) + (λk)T g−(xk)

)
.(4.3)

On the other hand, by Lemma 4.3 we have that

φ(xk)− φ(x∗) ≤ c5
(
P (xk) + ||xk − x∗||2 + ||dk||2 + (λk)T g−(xk)

)
.

By Theorem 2.6 and the previous relation it follows that there exists c6 =
c5(1 +

1
cσ
) such that

φ(xk)− φ(x∗) ≤ c6((λ
k)T g−(xk) + P (xk) + ||dk||2)

≤ c6
τᾱc2

(φ(xk)− φ(xk+1)) = δ(φ(xk)− φ(xk+1))

= δ(φ(xk)− φ(x∗))− δ(φ(x(k+1))− φ(x∗))

by using (4.3) and where δ = c6
τᾱc2

. After some obvious manipulation, it follows that

δ(φ(x(k+1))− φ(x∗)) ≤ (δ − 1)(φ(xk)− φ(x∗)),

which proves the Q-linear convergence [23] of the sequence φ(xk) to φ(x∗) with a
linear rate of at most δ−1

δ . Therefore

lim sup
k→∞

k
√
φ(xk)− φ(x∗) ≤ δ − 1

δ
.

From Lemma 2.2

φ(xk)− φ(x∗) ≥ σ

2
||xk − x∗||2.

Therefore

lim sup
k→∞

k
√
||xk − x∗|| ≤

(
δ − 1

δ

) 1
2

,

which proves the R-linear convergence [23] to 0 of the sequence xk − x∗. The proof is
complete.

5. Numerical experiments with degenerate NLP. We experimented with
several nonlinear programming packages on the example from section 3. Certainly,
comparing the behavior of nonlinear programming algorithms on a unique degener-
ate example cannot result in a complete characterization of the relative performance.
Nevertheless, it may be of interest to determine whether methods using augmented
Lagrangians will really encounter problems when solving an example without a pos-
itive semidefinite augmented Lagrangian. We also desire to validate the theoretical
conclusions of the preceding sections.
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Table 5.1
Rates of convergence for the L∞ penalty algorithm.

Iteration
φ(xk)−φ(x∗)

φ(xk+1)−φ(x∗)
4 4.00
9 4.00

14 3.99
19 3.99
24 4.00
27 4.00

We have shifted the origin for our example to avoid one-step convergence of al-
gorithms that start at (0, 0, 0) by default. The algebraic form of the example is

min(x,y,z) z
subject to g0(x, y, z) = (x− 1)2 − 2(y − 1)2 − z ≤ 0,

g1(x, y, z) = − 1
2 ((x− 1)2 + (y − 1)2) + 3(x− 1)(y − 1)− z ≤ 0,

g2(x, y, z) = −2(x− 1)2 + (y − 1)2 − z ≤ 0,
g3(x, y, z) = − 1

2 ((x− 1)2 + (y − 1)2)− 3(x− 1)(y − 1)− z ≤ 0.

(5.1)

From our analysis, we have that w∗ = (1, 1, 0) is a minimum satisfying the QG
condition (1.1) with z − 0 ≥ 1

8 ((x− 1)2 + (y − 1)2 + z2) for feasible (x, y, z) near w∗.
Among the solvers we used, MINOS [21] and SNOPT [13] use quasi-Newton meth-

ods that do not require second-order derivatives of the constraints. They also use an
augmented Lagrangian as a merit function. DONLP2 [27] solves a linear system in-
stead of a QP at each iteration and uses an L1 penalty function. LANCELOT [7] uses
an augmented Lagrangian technique in conjunction with a trust region. FilterSQP
[10] also uses a trust region approach but with a special classification of the relative
merits of the iterates instead of a penalty or merit function. LOQO [28] is an interior-
point approach. Finally, LINF is an ad hoc Matlab implementation of the L∞ exact
penalty function described in the preceding section, with an Armijo rule. The latter
algorithm is started at (0, 0, 0). All runs, except for the L∞ penalty and FilterSQP
algorithms, were done on the NEOS server [22], where additional documentation can
be found for all of the above solvers.

For such a small example the time of execution is not relevant in comparing the
behavior of the solvers. Since the solution of the problem is known, we chose as a
criterion for comparison the best achievable solution. We set all relevant tolerances to
1e− 16, via the AMPL interface of NEOS. Smaller tolerances may interfere with the
machine precision, though most of the solvers gave comparable answers even when the
tolerances were set to 1e− 20. Larger tolerances (1e− 12 to 1e− 15) again resulted in
very similar results. We also changed the iteration limit for LOQO and both runs are
reported. DONLP2 converged to all digits in the mantissa with the default settings,
and no change was made.

Table 5.1 shows the ratios (φ(xk)−φ(x∗))/(φ(xk+1)−φ(x∗)) at various iterations
for our implementation LINF. All are close to 4.00, which is consistent with the Q-
linear convergence claim for φ(x) from Theorem 4.4.

The selected µ updates from Table 5.2 show that LANCELOT decreases succes-
sively the value of the penalty parameter (by 16 orders of magnitude), until it stops
with the message “Step size too small.” This was indeed one of the alternatives al-
lowed by our analysis in section 3.1 (µ→ 0). This is an undesirable outcome since the
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Table 5.2
Reduction of the penalty parameter µ for LANCELOT.

Iteration Penalty parameter µ Trust region radius ||||∞
16 1e − 2 3.81 e − 02
43 1e − 4 1.1 e − 02
85 1e − 6 1.35 e − 03
141 1e − 8 4.22 e − 05
203 1e − 10 5.28 e − 06
241 1e − 12 1.70 e − 06
268 1e − 14 1.93
283 1e − 16 4.41 e02
323 1e − 18 2.19 e04
336 STOP

Table 5.3
Best achievable solution for various nonlinear solvers on the problem (5.1).

Solver ||xfinal − x∗||2 Iterations Final message
DONLP2 1.45e − 16 4 Success
FilterSQP 5.26e − 09 28 Convergence
LANCELOT 8.65e − 07 336 Step size too small
LINF 1.05e − 08 28 Step size too small
LOQO 1.60e − 07 200 Iteration limit
LOQO 5.50e − 07 1000 Iteration limit
MINOS 4.76e − 06 27 Current point cannot be improved
SNOPT 3.37e − 07 3 Optimal Solution Found

subproblems (3.5) may become harder to solve. The values of all parameters except
µ were read before a penalty update.

The results for all runs are illustrated in Table 5.3. It can be seen that the solvers
that use augmented Lagrangians MINOS, SNOPT, and LANCELOT exhibit an error
of at least one order of magnitude larger compared to all other algorithms. However,
one would expect that SNOPT and MINOS would have at least as good a behavior as
LINF if they use a different merit function, since the nature of the QP solved is very
similar to (1.14). Increasing the iteration limit in LOQO did not result in a better
outcome. It is interesting to note that the outcome in FilterSQP and LINF differ by
only a factor of 2 in the same number of iterations, though FilterSQP uses second-
order information whereas LINF does not. Both LINF and FilterSQP solve QPs at
each iteration. DONLP2 has a remarkable behavior, though further investigation is
necessary to determine whether this has some general implications.

We cannot draw a definitive conclusion from one example. However, based on this
experiment and our theoretical developments, there seems to be an adverse bias for
methods using augmented Lagrangians on degenerate NLPs, like the one above. We
are not advocating the use of LINF on general NLP, since its similarity to steepest
descent makes it very sensitive to ill-conditioning. But the fact that it gives an
outcome comparable to the one of solvers using second-order information shows that,
for better results, a different way of incorporating second-order derivatives may be
necessary.

6. Conclusions. In this work we analyze the behavior of nonlinear programs
in the presence of constraint degeneracy: linear dependence of the gradients of the
active constraints. The problems of interest exhibit minima with a QG property
that satisfy the MFCQ. The novelty of our approach is that, while studying the SQP
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convergence properties, we do not assume the positive semidefiniteness of the Hessian
of the Lagrangian on the critical cone for any of the feasible Lagrange multipliers.
Our conditions are equivalent to a weak second-order sufficient condition [17, 26].

We prove that, under these assumptions, if the data of the problem are twice
continuously differentiable, the target minimum will be an isolated stationary point
of the NLP. We also show that, when started sufficiently close to the minimum, the
L∞ exact penalty SQPs induce Q-linear convergence of the values of the penalized
objective φ(x) = f(x) + cφP (x) and R-linear convergence of the iterates. This shows
that such methods are robust with respect to constraint degeneracy.

We give an example of an NLP with a unique minimum that satisfies our con-
ditions for which the Hessian of the Lagrangian is not positive semidefinite on the
critical cone for any feasible choice of the multipliers. The direct consequence of this
fact is that there is no augmented Lagrangian that will be positive semidefinite at
the solution. Therefore, Lagrange multiplier algorithms will have to drive the penalty
parameter to zero for such examples unless the trust region is active even at conver-
gence.

We provide our computational experience with this small nonlinear program. As
a criteria for comparison we used the best achievable solution, which was obtained
after tuning the parameters of the algorithms. We observed that, for this example,
algorithms that use augmented Lagrangians resulted in errors of one order of mag-
nitude or larger when compared to the other approaches. The Lagrange multiplier
package that we used (LANCELOT [7]) was confined to decrease substantially the
value of the penalty parameter (16 orders of magnitude), which is one of the outcomes
allowed by our analysis. The linear convergence results concerning the L∞ penalty
function were also validated by our experiments.

We believe that attempting to develop a convergence theory in the absence of
the usual second-order conditions is interesting because it may result in algorithms
that are more robust by virtue of the fact that their properties depend on fewer
assumptions. However, how to improve on the current results, and especially how to
define reliable variants of the Newton method (if possible) for this case, is a subject
of future research.
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Abstract. It is shown that a Lagrange multiplier rule that uses approximate Jacobians holds
for mathematical programming problems involving Lipschitzian functions, finitely many equality
constraints, and convex set constraints. It is sharper than the corresponding Lagrange multiplier
rules for the convex-valued subdifferentials such as those of Clarke [Optimization and Nonsmooth
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1. Introduction. In this paper we study mathematical programming problems
of the form

(PE)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , p,

fi(x) = 0, i = p + 1, . . . ,m,
x ∈ Q,

where f0, . . . , fm : Rn → R are (not necessarily differentiable) locally Lipschitzian
functions and Q is a closed convex subset of Rn. We present a Lagrange multiplier rule
which includes many smooth and nonsmooth multiplier rules as corollaries. It uses the
approximate Jacobian of Jeyakumar and Luc [13] which has recently been shown to
enjoy rich (and often exact) calculus for continuous maps, produce sharp conditions for
Lipschitzian maps, and offer a flexible approach for certain analysis and applications
as it can suitably be chosen for specific applications (see [2, 12, 13, 14, 15, 16]). This
approximate Jacobian is connected to the Gâteaux derivative in the sense that a map
between finite dimensional spaces is Gâteaux differentiable at a point if and only if it
admits an approximate Jacobian which is single-valued at the point.

Studies of nonsmooth optimization had led in recent years to the development
of various generalized gradients and associated Lagrange multiplier rules for mathe-
matical programming problems. In particular, the generalized gradients of Clarke [1],
Ioffe [8], Michel and Penot [17], and Mordukhovich [18] have proved to be potent and
powerful tools in mathematical programming. On the other hand, it has long been
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recognized that a sharp Lagrange multiplier rule for a nonsmooth optimization prob-
lem is vital for obtaining accurate and more selective first-order necessary conditions.
It is also one of the chief reasons behind the development of smaller convex-valued
subdifferentials such as those introduced by Michel and Penot [17] and Treiman [21],
and nonconvex subdifferentials such as those studied by Ioffe [9], Mordukhovich [18],
and Treiman [22].

There have been many contributors to the extension of the classical Lagrange
multiplier rules to nonsmooth mathematical programming problems involving finitely
many inequalities and no equality constraints (see [1, 3, 4, 11, 17] and other references
therein). However, such results for problems with equality and set constraints have so
far been limited. Recently, Ioffe [10] has made a valuable contribution to the subject
by establishing a Lagrange multiplier rule with small convex-valued subdifferentials
for problems involving both finitely many equality and convex set constraints. In fact,
Ioffe’s approach to the Lagrange multiplier theory, which uses controllability criteria
and the theory of fans, provides the inspiration for the present work. It is shown first
that an approximate Jacobian of a locally Lipschitzian map produces a fan which is
a prederivative of the map [7, 8]. The multiplier result is then obtained by means of
the controllability criterion employed by Ioffe [8].

Our discussion proceeds as follows. In section 2 we review the generalized calculus
of approximate Jacobians and present a sharp generalized chain rule formula for dif-
ferentiation of composite functions. In section 3 we relate approximate Jacobians to
the ideas of fans and prederivatives, establish a Lagrange multiplier rule for (PE) and
compare with other corresponding multiplier rules. Section 4 provides an application
of the multiplier rule to a class of nonsmooth minimax problems.

2. Sharp nonsmooth calculus. In this section we present generalized calculus
of approximate Jacobians. We assume throughout the paper that F is a map from R

n

into Rm with the components (f1, . . . , fm). For each v ∈ Rm the composite function
(vF ) : Rn → R is defined by

(vF )(x) = 〈v, F (x)〉 =

m∑
i=1

vifi(x).

The upper and lower Dini directional derivatives of f : Rn → R at x in the direction
u ∈ Rn are defined by

f+(x, u) := lim sup
t↓0

f(x + tu)− f(x)

t

and

f−(x, u) := lim inf
t↓0

f(x + tu)− f(x)

t
.

Note, for instance, that if f : Rn → R is Lipschitzian with Lipschitz constant k′,
then the upper Dini directional derivative f+(x, ·) is also Lipschitzian with the same
Lipschitz constant k′. We denote by Rm×n the space of all (m × n) matrices. The
convex hull and the closed convex hull of a set A are denoted by co(A) and co (A),
respectively.

Definition 2.1 (see [16, 13]). The map F : Rn → R
m admits an approximate

Jacobian ∂∗F (x) at x ∈ Rn if ∂∗F (x) ⊆ Rm×n is closed and for each v ∈ Rm,

(vF )+(x, u) ≤ sup
M∈∂∗F (x)

〈v,Mu〉 ∀u ∈ Rn.(2.1)
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We allow infinite values on both sides of the inequalities in (2.1) so that the Dini
directional derivatives may attain infinite values. A matrix M of ∂∗F (x) is called an
approximate Jacobian matrix of F at x. When m = 1, the condition (2.1) is equivalent
to the conditions that

f+(x, u) ≤ sup
ξ∈∂∗f(x)

〈ξ, u〉 & f−(x, u) ≥ inf
ξ∈∂∗f(x)

〈ξ, u〉.

In this case the set ∂∗f(x) is called the Jeyakumar–Luc (J–L) subdifferential of f at
x.

Note that the Clarke subdifferential ∂Cf(x) [1], Michel–Penot subdifferential
∂�f(x) [17], Mordukhovich subdifferential ∂Mf(x) [19], and Treiman subdifferential
∂T f(x) [22] are examples of the J–L subdifferential for a locally Lipschitzian function
(see [14]). However, the following example shows that the J–L subdifferential may be
“smaller” than these subdifferentials for locally Lipschitzian functions.

Example 2.1. Let f(x1, x2) = |x1| − |x2|. Then it is easy to verify that

∂∗f(0, 0) =

{(
1
−1

)T
,

( −1
1

)T}
,

∂T f(0, 0) = ∂Mf(0, 0) =

{(
1
−1

)T
,

( −1
1

)T
,

( −1
−1

)T
,

(
1
1

)T}
,

∂�f(0, 0) = ∂Cf(0, 0) = co

{(
1
−1

)T
,

( −1
1

)T
,

( −1
−1

)T
,

(
1
1

)T}
.

Note that co∂∗f(0, 0) ⊆ ∂�f(0, 0) = ∂Cf(0, 0) = co∂T f(x) = co∂Mf(x).
It was shown in [12] that a (not necessarily Lipschitzian) function f : Rn → R is

Gâteaux differentiable at x with the Gâteaux derivative ∇f(x) if and only if f admits
a J–L subdifferential ∂∗f which is single-valued at x with ∂∗f(x) = {∇f(x)}. The J–L
subdifferentials enjoy useful calculus rules as illustrated in the following propositions.

Proposition 2.2 (see [16, 14]). Let f : Rn → R and let 0 �= α ∈ R. If ∂∗f(x) is
a J–L subdifferential of f at x ∈ Rn, then α∂∗f(x) is a J–L subdifferential of αf at
x.

Proposition 2.3 (see [16, 14]). Let fi : Rn → R for i = 1, 2. Suppose that for
each i = 1, 2, ∂∗fi(x) is a J–L subdifferential of fi at x. Then the set ∂∗f1(x)+∂∗f2(x)
is a J–L subdifferential of f := f1 + f2 at x. For further details, see [13, 14, 16]. The
following example shows that the J–L subdifferential ∂∗f1(x) + ∂∗f2(x) may contain
another J–L subdifferential of f1 + f2.

Example 2.2. Let f1(x, y) = |x| − |y|, f2(x, y) = |y| − |x|. Then f1(x, y) +
f2(x, y) = 0. Then it is easy to verify that

∂∗f1(0, 0) = ∂∗f2(0, 0) =

{(
1
−1

)T
,

( −1
1

)T}
;

∂∗(f1 + f2)(0, 0) =

{(
0
0

)T}
.
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Hence both ∂∗(f1 + f2)(0, 0) and ∂∗f1(0, 0) + ∂∗f2(0, 0) are J–L subdifferentials of
f1 + f2 at (0, 0) with ∂∗(f1 + f2)(0, 0) ⊂ ∂∗f1(0, 0) + ∂∗f2(0, 0).

The following proposition provides a slightly stronger form of the mean value
theorem of Jeyakumar and Luc [13].

Proposition 2.4 (mean value inequality). Let a, b ∈ Rn and let f : Rn → R

be continuous on Rn. Assume that for each x ∈ [a, b], f admits a J–L subdifferential
∂∗f(x) at x. Then for each v ∈ Rm there exists t0 ∈ (0, 1) such that

inf
ξ∈∂∗f(a+t0(b−a))

〈ξ, b− a〉 ≤ f(b)− f(a) ≤ sup
ξ∈∂∗f(a+t0(b−a))

〈ξ, b− a〉.

Recall that the set-valued map ∂∗F : x =⇒ ∂∗F (x) is locally bounded at x0 if
there exist positive constants α and δ such that

sup{‖M‖ : M ∈ ∂∗F (x), x ∈ Bδ(x0)} ≤ α,

where ‖M‖ is a matrix norm. Note that a continuous map F admits a locally bounded
approximate Jacobian at a point if and only if F is locally Lipschitzian at the point
[13]. Moreover, if f : Rn → R and ∂∗f(x) is a J–L subdifferential of f at x ∈ Rn, and
if f attains its extremum at x, then

0 ∈ co (∂∗f(x)).(2.2)

For details see [14]. We now see that J–L subdifferentials enjoy a general chain rule
involving Gâteaux differentiable maps.

Theorem 2.5 (generalized chain rule). Let f : Rm → R be locally Lipschitzian
and let F : Rn → R

m be Gâteaux differentiable at x ∈ Rn. If ∂∗f(x) is the J–L sub-
differential of f at x, then ∂∗f(F (x))∇F (x) is a J–L subdifferential of the composite
function f ◦F at x.

Proof. Since F is Gâteaux differentiable at x, for all sufficiently small t > 0,

F (x + th) = F (x) + t∇F (x)h + o(t),

where

‖o(t)‖
t
→ 0, as t→ 0.

Now from the Lipschitzian property of f at F (x), we get

t−1‖f(F (x) + t∇F (x)h + o(t))− f(F (x) + t∇F (x)h)‖ ≤ t−1K‖o(t)‖,
where K is a Lipschitzian constant for f near F (x). So,

lim
t→0
‖f(F (x) + t∇F (x)h + o(t))− f(F (x) + t∇F (x)h)‖ = 0.

Hence we deduce that for each α ∈ R
lim sup
t→0+

t−1[α f(F (x + th))− α f(F (x))]

= lim sup
t→0+

t−1[α f(F (x) + t∇F (x)h + o(t))− α f(F (x) + t∇F (x)h)]

+ lim sup
t→0+

t−1[α f(F (x) + t∇F (x)h)− α f(F (x))]

= lim sup
t→0+

t−1[α f(F (x) + t∇F (x)h)− α f(F (x))]

≤ sup
ξ∈∂∗f(F (x))

〈αξ,∇F (x)h〉.
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This inequality ensures that ∂∗f(F (x))∇F (x) is a J–L subdifferential of f ◦ F at
x.

Note that co (∂∗f(F (x)))∇F (x) is also a J–L subdifferential for (f ◦F ) at x since

∂∗f(F (x))∇F (x) ⊆ co (∂∗f(F (x))∇F (x)) = co (∂∗f(F (x)))∇F (x).

So our chain rule yields the corresponding result in [20].

3. Generalized Lagrange multiplier rules. We begin this section by examin-
ing the relationship between fans and approximate Jacobians. Recall that a set-valued
map A from R

n into Rm is called a bounded fan if
(i) A(x) is a nonempty closed convex set for each x ∈ Rn;
(ii) A(λx) = λA(x) for any x ∈ Rn and any λ > 0;
(iii) A(0) = {0};
(iv) there is a k > 0 such that ‖y‖ ≤ k‖x‖ if y ∈ A(x);
(v) A(x′ + x′′) = A(x′) + A(x′′) ∀ x′, x′′ ∈ Rn.
A function f : Rn → R is said to be sublinear if it is convex and positively

homogeneous. A function q : Rm × Rn → R is said to be bounded bisublinear if it is
sublinear in each argument, and there exists K0 > 0 such that for each x ∈ Rn and
y ∈ Rm, q(y∗, x) ≤ K0‖y∗‖‖x‖. For the fan A from R

n to Rm, define s : Rm×Rn → R

by

s(y∗, x) = sup
y∈A(x)

〈y∗, y〉, y∗ ∈ Rm.

The function s(., .) is called the support function of the fan A. It is easy to see that
s(., .) is a bounded bisublinear function. Conversely, if s(., .) is a bounded bisublinear
function, then it is the support function of some fan A which is defined by

A(x) = {y ∈ Rm : 〈y∗, y〉 ≤ s(y∗, x) ∀y∗ ∈ Rm}.
We refer to [7, 8] for further details about fans.

Let F (·) be a map from a neighborhood of Rn into Rm. A fan A from R
n into

R
m is called a weak prederivative [7, 9] of F at x if for any subspace L ⊂ Rn and any

ε > 0 there is a δ > 0 such that

F (x + h) ⊂ F (x) + A(h) + ε‖h‖Bm for ‖h‖ < δ, h ∈ L.

Here Bm is the unit ball in Rm. Let s(., .) be the support function of the bounded
fan A and let K ⊂ Rn be a closed convex cone. Then the quantity

C(A,K) = − sup
‖y∗‖=1

inf
‖h‖≤1

h∈K
s(y∗, h)

is called the Banach constant with respect to K. For a closed convex set S containing
x, the radial tangent cone to S at x is defined as

T (S, x) =
⋃
λ>0

λ(S − x),

and the interior of S is denoted by int S.
Lemma 3.1 (a controllability theorem [10]). Let F : Rn → R

m be a continuous
map and let S ⊂ Rn be a closed convex set containing x. Let A be a bounded fan from
R
n into Rm which is a weak prederivative of F at x. If

C(A, T (S, x)) = c > 0,
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then for any δ > 0

F (x) ∈ int F
(
S
⋂

(x + δB)
)
,

where B is the unit ball in Rn.
Lemma 3.2. Let F : Rn → R

m be locally Lipschitzian which admits a locally
bounded approximate Jacobian ∂∗F . Then the function

s(v, u) = max
M∈co (∂∗F (x))

〈v,Mu〉, v ∈ Rm, u ∈ Rn,

is the support function of a fan which is a weak prederivative of F at x.
Proof. It is easy to see that s(v, u) ≤ k‖v‖‖u‖ for some k > 0. It is also

obvious that s(v, u) is sublinear as a function of v and u. Let A(h) = co (∂∗F (x))h =
{Ah|A ∈ co (∂∗F (x))}. Then it follows that the set-valued map A is a fan and that
s(v, u) defined above is the support function of the fan A. The map A is a weak
prederivative of F at x if we can show that for every ε > 0 there is a δ > 0 such that

〈v, F (x + u)− F (x)〉 ≤ (v ◦ F )+(x;u) + ε‖u‖,(3.1)

for each ‖v‖ = 1, ‖u‖ ≤ δ. This will be proven later. First we show that A is a weak
prederivative of F at x using (3.1). This follows from the fact that

(v ◦ F )+(x;u) ≤ max
M∈co (∂∗F (x))

〈v,Mu〉 = s(v, u).

In fact, for any fixed u, (3.1) gives us that for each v,

〈v, F (x + u)− F (x)〉 ≤ s(v, u) + ε‖v‖‖u‖,(3.2)

which by the separation theorem yields the required inclusion that

F (x + u)− F (x) ∈ A(u) + ε‖u‖B.

We now establish (3.1). Assume to the contrary that there exist an ε > 0 and
sequences {vn} and {un} such that ‖vn‖ = 1, un → 0 and

〈vn, F (x + un)− F (x)〉 > (vn ◦ F )+(x;un) + ε‖un‖.(3.3)

Set tn = ‖un‖, en = un/tn. We can assume that both en and vn converge to
certain e ∈ Rn, v ∈ Rm with ‖e‖ = ‖v‖ = 1. Let k′ be a Lipschitz constant of F .
Then it follows from (3.3) that

〈v, F (x + tne)− F (x)〉 = 〈vn, F (x + un)− F (x)〉+ 〈v − vn, F (x + un)− F (x)〉
+ 〈v, F (x + tne)− F (x + un)〉

≥ 〈vn, F (x + un)− F (x)〉 − |〈v − vn, F (x + un)− F (x)〉|
− |〈v, F (x + tne)− F (x + un)〉|

≥ 〈vn, F (x + un)− F (x)〉 − tnk
′(‖v − vn‖+ ‖e− en‖)

> (vn ◦ F )+(x;un) + ε‖un‖ − tnk
′(‖v − vn‖+ ‖e− en‖)

= tn[(vn ◦ F )+(x; en) + ε− k′(‖v − vn‖+ ‖e− en‖)]
≥ tn[(vn ◦ F )+(x; e) + ε− 2k′(‖v − vn‖+ ‖e− en‖)],
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which is a contradiction in view of the definition of the upper Dini derivative.
Theorem 3.3 (generalized Lagrange multiplier rule). For the problem (PE),

let F (x) = (f0(x), . . . , fm(x)). Assume that F admits a locally bounded approximate
Jacobian at x ∈ Rn. If x is a minimizer of (PE), then there exist Lagrange multipliers
λ0 ≥ 0, . . . , λp ≥ 0, λp+1, . . . , λm, not all zero, such that

λifi(x) = 0, i = 1, . . . ,m,

0 ∈
m∑
i=0

λico ∂
∗F (x)T ei+1 + N(Q, x),(3.4)

where ei = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rm+1 is a unit vector.
Note that the meaning of co ∂∗F (x)T ei+1, i = 0, 1, . . . ,m, in (3.4) is that ev-

ery vector z ∈ co ∂∗F (x)T ei+1 can be represented as z = MT ei+1 for some M ∈
co ∂∗F (x).

Proof. Assume for simplicity that fi(x) = 0, i = 1, . . . , p. Let Z = R
n × Rp+1

and

S = Q× Rp+1
+ = {z = (x, a) ∈ Z : x ∈ Q, ai ≥ 0, i = 0, . . . , p} (a = (a0, . . . , ap)).

Clearly, S is a closed convex set and the tangent cone to S at z = (x, 0) is

T (S, z) = T (Q, x)× Rp+1
+ ,

where T (Q,x) is the tangent cone to Q at x and Rp+1
+ is the nonnegative orthant in

R
p+1. Let Y = R

m+1 and let G be the mapping from Z into Y defined as follows:

(G(x, a))i =

{
fi(x) + ai, i = 0, . . . , p,
fi(x), i = p + 1, . . . ,m.

Then G is Lipschitzian and the set

∂∗G(z) = {(M, I)|M ∈ ∂∗F (x)}
is an approximate Jacobian of G at z, where I ∈ R(m+1)×(p+1) is defined by

I = [e1, . . . , ep+1],

where ei = [0, . . . , 0, 1, 0, . . . , 0]T .
Since x is a minimizer of (PE), G(z) = (f0(x), . . . , fm(x)) cannot be in the interior

of G(S
⋂

(z + λBZ)) for any λ > 0 because otherwise there would exit some point
y ∈ S

⋂
(z + λ0BZ) for some λ0 > 0 such that

f0(y) < f0(x),
fi(y) = fi(x), i = 1, . . . ,m,

which implies that y is a feasible point and hence contradicts the hypothesis that x
is a minimizer. By Lemma 3.1, we must have

C(A, T (S, z)) = 0,

for any weak prederivative A of G at z. So, there is a v, ‖v‖ = 1 such that

s(v, u) ≥ 0 ∀u ∈ T (S, z).
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By Lemma 3.2, s(v, u) is the support function of a weak prederivative of G at z. We
set v = (λ0, . . . , λm), u = (h, b). Then

s(v, u) = max〈v, ∂∗G(z)u〉
= max〈∂∗G(z)T v, u〉

= max

〈
m∑
i=0

λi∂
∗F (x)T ei+1, h

〉
+

p∑
i=0

λibi.

Since s(v, u) ≥ 0,

max

〈
m∑
i=0

∂∗F (x)T ei+1, h

〉
+

p∑
i=0

λibi ≥ 0

∀ h ∈ T (Q,x), b = (b0, . . . , bp) ≥ 0. This can happen only if λi ≥ 0, i = 1, . . . , p.
Setting bi = 0, we have

max

〈
m∑
i=0

λi∂
∗F (x)T ei+1, h

〉
≥ 0 for h ∈ T (Q, x).

This gives us the inclusion

0 ∈ co

(
m∑
i=0

λi∂
∗F (x)T ei+1

)
+ N(Q, x).

Since ∂∗F (x) is closed and bounded, we obtain the required inclusion (3.4)

0 ∈
m∑
i=0

λico ∂∗F (x)T ei+1 + N(Q, x).

Let F1 = (f1, . . . , fm) and I ∈ R(m+1)×(p+1) is defined as before. Then the set

∂∗G(z) = (∂∗f0(x), ∂∗F1(x), I)

is an approximate Jacobian of G at z. Then we have the following corollary.
Corollary 3.4. Let x be a solution to (PE). Assume that the functions f0, . . . , fm

admit locally bounded J–L subdifferentials ∂∗fi(x) at x. Then there exist Lagrange
multipliers λ0 ≥ 0, . . . , λp ≥ 0, λp+1, . . . , λm, not all zero, such that

λifi(x) = 0, i = 1, . . . ,m,

0 ∈ λ0co ∂
∗f0(x)T +

m∑
i=1

λico ∂
∗fi(x)T + N(Q, x).

Proof. Since ∂∗F (x) = ∂∗f0(x)× · · ·× ∂∗fm(x) is a locally bounded approximate
Jacobian of F at x (see [16]), the conclusion follows from Theorem 3.3.

The standard form of the Lagrange multiplier rule for the Michel–Penot subdif-
ferentials follows easily from Corollary 3.4.
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Corollary 3.5. If x is a solution to (PE), then there exist multipliers λ0 ≥
0, . . . , λp ≥ 0, λp+1, . . . , λm, not all zero, such that

λifi(x) = 0, i = 1, . . . ,m,

0 ∈
m∑
i=0

λi∂
�fi(x)T + N(Q, x).(3.5)

Proof. Choose ∂�fi(x) as the J–L subdifferential of fi at x. Then the conclusion
follows easily from Corollary 3.4.

In passing, observe that a slightly strong form of condition (3.5) was obtained by
Ioffe [10] for the Michel–Penot subdifferentials. A version of the Lagrange multiplier
rule for the Clarke subdifferentials also follows from Corollary 3.4.

Corollary 3.6. For the problem (PE), let F = (f0, . . . , fm). If x is a solution
to (PE), then there exist multipliers λ0 ≥ 0, . . . , λp ≥ 0, λp+1, . . . , λm, not all zero,
such that

λifi(x) = 0, i = 1, . . . ,m,

0 ∈
m∑
i=0

λi∂CF (x)T ei+1 + N(Q, x).(3.6)

Proof. Let ∂∗F (x) = ∂CF (x). Then the conclusion follows directly from Theo-
rem 3.3.

It is worth noting that, in the case where Q is closed and convex, the separated
multiplier rule of Clarke [1], 0 ∈∑m

i=0 λi∂Cfi(x)T + N(Q, x), follows from (3.6) since
∂CF (x)T ei+1 ⊆ ∂Cfi(x)T .

The following example illustrates that our multiplier rule (3.4) is sharper than
(3.5).

Example 3.1. Consider the problem

minimize (x1 + 1)2 + x2
2

subject to 2x1 + |x1| − |x2| = 0.

Clearly, (0, 0)T is the minimum point of the above problem. Let f0(x1, x2) =
(x1 + 1)2 + x2

2 and let f1(x1, x2) = 2x1 + |x1| − |x2|. Then

co ∂∗f0(0, 0) = ∂�f0(0, 0) = ∂Cf0(0, 0) =

{(
2
0

)T}
;

∂∗f1(0, 0) =

{(
3
−1

)T
,

(
1
1

)T}
;

∂�f1(0, 0) = ∂Cf1(0, 0) = co

{(
3
−1

)T
,

(
1
1

)T
,

(
1
−1

)T
,

(
3
1

)T}
.
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It is easy to verify that for λ0 = 1 and λ1 = −1,(
0
0

)T
∈ λ0co ∂∗f0(0, 0) + λ1co ∂∗f1(0, 0) ⊂ ∂�(λ0f0 + λ1f1)(0, 0),

where

∂�(λ0f1 + λ1f1)(0, 0) = co

{(
1
−1

)T
,

( −1
1

)T
,

( −1
−1

)T
,

(
1
1

)T}
.

A Kuhn–Tucker type necessary optimality condition follow from Theorem 3.3
under a constraint qualification [1, 4, 5, 6]. Consider first the problem

(PE1)
minimize f0(x)
subject to fi(x) = 0, i = 1, . . . , p,

where x ∈ Rn, f0, . . . , fp : Rn → R are locally Lipschitzian functions. Let F2 =
(f1, . . . , fp).

Theorem 3.7. Assume that F2 = (f1, . . . , fp) admits a locally bounded approx-
imate Jacobian ∂∗F2(x) at x. If x ∈ Rn is a solution to (PE1) and co ∂∗F2(x) is of
maximal rank, then there exist Lagrange multipliers λ1, . . . , λp such that

λifi(x) = 0, i = 1, . . . , p,

0 ∈ co ∂∗f0(x)T +

p∑
i=1

λico ∂∗F2(x)T ei.

Remark. Of course, co ∂∗F2(x) is of maximal rank means here that each matrix
M ∈ co ∂∗F2(x) is of maximal rank.

Proof. Corollary 3.4 gives us that there exist multipliers λ0, λ1, . . . , λp, not all
zero, such that

λifi(x) = 0, i = 1, . . . , p,

0 ∈ λ0co ∂∗f0(x)T +

p∑
i=1

λico ∂∗F2(x)T ei.(3.7)

Suppose that λ0 = 0. Then we have

0 ∈
p∑
i=1

λico ∂∗F2(x)T ei.

This contradicts the hypothesis that co ∂∗F2(x) is of maximal rank. Hence λ0 = 1
may be assumed and so the conclusion holds.

It follows from Theorem 3.7 that if F2 = (f1, . . . , fp), and x ∈ Rn is a solution to
(PE1) and if ∂CF2(x) is of maximal rank, then there exist multipliers λ1, . . . , λp such
that

λifi(x) = 0, i = 1, . . . , p,

0 ∈ co ∂∗f0(x)T +

p∑
i=1

λi∂CF2(x)T ei.
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Similarly, for the general problem (PE), the Kuhn–Tucker conditions of the form

λifi(x) = 0, i = 1, . . . ,m,

0 ∈ co ∂∗f0(x)T +

m∑
i=1

λico ∂∗F1(x)T ei + N(Q, x),

where F1 = (f1, . . . , fp, fp+1, . . . , fm), follow from Corollary 3.4 under the following
constraint qualification: (co ∂∗F1(x)T ep+1, . . . , co ∂∗F1(x)T em) is of maximal rank
and there exists a vector v ∈ T (Q,x) such that

〈co ∂∗F1(x)T ei, v〉 < 0 if fi(x) = 0, i = 1, . . . , p,
〈co ∂∗F1(x)T ei, v〉 = 0, i = p + 1, . . . ,m.

If we choose ∂∗f0(x) = ∂�f0(x) and ∂∗F1(x) = ∂�f1(x)× · · · × ∂�fm(x), then we
obtain directly the following corollary from Theorem 3.3, extending the corresponding
result of Hiriart-Urruty [4, Theorem 6]. Notice now the constraint qualification for
(PE) becomes

(∂�fp+1(x)T , . . . , ∂�fm(x)T ) is of maximal rank and there exists a vector v ∈
T (Q,x) such that

〈∂�fi(x)T , v〉 < 0 if fi(x) = 0, i = 1, . . . , p,
〈∂�fi(x)T , v〉 = 0, i = p + 1, . . . ,m.

Corollary 3.8. If x ∈ Rn is a solution to (PE) and the above constraint
qualification for problem (PE) is satisfied at x, then there exist multipliers λ1, . . . , λm
such that

λifi(x) = 0, i = 1, . . . ,m,

0 ∈ ∂�f0(x)T +

m∑
i=1

λi∂
�fi(x)T + N(Q, x).

Proof. The conclusion follows from Theorem 3.3 by standard arguments and so
is omitted.

4. Minimax problems. Consider the following minimax problem:

(CP)

min
x∈Rn

max
1≤k≤s

fk0 (x)

subject to fi(x) ≤ 0, i = 1, . . . , p,
fi(x) = 0, i = p + 1, . . . ,m,
x ∈ Q,

where f1
0 , . . . , f

s
0 , f1, . . . , fm : Rn → R are locally Lipschitzian functions and Q is a

closed convex subset of Rn containing x. The function f0, defined by

f0(x) = max{fk0 : k = 1, . . . , s},
is easily seen to be Lipschitz near x. For any x, I(x) denotes the set of indices j for
which f j0 (x) = f0(x) .
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In the following we use our generalized multiplier rule to deduce the optimality
conditions for the above minimax problem.

Theorem 4.1. Assume that f1
0 , . . . , f

s
0 , f1, . . . , fm are locally Lipschitzian. Sup-

pose that F1 = (f1, . . . , fm) admits a locally bounded approximate Jacobian ∂∗F1(x)
at x. If x ∈ Rn is a minimizer to (CP), then there exist multipliers λ0 ≥ 0, . . . , λp ≥
0, λp+1, . . . , λm, not all zero, such that

λifi(x) = 0, i = 1, . . . ,m,

0 ∈ λ0co


 ⋃
j∈I(x)

∂∗f j0 (x)


+

m∑
i=1

λico ∂∗F1(x)T ei + N(Q, x).

Proof. By Corollary 3.4 there exist multipliers λ0 ≥ 0, . . . , λp ≥ 0, λp+1, . . . , λm,
not all zero, such that

λifi(x) = 0, i = 1, . . . ,m,

0 ∈ λ0co ∂∗f0(x)T +

m∑
i=1

λico ∂∗F1(x)T ei + N(Q, x).

The direct calculation of ∂∗f0(x) shows that ∂∗f0(x) :=
⋃
j∈I(x) ∂

∗f j0 (x) is a J–L
subdifferential of f0 at x. Indeed, for each h ∈ Rn,

f+
0 (x, h) = max

j∈I(x)
(f j0 )+(x, h) ≤ max

j∈I(x)
max

ξj∈∂∗fj
0 (x)
〈ξj , h〉 = max

ξ∈
⋃

j∈I(x)
∂∗fj

0 (x)
〈ξ, h〉

and

f−
0 (x, h) ≥ max

j∈I(x)
(f j0 )−(x, h) ≥ max

j∈I(x)
min

ξj∈∂∗fj
0 (x)
〈ξj , h〉 ≥ min

ξ∈
⋃

j∈I(x)
∂∗fj

0 (x)
〈ξ, h〉.

Hence the condition holds.

We conclude by noting that in Theorem 4.1 if we further assume that fk0 , k =
1, . . . , s, are also Gâteaux differentiable at x, then there exist multipliers λ0 ≥ 0, . . . , λp ≥
0, λp+1, . . . , λm, not all zero, such that

λifi(x) = 0, i = 1, . . . ,m,

0 ∈ λ0co {∇f j0 (x) : j ∈ I(x)}+

m∑
i=1

λico ∂∗F1(x)T ei + N(Q, x).
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Abstract. In this paper we show how the implicit filtering algorithm can be coupled with
the BFGS quasi-Newton update to obtain a superlinearly convergent iteration if the noise in the
objective function decays sufficiently rapidly as the optimal point is approached. In this way we
give insight into the observations of good performance in practice of quasi-Newton methods when
they are coupled with implicit filtering. We also report on numerical experiments that show how an
implementation of implicit filtering that exploits these new results can improve the performance of
the algorithm.

Key words. noisy optimization, implicit filtering, BFGS algorithm, superlinear convergence
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1. Introduction. The implicit filtering algorithm is a backtracking line search
quasi-Newton method which uses difference gradients, reducing the difference incre-
ment as the optimization progresses. Through this variation of the difference incre-
ment, one hopes to “filter out” high-frequency low-amplitude contributions to the
function and thereby avoid local minima.

Implicit filtering has been successfully applied to problems in semiconductor de-
sign [47, 52, 48, 51], design of high-field magnets [29, 44, 43, 8], automotive engineering
[18, 17, 13], and geosciences [28, 41, 2, 1]. In many of these applications, replacing the
identity with a quasi-Newton model Hessian, either SR1 [5, 24] or BFGS [6, 31, 25, 46],
measurably improves the performance of the implicit filtering algorithm.

This paper is a first step toward an analysis of these observations. We combine the
local theory for convergence of BFGS [7, 23] and the convergence theory for implicit
filtering [36, 4, 27] to formulate and prove a local superlinear convergence result.
We then show how implicit filtering can be implemented in a way that is consistent
with the new theory and we report on computational experiments that illustrate the
results.

Implicit filtering, like the Nelder–Mead [42], multidirectional search (MDS) [49],
Hooke–Jeeves [32], and DIRECT [33] algorithms, is a sampling method. This means
that the algorithm uses only evaluations of the function to be minimized in the op-
timization. The implicit filtering, Hooke–Jeeves, and MDS methods all sample the
function on a stencil and reduce the size of the stencil as the optimization progresses.
The rules for shrinking the size of the stencil in these three methods are similar enough
to allow for a common framework for their analysis [36, 4]. Implicit filtering is unique
among these methods in that the use of a quasi-Newton model Hessian can improve
its performance.

Sampling methods converge slowly and, when gradient information is available,
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Fig. 1.1. Optimization landscapes.

conventional methods work far better. Therefore, sampling methods are usually ap-
plied to difficult problems with complex optimization landscapes [47, 26, 29, 30, 12].
The landscapes in Figure 1.1 are from semiconductor modeling [47, 27] (left) and the
gas pipeline industry [11, 12] (right).

The objective functions for these problems can be nonsmooth or discontinuous
and are rarely given by simple formulae. One common approach to understanding
sampling algorithms is to analyze their performance in contexts simpler than those in
which the algorithms are applied in practice. Sampling methods have been analyzed
for smooth objective functions [38, 37, 22, 50, 14, 15] and objective functions that are
perturbations of smooth functions by low-amplitude noise [39, 27, 35, 4, 36, 53]. In this
paper we take the latter, more general approach. Convergence results for sampling
methods that account for noise in this way must make assumptions on either the size
of the noise or its rate of decay near an optimal point.

We have seen decay of noise near optimality in practice [47, 18, 51, 52, 48]. Such
decay may happen because numerical models may be more accurate near optimality,
internal iterations may terminate in a more uniform way, and table lookup may be
more accurate.

We consider an objective function f defined on RN that can be decomposed into
the sum

f(x) = fs(x) + φ(x)(1.1)

of a smooth and easy-to-minimize function fs and a high-frequency and low-amplitude
perturbation φ. We assume that the perturbation φ, which we refer to as noise, is
uniformly bounded and is small relative to fs. High-frequency oscillations in φ could
cause f to have several local minima which would trap a conventional, gradient-based
algorithm. The perturbation can be discontinuous, reflecting sensitivity of computa-
tions internal to f (such as temporal integrations with error control parameters) to
their input, or random, reflecting, for example, the error in an experiment [30] or a
probabilistic simulation internal to f [47].

Implicit filtering differs from other methods in the literature that explicitly use
approximate gradients and Hessians. The convergence theory requires assumptions
on the decay of the noise near optimality. However, we do not assume that we can
control the errors in the function evaluation directly, and our results differ from those
of [9] and [10], where it was assumed that control of the errors in function and gradient
evaluations was possible and where global convergence of a trust region algorithm that
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managed these errors separately was proved. The superlinearly convergent algorithm
in [40], which combines a coordinate search with a difference Hessian, is intended for
noise-free function evaluations and is not applicable here. Implicit filtering does not
attempt to model Hessians with interpolation, as does the trust region/interpolation
method of [16, 14, 15]. We believe that the quasi-Newton approach has an advantage
for noisy problems, where the errors in a Hessian formed by differences or interpolation
can be large.

In section 2 we describe an implementation of implicit filtering that uses BFGS
model Hessians, state the precise assumptions that we make on the decay of the
perturbation φ near optimality, and show how that decay can be exploited in an
implementation. We state and prove the local convergence result in section 3 and
report on some computational experiments in section 4.

2. Implicit filtering. Implicit filtering was designed for problems with opti-
mization landscapes, like the ones shown in Figure 1.1, and objective functions that
satisfy (1.1) in mind. The theoretical convergence results require assumptions on the
size of the perturbation φ and its rate of decay near an optimizer of fs. In section
2.1 we will formally describe an implementation of implicit filtering and in section 2.2
state a convergence result that makes minimal assumptions on φ.

Sharper results that give linear or superlinear convergence rates require stronger
assumptions on the decay of the noise near optimality. We discuss that issue in section
2.3, where we review the assumptions needed for the linear convergence results from
[27] and state the assumptions required for the superlinear convergence results in this
paper.

2.1. Implicit filtering with BFGS model Hessians. Throughout this paper
‖ · ‖ will denote the �2 norm on RN . We will discuss only central difference gradients
because implicit filtering performs far better [47, 36, 17] if central rather than one-
sided differences are used. For x ∈ RN and h �= 0 the central difference gradient of f
with scale h at x is given by

(∇hf(x))i = f(x+ hei)− f(x− hei)

2h
,

where ei is the unit vector in the ith coordinate direction and (∇hf(x))i denotes the
ith component of the difference gradient.

The inner iteration in implicit filtering is a quasi-Newton optimization using a
difference gradient and a backtracking line search. The iteration taking current ap-
proximation xc to a new one x+ for a fixed h is

x+ = xc + λdc, where dc = −H−1
c ∇hf(xc),

and Hc is the current model Hessian. λ is a step length determined by a backtracking
line search and the sufficient decrease condition

f(xc + λdc)− f(xc) < αλ∇hf(xc)T dc.(2.1)

In (2.1) α is a small parameter (10−4 is a typical value [21, 34]). If (2.1) fails to hold,
the step length λ is reduced. Typical methods [36, 21] for doing this include reducing
λ by a predetermined factor and constructing a polynomial model of f(x+ λd).

Unlike the noise-free case, −∇hf(xc) need not be a direction of descent for f and,
therefore, there is no guarantee that (2.1) can be satisfied for any value of λ. Hence,
one must limit the number of reductions in λ.
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We terminate the central difference quasi-Newton algorithm fdquasi when

‖∇hf(x)‖ ≤ τh(2.2)

for some τ > 0, when more than pmax iterations have been taken, if

f(x) ≤ min
j
{f(x± hej)},(2.3)

or when the line search fails by taking more than amax backtracks. Even the failures
of fdquasi can be used to advantage [27, 36] by triggering a reduction in h. The
parameter τ in the termination criterion (2.2) does not affect the convergence result
that we state here, but can affect performance.

At this point we will elaborate on the use of (2.3) (stencil failure) as a termi-
nation criterion for fdquasi. The stencil failure theorem from [4, 36] states that
(2.3) implies that ‖∇fs(x)‖ = O(h). Stencil failure indicates that a reduction in h
(i.e., termination of fdquasi) is appropriate. Stencil failure is also the criterion for
reduction of the size of the stencil in the Hooke–Jeeves and MDS methods.

Algorithm 1 (fdquasi(x, f, pmax, τ, h, amax)).

p = 1
while p ≤ pmax and ‖∇hf(x)‖ ≥ τh do
compute f and ∇hf
if (2.3) holds then
terminate and report stencil failure

end if
update H if appropriate; solve Hd = −∇hf(x)
use a backtracking line search, with at most amax backtracks, to find a step
length λ
if amax backtracks have been taken then
terminate and report line search failure

end if
x← x+ λd
p← p+ 1

end while
if p > pmax report iteration count failure

Algorithm fdquasi will terminate after finitely many iterations because of the
limits on the number of iterations and the number of backtracks. Implicit filtering
calls fdquasi repeatedly, reducing h after the return of fdquasi. The input to implicit
filtering, in addition to the data for fdquasi, is the sequence of difference increments
{hk}. That sequence is infinite in the formulation we present here to allow us to state
asymptotic convergence results.

Algorithm 2 (imfilter(x, f, pmax, τ, {hk}, amax)).

for k = 0, . . ., do
fdquasi(x, f, pmax, τ, hk, amax)

end for

The results in this paper will lead to a different formulation of implicit filter-
ing in which the scales are computed within the algorithm to improve the speed of
convergence.
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2.2. Basic convergence result. Let xk be an iteration of algorithm imfilter

and Sk = {xk ± hkej}Nj=1 be the difference stencil. We measure the local size of the
noise by

‖φ‖Sk = max

(
|φ(x)|,max

r∈Sk
|φ(r)|

)
.

Theorem 2.1 is a global convergence result whose key assumption, (2.4), requires only
that the size of the noise decay more rapidly than the difference increment.

Theorem 2.1. Let f satisfy (1.1) and let ∇fs be Lipschitz continuous. Assume
that the set {x | f(x) ≤ f(x0)} is bounded and the model Hessians and their inverses
are uniformly bounded. Let {xk} be the implicit filtering sequence. Assume that
fdquasi terminates infinitely often with either (2.2) or (2.3) holding. Then if

lim
k→∞

(hk + h−1
k ‖φ‖Sk) = 0,(2.4)

then any limit point of the sequence {xk} is a critical point of fs.
The proof follows from an estimate from [36],

‖∇hf(x)−∇fs(x)‖ = O(h2 + h−1‖φ‖S),(2.5)

the stencil failure theorem, and (2.4), which also implies that ‖∇fs(xk)‖ = O(hk).
In this paper we focus on the BFGS update

H+ = Hc +
yyT

yT s
− (Hcs)(Hcs)

T

sTHcs
,(2.6)

where s = x+ − xc and y = ∇hf(x+)−∇hf(xc).
2.3. Rates of convergence and decay of φ near optimality. In order to

obtain rates of convergence, stronger assumptions on the decay of the noise must be
made and the difference increments must be adjusted to reflect that decay. Our proof
of local superlinear convergence will require that h and φ satisfy

‖∇hφ(x)‖ = O(‖x− x∗‖1+p)(2.7)

for some p > 0. In (2.7), x∗ is the local minimizer to which the BFGS iteration for
minimizing fs would converge. In [27] a weaker rate of decay, ‖∇hφ(x)‖ ≤ ε‖x− x∗‖
for a small ε, was used to prove linear convergence.

The assumption below is a combination of the standard assumptions for local
convergence of Newton’s method and a rate-of-decay rate on φ. We will show how
this will imply that implicit filtering can be implemented so that (2.7) holds.

Assumption 2.1. fs has a local minimizer x
∗, ∇2fs is Lipschitz continuous in

a neighborhood of x∗, ∇2fs(x
∗) is positive definite, and for x sufficiently near x∗,

|φ(x)| = O(‖x− x∗‖2+2p),(2.8)

for some p > 0.
Equations (2.5) and (2.8) imply that, for x sufficiently near x∗,

|∇hφ(x)| = O(h−1‖x− x∗‖2+2p) = O(h−1‖∇fs(x)‖2+2p).

Hence,

∇hf(x) = ∇fs(x) +O(h2 + h−1‖∇fs(x)‖2+2p).(2.9)
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So if we can control h and x simultaneously so that

C−1
1 ‖x− x∗‖1+p ≤ h ≤ C1‖x− x∗‖(1+p)/2,(2.10)

for some C1 > 0, then (2.9) will imply (2.7), for x sufficiently near x∗.
We now show how (2.10) can be enforced during an iteration. Let xk → x∗ at least

q-linearly and no faster than q-quadratically. This means that there are r ∈ (0, 1)
and C2 > 0 such that

‖xk+1 − x∗‖ ≤ r‖xk − x∗‖ ≤ C2‖xk+1 − x∗‖1/2.(2.11)

Lemma 2.2. Let Assumption 2.1 hold and let {xk} satisfy (2.11). Then there are
K and C1 such that if k ≥ K, hk and xk satisfy (2.10), and

hk+1 = ‖∇hk
f(xk)‖1+p,(2.12)

then hk+1 and xk+1 also satisfy (2.10).
Proof. Assumption 2.1 implies that there is K1 such that for all x sufficiently

near x∗

K−1
1 ‖x− x∗‖ ≤ ‖∇fs(x)‖ ≤ K1‖x− x∗‖.

Hence (2.12) imples that for k sufficiently large

∇hk
f(xk) = ∇fs(xk) + Ek.(2.13)

Here Ek is the sum of the O(h2
k) difference error and ∇hk

φ(xk). Hence, there is
CD > 0 such that

‖Ek‖ ≤ CD(h
2
k + h−1

k ‖xk − x∗‖2+2p).

Since hk and xk satisfy (2.10) by assumption, we have

h2
k + h−1

k ‖xk − x∗‖2+2p ≤ (C2
1 + C1)‖xk − x∗‖1+p.(2.14)

Hence, if C3 = CD(C
2
1 + C1), then

(K−1
1 − C3‖xk − x∗‖p)‖xk − x∗‖ ≤ ‖∇hk

f(xk)‖

≤ (K1 + C3‖xk − x∗‖p)‖xk − x∗‖.
(2.15)

Let k be large enough so that

K−1
1 − C3‖xk − x∗‖p > K−1

1 /2 and K1 + C3‖xk − x∗‖p < 2K1.

Equation (2.15) implies that

(2K1)
−p−1‖xk − x∗‖p+1 ≤ hk+1 ≤ (2K1)

p+1‖xk − x∗‖p+1.

We complete the proof by using (2.11) to conclude that

(2K1)
−(p+1)‖xk+1 − x∗‖p+1 ≤ hk+1 ≤ (2K1)

p+1Cp+1
2 ‖xk+1 − x∗‖p+1/2,

which completes the proof if C1 ≥ (2K1)
p+1Cp+1

2 .
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We show in section 4 how an implementation of implicit filtering that uses (2.12)
to compute the difference increments performs for some example problems. We close
this section with a simple corollary of Lemma 2.2 which states that if Assumption 2.1
holds and the difference increments are managed so that (2.11) and (2.10) are valid,
then the error in the gradient can be estimated in a way that will allow us to prove
the superlinear convergence result in section 3.

Corollary 2.3. Let Assumption 2.1 hold and let {xk} and {hk} satisfy (2.11)
and (2.10). Let ρ > 1. If x satisfies

ρ‖xk+1 − x∗‖ ≤ ‖x− x∗‖ ≤ ρ−1‖xk − x∗‖,(2.16)

then

∇hk+1
φ(x) = O(‖x− x∗‖1+p).(2.17)

3. Local convergence. Throughout this section we assume Assumption 2.1
holds. This implies that the standard assumptions [21, 36] for the convergence of
Newton’s method hold at x∗.

We also assume that (2.8) holds and that the scales have been managed so that
the consequences of Corollary 2.3 hold. We use the paradigm of [23] and [34] to
simplify notation and avoid having to explicitly discuss the iteration index and the
scales in the analysis. We let g = ∇hf(x) ≈ ∇fs(x) be the approximate gradient and
let

N(x) = g(x)−∇fs(x) = ∇hφ(x)
denote the gradient error. If (2.10) holds, then there are Cε, p > 0 such that

‖N(x)‖ ≤ Cε‖x− x∗‖1+p(3.1)

for x sufficiently near x∗.
The quasi-Newton implementation uses g instead of ∇fs in both the computation

of the BFGS step (we take full steps in a local theory)

s = −H−1
c g(xc)(3.2)

and in the difference in gradients

y = g(x+)− g(xc),(3.3)

both of which are used in the BFGS update (2.6) of the model Hessian H.
We begin with a simple result that is a restatement of Lemma (2.4) in [23] and

Theorem (5.4.1) of [34].
Theorem 3.1. Let Assumption 2.1 and (2.10) hold. There are CL > 0 and

δ0 > 0 so that if δ ∈ [0, δ0], ‖x− x∗‖ < δ, and ‖Hc −∇2fs(x
∗)‖ < δ, then

‖x+ − x∗‖ ≤ r‖xc − x∗‖,(3.4)

where

r ≤ CL(δ + ‖xc − x∗‖p).(3.5)
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We will need estimates of the difference between H+ and an idealized update

H̄+ = Hc +
ȳȳT

ȳT s̄
− (Hcs̄)(Hcs̄)

T

s̄THcs̄
(3.6)

that uses data only from fs. In (3.6) s̄ = −H−1
c ∇fs(xc) and ȳ = ∇fs(xc+s̄)−∇fs(xc).

We define

Mc = H+ − H̄+.(3.7)

Lemma 3.2. Let the assumptions of Theorem 3.1 hold. Then there are CM and
δ > 0 such that if ‖xc − x∗‖ < δ, and ‖Hc −∇2fs(x

∗)‖ < δ, then

‖Mc‖ ≤ CM‖xc − x∗‖p.(3.8)

Proof. We write Mc = M1 +M2, where

M1 =
yyT

yT s
− ȳȳT

ȳT s̄
and M2 =

(Hcs̄)(Hcs̄)
T

s̄THcs̄
− (Hcs)(Hcs)

T

sTHcs
.

We will show that M1 = O(‖xc − x∗‖p). The bound on M2 can be obtained in a
similar fashion.

Let δ be small enough so that the hypotheses of Theorem 3.1 hold with

r ≤ CL(δ + δp) < 1/2.

Since

y = g(x+)− g(xc) = ȳ +N(x+)−N(xc),

and ‖x+ − x∗‖ ≤ ‖xc − x∗‖/2, we have

‖y − ȳ‖ ≤ 2Cε‖xc − x∗‖p+1.(3.9)

Hence,

yyT = ȳȳT +O(‖xc − x∗‖p+2).(3.10)

Similarly,

yT s = ȳT s̄+O(‖xc − x∗‖p+2).(3.11)

The standard assumptions imply (reducing δ if necessary) that there is cy

‖ȳ‖ ≥ cy‖xc − x∗‖ and |ȳT s̄| ≥ cy‖xc − x∗‖2;
hence M1 = O(‖xc − x∗‖p), as asserted.

We use Lemma 3.2 to obtain a q-linear convergence from Theorem 3.1 via a
bounded deterioration result. Then q-superlinear convergence will follow from the
classic arguments [7, 20, 36]. We let ‖ · ‖F be the Frobenius norm.

Lemma 3.2 and known results for the BFGS update imply Corollary 3.3. This
result, with p = 1, is used in the classical analysis of BFGS convergence.

Corollary 3.3. Let the assumptions of Theorem 3.1 hold. Then there are
CH , δ > 0 such that if ‖xc − x∗‖ < δ and ‖Hc −∇2fs(x

∗)‖ < δ, then

‖H+ −∇2fs(x
∗)‖ ≤ ‖Hc −∇2fs(x

∗)‖+ CH(‖xc − x∗‖p + ‖x+ − x∗‖p).(3.12)
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From this point the methods from [7] can be applied directly to prove superlinear
convergence, and we give only a sketch of that argument. Corollary 3.3 implies a q-
linear convergence result, which is exactly the same as the one for the BFGS algorithm
itself. The proofs differ only in that p = 1 in the classic proof from [7], a difference
which requires no change at all in the logic of the proof.

Lemma 3.4. Let the assumptions of Theorem 3.1 hold and let δ0, r ∈ (0, 1). Then
there is δ1 such that if δ ∈ [0, δ1), ‖x0 − x∗‖ < δ, and ‖H0 −∇2fs(x

∗)‖ < δ, then for
all k ≥ 0,

1. Hk is nonsingular,
2. ‖Hk −∇2fs(x

∗)‖ ≤ δ0, and
3. ‖xk+1 − x∗‖ ≤ r‖xk − x∗‖.

The final step from Lemma 3.4 to the superlinear convergence result is the Frobe-
nius norm estimate

‖Hk+1−∇2fs(x
∗)‖2F ≤ ‖Hk−∇2fs(x

∗)‖2F−‖(Hk−∇2fs(x
∗))wk‖2+O(‖ek‖p),(3.13)

where wk = sk/‖sk‖. The q-linear convergence result implies that
∑ ‖ek‖p < ∞,

which, together with (3.13), implies the Dennis–Moré condition [19, 20]. This is all
that is needed for local superlinear convergence.

Theorem 3.5. Let the assumptions of Lemma 3.4 hold. Then there is δ > 0 such
that if ‖x0 − x∗‖ < δ and ‖H0 −∇2fs(x

∗)‖ < δ, the quasi-Newton iteration given by
(3.2) and (2.6) converges q-superlinearly to x∗.

4. Numerical results. Methods such as implicit filtering are typically applied
to complex problems whose objective functions may contain proprietary code or be
difficult to detach from the larger application containing them [26, 47, 30, 18, 17].
Because of this we confine our numerical testing to two simple example problems that
illustrate the types of problems we have encountered in practice and that at the same
time are easy to describe and implement. Neither of the examples completely satisfies
the assumptions of the theory because the noise does not decay to zero as optimality
is approached. However, as the results in Figures 4.1 and 4.2 indicate, the BFGS
iteration provides an improvement in performance, especially with the modification
proposed in this paper.

The implementation of implicit filtering is a modification of the algorithm from
[36] which is able to enforce (2.12). In each example we compare the simple imple-
mentation of implicit filtering without a quasi-Newton method, Algorithm imfilter1,
one that uses the BFGS quasi-Newton update but does not reduce the scales using
(2.12), and a BFGS implementation that enforces (2.12). The sequence of scales used
in the examples is

h
(1)
k = 2−k−kl , k = 0, . . . , ku − kl,(4.1)

where the limits kl and ku on k depend on the problem. We enforce a scaled form of
(2.12),

h
(2)
k = max(min(h1

k, (‖∇hf(xk)‖∞/‖∇h0f(x0)‖)1+p∞ ), hmin),(4.2)

where hmin = 10−5. hmin is roughly the cube root of machine roundoff and is the
optimal choice of h for a central difference.

In the examples the line search strategy is to reduce the step by half if the sufficient
decrease condition fails. The parameters in implicit filtering for both examples were
α = 10−4, τ = .01, pmax = 200, and amax = 10.
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Fig. 4.1. Parameter identification example.

Fig. 4.2. Pipeline network example.

4.1. Parameter identification. This problem, taken from [3, 36], is to identify
(using least squares fit to data) damping and spring constants c and k so that the
numerical solution of

u′′ + cu′ + ku = 0;u(0) = u0, u
′(0) = 0
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best fits the data in the least squares sense. Our data consists of values of the exact
solution at the points ti = i/100 for 1 ≤ i ≤ 100. We computed the numerical solution
with the code ODE15s from [45]. This is an adaptive (in step size and order) code
with error control based on user supplied relative (rtol) and absolute (atol) tolerances
for local truncation error. The level of noise in the objective is roughly the same size
as the tolerances. We report on two computations: one with rtol = atol = 10−3 and
the other with rtol = atol = 10−6. The noise in the problem with rtol = atol = 10−6

is smaller and the rapid convergence of BFGS persists for more iterations than for the
problem with rtol = atol = 10−3.

In both cases the initial iterate is (c, k) = (2, 3) and the optimization is limited
to 100 function evaluations. In Figure 4.1 we plot the norm of the difference gradient
and the least squares residual against the number of function evaluations. The dashed
line corresponds to the implementation (no BFGS) without a quasi-Newton model
Hessian, the solid line to the implementation (BFGS) with a BFGS model Hessian
that does not enforce (2.12), and the dot–dashed line to the implementation (BFGS-

2) that does enforce (2.12). In this problem the scales {h(1)
k } are given by (4.1) with

kl = 4 and ku = 17.
The noise in this problem plays the role that floating point roundoff would play

in a smooth problem, and the results for the BFGS implementation clearly show the
superlinear reduction in the norm of the difference gradient by the concave shape of
the curve.

4.2. Pipeline network optimization. The problem considered in this section
was provided by Richard Carter of Stoner and Associates [12]. The objective function
is a piecewise linear interpolation of a function that was computed by Carter using
proprietary models and data. The optimization landscape is illustrated on the right
side of Figure 1.1. This example shows how the implementation of implicit filter-
ing proposed in this paper can improve performance in an engineering application.
The reader should be warned, however, that applying any algorithm of this type re-
quires tuning of many algorithmic parameters (the initial simplex in Nelder–Mead and
MDS; the scales and algorithmic parameters in implicit filtering; the rate at which
the simplex size is decreased, for example) and the results in this example are only
representative.

This problem is more difficult than the one in section 4.1. The function is non-
smooth and, as one can see from Figure 1.1, close to a smooth function. However,
unlike the parameter identification example, there is no simple way to estimate the
magnitude of the nonsmooth part. A second problem, which is not a factor in this
paper, is that the function is not everywhere defined, and an attempt to evaluate the
function outside the region under the surfaces graphed in Figure 1.1 will fail. We call
the requirement that the objective be defined a “hidden constraint,” because there is
no a priori way to tell if a point is feasible without attempting to evaluate the function.
The example in this section has its optimal point in the interior of the feasible region,
and the initial iterate is close enough to avoid the need to evaluate the objective at
an infeasible point.

The problem is also poorly scaled. The function has a minimal value of about 3200
and a maximum of about 7800. The dependent variables have a range of [−200, 200].
Before applying implicit filtering we scaled the function by a factor of 10−3 and the
dependent variables by 10−2. The data we present are for the scaled variables. In

this problem the scales {h(1)
k } are given by (4.1) with kl = 0 and ku = 10. The initial

iterate is (1, 1)T .
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As with the previous example, in Figure 4.2 we plot the norm of the difference
gradient and the least squares residual against the number of function evaluations for
three different algorithmic variations.
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Abstract. In this paper, a family of scaled factorized Broyden-like methods for unconstrained
nonlinear least squares problems with zero or nonzero residual is presented. This family is based on
a full rank factorized form of a structured quasi-Newton update and a scaled approximation of the
second order term using given information. The resulting algorithms yield a q-quadratic convergence
for the zero residual case and a q-superlinear convergence for the nonzero residual case, and maintain
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1. Introduction. In this paper, we consider local algorithms to solve the prob-
lem

min
x∈Rn

f(x) =
1

2
‖R(x)‖22 =

1

2

l∑
i=1

ri
2(x),(1.1)

with zero or nonzero residual, where R(x) = (r1(x), . . . , rl(x))
T and the norm ‖R(x)‖

is called the residual at the point x. Our algorithm to solve this problem is especially
designed to be efficient in the two cases where the residual can vanish or not at the
solution.

If we set C̄(x) = JT (x)J(x), where J(x) is the Jacobian matrix of R(x), and

A(x) =
∑l
i=1 ri(x)�2 ri(x), then

J(x) = (
∂ri(x)

∂xj
), i = 1, . . . , l, j = 1, . . . , n,

g(x) = JT (x)R(x),

�2f(x) = C̄(x) +A(x),(1.2)

where g(x) = �f(x). Thus, if the Jacobian matrix J(x) is available, we know the first
part C̄(x) of the Hessian�2f(x) without requiring any second order information. The
inherent structure leads to a lot of special methods for the least squares probem (1.1),
such as those in [2], [4], and [5]. The Gauss–Newton method and the Levenberg–
Marquadt method mentioned, respectively, in [4], [5], and [10] are two typical methods.
These two methods are based on the observation that the second part A(x) can be
negligible when x is sufficiently close to the optimal point x∗ at which f(x∗) is small
or equal to zero. They have a q-quadratic convergence rate for problems with zero
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residual at the solution, but they may perform poorly when the residual is nonzero
at the solution and the residual function is highly nonlinear [1]. The main reason is
that in this case the deletion of the second derivative term A(x) leads the methods
to linear convergence. To overcome this difficulty, structured secant methods such as
those proposed in [3] can be used. These methods get the next point xk+1 from xk
and Ak, an approximation to A(xk), as follows:

Step 1. let

Bk = J
T (xk)J(xk) +Ak;(1.3)

Step 2. solve Bks = −g(xk) to obtain sk;

Step 3. let xk+1 = xk + sk;

Step 4. update Bk as following:

Ak+1 = Update (Ak, sk, yk);

Bk+1 = J
T (xk+1)J(xk+1) +Ak+1,(1.4)

where yk = g(xk+1) − g(xk). The structured secant methods can produce a q-
superlinear convengence for both zero and nonzero residual cases if the update formula
for Ak is chosen carefully.

We know that when a line search globalization technique is used, it is often
preferred to maintain the positive definiteness of the working matrices so that the
resulting directions sk are descent directions of f . However, for structured secant
methods, most update formulas for Ak do not guarantee Bk to preserve positive
definite property. Yabe and Takahashi [7], [8] and Yabe and Yamaki [9] proposed a
factorized quasi-Newton method to compute the search direction sk by solving the
equations

(J(xk) + Lk)
T (J(xk) + Lk)s = −g(xk),(1.5)

where the matrix Lk is an l × n correction of the Jacobian matrix J(xk) such that
(J(xk)+Lk)

T (J(xk)+Lk) is an approximation to �2f(xk), which is at least positive
semidefinite. In fact as shown by them, the matrix (J(xk) + Lk)

T (J(xk) + Lk) is
locally positive definite under some mild conditions. According to this idea, they
proposed BFGS-like and DFP-like updates for Lk in [7] and showed their superlinear
convergence properties in [8]. In [9], they proposed a Broyden-like family which
includes the above two updates as special cases.

Their factorized quasi-Newton methods achieve q-superlinear convergence for
both zero and nonzero residual cases, but lose q-quadratic convergence for zero resid-
ual problems, which otherwise can be obtained by the Gauss–Newton method and
the Levenberg–Marquadt method. In order to obtain a q-quadratic convergence rate
for the zero residual case, Huschens proposed a family of secant methods in [6]. His
main idea is to rewrite �2f(x) as

�2f(x) = C̄(x) + ||R(x)||
l∑
i=1

ri(x)

||R(x)|| �
2 ri(x),
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and to approximate

l∑
i=1

ri(x)

||R(x)|| �
2 ri(x)

by a suitable matrix. The extracted multiplier ||R(x)|| in front of the sum plays a
role of self-scaling that will, at least locally, give the right tendency for sizing the
approximation to the matrix A(x). The self-scaling technique brings about quadratic
convergence to his secant methods for the zero residual case. However, his approxi-
mation to the Hessian �2f(x) may not be positive definite, and hence the resulting
search direction is in general not a descent one.

In this paper, we are going to improve the factorized quasi-Newton methods,
proposed by Yabe and his partners, by exploiting Huschens’ technique. The new
methods still have a factorized structure and make the updated matrices positive
definite, at least locally. They maintain local q-superlinear convergence for the nonzero
residual case but speed up the convergence rate from q-superlinear to q-quadratic in
the zero residual case.

The paper is organized as follows. We present the family of scaled factorized
Broyden-like methods in section 2. In section 3, we analyze the local convergence
and the convergence rate of these methods. Finally we give conclusions and further
research directions in section 4. Unless stated otherwise, the vector norm || · || used
in this paper is the l2 norm, and the matrix norm is consistent with the l2 vector
norm. The weighted Frobenius norm ||X||MT

for any matrix X ∈ Rn×n is defined by
||MTXMT ||F for a symmetric, positive definite matrix MT ∈ Rn×n.

2. The algorithms. In [9] Yabe and Yamaki compute the approximate Hessian
Bk by

Bk = (J(xk) + Lk)
T (J(xk) + Lk),(2.1)

where Lk is updated by

Lk+1 = Lk + (1−
√
φk)

(
L#
k sk

sTkB
#
k sk

)
(
√
λkzk −B#

k sk)
T

+
√
φkL

#
k (
√
λk(B

#
k )

−1zk − sk)
(
zk
sTk zk

)T
(2.2)

with

z#k = [J(xk+1)− J(xk)]TR(xk+1),(2.3)

zk = J
T (xk+1)J(xk+1)sk + z

#
k ,(2.4)

L#
k = J(xk+1) + Lk,(2.5)

B#
k = L

#T
k L#

k ,(2.6)

φk ∈ [0, φ],
λk =

1

(1− φk) sT
k
zk

sT
k
B#

k
sk
+ φk

zT
k

(B#
k

)−1zk
sT
k
zk

,

where φ is a given upper bound for all φk. The quasi-Newton methods with the
working matrices Bk generated by this set of formulas guarantee only q-superlinear
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convergence in the zero residual case. The main reason is that in this case when k
tends to ∞, these {Bk} may not converge to J(x∗)TJ(x∗), the Hessian at x∗. To
further improve their result, we approximate the Hessian �2f(xk) by the matrix

Bk = (J(xk) + ||R(xk)||Lk)T (J(xk) + ||R(xk)||Lk),(2.7)

where matrix Lk can be updated in such a way that Bk satisfies a secant equation
and inherits at least locally the positive definiteness. The role of the factor ||R(xk)||
in (2.7) is to yield a self-scaling property which will asymptotically give the right

tendency by sizing the approximation to the second part
∑l
i=1 ri(xk) �2 ri(xk) of

the Hessian �2f(xk); e.g., for the zero residual case (||R(x∗)|| = 0), the approximate
Hessians {Bk} calculated by (2.7) converge to the Hessian J(x∗)TJ(x∗) at x∗ when
k tends to ∞. Furthermore, in order to make the resulting methods converge q-
quadratically in the zero residual case and q-superlinearly in the nonzero residual case,

we exploit Huschens’ idea to introduce the multiplier ||R(xk+1)||
||R(xk)|| to the term [J(xk+1)−

J(xk)]
TR(xk+1) which is a usual approximation to

∑l
i=1 ri(xk+1)�2 ri(xk+1)sk (see

[3] and [4]). That is, we introduce a new approximation

l∑
i=1

ri(xk+1)�2 ri(xk+1)sk ≈ [J(xk+1)− J(xk)]T R(xk+1)

||R(xk)|| ||R(xk+1)||,

(2.8)

where sk = xk+1 − xk. Since

�2f(xk+1)sk = J
T (xk+1)J(xk+1)sk +

l∑
i=1

ri(xk+1)�2 ri(xk+1)sk

≈ JT (xk+1)J(xk+1)sk + ‖R(xk+1)‖z#k ,

where z#k = [J(xk+1)− J(xk)]T ·R(xk+1)
||R(xk)|| , a secant equation would be

Bk+1sk = zk,(2.9)

where zk = J
T (xk+1)J(xk+1)sk + ||R(xk+1)||z#k . We now modify the formulas (2.2)–

(2.6) to obtain a new updating formula:

Lk+1 =
||R(xk+1)||
||R(xk)|| Lk +

[
(1−

√
φk)

(
L#
k sk

sTkB
#
k sk

)(√
λkzk −B#

k sk

)T

+
√
φkL

#
k

(√
λk(B

#
k )

−1zk − sk
)( zk

sTk zk

)T ]
1

||R(xk+1)|| ,(2.10)

where

z#k = [J(xk+1)− J(xk)]T R(xk+1)

||R(xk)|| ,(2.11)

zk = J
T (xk+1)J(xk+1)sk + ||R(xk+1)||z#k ,(2.12)

L#
k = J(xk+1) +

||R(xk+1)||2
||R(xk)|| Lk,(2.13)
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B#
k = L

#T
k L#

k ,(2.14)

φk ∈ [0, φ],
λk =

1

(1− φk) sT
k
zk

sT
k
B#

k
sk
+ φk

zT
k

(B#
k

)−1zk
sT
k
zk

,

and propose our scaled factorized Broyden-like methods as follows.
A family of scaled factorized Broyden-like methods (SFB).

(Initial Step). Choose an initial approximation x0 ∈ Rn to the solution of problem
(1.1) and an initial matrix L0 ∈ Rl×n. Compute B0 = (J(x0)+ ||R(x0)||L0)

T (J(x0)+
||R(x0)||L0) and set k = 0. Assume g(x0) �= 0 and R(x0) �= 0.
(Iterative Steps). Generally, for given xk ∈ Rn, Lk ∈ Rl×n, and Bk ∈ Rn×n the steps
for getting xk+1, Lk+1, and Bk+1 for k = 0, 1, 2, . . . , are as follows:
Step 1. Obtain sk by solving

Bks = −g(xk).(2.15)

Step 2. Set xk+1 = xk + sk. If g(xk+1) = 0 or R(xk+1) = 0, stop; otherwise

Step 3. compute z#k , zk, L
#
k , and B

#
k by (2.11)–(2.14).

Step 4. Update Lk and Bk by (2.10) and

Bk+1 = (J(xk+1) + ||R(xk+1)||Lk+1)
T (J(xk+1) + ||R(xk+1)||Lk+1).(2.16)

Step 5. Let k ← k + 1 and go to Step 1.
Remark 1. We exploit Yabe et al.’s [7]–[9] factorized technique and Huschens’

[6] idea in our family of scaled factorized Broyden-like methods. The two multipliers
before Lk that we introduce in (2.10) and (2.13), respectively, aim to achieve the
convergence properties which we expect.

Remark 2. By (2.10) and (2.16), it is easy to obtain

Bk+1 = B
#
k −

B#
k sks

T
kB

#
k

sTkB
#
k sk

+
zkz

T
k

sTk zk
+ φk(s

T
kB

#
k sk)vkv

T
k ,(2.17)

where

vk =
B#
k sk

sTkB
#
k sk

− zk
sTk zk

.

Therefore, the Bk+1 obtained at Step 4 satisfies the secant equation (2.9). Note that
(2.17) is the well-known updating formula of the Broyden family to obtain Bk+1 from

B#
k (not from Bk), and the cases φk = 0 and φk = 1 in (2.17) are equivalent to

BFGS-like update and DFP-like update, respectively, from B#
k to Bk+1. Thus, we

call (2.17) a scaled factorized Broyden-like family and our methods can be described
as scaled factorized Broyden-like methods.

Remark 3. In this paper we discuss only local behavior of the new methods.
Hence no line search is imposed and we take a unit step length.

3. Convergence analysis. In this section, we show that the family of scaled
factorized Broyden-like methods yields q-quadratic convergence for the zero residual
problems and q-superlinear convergence for the nonzero residual case. The following
assumptions for problem (1.1) will be used in the rest of the paper. Let D = {x :
||x− x∗|| ≤ ε1}, where ε1 > 0 is a sufficiently small constant.
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(A1) The point x∗ ∈ Rn is a local minimizer of problem (1.1) in D.
(A2) In D, f(x) is twice continuously differentiable and there exists a constant
C > 0 such that for all x, x+ ∈ D,

|| �2 f(x)−�2f(x+)|| ≤ C||x− x+||,
||C̄(x)− C̄(x+)|| ≤ C||x− x+||,
||J(x)− J(x+)|| ≤ C||x− x+||,
||R(x)−R(x+)|| ≤ C||x− x+||,
||g(x)− g(x+)|| ≤ C||x− x+||.

(A3) The matrix �2f(x∗) is positive definite and there exist constants m andM :
0 < m < M and M > 1, such that for all x ∈ D and d ∈ Rn,

m||d||2 ≤1
2
dT �2 f(x)d≤M ||d||2.

It follows easily from Assumption (A2) that for any x, x̂ ∈ D,

||g(x)− g(x̂)−�2f(x∗)(x− x̂)|| ≤ Cσ(x, x̂)||x− x̂||,(3.1)

where σ(x, x̂) = max{||x− x∗||, ||x̂− x∗||}.

3.1. Q-quadratic convergence for zero residual problems. We divide the
convergence analysis of the SFB methods into two parts: the convergence result for
zero residual problems and the convergence result for nonzero residual problems. The
proof of the local q-quadratic convergence in the zero residual case is based on the
bounded deterioration property of Lk and the use of the product structure in factor-
ized secant methods, whereas the proof of the local q-superlinear convergence in the
nonzero residual case mainly exploits the idea which was used by Yabe and Yamaki
in [9] to show the convergence properties of the factorized Broyden-like family. We
start with the zero residual case.

Theorem 3.1. Suppose R(x∗) = 0. Then, there exist ε, δ > 0 such that for any
initial point x0 with ||x0 − x∗|| < ε and any L0 ∈ Rl×n with ||L0|| < δ, the sequence
{xk} generated by any SFB method is well defined and converges at a q-quadratic rate
to x∗.

Proof. Let B∗ = �2f(x∗) = JT (x∗)J(x∗). Since JT (x∗)J(x∗) is positive definite,
there exist ε∗1 > 0 and M

′ > m′ > 0 such that for all d ∈ Rn and ||x− x∗|| ≤ ε∗1,

m′||d||2 ≤ dTJT (x)J(x)d ≤M ′||d||2.(3.2)

Choose ε > 0 and δ > 0 sufficiently small such that

ε < min


ε∗, m

θ∗K1K2 + (C +
√

M
mC

2)


 , δ < δ∗,(3.3)

where
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δ∗ = min
{
1

M
, 1

}
,(3.4)

ε∗ ≤ min

1, ε1, ε∗1, 1C , m

γ∗ +K
,

m

C +
√

M
mC

2
,

m′

2C
√

M
m (C + ||J(x∗)||) + M

mC
2


 .(3.5)

The constants K, K1, γ
∗, θ∗, and K2 in (3.3) and (3.5) are given by

K = C(C + ||J(x∗)||)(1 + 2δ∗) + C2δ∗2,(3.6)

K1 = C +

√
M

m
C2 + 2M,(3.7)

γ∗ = C + 2MC2

√
M

m
+ 2CM

√
M

m
||J(x∗)||+ C2M

3

m
,

θ∗ =
1

m− ε∗γ∗ ,(3.8)

K2 = θ
∗K

[
C2

√
M

m
+ 2C

√
M

m
(C + ||J(x∗)||)δ∗ + Mθ

∗K
m

C2δ∗2
]
.(3.9)

Furthermore, the constants below will be used later:

γ = ε

[
C + 2MC2

√
M

m
+ 2CM

√
M

m
||J(x∗)||+ C2M

3

m

]
= εγ∗,

θ =
1

m− γ ,(3.10)

θ̄ = θKε,(3.11)

K3 = 2m−
(
C +

√
M

m
C2

)
ε,(3.12)

K4 =M
′ + 2C

√
M

m
[C + ||J(x∗)||]δ + M

m
C2δ2,(3.13)

K5 = m
′ − 2Cε

√
M

m
[C + ||J(x∗)||]− C2ε

M

m
,(3.14)

K6 =
(1 + φ+ φθK4)K1K2

K2
3

.(3.15)

Note that as 0 < ε < ε∗ ≤ m
γ∗ , θ is well defined, positive, and satisfies θ < θ∗.

Moreover, from ε∗ ≤ m
γ∗+K it is easy to see that θ̄ < 1 since

θ̄ = θKε < θ∗Kε∗ ≤ K

m− mγ∗
γ∗+K

m

γ∗ +K
= 1.

With the ε and δ satisfying (3.3), we will prove the following results by induction:
there exist constants α1 > 0 and α2 > 0 such that for all k,

(1) ||xk+1 − x∗|| ≤ θK||xk − x∗||2 ≤ θ̄||xk − x∗||;(3.16)
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(2) ||Lk+1|| ≤ (1 + α1σ(xk+1, xk))||Lk||+ α2σ(xk+1, xk);(3.17)

(3) ||Lk+1|| ≤ 1;(3.18)

(4) ||Bk+1 −B∗|| < γ.(3.19)

In fact (3.16) just means that {xk} converges to x∗ q-quadratically. By the way, (3.19)
ensures that all Bk are positive definite.

By (3.3), (3.4), and ||L0|| < δ, we obtain ||L0|| < 1. Thus, by assumptions
(A1)–(A2) and R(x∗) = 0, we have

||B0 −B∗||
= ||(J(x0) + ||R(x0)||L0)

T (J(x0) + ||R(x0)||L0)− JT (x∗)J(x∗)||
≤ ||JT (x0)J(x0)− JT (x∗)J(x∗)||+ 2||R(x0)|| · ||L0|| · ||J(x0)||+ ||R(x0)||2||L0||2
≤ C||x0 − x∗||+ 2C||x0 − x∗|| · ||L0||(C||x0 − x∗||+ ||J(x∗)||)
+C2||L0||2||x0 − x∗||2

= {C + 2C2||L0|| · ||x0 − x∗||+ 2C||L0||||J(x∗)||
+C2||L0||2||x0 − x∗||} ||x0 − x∗||

< ε[C + 2MC2 + 2CM ||J(x∗)||+ C2M2] ≤ γ = εγ∗ < ε∗γ∗ ≤ m.
(3.20)

By (A3) and (3.20), for all d ∈ Rn we have

dTB0d ≥ 2m||d||2 − dT (B∗ −B0)d ≥ (2m− εγ∗)||d||2 > 0.

Therefore, B0 is positive definite. Recalling the Banach perturbation lemma, Theo-
rem 3.1.4 of [4], we have

||B−1
0 || ≤ θ for allB0 ∈ Rn×n with ||B0 −B∗|| < γ,(3.21)

where θ is defined by (3.10). Using the mean value theorem and by (A2), (3.21), and
the fact ||R(x∗)|| = 0, we have

||x1 − x∗||
= ||x0 − x∗ −B−1

0 JT (x0)R(x0)||
≤ ||B−1

0 ||[||B0(x0 − x∗)− JT (x0)R(x0)||]
= ||B−1

0 ||[||(J(x0) + ||R(x0)||L0)
T (J(x0) + ||R(x0)||L0)(x0 − x∗)− JT (x0)R(x0)||]

≤ ||B−1
0 ||[||JT (x0)J(x0)(x0 − x∗)− JT (x0)R(x0) + J

T (x0)R(x
∗)||+ 2||x0 − x∗||

·||R(x0)−R(x∗)|| · ||L0|| · ||J(x0)||+ ||R(x0)−R(x∗)||2||L0||2||x0 − x∗||]
≤ θ[C||J(x0)|| · ||x0 − x∗||2 + 2Cδ||J(x0)|| · ||x0 − x∗||2 + C2δ2||x0 − x∗||3]
≤ θ[C(C + ||J(x∗)||)(1 + 2δ∗) + C2δ∗2]||x0 − x∗||2
= θK||x0 − x∗||2 ≤ θ̄||x0 − x∗||.
(3.22)
Noticing that for all x close enough to x∗ and θ(x) ∈ (0, 1),

2M ||x− x∗||2 ≥ ||R(x)||2 = (x− x∗)T �2 f(x∗ + θ(x)(x− x∗))(x− x∗)
≥ 2m||x− x∗||2,(3.23)
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and hence

||z0 −B∗s0||
= ||J(x1)

TJ(x1)s0 +
||R(x1)||
||R(x0)|| (J(x1)− J(x0))

T (R(x1)−R(x∗))− JT (x∗)J(x∗)s0||
≤ C||x1 − x∗|| · ||s0||+

√
M
m

||x1−x∗||
||x0−x∗||C

2||s0|| · ||x1 − x∗||
≤ [C +

√
M
mC

2]σ(x0, x1)||s0||.
(3.24)
So,

sT0 z0 ≤ ||s0||||z0 −B∗s0||+ sT0 B∗s0

≤
[
C +

√
M

m
C2

]
σ(x0, x1)||s0||2 + 2M ||s0||2

≤
[
C +

√
M

m
C2 + 2M

]
||s0||2

= K1||s0||2.(3.25)

On the other hand, with (3.24) and (3.12) we get

sT0 z0 ≥ 2m||s0||2 −
[
C +

√
M

m
C2

]
σ(x0, x1)||s0||2

≥
[
2m−

(
C +

√
M

m
C2

)
ε

]
||s0||2 = K3||s0||2.(3.26)

Notice that (3.22) gives

||x1 − x∗|| ≤ θ̄||x0 − x∗|| < ε < 1.

Thus, by (2.14), (3.2), (3.23), ||R(x1)|| ≤ C||x1 − x∗||, and (3.13), for all d ∈ Rn
we have

dTB#
0 d = d

T

(
J(x1) +

||R(x1)||2
||R(x0)|| L0

)T (
J(x1) +

||R(x1)||2
||R(x0)|| L0

)
d

= dTJT (x1)J(x1)d+
||R(x1)||2
||R(x0)|| d

TJT (x1)L0d

+
||R(x1)||2
||R(x0)|| d

TLT0 J(x1)d+
||R(x1)||4
||R(x0)||2 d

TLT0 L0d

≤M ′||d||2 + 2C
√
M

m

||x1 − x∗||2
||x0 − x∗|| [C||x1 − x∗||+ ||J(x∗)||]δ||d||2

+C2M

m

||x1 − x∗||4
||x0 − x∗||2 δ

2||d||2

≤
[
M ′ + 2C

√
M

m
(C + ||J(x∗)||)δ + C2M

m
δ2

]
||d||2 = K4||d||2.(3.27)

Similar to (3.27) and by (3.14),
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dTB#
0 d ≥

[
m′ − 2C

√
M

m
ε(C + ||J(x∗)||)− εM

m
C2

]
||d||2

= K5||d||2 for all d ∈ Rn.(3.28)

Thus, with (3.22), (3.23), ||R(x∗)|| = 0, and (3.9) we get
||z0 −B#

0 s0||
= ||JT (x1)J(x1)s0 +

||R(x1)||
||R(x0)|| (J(x1)− J(x0))

T (R(x1)−R(x∗))− JT (x1)J(x1)s0

− ||R(x1)||2
||R(x0)|| J

T (x1)L0s0 − ||R(x1)||2
||R(x0)|| L

T
0 J(x1)s0 − ||R(x1)||4

||R(x0)||2L
T
0 L0s0||

≤ C2
√

M
m

||x1−x∗||
||x0−x∗|| ||s0|| · ||x1 − x∗||+ 2 ||R(x1)||2

||R(x0)|| ||J(x1)|| · ||L0|| · ||s0||
+ ||R(x1)||4

||R(x0)||2 ||L0||2||s0||
≤ C2θK

√
M
m ||x0 − x∗|| · ||s0|| · ||x1 − x∗||+ 2CθK

√
M
m ||x1 − x∗|| · ||x0 − x∗||

· ||J(x1)|| · ||L0|| · ||s0||+ C2θ2K2M
m ||x0 − x∗||2||x1 − x∗||2||L0||2||s0||

≤ C2θK
√

M
m ||s0|| · ||x1 − x∗||σ(x1, x0) + 2θK

√
M
mC||x1 − x∗||σ(x1, x0)·

||J(x1)|| · ||L0|| · ||s0||+ M
mC

2θ2K2||x1 − x∗||σ(x1, x0)||L0||2||s0||
≤ θK

[
C2
√

M
m + 2

√
M
mCδ

∗(C + ||J(x∗)||) + MθK
m C2δ∗2

]
· ||x1 − x∗|| · ||s0||σ(x1, x0)

≤ K2||x1 − x∗|| · ||s0||σ(x1, x0).
(3.29)
By (3.24),

||z0|| ≤ ||z0 −B∗s0||+ ||B∗s0|| ≤ K1||s0||,(3.30)

where K1 is defined by (3.7). Hence, by (2.10), (3.23), (3.26), (3.28), (3.30), and

|
√
λ0 − 1| = |λ0 − 1|

|√λ0 + 1|
≤ |λ0 − 1|,

we have

||L1|| =
∣∣∣∣∣
∣∣∣∣∣ ||R(x1)||
||R(x0)||L0 +

[
(1−

√
φk)

(
L#

0 s0

sT0 B
#
0 s0

)
(
√
λ0z0 −B#

0 s0)
T

+
√
φkL

#
0

(√
λ0(B

#
0 )

−1z0 − s0
)( z0
sT0 z0

)T ]
1

||R(x1)||

∣∣∣∣∣
∣∣∣∣∣

≤ ||R(x1)||
||R(x0)|| ||L0||+

[
|1−

√
φk|
∣∣∣∣∣
∣∣∣∣∣ L

#
0 s0

sT0 B
#
0 s0

∣∣∣∣∣
∣∣∣∣∣ · ||

√
λ0z0 −B#

0 s0||

+
√
φk||L#

0 (B
#
0 )

−1|| · ||
√
λ0z0 −B#

0 s0|| ·
∣∣∣∣
∣∣∣∣ z0sT0 z0

∣∣∣∣
∣∣∣∣
]

1

||R(x1)||

≤ θK
√
M

m
σ(x1, x0)||L0||+

[
|1−

√
φk| ||L

#
0 || · ||s0||
K5||s0||2

+
√
φk||L#

0 || · ||(B#
0 )

−1|| K1||s0||
K3||s0||2

]
||√λ0z0 −B#

0 s0||
||R(x1)||



SCALED FACTORIZED BROYDEN-LIKE METHODS 1173

≤ θK
√
M

m
σ(x1, x0)||L0||+

[
|1−

√
φk| ||L

#
0 ||
K5

+
√
φk||L#

0 || · ||(B#
0 )

−1||K1

K3

]
|λ0 − 1|||z0||+ ||z0 −B#

0 s0||
||s0|| · ||R(x1)|| .(3.31)

Notice that

||B#
0 −B∗||

=

∣∣∣∣∣
∣∣∣∣∣
(
J(x1) +

||R(x1)||2
||R(x0)|| L0

)T (
J(x1) +

||R(x1)||2
||R(x0)|| L0

)
− JT (x∗)J(x∗)

∣∣∣∣∣
∣∣∣∣∣

≤ ||JT (x1)J(x1)− JT (x∗)J(x∗)||+ 2 ||R(x1)||2
||R(x0)|| ||L0|| · ||J(x1)||+ ||R(x1)||4

||R(x0)||2 ||L0||2

≤ C||x1 − x∗||+ 2C
√
M

m
||x1 − x∗|| · ||L0||(C||x1 − x∗||+ ||J(x∗)||)

+C2M

m
||L0||2||x1 − x∗||2

=

[
C + 2C2

√
M

m
||L0||||x1 − x∗||+ 2C

√
M

m
||L0||||J(x∗)||+ C2M

m
||L0||2

]
||x1 − x∗||

< ε

[
C + 2MC2

√
M

m
+ 2CM

√
M

m
||J(x∗)||+ M

3

m
C2

]
= γ.

(3.32)
So, by (3.21),

||(B#
0 )

−1|| ≤ θ.(3.33)

On the other hand,

|zT0 B#−1
0 z0| ≥ |zT0 s0| − ||z0|| · ||B#−1

0 || · ||z0 −B#
0 s0||

≥ K3||s0||2 − θK1||s0||K2σ(x1, x0)||s0||
≥ (K3 − θK1K2ε)||s0||2.(3.34)

Thus, (3.24)–(3.30), (3.33), and (3.34) give

|λ0 − 1|

=

∣∣∣∣∣∣∣
1− (1− φk) sT0 z0

sT0 B
#
0 s0
− φk z

T
0 B

#−1
0 z0
sT0 z0

(1− φk) sT0 z0

sT0 B
#
0 s0

+ φk
zT0 B

#−1
0 z0
sT0 z0

∣∣∣∣∣∣∣
=

∣∣∣∣∣ (1− φk)(s
T
0 B

#
0 s0 − sT0 z0)(sT0 z0) + φk(sT0 B#

0 s0)(s
T
0 z0 − zT0 B#−1

0 z0)

(1− φk)(sT0 z0)2 + φk(zT0 B#−1
0 z0)(sT0 B

#
0 s0)

∣∣∣∣∣
=

∣∣∣∣∣ (1− φk)(s
T
0 B

#
0 s0 − sT0 z0)(sT0 z0) + φk(sT0 B#

0 s0)(s
T
0 z0 − zT0 B#−1

0 z0)

(sT0 z0)
2 + φk[(zT0 B

#−1
0 z0)(sT0 B

#
0 s0)− (sT0 z0)2]

∣∣∣∣∣ .
The Cauchy–Schwarz inequality yields

(zT0 B
#−1
0 z0)(s

T
0 B

#
0 s0)− (sT0 z0)2 ≥ 0.
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Thus, by (3.26) we have

|λ0 − 1|

≤ |1− φk|K1K2σ(x1, x0)||x1 − x∗|| · ||s0||4 + φkθK1K4K2σ(x1, x0)||x1 − x∗|| · ||s0||4
(sT0 z0)

2

≤ (1 + φ+ φθK4)K1K2

K2
3

σ(x1, x0)||x1 − x∗||

= K6σ(x1, x0)||x1 − x∗||,
(3.35)
where K6 is defined in (3.15). Notice that

||L#
k || =

∣∣∣∣
∣∣∣∣J(xk+1) +

||R(xk+1)||2
||R(xk)|| Lk

∣∣∣∣
∣∣∣∣ .

By (3.29), (3.30), (3.33), and (3.35), (3.31) becomes

||L1|| ≤ θK
√
M

m
σ(x1, x0)||L0||+

[ |1−√φk|
K5

+

√
φkθK1

K3

] [
C + ||J(x∗)||

+CM

√
M

m
||L0||

]
· ||x1 − x∗||[K1K6σ(x1, x0)||s0||+K2σ(x1, x0)||s0||]√

m||s0|| · ||x1 − x∗||

≤ θK
√
M

m
σ(x1, x0)||L0||+

[
1 +
√
φ

K5
+

√
φθK1

K3

]

·
[
C + ||J(x∗)||+

√
M

m
CM ||L0||

]
K1K6 +K2√

m
σ(x1, x0).(3.36)

Taking

α1 = θK

√
M

m
+ CM

√
M

m

[
1 +
√
φ

K5
+

√
φθK1

K3

]
K1K6 +K2√

m
,

α2 =

[
1 +
√
φ

K5
+

√
φθK1

K3
][C + ||J(x∗)||

]
K1K6 +K2√

m
,

(3.36) becomes

||L1|| ≤ α1σ(x1, x0)||L0||+ α2σ(x1, x0).

Hence, (3.17) is true for k = 0. By this property and similar to the corresponding
proof of Theorem 3.1 in [6], we can show that (3.18) holds for k = 0:

||L1|| ≤ 1.
Since

||B1 −B∗||
= ||(J(x1) + ||R(x1)||L1)

T (J(x1) + ||R(x1)||L1)− JT (x∗)J(x∗)||
≤ ||JT (x1)J(x1)− JT (x∗)J(x∗)||+ 2||R(x1)|| · ||L1|| · ||J(x1)||+ ||R(x1)||2||L1||2
≤ C||x1 − x∗||+ 2C||x1 − x∗|| · ||L1||(C||x1 − x∗||+ ||J(x∗)||) + C2||L1||2||x1 − x∗||2
= [C + 2C2||L1|| · ||x1 − x∗||+ 2C||L1||||J(x∗)||+ C2||L1||2||x1 − x∗||]||x1 − x∗||
< ε[C + 2MC2 + 2CM ||J(x∗)||+ C2M2] ≤ γ,
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(3.19) is true when k = 0. For k = 1, 2, . . . , (3.16)–(3.19) can be proved inductively
using the same arguments.

Note that in our algorithm and the above proof, parameters φk are allowed to
vary at iterations, and as long as they are upper bounded by a constant, say φ, the
proof is valid.

3.2. Q-superlinear convergence for nonzero residual problems. In this
subsection, we consider the superlinear convergence rate for the least squares problems
with nonzero residual. In what follows, we define MT = �2f(x∗)

1
2 . Note that by the

equivalence of the norms, there exist positive constants η1 and η2 such that

1

η1
|| · ||MT

≤ || · || ≤ η2|| · ||MT
.(3.37)

The proof of the following theorem is based partially on the techniques used in [9].
Theorem 3.2. Suppose ||R(x∗)|| > 0. Then there exist ε, δ > 0 such that for any

initial point x0 with ||x0−x∗|| < ε and any L0 ∈ Rl×n with ||B−1
0 −�2f(x∗)−1||MT

<
δ, the sequence {xk} generated by Algorithm SFB converges to x∗ q-superlinearly.

Proof. Take Hk = B−1
k for k = 0, 1, 2 . . .. Following the proof of Theorem 1

and Theorem 2 in [9] carefully, it is enough to show that for any ν ∈ (0, 1) and all
k = 0, 1, 2, . . . , there exist sufficiently small ε > 0 and δ > 0 such that

(1) ||xk+1 − x∗|| ≤ ν||xk − x∗||.
(2) There exists K̄1 > 0 such that

||zk −�2f(x∗)sk|| ≤ K̄1σ(xk+1, xk)||sk||,
where zk = J

T (xk+1)J(xk+1)sk +
||R(xk+1)||
||R(xk)|| (J(xk+1)− J(xk))TR(xk+1).

(3) There exist K̄2 > 0 and K̄3 > 0 such that

K̄2||sk||2 ≤ sTk zk ≤ K̄3||sk||2.
(4) There exists K̄4 > 0 such that ||Hk|| < K̄4, ||Bk|| < K̄4, and ||Lk|| < K̄4.
(5) There exists K̄5 > 0 such that

||B#
k −Bk|| ≤ K̄5σ(xk+1, xk).

(6) There exist α1 > 0 and α2 > 0 such that

||Hk+1 −�2f(x∗)−1||MT

≤ ||Hk −�2f(x∗)−1||MT
+ α1σ(xk+1, xk)− α2

||ŝk − Ĥ#
k ŝk||2

||ŝk||2 ,

where ŝk =MT sk, Ĥ
#
k =MTH

#
k MT andH

#
k = (B

#
k )

−1, where B#
k is defined

in Algorithm SFB.
For (1), by the condition of the theorem, we know that ||B−1

0 || ≤ || �2

f(x∗)−1||+ δ. Thus, by (3.1) and g(x∗) = 0, we have
||x1 − x∗|| = ||x0 − x∗ −B−1

0 g(x0)||
≤ ||x0 − x∗ −B−1

0 g(x0) +B
−1
0 g(x∗)

+B−1
0 �2 f(x∗)(x0 − x∗)−B−1

0 �2 f(x∗)(x0 − x∗)||
≤ ||B−1

0 || · ||g(x0)− g(x∗)−�2f(x∗)(x0 − x∗)||
+|| �2 f(x∗)||||B−1

0 −�2f(x∗)−1||||x0 − x∗||
≤ [C(|| �2 f(x∗)−1||+ δ)||x0 − x∗||+ δ|| �2 f(x∗)||] ||x0 − x∗||
≤ [C(|| �2 f(x∗)−1||+ δ)ε+ || �2 f(x∗)||δ] ||x0 − x∗||.
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Therefore, if ε ≤ ν
2C(||�2f(x∗)−1||+δ) and δ ≤ ν

2||�2f(x∗)|| , then ||x1−x∗|| ≤ ν||x0−x∗||.
We now turn to (2). Because ||R(x∗)|| > 0, due to the continuity of R(x) and

J(x), for any x sufficiently close to x∗ there exist M ′′ > 0 and m′′ > 0 such that

m′′ ≤ ||R(x)|| ≤M ′′, ||J(x)|| ≤M ′′.

Now, by (A2) and (3.1), first we have∣∣∣∣z0 −�2f(x∗)s0
∣∣∣∣

=

∣∣∣∣
∣∣∣∣JT (x1)J(x1)s0 +

||R(x1)||
||R(x0)|| (J(x1)− J(x0))

TR(x1)−�2f(x∗)s0

∣∣∣∣
∣∣∣∣

≤ ||JT (x1)J(x1)s0 + (J(x1)− J(x0))
TR(x1)−�2f(x∗)s0||

+
|||R(x1)|| − ||R(x0)|||

||R(x0)|| ||J(x1)− J(x0)|| · ||R(x1)||

≤ ||JT (x1)J(x1)s0 − JT (x0)J(x0)s0||
+||JT (x0)J(x0)s0 − JT (x0)R(x1) + J

T (x0)R(x0)||
+||JT (x1)R(x1)− JT (x0)R(x0)−�2f(x∗)s0||
+
|||R(x1)|| − ||R(x0)|||

||R(x0)|| ||J(x1)− J(x0)|| · ||R(x1)||

≤ C||s0||2 + ||J(x0)|| · ||J(x0)s0 − (R(x1)−R(x0))||+ ||g(x1)− g(x0)−�2f(x∗)s0||
+
M ′′

m′′ ||J(x1)− J(x0)|| · ||R(x1)−R(x0)||

≤
[
3C + 2M ′′C +

2C2M ′′

m′′

]
σ(x1, x0)||s0||.

Taking K̄1 = 3C + 2M
′′C + 2C2M ′′

m′′ , (2) holds when k = 0.
For (3), noticing that by (A3) and (1),

sT0 z0 ≥ ||sT0 �2 f(x∗)s0|| − ||s0||||z0 −�2f(x∗)s0||
≥ 2m||s0||2 − K̄1σ(x1, x0)||s0||2
≥ (2m− K̄1ε)||s0||2

and

sT0 z0 ≤ ||sT0 �2 f(x∗)s0||+ ||s0||||z0 −�2f(x∗)s0||
≤ 2M ||s0||2 + K̄1σ(x1, x0)||s0||2
≤ (2M + K̄1ε)||s0||2.

We take K̄2 = (2m−K̄1ε) and K̄3 = (2M+K̄1ε). If ε < m/K̄1, (3) holds when k = 0.
Since by (3.37), we have

||H0|| ≤ ||H0 −�2f(x∗)−1||+ || �2 f(x∗)−1||
≤ δη2 + || �2 f(x∗)−1||.

The matrix H0 is bounded. If δ ≤ ν
(ν+1)η2||�2f(x∗)|| , then

|| �2 f(x∗)||||H0 −�2f(x∗)−1|| ≤ δη2|| �2 f(x∗)|| ≤ ν

1 + ν
< 1.
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By the Banach perturbation lemma,

||B0|| = ||H−1
0 || ≤ (ν + 1)|| �2 f(x∗)||.

Thus,

||L0|| =
∣∣∣∣
∣∣∣∣ 1

||R(x0)|| [J(x0) + ||R(x0)|| · L0 − J(x0)]

∣∣∣∣
∣∣∣∣

≤ 1

||R(x0)|| [||J(x0) + ||R(x0)|| · L0||+ ||J(x0)||]

≤ 1

m′′ [||B0|| 12 + ||J(x0)||]

≤ 1

m′′ [(ν + 1)
1
2 || �2 f(x∗)|| 12 +M ′′].

Taking K̄4 = max{δη2+||�2f(x∗)−1||, (ν+1)||�2f(x∗)||, 1
m′′ [(ν+1)

1
2 ||�2f(x∗)|| 12+

M ′′]}, (4) is achieved when k = 0.
For (5), we have

||B#
0 −B0||

≤ ||
(
J(x1) +

||R(x1)||2
||R(x0)|| L0

)T (
J(x1) +

||R(x1)||2
||R(x0)|| L0

)
−(J(x0) + ||R(x0)||L0)

T (J(x0) + ||R(x0)||L0)||
≤ ||JT (x1)J(x1)− JT (x0)J(x0)||+

∣∣∣∣
∣∣∣∣ ||R(x1)||2
||R(x0)|| L

T
0 J(x1)− ||R(x0)||LT0 J(x0)

∣∣∣∣
∣∣∣∣

+

∣∣∣∣
∣∣∣∣ ||R(x1)||2
||R(x0)|| J

T (x1)L0 − ||R(x0)||JT (x0)L0

∣∣∣∣
∣∣∣∣

+

∣∣∣∣∣∣
∣∣∣∣∣∣
(
||R(x1)||2
||R(x0)||

)2

LT0 L0 − ||R(x0)||2LT0 L0

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ ||JT (x1)J(x1)− JT (x0)J(x0)||+ ||||R(x1)||2LT0 J(x1)− ||R(x0)||2LT0 J(x0)||
m′′

+
||||R(x1)||2JT (x1)L0 − ||R(x0)||2JT (x0)L0||

m′′ +
||||R(x1)||4LT0 L0 − ||R(x0)||4LT0 L0‖

m′′2 .

Since R(x) and J(x) are Lipschitz functions, so are JT (x)J(x), ||R(x)||2LT0 J(x),
||R(x)||2JT (x)L0, and ||R(x)||4LT0 L0. By (1), x1 ∈ D. Thus, there exists a con-
stant L′ such that

||JT (x1)J(x1)− JT (x0)J(x0)|| ≤ L′||x1 − x0||,
||||R(x1)||2LT0 J(x1)− ||R(x0)||2LT0 J(x0)|| ≤ L′||x1 − x0||,
||||R(x1)||2JT (x1)L0 − ||R(x0)||2JT (x0)L0|| ≤ L′||x1 − x0||,

||||R(x1)||4LT0 L0 − ||R(x0)||4LT0 L0‖ ≤ L′||x1 − x0||.

So,

||B#
0 −B0|| ≤ L′

(
1 +

2

m′′ +
1

m′′2

)
||x1 − x0||.
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Letting K̄5 = L
′(1 + 2

m′′ +
1

m′′2 ), we have

||B#
0 −B0|| ≤ K̄5σ(x1, x0).

By (1)–(5) and similar to the proof of expression (E9;k) in Theorem 1 of [9], (6)
holds for k = 0.

Following the inductive argument, we can show that for any ν ∈ (0, 1) and all
k = 0, 1, . . ., if ε > 0 and δ > 0 are sufficiently small, (1)–(6) hold.

Obviously, (1)–(6) imply that the sequence {xk} is well defined and converges
linearly to the local minimizer x∗. Note that

||(Bk −�2f(x∗))sk||
||sk|| ≤ ||MT (M

−1
T BkM

−1
T − I)MT sk||

||MT sk||
||MT sk||
||sk||

≤ ||MT ||2 ||B̂kŝk − ŝk||||ŝk|| ,

where B̂k = M
−1
T BkM

−1
T and ŝk is defined in (6). With (6) and similar to the proof

of Theorem 2 in [9], we have

lim
k−→∞

||B̂kŝk − ŝk||
||ŝk|| = 0.

Thus,

lim
k−→∞

||(Bk −�2f(x∗))sk||
||sk|| = 0,

which concludes the q-superlinear convergence of our method.
Note that conclusions (3) and (5) mean locally sTk zk > 0 and B#

k is positive

definite if Bk is so. Since Bk+1 is obtained by the Broyden’s formula (2.17) from B
#
k ,

by the theory of quasi-Newton methods we know that Bk+1 remains positive definite
if Bk is so.

4. Conclusions. In this paper we are concerned with structured secant methods
for solving nonlinear least squares problems. We improve Yabe and his partners’
factorized Broyden family of secant methods so that in the zero residual case the
convergence rate of the new methods can be enhanced substantially from superlinear
to quadratic; meanwhile, in the nonzero residual case, the new methods still maintain
a superlinear convergence rate. Our main idea for this improvement is stimulated
from Huschens’ method to express the matrix A(x), i.e., the part of second order
information, in the Hessian matrix of the least squares problems as a product form so
that a scaling factor ‖R(x)‖ appears explicitly as a multiplier. Accordingly, we change
the matrix Lk in the factorized form of the updating matrix Bk into ‖R(xk)‖Lk. This
modification is successful in the zero residual case because Lk may not approach the
zero matrix, but ‖R(xk)‖Lk does. Generally speaking, the multiplier ‖R(x)‖ plays a
role of self-scaling to adjust the modification to the working matrix Bk. The quadratic
convergence rate derived this way may hold even in the infinite-dimensional case, for
example, in a Hilbert space with l2 norm. Indeed, the proof of Theorem 3.1 does
not depend on the dimension n of the space in which the least squares problems
are discussed. With this main feature, it is suitable to call the new methods scaled
factorized secant methods.
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Our discussion in this paper focuses on the local behavior of the new methods.
Their global behavior has not been studied. In particular the global convergence with
a line search or trust region strategy and the positive definiteness of Bk independent
of the initial status are two interesting and important questions for further research
on this type of methods. Comprehensive numerical testing will also be helpful to
justify the new methods.

Acknowledgments. The authors are grateful to Prof. J. Gilbert, the associate
editor who viewed this paper, and to the referees for their valuable comments.
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Abstract. To model the process of sterilization by heating in the food industry, we derive an
optimal control problem with state and control constraints governed by a nonlinear heat equation.
A discretized form of the problem can then be expressed as a large-scale continuous optimization
problem and solved by a special sequential quadratic programming method. The model provides
useful insights—for example, when maximizing the retention of vitamins, the computed optimal
control differs from the one typically used in industry—and can be generalized.
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1. Introduction. In this paper we consider an optimal control problem resulting
from a mathematical model of the heat sterilization of food.

The goal of this paper is to present the application, to show how a complex
optimization problem in control can be derived, to use an optimization technique for
the solution of the problem, and to interpret the results obtained with regard to their
impact on the application. Details can be found in [8].

Heat sterilization of food is applied industrially to obtain products which are safe
and have a long shelf life. The aim is to thermally destroy microorganisms which cause
the spoilage of the food or which can pose a danger to consumers’ health.

One of the most important procedures used to sterilize prepackaged foods is
thermal processing in a batch retort (autoclave). Small containers like cans, jars,
or pouches, which are filled with a food product, are called food containers in what
follows. These are placed in a large container called an autoclave. The autoclave is
filled with hot water or steam which heats the cans. Due to the heating the microor-
ganisms in the food are destroyed. Afterward the water in the autoclave is cooled
and the sterilization process is finished. In this paper we consider the development
of the temperature inside the can where the control variable is the temperature in
the autoclave which acts on the surface or boundary of the can. The temperature
of the autoclave is influenced by a control mechanism. However, not only the micro-
organisms are heat sensitive. Severe heat treatment during in-container sterilization
also produces substantial changes in the nutritional and sensory quality of the food.
For example, a certain amount of the vitamins will be destroyed.

Both the destruction of microorganisms and the degradation of nutrients depend
on the profile of the temperature over time inside the food containers, which in turn
depends on the profile of the temperature over time inside the autoclave. Therefore the
sterilization process can be controlled by this latter temperature and by the process
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time. The main goal of the process is to achieve a prescribed amount of microorgan-
ism reduction. But this requirement does not totally characterize how to control the
process. A control that is typically used in industry is to heat for a certain time with
a constant temperature and then cool down. However, it turns out that this is not
optimal in terms of nutrient retention.

Thus the question arises of how to determine a control for the sterilization process
so that the required sterility is achieved and the disadvantageous effects are minimized.
Other possible objectives could be to reach sterility in minimal time or with minimal
energy consumption.

The paper is organized as follows. In section 2 a mathematical model of the
sterilization process is derived. First it is described how the thermal effect on micro-
organisms and nutrients is modeled in the engineering literature. In particular, the
F-value, an important tool in the food industry, is introduced. To evaluate these
models it is necessary to know the profile of the temperature inside the can during
the sterilization process. For foods heated by conduction this temperature can be
modeled by the heat equation, a nonlinear parabolic initial boundary value problem.
The optimal control problem resulting from the model of the sterilization process is
then presented.

In section 3 the discretization of the parabolic boundary control problem is con-
sidered. A finite element discretization in space and an implicit time stepping scheme
yield a large-scale optimization problem with control and state constraints. We demon-
strate the sparsity of the Jacobian and Hessian matrices, a property that allows savings
of storage in the numerical solution.

Numerical results are presented in section 4. For the solution we used an inex-
act sequential quadratic programming (SQP) method. One of the advantages of this
method is that the underlying quadratic subproblems can be solved by an iterative
procedure rather than a direct solution by matrix factorization. The test examples
used are typical prototypes in industry. The results demonstrate that by use of opti-
mization an improved temperature control can be obtained that is less destructive to
vitamins while still maintaining the sterilization requirements.

The models and methods used in this paper are from a mathematical point of
view more complex than those employed in the papers [3, 14, 15, 16]. Our model
allows for a nonlinear heat conduction process that is often used to include effects due
to thickening of the product. The SQP method, which we apply to a finite element
discretization, not a finite difference discretization, can adapt to various requirements
from the application such as various nonlinearities in the heat equation or constraints
on the state variables (the temperature of the food product). Since the required F-
value that appears as a constraint in the optimization problem is very sensitive to
changes in a certain temperature regime, a good accuracy is required in the temper-
ature computed from the nonlinear heat equation.

2. Model of the sterilization process and optimal control problem. In
this section we consider aspects of modeling the heat sterilization of food.

The destruction of both microorganisms and nutrients is usually described by a
process of first order

∂C(x, t)

∂t
= −K(θ(x, t))C(x, t),(2.1)

where C(x, t) is the concentration of living microorganisms or nutrients and θ(x, t) is
the absolute temperature, measured in degrees Kelvin, at the point x inside a food
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container at time t. The function K in (2.1) depends on the temperature through the
Arrhenius equation [7]

K(θ) = Kr exp

(
−E
R

(
1

θ
− 1

θr

))
,(2.2)

where Kr is the value of K at a reference temperature θr, E is the activation energy,
and R is the universal gas constant.

Denote by Cv and Cm the concentration of vitamins and microorganisms and let
Cv0 and Cm0 be the initial concentrations at time t = 0. Both Cv and Cm depend on
the temperature of the product, which in turn depends on the temperature u of the
heating medium, i.e., u is the control. The temporal development of these variables
is described by a process of first order, i.e., it follows a differential equation of first
order. We consider the retention of the vitamins at a point xb on the boundary or
surface of the product. The prescribed reduction of the microorganisms is monitored
at the center of the food container xc:

∂Cv(xb, ·)
∂t

= −Cv(xb, ·)Kvr exp

(
−Ev
R

(
1

θ
− 1

θvr

))
in (0, T ),(2.3)

Cv(xb, 0) = Cv0(xb),(2.4)

∂Cm(xc, ·)
∂t

= −Cm(xc, ·)Kmr exp

(
−Em

R

(
1

θ
− 1

θmr

))
in (0, T ),(2.5)

Cm(xc, 0) = Cm0(xc).(2.6)

The heat transfer from the surrounding heating medium to the food product is mod-
eled by a nonlinear heat equation. The domain Ω with boundary Γ describes the
spatial region occupied by the food container, e.g., a can, and T is the process time.
The following functions depend on the temperature θ: the density ρ, the heat capacity
c, and the heat conductivity k of the product to be heated. The constant α denotes
the heat transfer coefficient. The boundary condition is derived from the fact that the
heat flux into the can is proportional to the temperature difference between the can
and the water of the autoclave:

ρc(θ)
∂θ

∂t
−∇ · (k(θ)∇θ) = 0 in Ω× (0, T ),(2.7)

k(θ)
∂θ

∂n
= α(u− θ) in Γ× (0, T ),(2.8)

θ(·, 0) = θ0(·) in Ω.(2.9)

The inequality constraints include upper and lower bounds on the temperature of
the autoclave due to technical restrictions. Furthermore, it is important that the
temperature inside the can is not too high when the process is stopped. Otherwise
the sterilization process continues after the process is terminated or a deformation
of the can may occur because of differences in pressure between inside the can and
outside:

ulow ≤ u(·) ≤ uup(·) in (0, T ),(2.10)

θ(xc, T ) ≤ θend.(2.11)
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At this point we have not imposed a constraint that guarantees a prescribed reduc-
tion of microorganisms at the center of the food container xc. We will come back to
this point later. The objective in this model problem is to optimize the retention of
vitamins at a point xb on the surface of the product. We also take into account the
energy that is required for the heating and cooling of the autoclave. It is assumed to
be proportional to the square of the control variable. This is added to the objective
with a weighting factor. As is well known, this addition results in a convexification of
the optimization problem that is essential for ill-posed problems and mathematically
often mandatory; however, in our numerical results we could set this factor often to
zero:

min−Cv(xb, T ) + δ

2
‖u‖2L2(0,T ).(2.12)

We reconsider the requirement on the concentration of the microorganisms. Note that
the differential equations (2.3) and (2.5) can be solved analytically. If the function θ
is continuous we obtain for Cm

Cm(xc, t) = Cm0(xc) exp

(
−
∫ t

0

K(θ(xc, τ))dτ

)
(2.13)

and for Cv an analogous formula. We introduce the concept of an F-value, which is
a well-known and accepted tool in the food industry. Federal regulations state that a
food product is considered sterile if the concentration of the microorganisms is reduced
by a factor of 10−β . Mathematically, this means that at the final time T the following
inequality has to hold:

Cm(xc, T ) ≤ 10−βCm(xc, 0).(2.14)

Then from (2.2) and (2.13), we obtain, by applying logarithms on both sides,

β
ln 10

Kr
≤
∫ T

0

exp

(
−Ea
R

(
1

θ(xc, τ)
− 1

θr

))
dτ

=

∫ T

0

10Ea(θ(xc, τ)− θr)/(Rθ(xc, τ)θr ln 10)dτ.(2.15)

In the food literature [2] the term θ(xc, τ)θr is often replaced by θ
2
r . This yields the

advantage that the exponent depends in a linear way on θ. Equation (2.15) is then
simplified to

β
ln 10

Kr
≤
∫ T

0

10(θ(xc, τ)− θr)/zdτ,(2.16)

where F and z are defined in the following lines.
Definition 2.1. For x ∈ Ω the function

F (θ)(x) :=

∫ T

0

10
θ(x,τ)−θr
z(θr) dτ(2.17)

is called the F-value at the point x corresponding to the reference temperature θr and

z(θr) :=
Rθ2

r ln 10

E
(2.18)
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is called the z-value.

Due to regulatory agencies and the sensitivity of the public to changes in the
requirement of food sterility, the formula (2.17) with the simplification is still in use
today.

The lower bound on the F-value in (2.16) is often called the F0-value. This nu-
merical value, which is based on β and Kr, is determined by experience and the
requirement of the product, e.g., its consistency and its geographical usage.

The sterility condition (2.16) can be rewritten as

F (θ)(xc) ≥ F0 with F0 = β ln 10/Kr.(2.19)

The requirement on sterility should be placed at every point in the can which would
imply that this condition must hold not only at xc but at every point x ∈ Ω. Only xc
is considered because this is the coldest point during the heating process. Since the
F-value is monotone with respect to θ, under this assumption the lowest F-value is
reached at the center and it suffices to consider (2.19) only for x = xc. We checked
this in the numerical results that support this assumption. In [8] one can find a proof
for this claim in the one-dimensional case with a linear heat equation. Note, however,
that in the cooling phase this is no longer true.

Analogously to the F-value, a model for the destruction of vitamins can be de-
rived. Optimization of the surface quality of the product can then be expressed by
minimizing

J(θ)(xb) :=

∫ T

0

10(θ(xb, τ)− θq)/zqdτ(2.20)

(e.g., in [14], [15], and [16]).

Using the monotonicity of the functions J and F it can be seen (see [8]) that the
sterility requirement F (θ)(xc) ≥ F0 is active at the optimal solution. Therefore this
constraint can be handled as an equality constraint F (θ)(xc) = F0.

In order to state the discretized problem properly we rephrase the problem in
a more precise functional analytic way. In a previous paper in a different context
by Burger and Pogu [4] a detailed derivation of the variational formulation of the
nonlinear heat equation can be found. Define

c̄(v) =

∫ v

0

ρc(ξ)dξ and k̄(v) =

∫ v

0

k(ξ)dξ .(2.21)

Assume that the domain Ω and the coefficients in the heat equation are such that
Green’s formula can be applied. Then the variational formulation of the initial bound-
ary value problem (2.7)–(2.9) is

(
∂

∂t
c̄(θ), v

)
+ (∇k̄(θ),∇v) + 〈θ, v〉 = u(t)〈1, v〉 ∀v ∈ H1(Ω),(2.22)

θ(·, 0) = θ0(·),(2.23)

where 〈v, w〉 := α
∫
Γ
v(x)w(x)dx and (u, v) :=

∫
Ω
u(x)v(x)dx and the Sobolev space

H1 can be found in [1].

The optimal control problem (OCP) now reads as
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(OCP)

minJ(θ)(xb) +
δ

2
‖u‖2L2(0,T ) u ∈ L∞(0, T ) s.t.

F (θ)(xc) = F0

ulow ≤ u(t) ≤ uup(t) in (0, T )

θ(xc, T ) ≤ θend

and θ ∈ L2(0, T ;H1(Ω)) is a solution of the
variational formulation of the heat equation
(2.22)–(2.23) corresponding to the control u

for δ ≥ 0.
The choice of the function spaces is not trivial and is still an open problem. If u ∈

L∞(0, T ), then it is not clear for the solution of (2.22)–(2.23) that the state inequality
constraint is well defined. In [4] some existence theorems for generalized solutions are
given. For a discussion of the existence of optimal controls see [8]. Without proper
assumptions like monotonicity on the nonlinearity in the partial differential equation
no uniqueness of the optimal control can be expected. In this paper we do not want to
address all the issues that are important from a theoretical point of view but rather
to emphasize the numerical computation and the practical implications.

With respect to the feasibility of a control, note that for any positive constant
control the constraint F (θ)(xc) = Fc will be reached if T is sufficiently large. Similarly,
if u is set to ulow at the end of the process, the temperature decays and falls below
θend if T is large enough unless ulow is too high and θend is too large. However, these
bounds on the constraints come from practical applications, so the existence of feasible
controls is assured.

3. Discretization. Although many problems remain in the theoretical part, it
is helpful for the solutions of the industrial problem to discretize the optimization
problem. If one considers a cylindrical can that is heated by a uniform temperature
in the autoclave, by symmetry, it is sufficient to consider one half of a vertical cross
section that reduces the three-dimensional problem to a two-dimensional one. In this
paper we present our findings for the one-dimensional case that were obtained by the
authors. The results of a recent thesis by Justen [6] show that in the three-dimensional
case the optimal control exhibits a similar shape and the same conclusions can be
drawn.

We start with a discretization of the heat equation using finite elements for the
spatial variable and the backward Euler method for the time variable. This discretiza-
tion has been derived in [4], [10], or [11], where a more detailed presentation can be
found.

In the one-dimensional case we consider a straight line from a point a on the
boundary of a container to the center xc. Due to symmetry the boundary conditions
(2.8) in the heat equation are replaced by

k(θ)
∂θ

∂x
= α(θ − u) for x = a, t ∈ (0, T ),

k(θ)
∂θ

∂x
= 0 for x = xc, t ∈ (0, T ) .
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We partition the intervals (a, xc) and (0, T ) into equidistant subintervals by

h =
xc − a

N
and xi = a+ (i− 1)h, i = 1, . . . , N + 1 ,

τ =
T

M
and tk = (k − 1)τ, k = 1, . . . ,M + 1 .

The state space L2(0, T ;H1(Ω)) is then approximated by

V NM =

{
w(x, t) =

M∑
k=1

wk+1(x)χk(t) , w
k ∈ V N , k = 2, . . . ,M + 1

}
,

where

V N = span(S1, . . . , SN+1)

and the functions S1, . . . , SN+1 are the usual basis of one-dimensional piecewise linear
spline functions satisfying

Si(xj) = δij ,

where δij denotes the Kronecker symbol. The characteristic function on the interval
(tk, tk+1] is denoted by χk(t). The control space L

∞(0, T ) is approximated by

UM =

{
uM (t) =

M∑
k=1

uk+1χk(t), u
k+1 ∈ R

}
.

Under appropriate assumptions one can prove the existence of a unique solution
for the discretized state (cf. [4])

θNM (x, t) =

M∑
k=1

χk(t)

(
N+1∑
i=1

θk+1
i Si(x)

)
∈ V NM .

The vector v = (v1, . . . , vN+1)
T is composed of the coefficients for v =

∑N+1
i=1 viSi ∈

V N . Then for v, w ∈ V N

(v, w) = vTBw and

(
∂

∂x
v,

∂

∂x
w

)
= vTDw,

where

B = (Si, Sj) and D = (∇Si,∇Sj) .
Next define c̄(v) = (c̄(v1), . . . , c̄(vN+1))

T and k̄(v) = (k̄(v1), . . . , k̄(vN+1))
T with c̄

and k̄ from (2.21). The discretized version of (2.22) yields

1

τ
B(c̄(θk+1)− c̄(θk)) +Dk̄(θk+1) + α(θk+1

1 − uk+1)e1 = 0, k = 1, . . . ,M,(3.1)

θ1 = θ0N ,(3.2)

where e1 = (1, 0, . . . , 0)
T ∈ RN+1, and θ0N is the solution of

Bθ0N = ((θ0, S1), . . . , (θ0, SN+1))
T .
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Since we consider from here on only the discretized problem, we will omit under-
lines and denote the coefficients of θNM and uM by

θ = ((θ2)T , . . . , (θM+1)T )T ∈ RM(N+1) and u = (u2, . . . , uM+1)T ∈ RM .

In the discretized optimization problem we treat both u and θ as variables. In or-
der to write (3.1) and (3.2) as nonlinear equality constraints in this finite-dimensional
optimization problem, we introduce the function

hNM : RM(N+1) × RM → R
M(N+1)

with components hNM,j : RM(N+1) × RM → R
N+1 for k = 2, . . . ,M defined by

hNM,1(θ, u) =
1

τ
B(c̄(θ2)− c̄(θ0N )) +Dk̄(θ2) + α(θ2

1 − u2)e1,

hNM,k(θ, u) =
1

τ
B(c̄(θk+1)− c̄(θk)) +Dk̄(θk+1) + α(θk+1

1 − uk+1)e1.

We discretize the objective function of the control problem (OCP) and the func-
tion F (θ)(x). From the approximation for h, F, J, u, and θ we have θk1 = θNM (a, t),
and θkN+1 = θNM (xc, t) on (t

k−1, tk]. Evaluating the integral terms in the objective
function and constraints of the control problem (OCP) then yields

‖uM‖2L2 = τ

M+1∑
k=2

(uk)2 ,

FNM (θ) := F (θNM )(xc) = τ

M+1∑
k=2

10(θ
k
N+1 − θr)/zr ,

JNM (θ) := J(θNM )(a) = τ

M+1∑
k=2

10(θ
k
1 − θq)/zq .(3.3)

The discretized optimal control problem (DOCP) is

(DOCP)

min JNM (θ) +
δ

2
τ
M+1∑
k=2

(uk)2 (θ, u) ∈ RM(N+1) × RM ,

FNM (θ) = F0,

hNM (θ, u) = 0,

ulow ≤ uk ≤ uup , k = 2, . . . ,M + 1,

θM+1
N+1 ≤ θend.

The lower and the upper bound on the control are discretized in the same way as the
control u.

This is a nonlinear optimization problem with nonlinear equality constraints and
box constraints. SQP methods belong to the most successful optimization problem
solvers. They are based on an iterative procedure where in each step a quadratic
optimization problem is solved. For the numerical solution of this problem with SQP
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methods we can provide the first and second derivatives of the objective function and
of the constraints. The derivatives of the objective function and of the discrete sterility
constraint are easily computed. We mention that the Hessians of the functions JNM

and FNM are diagonal matrices with only nonnegative entries. The Jacobian of the
function hNM (θ, u) with respect to θ and u is given by

hNM(θ,u) =




G(θ2) Q2

H(θ2) G(θ3) Q3

. . .
. . .

...

H(θM ) G(θM+1) QM+1



∈ RM(N+1)×M(N+2),

where for w ∈ RN+1

G(w) =
1

τ
B diag(ρc(w1), . . . , ρc(wN+1)) +D diag(k(w1), . . . , k(wN+1))

+diag(α, 0, . . . , 0) ,

H(w) = −1
τ
B diag(ρc(w1), . . . , ρc(wN+1))

are tridiagonal matrixes in R(N+1)×(N+1) and

Qk = −αe1ẽTk ∈ R(N+1)×M .

Here e1 is the first unit vector in R
N+1 and ẽk is the kth unit vector in R

M . In [4] it
is shown that G(θk) is invertible under conditions on the discretization parameters.
Therefore hNMθ is invertible and hNM(θ,u) has full row rank. If the functions c and k

are continuously differentiable, then hNM is twice continuously differentiable and the
Hessian of each component hNM,k

i is a diagonal matrix (cf. [12]).

4. Numerical results. The finite-dimensional discretized optimization problem
is a large-scale optimization problem with sparse Jacobians and Hessians. For general
literature on SQP methods see, for example, [5] or [13]. There are various codes to
treat these problems. In order to avoid active set strategies, we use an SQP imple-
mentation where the inequality constraints are transformed into equality constraints
by slack variables; see [9]. The inexact solution of the subproblems overcomes the
known deficiency for the slack variable technique of freezing the active constraints;
for details see [9]. The method is implemented in Fortran, and the numerical results
of this section were obtained on a Cray EL 98.

We demonstrate the advantage of the optimization approach for the food ster-
ilization problem by comparing the solution of the optimal control problem with a
conventionally used control.

We consider two examples where we optimize the sterilization process so that
retention of thiamin on the surface of the product is maximized.

4.1. Examples. The data of the first example can be found in the engineering
literature [7] and correspond to a meat product. Since the coefficients of the heat
equation are constants we consider the linear heat equation.
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Example 1. The coefficients of the heat equation are taken from Kessler [7]:

c = 3000 J/(kgK) ,

ρ = 970 kg/m3 ,

k = 0.4W/(mK) ,

α = 5000 J/(sm2K) .

The initial temperature of the product is assumed to be θ0(x) = 30 + 273.15 K
in Ω (which corresponds to 30◦C). In the objective function we consider only the
retention of thiamin on the surface, i.e., we choose δ = 0. The microorganism under
consideration is Clostridium botulinum. The corresponding data can be found in [3]:

θq = 121.11 + 273.15 K ,

zq = 25.56 K ,

Kq = 2.1510
−4 1/s ,

zr = 10 K ,

θr = 121.11 + 273.15 K .

We consider the one-dimensional heat equation. The domain Ω is given by a line
segment of length 0.02 m, i.e., Ω = (0, 0.02) = (0, xc). For the process time we use
T = 7200 s, and the bounds in the box constraints are chosen as

ulow = 10 + 273.15 K ,

ukup = min
(
ūup, 30 + tk(ūup − 30)/Tc

)
+ 273.15 K , k = 2, . . . ,M + 1 ,

ūup = 130 ,

Tc = 180 s ,

θend = 80 + 273.15 K .

In the second example we modify the heat conductivity and the heat capacity of
Example 1 so that the resulting heat equation is nonlinear. The shape of the function
k(θ) is chosen to be similar to data given in [7] for other food products.

Example 2. Here we use the same data as in Example 1 except

k(θ) = 0.001θ,

c(θ) = 2960 + 0.1θ.

4.2. Interpretation of the results for food sterilization. We first consider
Example 1. The discretized optimal control problem (DOCP) was solved for N = 30
and M = 500. As a result the number of unknowns in the SQP algorithm was 33503
with 15501 nonlinear equality, 32 nonlinear inequality constraints, and 1000 linear
constraints resulting from slack variables.

For this example we compare the computed optimal control with a conventionally
used control. As mentioned before, in industry a typical control is to heat a certain
time with constant temperature and then cool down. Such a control for the data of
Example 1 is shown in Figure 4.1. This control is chosen so that at the center xc the
required F-value is attained, and the desired temperature at the end of the process is
reached, i.e., FNM (θ) = 180, θM+1

N+1 ≈ 80 + 273.15 K.
Since we fixed the temperature of the cooling phase to be equal to ulow, a typical

control can be described by the heating temperature and length of the heating phase.
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Fig. 4.1. Typical control with the corresponding temperature at the center.
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Fig. 4.2. Optimal control with the corresponding temperature at the center.

Thus there are only two degrees of freedom and two constraints such that this control is
uniquely determined. In Figure 4.1 the corresponding temperature at the centerpoint
xc is also shown.

The computed optimal control and the corresponding temperature at the point xc
are plotted in Figure 4.2. The termination criterion for the SQP method was satisfied
when the norm of the gradient of the Lagrangian and the norm of the constraint
violation were less than 10−6. The shape of the control at the beginning of the process
is due to the upper bound on the control. After this the temperature rises more slowly
but reaches a higher level than with the typical control. There is a cooling phase, and
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the shape of the control at the end of the process is again due to the box constraints.

In Figure 4.3 we consider the profile of the F-value over the process time for
the typical control and for the optimal control. In both cases the required value of
180s is reached at the end of the process. Figure 4.4 shows the percentage of the
initial concentration of thiamin on the surface of the product over process time that
corresponds to each of these controls. With the typical control there is an almost linear
decrease of this concentration, and at the end of the process we reach 60.7%. With
the optimal control the concentration of thiamin decreases more slowly and remains
on the higher level of 67.9%.



1192 D. KLEIS AND E. W. SACHS

150

200

250

300

350

400

450

500

550

600

650

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

F
-V

al
u

e 
in

 s

x - Variable in m

Distribution of F-Values at Optimal Control

Distribution of F-Values

Fig. 4.5. Spatial distribution of F-values using the optimal control.

In some other applications like cooking ham (not sterilization), the industry often
uses a different control law. For example, it is required that the difference between
the temperature on the boundary and the center does not exceed a prescribed bound
in order to avoid larger losses of the sensory quality. As one can see in Figure 4.2 the
maximal difference between the two temperatures is much smaller than in Figure 4.1,
so the results from a qualitative point are plausible in food technology.

To estimate the effect on the energy consumption we used (
∫ T
0
u2
Mdt)

1
2 . For the

typical control a value of 31722 was computed and for the optimal control a value of
31159. Thus we obtain a better quality of the product in the same process time with
less energy consumption if the optimal control is used.

If a higher F0-value of 540s is required the differences are a bit wider. The concen-
tration of nutrients on the surface corresponding to the optimal control is now 54.9%
and 46.1% for the typical control. For the energy consumption we computed values
of 31483 and 32030 for the optimal and typical control, respectively.

Appropriate modeling of the sterility requirement was one of the questions we
discussed in the previous sections. Figure 4.5 shows the F-value F (θNM )(x) as a
function of x ∈ (0, xc) for the temperature θ corresponding to the optimal control.
We can see that it is appropriate at least for this example to consider the sterility
requirement only at the point xc. In Figure 4.6 a plot of the temperature over space
and time is provided. It shows that the boundary regions heat up faster and that
the center is the coldest point during the heating phase. At the end of the heating
phase the temperature is almost homogeneous. In the cooling phase the boundary
regions cool down faster, and the center point is the hottest one. This justifies that the
requirement on the temperature of the product at the end of the process is formulated
only for the point xc.

As we have seen, the centerpoint is not the coldest one during the whole process
but only for the heating phase. In our numerical tests, after computing an optimal con-
trol, we checked if F (θNM )(xc) ≤ F (θNM )(xi) for i = 1, . . . , N . For the examples we
have considered this was always fulfilled. Thus the model of the sterility requirement
was appropriate in these cases.
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Fig. 4.7. Optimal control with the corresponding temperature at the center for Example 2.

Now we consider Example 2. For the discretization we chose again N = 30 and
M = 500. The optimal control and the corresponding temperature at the center are
given in Figure 4.7. The retention of thiamin is 66.2%.

If stronger restrictions are imposed on the control, then we expect that the re-
tention of thiamin will be lower. We solved the optimal control problem for Example
2 but with ūup = 115 K as the upper bound for the control. Now the retention of
thiamin is 65.9%. The optimal control is shown in Figure 4.8. The second curve in
this figure shows the starting data for the control for the SQP algorithm.
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Fig. 4.8. Optimal control and start control for Example 2 with ūup = 115 K.

5. Conclusion. We considered an application from the food industry that is
concerned with the sterilization of packaged food. The process is formulated as an
optimization problem where the objective is to retain a maximum of vitamins subject
to the constraint that a certain level of sterility is obtained. Mathematically, this
is an optimal control problem with a nonlinear parabolic boundary value problem
and boundary controls. There are constraints on the control and the state. A proper
discretization leads to a large-scale optimization problem that is numerically solved
by an SQP method. The result yields a control strategy that is quite different from
that used in industry. While the sterility level is the same, it yields a better treatment
of the vitamins. Other applications to be considered in future work include models
in higher space dimensions, the influence of convective terms, and other objective
functions such as the energy consumption.
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Abstract. Nonmonotone projected gradient techniques are considered for the minimization of
differentiable functions on closed convex sets. The classical projected gradient schemes are extended
to include a nonmonotone steplength strategy that is based on the Grippo–Lampariello–Lucidi non-
monotone line search. In particular, the nonmonotone strategy is combined with the spectral gradient
choice of steplength to accelerate the convergence process. In addition to the classical projected gra-
dient nonlinear path, the feasible spectral projected gradient is used as a search direction to avoid
additional trial projections during the one-dimensional search process. Convergence properties and
extensive numerical results are presented.
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1. Introduction. We consider the projected gradient method for the minimiza-
tion of differentiable functions on nonempty closed and convex sets. Over the last few
decades, there have been many different variations of the projected gradient method
that can be viewed as the constrained extensions of the optimal gradient method for
unconstrained minimization. They all have the common property of maintaining fea-
sibility of the iterates by frequently projecting trial steps on the feasible convex set.
This process is in general the most expensive part of any projected gradient method.
Moreover, even if projecting is inexpensive, as in the box-constrained case, the method
is considered to be very slow, as is its analogue, the optimal gradient method (also
known as steepest descent), for unconstrained optimization. On the positive side,
the projected gradient method is quite simple to implement and very effective for
large-scale problems.

This state of affairs motivates us to combine the projected gradient method with
two recently developed ingredients in optimization. First we extend the typical glob-
alization strategies associated with these methods to the nonmonotone line search
schemes developed by Grippo, Lampariello, and Lucidi [17] for Newton’s method.
Second, we propose to associate the spectral steplength, introduced by Barzilai and
Borwein [1] and analyzed by Raydan [26]. This choice of steplength requires little
computational work and greatly speeds up the convergence of gradient methods. In
fact, while the spectral gradient method appears to be a generalized steepest descent
method, it is clear from its derivation that it is related to the quasi-Newton family
of methods through an approximated secant equation. The fundamental difference is
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that it is a two-point method while the steepest descent method is not. The main
idea behind the spectral choice of steplength is that the steepest descent method is
very slow but it can be accelerated by taking, instead of the stepsize that comes from
the minimization of the function along the gradient of the current iteration, the one
that comes from the one-dimensional minimization at the previous step. See Glunt,
Hayden, and Raydan [15] for a relationship with the shifted power method to approx-
imate eigenvalues and eigenvectors and also for an interesting chemistry application.
See also Raydan [27] for a combination of the spectral choice of steplength with non-
monotone line search techniques to solve unconstrained minimization problems. A
successful application of this technique can be found in [5].

Therefore, it is natural and rather easy to transport the spectral gradient idea
with a nonmonotone line search to the projected gradient case in order to speed up
the convergence of the projected gradient method. In particular, in this work we
extend the practical version of Bertsekas [2] that enforces an Armijo-type condition
along the curvilinear projection path. This practical version is based on the original
version proposed by Goldstein [16] and Levitin and Polyak [19]. We also apply the
new ingredients to the feasible continuous projected path that will be properly defined
in section 2.

The convergence properties of the projected gradient method for different choices
of stepsize have been extensively studied. See, e.g., [2, 3, 7, 11, 16, 19, 22, 30]. For an
interesting review of the different convergence results that have been obtained under
different assumptions, see Calamai and Moré [7]. For a complete survey see Dunn [12].

In section 2 of this paper we define the spectral projected gradient algorithms and
prove global convergence results. In section 3 we present numerical experiments. This
set of experiments shows that, in fact, the spectral choice of the steplength repre-
sents considerable progress in relation to constant choices and that the nonmonotone
framework is useful. Some final remarks are presented in section 4. In particular, we
elaborate on the relationship between the spectral gradient method and the quasi-
Newton family of methods.

2. Nonmonotone gradient-projection algorithms. The nonmonotone spec-
tral gradient-projection algorithms introduced in this section apply to problems of the
form

minimize f(x) subject to x ∈ Ω,

where Ω is a closed convex set in Rn. Throughout this paper we assume that f
is defined and has continuous partial derivatives on an open set that contains Ω.
Throughout this work ‖ · ‖ denotes the 2-norm of vectors and matrices, although in
some cases it can be replaced by an arbitrary norm.

Given z ∈ Rn we define P (z) as the orthogonal projection on Ω. We denote
g(x) = ∇f(x). The algorithms start with x0 ∈ Ω and use an integer M ≥ 1, a small
parameter αmin > 0, a large parameter αmax > αmin, a sufficient decrease parameter
γ ∈ (0, 1), and safeguarding parameters 0 < σ1 < σ2 < 1. Initially, α0 ∈ [αmin, αmax]
is arbitrary. Given xk ∈ Ω and αk ∈ [αmin, αmax], Algorithms 2.1 and 2.2 describe
how to obtain xk+1 and αk+1 and when to terminate the process.

Algorithm 2.1.
Step 1. Detect whether the current point is stationary

If ‖P (xk − g(xk))− xk‖ = 0, stop, declaring that xk is stationary.
Step 2. Backtracking
Step 2.1. Set λ← αk.
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Step 2.2. Set x+ = P (xk − λg(xk)).
Step 2.3. If

f(x+) ≤ max
0≤j≤ min {k,M−1}

f(xk−j) + γ〈x+ − xk, g(xk)〉,(1)

then define λk = λ, xk+1 = x+, sk = xk+1 − xk, yk = g(xk+1) − g(xk), and go to
Step 3.

If (1) does not hold, define

λnew ∈ [σ1λ, σ2λ],(2)

set λ← λnew, and go to Step 2.2.
Step 3.

Compute bk = 〈sk, yk〉.
If bk ≤ 0, set αk+1 = αmax; else, compute ak = 〈sk, sk〉 and

αk+1 = min {αmax,max {αmin, ak/bk}}.

The one-dimensional search procedure of Algorithm 2.1 (called SPG1 from now
on) takes into account points of the form P (xk − λg(xk)) for λ ∈ (0, αk], which, in
general, form a curvilinear path (piecewise linear if Ω is a polyhedral set). For this
reason, the scalar product 〈x+− xk, g(xk)〉 in the nonmonotone Armijo condition (1)
must be computed for each trial point x+. Moreover, in the SPG1 formulation the
distance between two consecutive trial points could be very small or even null in the
vicinity of corner points of the set Ω. In fact the distance between the projections of
two points on the feasible set can be small, even if the points are distant from each
other. Clearly, to evaluate the objective function on two close points represents a bad
use of available information. Of course, proximity of two consecutive trial points can
be computationally detected at the expense of O(n) operations or comparisons.

These observations motivated us to define Algorithm 2.2. This algorithm is also
based on the spectral projected gradient direction P (xk − αkg(xk))− xk, with αk as

the safeguarded “inverse Rayleigh quotient” 〈sk−1,sk−1〉
〈sk−1,yk−1〉 . (Observe that

〈sk−1,yk−1〉
〈sk−1,sk−1〉 is in

fact a Rayleigh quotient corresponding to the average Hessian matrix
∫ 1

0
∇2f(xk−1 +

tsk−1)dt.) However, in the case of rejection of the first trial point, the next ones
are computed along the same direction. As a consequence, 〈x+ − xk, g(xk)〉 must
be computed only at the first trial and the projection operation must be performed
only once per iteration. So, Algorithm 2.2, which will be called SPG2 in the rest of
the paper, coincides with SPG1 except at the backtracking step, whose description is
given below.

Algorithm 2.2.
Step 2 (Backtracking)
Step 2.1. Compute dk = P (xk − αkg(xk))− xk. Set λ← 1.
Step 2.2. Set x+ = xk + λdk.
Step 2.3. If

f(x+) ≤ max
0≤j≤ min {k,M−1}

f(xk−j) + γλ〈dk, g(xk)〉,(3)

then define λk = λ, xk+1 = x+, sk = xk+1 − xk, yk = g(xk+1) − g(xk), and go to
Step 3.
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If (3) does not hold, define λnew as in (2), set λ← λnew, and go to Step 2.2.
In both algorithms the computation of λnew uses one-dimensional quadratic in-

terpolation and it is safeguarded taking λ ← λ/2 when the minimum of the one-
dimensional quadratic lies outside [0.1, 0.9λ]. Notice also that the line search condi-
tions (1) and (3) guarantee that the sequence {xk} remains in Ω0 ≡ {x ∈ Ω : f(x) ≤
f(x0)}.

It will be useful in our theoretical analysis to define the scaled projected gradient
gt(x) as

gt(x) = [P (x− tg(x))− x]

for all x ∈ Ω, t > 0. If x is an iterate of SPG1 or SPG2 and t = αk the scaled projected
gradient is the spectral projected gradient (SPG) that gives the name to our methods.
If t = 1, the scaled projected gradient is the continuous projected gradient whose ∞-
norm ‖g1(x)‖∞ is used for the termination criterion of the algorithms. In fact, the
annihilation of gt(x) is equivalent to the satisfaction of first-order stationary condi-
tions. This property is stated in the following lemma, whose proof is a straightforward
consequence of the convexity of Ω.

Lemma 2.1. For all x ∈ Ω, t ∈ (0, αmax],
(i) 〈g(x), gt(x)〉 ≤ −1

t ‖gt(x)‖22 ≤ − 1
αmax

‖gt(x)‖22.
(ii) The vector gt(x̄) vanishes if and only if x̄ is a constrained stationary point.
Now, let us prove that both algorithms are well defined and have the property

that every accumulation point x̄ is a constrained stationary point, i.e., that

〈g(x̄), x− x̄〉 ≥ 0 for all x ∈ Ω.

The proof of our first theorem relies on Proposition 2.3.3 in Bertsekas [3], which
is related to the Armijo condition along the projection arc. This proposition was
originally shown in [14]. For completeness we include in the next lemma some technical
results from [3] that will be used in our proof.

Lemma 2.2. (i) For all x ∈ Ω and z ∈ Rn, the function h : [0,∞)→ R given by

h(s) =
‖P (x+ sz)− x‖

s
for all s > 0

is monotonically nonincreasing.
(ii) For all x ∈ Ω there exists sx > 0 such that for all t ∈ [0, sx] it holds that

f(P (x− tg(x)))− f(x) ≤ γ〈g(x), gt(x)〉.
Proof. See Lemma 2.3.1 and Theorem 2.3.3 (part (a)) in [3].
Theorem 2.3. Algorithm SPG1 is well defined, and any accumulation point of

the sequence {xk} that it generates is a constrained stationary point.
Proof. From Lemma 2.2(ii), we have for all λ ∈ [0,min{sxk

, αmin}] that
f(P (xk − λg(xk)))− max

0≤j≤M−1
f(xk−j) ≤ f(P (xk − λg(xk)))− f(xk)

≤ γ〈g(xk), gλ(xk)〉.
Therefore, a stepsize satisfying (1) will be found after a finite number of trials,

and Algorithm SPG1 is well defined.
Let x̄ ∈ Ω be an accumulation point of {xk}, and relabel {xk} a subsequence

converging to x̄. We consider two cases.
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Case 1. If inf λk = 0, then there exists a subsequence {xk}K such that

lim
k∈K

λk = 0.

In that case, from the way λk is chosen in (1), there exists an index k̄ sufficiently
large such that for all k ≥ k̄, k ∈ K, there exists ρk, 0 < σ1 ≤ ρk ≤ σ2, for which
ψk ≡ λk/ρk > 0 fails to satisfy condition (1), i.e.,

f(P (xk − ψkg(xk))) > max
0≤j≤M−1

f(xk−j) + γ〈g(xk), P (xk − ψkg(xk))− xk〉

≥ f(xk) + γ〈g(xk), P (xk − ψkg(xk))− xk〉.
Therefore, it follows that

f(P (xk − ψkg(xk)))− f(xk) > γ〈g(xk), gψk
(xk)〉.(4)

By the mean value theorem we obtain

f(P (xk − ψkg(xk)))− f(xk) = 〈g(xk), gψk
(xk)〉+ 〈g(ξk)− g(xk), gψk

(xk)〉,(5)

where ξk lies along the line segment connecting xk and P (xk − ψkg(xk)).
Combining (4) and (5) we obtain for all k ∈ K sufficiently large that

(1− γ)〈g(xk), gψk
(xk)〉 > 〈g(xk)− g(ξk), gψk

(xk)〉.(6)

Using Lemmas 2.1 and 2.2, we have

〈g(xk), gψk
(xk)〉 ≤ − 1

ψk
‖gψk

(xk)‖22 ≤ −
1

αk
‖gαk

(xk)‖2 ‖gψk
(xk)‖2,(7)

where αk is the initial stepsize at iteration k. Combining (6) and (7) and using the
Schwartz inequality, we obtain for k ∈ K sufficiently large

(1− γ)

αk
‖gαk

(xk)‖2 ‖gψk
(xk)‖2 < 〈g(ξk)− g(xk), gψk

(xk)〉

≤ ‖g(ξk)− g(xk)‖2 ‖gψk
(xk)‖2.

Using that ‖gψk
(xk)‖2 �= 0, we have

(1− γ)

αk
‖gαk

(xk)‖2 < ‖g(ξk)− g(xk)‖2.(8)

Since ψk → 0 and xk → x̄ as k →∞, k ∈ K, then ξk → x̄ as k →∞, k ∈ K. Taking
a convenient subsequence K̄ ⊆ K such that {αk} is convergent to ᾱ ∈ [αmin, αmax],
and taking limits in (8) as k →∞, k ∈ K̄, we deduce that

‖gᾱ(x̄)‖2 ≤ 0.

Therefore, gᾱ(x̄) = 0, and x̄ is a constrained stationary point.
Case 2. Assume that inf λk ≥ ρ > 0. Let us suppose by way of contradiction that

x̄ is not a constrained stationary point. Therefore ‖gλ(x̄)‖ > 0 for all λ ∈ (0, αmax].
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By continuity and compactness, there exists δ > 0 such that ‖gλ(x̄)‖ ≥ δ > 0 for all
λ ∈ [ρ, αmax]. Using the first part of the proof of the theorem in [17, p. 709], we obtain
a monotonically nonincreasing sequence {f(xl(k))}. Indeed, let l(k) be an integer such
that k −min{k,M − 1} ≤ l(k) ≤ k and

f(xl(k)) = max
0≤j≤ min {k,M−1}

f(xk−j).

From (1) it follows that, for k > M − 1 (see [17] for details),

f(xl(k)) ≤ f(xl(l(k)−1)) + γ〈g(xl(k)−1), gλl(k)−1
(xl(k)−1)〉.

By continuity, for k ≥ k̄ sufficiently large, ‖gλ(x̄k)‖ ≥ δ/2. Hence, using Lemma 2.1,
we obtain

f(xl(k)) ≤ f(xl(l(k)−1))− γ

αmax
‖gλl(k)−1

(xl(k)−1)‖22 ≤ f(xl(l(k)−1))− γδ2

4αmax
.

When k → ∞, clearly f(xl(k)) → −∞, which is a contradiction. In fact, f is a
continuous function and so f(xk) converges to f(x̄).

Theorem 2.4. Algorithm SPG2 is well defined, and any accumulation point of
the sequence {xk} that it generates is a constrained stationary point.

Proof. If xk is not a constrained stationary point, then by Lemma 2.1

〈g(xk), dk〉 = 〈g(xk), gαk
(xk)〉 ≤ − 1

αmax
‖gαk

(xk)‖22 < 0,

and the search direction is a descent direction. Hence, a stepsize satisfying (3) will be
found after a finite number of trials, and Algorithm SPG2 is well defined.

Let x̄ ∈ Ω be an accumulation point of {xk}, and relabel {xk} a subsequence
converging to x̄. We consider two cases.

Case 1. Assume that inf λk = 0. Suppose, by contradiction, that x̄ is not station-
ary. By continuity and compactness, there exists δ > 0 such that〈

g(x̄),
P (x̄− αg(x̄))− x̄

‖P (x̄− αg(x̄))− x̄‖
〉

< −δ for all α ∈ [αmin, αmax].

This implies that〈
g(xk),

P (xk − αg(xk))− xk
‖P (xk − αg(xk))− xk‖

〉
< −δ/2 for all α ∈ [αmin, αmax](9)

and k large enough on the subsequence that converges to x̄.
Since inf λk = 0, there exists a subsequence {xk}K such that

lim
k∈K

λk = 0.

In that case, from the way λk is chosen in (3), there exists an index k̄ sufficiently large
such that for all k ≥ k̄, k ∈ K, there exists ρk, 0 < σ1 ≤ ρk ≤ σ2, for which λk/ρk > 0
fails to satisfy condition (3); i.e.,

f

(
xk +

λk
ρk

dk

)
> max

0≤j≤M−1
f(xk−j) + γ

λk
ρk
〈g(xk), dk〉 ≥ f(xk) + γ

λk
ρk
〈g(xk), dk〉.
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Hence,

f(xk +
λk

ρk
dk)− f(xk)

λk/ρk
> γ〈g(xk), dk〉.

By the mean value theorem, this relation can be written as

〈g(xk + tkdk), dk〉 > γ〈g(xk), dk〉 for all k ∈ K, k ≥ k̄,(10)

where tk is a scalar in the interval [0, λk/ρk] that goes to zero as k ∈ K goes to infinity.
Taking a convenient subsequence such that dk/‖dk‖ is convergent to d, and taking

limits in (10), we deduce that (1− γ)〈g(x̄), d〉 ≥ 0. (In fact, observe that {‖dk‖}K is
bounded and so tk‖dk‖ → 0.) Since (1 − γ) > 0 and 〈g(xk), dk〉 < 0 for all k, then
〈g(x̄), d〉 = 0.

By continuity and the definition of dk this implies that for k large enough on that
subsequence we have that〈

g(xk),
P (xk − αkg(xk))− xk
‖P (xk − αkg(xk))− xk‖

〉
> −δ/2,

which contradicts (9).
Case 2. Assume that inf λk ≥ ρ > 0. Let us suppose by way of contradiction that

x̄ is not a constrained stationary point. Therefore ‖gλ(x̄)‖ > 0 for all λ ∈ (0, αmax].
By continuity and compactness, there exists δ > 0 such that ‖gλ(x̄)‖ ≥ δ > 0 for all
λ ∈ [ρ, αmax].

As in the proof of the second case of Theorem 2.3,

f(xl(k)) = max
0≤j≤ min {k,M−1}

f(xk−j)

is a monotonically nonincreasing sequence. From (3) it follows that, for k > M − 1,

f(xl(k)) ≤ f(xl(l(k)−1)) + γλl(k)−1〈g(xl(k)−1), gαl(k)−1
(xl(k)−1)〉.

By continuity, for k ≥ k̄ sufficiently large, ‖gαk
(x̄k)‖ ≥ δ/2. Hence, using Lemma

2.1, we obtain

f(xl(k)) ≤ f(xl(l(k)−1))− γ ρ

αmax
‖gαl(k)−1

(xl(k)−1)‖22 ≤ f(xl(l(k)−1))− γδ2ρ

4αmax
.

When k → ∞, clearly f(xl(k)) → −∞, which is a contradiction. In fact, f is a
continuous function and so f(xk) converges to f(x̄).

3. Numerical results. The algorithms SPG1 and SPG2 introduced in the pre-
vious section compute at least one projection on the feasible set Ω per iteration.
Therefore, these algorithms are especially interesting in the case in which this pro-
jection is easy to compute. An important situation in which the projection is trivial
is when Ω is an n-dimensional box, possibly with some infinite bounds. In fact, good
algorithms for box constrained minimization are the essential tool for the develop-
ment of efficient augmented Lagrangian methods for general nonlinear programming
(see [8, 10, 13]). With this in mind, we implemented the spectral projected gradient
algorithms for the case in which Ω is described by bounds on the variables. In order
to assess the reliability of SPG algorithms, we tested them against the well-known
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Table 1
Problem sets according to the CUTE classification.

Set # Objective type Problem interest

1 other academic
2 other modeling
3 other real application
4 sum of squares academic
5 sum of squares modeling
6 quadratic academic
7 quadratic modeling
8 quadratic real application

package LANCELOT [9] using all the bound constrained problems with more than 50
variables from the CUTE [10] collection. Only problem GRIDGENA was excluded
from our tables because it gives an “exception error” when evaluated at some point
by SPG algorithms. For all the problems with variable dimension, we used the largest
dimension that is admissible without modification of the internal variables of the
“double large” installation of CUTE.

Altogether, we solved 50 problems. The horizontal lines in Tables 2–5 divide
the CUTE problems into 8 classes according to objective function type (quadratic,
sum of squares, other) and problem interest (academic, modeling, real application).
All problems are bound constrained only, twice continuously differentiable, and with
more than 50 variables. The 8 sets, in the order in which they appear in the tables,
are described in Table 1.

In the numerical experiments we used the default options for LANCELOT, i.e.,

• exact-second-derivatives-used,
• bandsolver-preconditioned-cg-solver-used 5,
• exact-cauchy-point-required,
• infinity-norm-trust-region-used,
• gradient-tolerance 1.0D-05.

We are deeply concerned with the reproducibility of the numerical results pre-
sented in this paper. For this reason, all the used codes are available by e-mail request
to any of the authors, who are also available to discuss computational details.

All the experiments were run in a SPARCstation Sun Ultra 1, with an Ultra-
SPARC 64-bit processor, 167 MHz clock and 128 MBytes of RAM memory. SPG
codes are in Fortran77 and were compiled with the optimization compiler option -O4.

For the SPG methods we used γ = 10−4, αmin = 10−30, αmax = 1030, σ1 =
0.1, σ2 = 0.9, and α0 = 1/‖g1(x0)‖∞. After running a few problems with M ∈
{5, 10, 15}, we decided to useM = 10, as the tests did not show meaningful differences.
To decide when to stop the execution of the algorithms declaring convergence we
used the criterion ‖g1(xk)‖∞ ≤ 10−5. We also stopped the execution of SPG when
50,000 iterations or 200,000 function evaluations were completed without achieving
convergence.

To complete the numerical insight into the behavior of SPG methods, we also ran
the projected gradient algorithm (PGA), which turns out to be identical to SPG1,
with the initial choice of steplength αk ≡ 1. In this case we implemented both the
monotone version of PGA, which corresponds to M = 1, and the nonmonotone one
with M = 10. The convergence of the nonmonotone version is a particular case of our
Theorem 2.3. The performance of the nonmonotone version of PGA, which is more
efficient than the monotone version, is reported in Table 2.
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Table 2
Performance of nonmonotone (M = 10) projected gradient.

Problem n IT FE GE Time f(x) ‖g1(x)‖∞
BDEXP 5000 13065 13066 13066 459.99 3.464D−03 9.999D−06
EXPLIN 120 30608 200001 30609 15.08 −7.238D+05 7.768D−05
EXPLIN2 120 19581 126328 19582 9.87 −7.245D+05 8.192D−06
EXPQUAD 120 7899 200001 7900 22.06 −3.626D+06 3.875D−03
MCCORMCK 10000 16080 47939 16081 2755.50 −9.133D+03 2.485D−09
PROBPENL 500 888 10249 889 11.39 3.992D−07 7.265D−06
QRTQUAD 120 3464 38175 3465 3.76 −3.625D+06 5.303D−06
S368 100 2139 12532 2140 317.55 −7.085D+01 9.966D−06
HADAMALS 1024 1808 11468 1809 157.88 3.067D+04 9.611D−06
CHEBYQAD 50 5287 50893 5288 607.89 5.386D−03 9.918D−06
HS110 50 1 2 2 0.00 −9.990D+09 0.000D+00
LINVERSE 1999 19563 200001 19564 1465.91 6.820D+02 9.202D−02
NONSCOMP 10000 3737 25220 3738 559.04 7.632D−13 9.933D−06
QR3DLS 610 17272 200001 17273 735.62 3.051D−01 3.638D−01
SCON1LS 1002 40237 200001 40238 1512.18 6.572D+01 8.501D−02
DECONVB 61 6536 35665 6537 10.00 2.713D−03 1.814D−06
BIGGSB1 1000 50001 104775 50002 190.46 1.896D−02 1.362D−03
BQPGABIM 50 2222 22640 2223 1.68 −3.790D−05 9.972D−06
BQPGASIM 50 1247 12394 1248 0.94 −5.520D−05 9.334D−06
BQPGAUSS 2003 13482 200001 13483 986.07 −1.294D−01 1.037D+00
CHENHARK 1000 50001 173351 50002 323.09 −2.000D+00 5.299D−04
CVXBQP1 10000 1 2 2 0.10 2.250D+06 0.000D+00
HARKERP2 100 100 304 101 0.26 −5.000D−01 0.000D+00
JNLBRNG1 15625 13681 28689 13682 3332.51 −1.806D−01 5.686D−06
JNLBRNG2 15625 21444 107760 21445 8427.10 −4.150D+00 9.624D−06
JNLBRNGA 15625 12298 27172 12299 2666.47 −2.685D−01 5.388D−06
JNLBRNGB 15625 32771 200001 32772 12672.71 −5.569D+00 3.744D+00
NCVXBQP1 10000 1 2 2 0.10 −1.986D+10 0.000D+00
NCVXBQP2 10000 18012 200001 18013 4053.97 −1.334D+10 5.798D−01
NCVXBQP3 10000 15705 200001 15706 3955.02 −6.559D+09 2.609D+00
NOBNDTOR 14884 3649 7300 3650 718.13 −4.405D−01 8.604D−06
OBSTCLAE 15625 5049 11402 5050 1119.07 1.901D+00 1.000D−05
OBSTCLAL 15625 2734 6838 2735 634.97 1.901D+00 9.986D−06
OBSTCLBL 15625 3669 9084 3670 846.45 7.296D+00 9.995D−06
OBSTCLBM 15625 2941 7634 2942 694.42 7.296D+00 9.983D−06
OBSTCLBU 15625 3816 9403 3817 880.51 7.296D+00 9.981D−06
PENTDI 1000 50001 199995 50002 460.38 −7.500D− 01 2.688D−05
TORSION1 14884 4540 9082 4541 890.47 −4.257D−01 6.673D−06
TORSION2 14884 8704 17294 8705 1703.87 −4.257D−01 6.599D−06
TORSION3 14884 1941 4525 1942 406.85 −1.212D+00 9.957D−06
TORSION4 14884 4273 9062 4274 862.93 −1.212D+00 9.897D−06
TORSION5 14884 672 1651 673 144.80 −2.859D+00 9.813D−06
TORSION6 14884 1569 3322 1570 316.06 −2.859D+00 9.908D−06
TORSIONA 14884 4155 8312 4156 953.30 −4.184D−01 8.980D−06
TORSIONB 14884 8274 16417 8275 1899.52 −4.184D−01 8.829D−06
TORSIONC 14884 1933 4563 1934 476.48 −1.204D+00 9.976D−06
TORSIOND 14884 4325 9218 4326 1013.10 −1.204D+00 9.854D−06
TORSIONE 14884 688 1695 689 172.87 −2.851D+00 9.727D−06
TORSIONF 14884 1493 3143 1494 349.72 −2.851D+00 9.712D−06
ODNAMUR 11130 13222 200001 13223 5249.00 1.209D+04 5.192D+00

The complete performance of LANCELOT on this set of problems is reported in
Table 3. In Tables 4 and 5 we show the behavior of SPG1 and SPG2, respectively.

For LANCELOT, we report the number of outer iterations (or function evalua-
tions) (ITout-FE), gradient evaluations (GE), conjugate gradient (or inner) iterations
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Table 3
Performance of LANCELOT.

Problem n ITout-FE GE ITin-CG Time f(x) ‖g1(x)‖∞
BDEXP 5000 10 11 26 3.19 1.964D−03 6.167D−06
EXPLIN 120 13 14 50 0.08 −7.238D+05 5.183D−09
EXPLIN2 120 11 12 24 0.07 −7.245D+05 1.012D−06
EXPQUAD 120 18 16 52 0.14 −3.626D+06 1.437D−06
MCCORMCK 10000 7 6 5 4.71 −9.133D+03 5.861D−06
PROBPENL 500 1 2 0 0.17 3.992D−07 3.424D−07
QRTQUAD 120 168 137 187 1.23 −3.625D+06 3.568D−06
S368 100 7 7 11 2.19 −1.337D+02 3.314D−06
HADAMALS 1024 33 34 5654 157.60 7.444D+02 7.201D−06
CHEBYQAD 50 65 48 829 5.41 5.386D−03 7.844D−06
HS110 50 1 2 0 0.02 −9.990D+09 0.000D+00
LINVERSE 1999 35 30 2303 77.52 6.810D+02 8.407D−06
NONSCOMP 10000 8 9 9 4.74 3.055D−14 9.749D−09
QR3DLS 610 255 226 25036 434.02 3.818D−08 4.051D−06
SCON1LS 1002 1604 1372 1357 56.51 7.070D−10 8.568D−06
DECONVB 61 17 16 233 0.40 1.236D−08 2.147D−06
BIGGSB1 1000 501 502 500 6.17 1.500D−02 4.441D−16
BQPGABIM 50 3 4 10 0.03 −3.790D−05 6.120D−06
BQPGASIM 50 3 4 9 0.03 −5.520D−05 5.733D−06
BQPGAUSS 2003 8 9 2345 42.60 −3.626D−01 4.651D−06
CHENHARK 1000 205 206 484 5.02 −2.000D+00 6.455D−06
CVXBQP1 10000 1 2 1 3.69 2.250D+06 0.000D+00
HARKERP2 100 1 2 2 0.11 −5.000D−01 7.514D−13
JNLBRNG1 15625 24 25 1810 217.19 −1.806D−01 4.050D−06
JNLBRNG2 15625 14 15 912 108.93 −4.150D+00 9.133D−07
JNLBRNGA 15625 21 22 1327 155.93 −2.685D−01 1.191D−06
JNLBRNGB 15625 10 11 329 42.58 −6.281D+00 2.602D−06
NCVXBQP1 10000 1 2 0 3.27 −1.986D+10 0.000D+00
NCVXBQP2 10000 3 4 407 6.62 −1.334D+10 5.821D−11
NCVXBQP3 10000 5 6 360 6.67 −6.558D+09 2.915D−06
NOBNDTOR 14884 36 37 790 117.34 −4.405D−01 2.758D−06
OBSTCLAE 15625 4 5 7409 1251.08 1.901D+00 1.415D−06
OBSTCLAL 15625 24 25 480 58.05 1.901D+00 5.323D−06
OBSTCLBL 15625 18 19 2761 397.58 7.296D+00 1.996D−06
OBSTCLBM 15625 5 6 1377 233.70 7.296D+00 2.243D−06
OBSTCLBU 15625 19 20 787 112.55 7.296D+00 1.529D−06
PENTDI 1000 1 2 0 0.20 −7.500D−01 0.000D+00
TORSION1 14884 37 38 793 96.88 −4.257D−01 1.237D−06
TORSION2 14884 9 10 4339 722.28 −4.257D−01 4.337D−06
TORSION3 14884 19 20 241 27.36 −1.212D+00 2.234D−06
TORSION4 14884 15 16 5639 894.13 −1.212D+00 6.469D−07
TORSION5 14884 9 10 72 10.48 −2.859D+00 3.186D−06
TORSION6 14884 10 11 4895 579.62 −2.859D+00 8.124D−07
TORSIONA 14884 37 38 795 103.70 −4.184D−01 9.590D−07
TORSIONB 14884 10 11 4025 722.79 −4.184D−01 1.329D−06
TORSIONC 14884 19 20 241 29.77 −1.205D+00 2.236D−06
TORSIOND 14884 9 10 9134 1369.14 −1.205D+00 5.184D−06
TORSIONE 14884 9 10 72 11.25 −2.851D+00 3.201D−06
TORSIONF 14884 10 11 5008 631.14 −2.851D+00 8.796D−07
ODNAMUR 11130 11 12 26222 1416.03 9.237D+03 7.966D−06

(ITin-CG), CPU time in seconds (Time), functional value at the final iterate (f(x)),
and ∞-norm of the “continuous projected gradient” at the final iterate (‖g1(x)‖∞).
For SPG methods, we report number of iterations (IT), function evaluations (FE), gra-
dient evaluations (GE), CPU time in seconds (Time), best function value found (f(x)),
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Table 4
Performance of SPG1.

Problem n IT FE GE Time f(x) ‖g1(x)‖∞
BDEXP 5000 12 13 13 0.45 2.744D−03 7.896D−06
EXPLIN 120 66 75 67 0.01 −7.238D+05 3.100D−06
EXPLIN2 120 48 54 49 0.01 −7.245D+05 9.746D−07
EXPQUAD 120 92 107 93 0.03 −3.626D+06 4.521D−06
MCCORMCK 10000 16 17 17 1.78 −9.133D+03 4.812D−06
PROBPENL 500 2 7 3 0.01 3.992D−07 1.721D−07
QRTQUAD 120 1693 5242 1694 0.74 −3.625D+06 5.125D−06
S368 100 8 14 9 0.67 −1.200D+02 1.566D−07
HADAMALS 1024 33 42 34 1.49 3.107D+04 4.828D−08
CHEBYQAD 50 970 1545 971 35.52 5.386D−03 9.993D−06
HS110 50 1 2 2 0.00 −9.990D+09 0.000D+00
LINVERSE 1999 1707 2958 1708 45.42 6.810D+02 9.880D−06
NONSCOMP 10000 43 44 44 2.28 3.419D−10 7.191D−06
QR3DLS 610 50001 106513 50002 884.18 2.118D−04 9.835D−03
SCON1LS 1002 50001 75083 50002 882.43 1.329D+01 7.188D−03
DECONVB 61 1786 2585 1787 1.68 4.440D−08 9.237D−06
BIGGSB1 1000 6820 11186 6821 23.15 1.621D−02 9.909D−06
BQPGABIM 50 30 39 31 0.01 −3.790D−05 8.855D−06
BQPGASIM 50 32 39 33 0.01 −5.520D−05 9.100D−06
BQPGAUSS 2003 50001 86373 50002 930.52 −3.623D−01 1.930D−02
CHENHARK 1000 3563 6113 3564 14.89 −2.000D+00 9.993D−06
CVXBQP1 10000 1 2 2 0.10 2.250D+06 0.000D+00
HARKERP2 100 33 46 34 0.06 −5.000D−01 0.000D+00
JNLBRNG1 15625 1335 1897 1336 283.55 −1.806D−01 9.624D−06
JNLBRNG2 15625 1356 2121 1357 296.46 −4.150D+00 9.738D−06
JNLBRNGA 15625 629 933 630 116.77 −2.685D−01 9.809D−06
JNLBRNGB 15625 8531 13977 8532 1635.15 −6.281D+00 9.903D−06
NCVXBQP1 10000 1 2 2 0.10 −1.986D+10 0.000D+00
NCVXBQP2 10000 60 83 61 3.47 −1.334D+10 8.219D−06
NCVXBQP3 10000 112 118 113 5.31 −6.558D+09 6.019D−06
NOBNDTOR 14884 568 817 569 99.62 −4.405D−01 9.390D−06
OBSTCLAE 15625 749 1028 750 136.98 1.901D+00 7.714D−06
OBSTCLAL 15625 290 411 291 53.56 1.901D+00 7.261D−06
OBSTCLBL 15625 354 500 355 65.52 7.296D+00 9.024D−06
OBSTCLBM 15625 249 343 250 45.74 7.296D+00 9.139D−06
OBSTCLBU 15625 325 468 326 60.44 7.296D+00 7.329D−06
PENTDI 1000 12 14 13 0.07 −7.500D−01 8.523D−07
TORSION1 14884 574 832 575 101.00 −4.257D−01 9.525D−06
TORSION2 14884 586 862 587 102.79 −4.257D−01 9.712D−06
TORSION3 14884 231 350 232 41.47 −1.212D+00 9.593D−06
TORSION4 14884 190 259 191 32.66 −1.212D+00 8.681D−06
TORSION5 14884 83 101 84 13.84 −2.859D+00 9.169D−06
TORSION6 14884 82 97 83 13.58 −2.859D+00 7.987D−06
TORSIONA 14884 722 1057 723 147.94 −4.184D−01 8.590D−06
TORSIONB 14884 527 765 528 107.52 −4.184D−01 9.475D−06
TORSIONC 14884 190 270 191 38.50 −1.204D+00 9.543D−06
TORSIOND 14884 241 340 242 48.43 −1.204D+00 9.575D−06
TORSIONE 14884 57 76 58 11.42 −2.851D+00 8.700D−06
TORSIONF 14884 67 85 68 14.16 −2.851D+00 9.352D−06
ODNAMUR 11130 50001 82984 50002 4187.58 9.250D+03 9.690D−02

and ∞-norm of the continuous projected gradient at the final iterate (‖g1(x)‖∞).
The numerical results of 10 problems deserve special comments:
(1) BDEXP (n = 5, 000): LANCELOT obtained f(x) = 1.964 × 10−3 in 3.19

seconds, whereas SPG1 and SPG2 got f(x) = 2.744 × 10−3 in 0.45 seconds.
Since the gradient norm is computed in LANCELOT only after each outer
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Table 5
Performance of SPG2.

Problem n IT FE GE Time f(x) ‖g1(x)‖∞
BDEXP 5000 12 13 13 0.45 2.744D−03 7.896D−06
EXPLIN 120 54 57 55 0.01 −7.238D+05 4.482D−06
EXPLIN2 120 56 59 57 0.01 −7.245D+05 5.633D−06
EXPQUAD 120 92 110 93 0.03 −3.626D+06 7.644D−06
MCCORMCK 10000 16 17 17 1.78 −9.133D+03 4.812D−06
PROBPENL 500 2 6 3 0.01 3.992D−07 1.022D−07
QRTQUAD 120 598 1025 599 0.19 −3.624D+06 8.049D−06
S368 100 16 19 17 1.15 −1.403D+02 1.963D−08
HADAMALS 1024 30 42 31 1.27 3.107D+04 2.249D−07
CHEBYQAD 50 1240 2015 1241 45.73 5.386D−03 8.643D−06
HS110 50 1 2 2 0.00 −9.990D+09 0.000D+00
LINVERSE 1999 1022 1853 1023 26.75 6.810D+02 8.206D−06
NONSCOMP 10000 43 44 44 2.22 3.419D−10 7.191D−06
QR3DLS 610 50001 107915 50002 869.25 2.312D−04 1.599D−02
SCON1LS 1002 50001 76011 50002 835.10 1.416D+01 1.410D−02
DECONVB 61 1670 2560 1671 1.38 4.826D−08 9.652D−06
BIGGSB1 1000 7571 12496 7572 24.41 1.626D−02 9.999D−06
BQPGABIM 50 24 37 25 0.01 −3.790D−05 8.640D−06
BQPGASIM 50 33 46 34 0.01 −5.520D−05 8.799D−06
BQPGAUSS 2003 50001 87102 50002 902.26 −3.624D−01 2.488D−03
CHENHARK 1000 2464 4162 2465 9.60 −2.000D+00 9.341D−06
CVXBQP1 10000 1 2 2 0.10 2.250D+06 2.776D−17
HARKERP2 100 33 46 34 0.06 −5.000D−01 1.110D−16
JNLBRNG1 15625 1664 2524 1665 349.19 −1.806D−01 6.265D−06
JNLBRNG2 15625 1443 2320 1444 309.22 −4.150D+00 9.665D−06
JNLBRNGA 15625 981 1530 982 180.92 −2.685D−01 6.687D−06
JNLBRNGB 15625 17014 28077 17015 3180.14 −6.281D+00 1.000D−05
NCVXBQP1 10000 1 2 2 0.10 −1.986D+10 2.776D−17
NCVXBQP2 10000 84 93 85 4.00 −1.334D+10 2.956D−06
NCVXBQP3 10000 111 117 112 5.13 −6.558D+09 2.941D−06
NOBNDTOR 14884 566 834 567 98.52 −4.405D− 01 8.913D−06
OBSTCLAE 15625 639 936 640 116.86 1.901D+00 9.343D−06
OBSTCLAL 15625 176 243 177 31.69 1.901D+00 6.203D−06
OBSTCLBL 15625 321 460 322 58.49 7.296D+00 3.731D−06
OBSTCLBM 15625 143 192 144 25.63 7.296D+00 8.294D−06
OBSTCLBU 15625 311 449 312 56.72 7.296D+00 9.703D−06
PENTDI 1000 1 3 2 0.01 −7.500D−01 0.000D+00
TORSION1 14884 685 1023 686 119.38 −4.257D−01 9.404D−06
TORSION2 14884 728 1117 729 127.62 −4.257D−01 9.616D−06
TORSION3 14884 183 264 184 31.72 −1.212D+00 6.684D−06
TORSION4 14884 226 325 227 38.99 −1.212D+00 9.398D−06
TORSION5 14884 73 105 74 12.68 −2.859D+00 8.751D−06
TORSION6 14884 63 75 64 10.39 −2.859D+00 9.321D−06
TORSIONA 14884 496 756 497 100.13 −4.184D−01 6.442D−06
TORSIONB 14884 584 866 585 116.70 −4.184D−01 7.917D−06
TORSIONC 14884 247 350 248 48.81 −1.204D+00 9.683D−06
TORSIOND 14884 226 317 227 44.62 −1.204D+00 9.467D−06
TORSIONE 14884 65 89 66 12.90 −2.851D+00 9.459D−06
TORSIONF 14884 68 84 69 13.07 −2.851D+00 9.302D−06
ODNAMUR 11130 50001 80356 50002 3927.97 9.262D+03 4.213D−01

iteration, which involves considerable computer effort, LANCELOT usually
stops at points where this norm is considerably smaller than the tolerance
10−5. On the other hand, SPG methods, which test the projected gradient
more frequently, stop when ‖g1(x)‖∞ is slightly smaller than that tolerance.
In a small number of cases this affects the quality of the solution, reflected in
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the objective function value.
(2) S368 (n = 100): LANCELOT, SPG1, and SPG2 arrived at different solutions,

the best of which was the one obtained by SPG2. SPG1 was the winner in
terms of computer time.

(3) HADAMALS (n = 1, 024): LANCELOT obtained f(x) = 74.44 in 157.6
seconds. SPG1 and SPG2 obtained stationary points with f(x) = 31, 070 in
less than 2 seconds.

(4) NONSCOMP (n = 10, 000): As in BDEXP, the SPG methods found a solu-
tion slightly worse than the one found by LANCELOT but used less computer
time.

(5) QR3DLS (n = 610): LANCELOT found a better solution (f(x) ≈ 4 × 10−8

against f(x) ≈ 2.3× 10−4) and used less computer time than the SPG meth-
ods.

(6) SCON1LS (n = 1, 002): LANCELOT found the solution whereas the SPG
methods did not converge after 50,000 iterations.

(7) DECONVB (n = 61): LANCELOT found the (slightly) best solution and
used less computer time than the SPG methods.

(8) BIGGSB1 (n = 1, 000): LANCELOT found f(x) = 0.015 in 6.17 seconds,
whereas the SPG methods got f(x) ≈ 0.016 in ≈ 24 seconds.

(9) BQPGAUSS (n = 2, 003): LANCELOT beat SPG methods in this problem,
in terms of both computer time and quality of solution.

(10) ODNAMUR (n = 11, 130): LANCELOT obtained a better solution than the
SPG methods for this problem and used less computer time.

Four of the problems considered above (QR3DLS, SCON1LS, BQPGAUSS, and
ODNAMUR) can be considered failures of both SPG methods, since convergence to
a stationary point was not attained after 50,000 iterations. In the four cases, the
final point seems to be in the local attraction basin of a local minimizer, but local
convergence is very slow. In fact, in the first three problems, the final projected
gradient norm is ≈ 10−2, and in ODNAMUR the difference between f(x) and its
optimal value is ≈ 0.1 %. Slow convergence of SPG methods when the Hessian at the
local minimizer is very ill conditioned is expected, and preconditioning schemes tend
to alleviate this inconvenient. See [21].

In the remaining 40 problems, LANCELOT, SPG1, and SPG2 found the same
solutions. In terms of computer time, SPG1 was faster than LANCELOT in 29 prob-
lems (72.5%) and SPG2 outperformed LANCELOT also in 29 problems. There are
no meaningful differences between the performances of SPG1 and SPG2.

Excluding problems where the difference in CPU time was less than 10%, SPG1
beat LANCELOT 28-9 and SPG2 beat LANCELOT 28-11.

Excluding, from the 40 problems above, the ones in which the 3 algorithms con-
verged in less than 1 second, we are left with 31 problems. Considering this set, SPG1
beat LANCELOT 20-11 (or 19-9 if we exclude, again, differences smaller than 10%)
and SPG2 beat LANCELOT 20-11 (or 19-11).

As we mentioned above, we also implemented the projected gradient algorithm
PGA, using the same framework as SPG in terms of interpolation schemes, both
with monotone and nonmonotone strategies. The performance of both alternatives is
very poor, in comparison to the algorithms SPG1 and SPG2 and other box-constraint
minimizers. The performance of the nonmonotone version is given in Table 2. This
confirms that the spectral choice of the steplength is the essential feature that puts
efficiency in the projected gradient methodology.
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4. Final remarks. It is customary to interpret the first trial step of a minimiza-
tion algorithm as the minimizer of a quadratic model q(x) on the feasible region or
an approximation to it. It is always imposed that the first-order information at the
current point should coincide with the first order information of the quadratic model.
So, the quadratic approximation at xk+1 should be

q(x) =
1

2
〈x− xk+1, Bk+1(x− xk+1)〉+ 〈g(xk+1), x− xk+1〉+ f(xk+1)

and

∇q(x) = Bk+1(x− xk+1) + g(xk+1).

Secant methods are motivated by the interpolation condition ∇f(xk) = ∇q(xk). Let
us impose here the weaker condition

Dskq(xk) = Dskf(xk),(11)

whereDdϕ(x) denotes the directional derivative of ϕ along the direction d (soDdϕ(x) =
〈∇ϕ(x), d〉). A short calculation shows that condition (11) is equivalent to

〈sk, Bk+1sk〉 = 〈sk, yk〉.(12)

Clearly, the spectral choice

Bk+1 =
〈sk, yk〉
〈sk, sk〉I(13)

(where I is the identity matrix) satisfies (12). Now, suppose that z is orthogonal to
sk and that x belongs to Lk, the line determined by xk and xk+1. Computing the
directional derivative of q along z at any point x ∈ Lk, and using (13), we obtain

Dzq(x) = 〈Bk+1(x− xk+1) + g(xk+1), z〉 = 〈g(xk+1), z〉 = Dzf(xk+1).

Moreover, the properties (12) and

Dzq(x) = Dzf(xk+1) for all x ∈ Lk and z ⊥ sk(14)

imply that sk is an eigenvector of Bk+1 with eigenvalue 〈sk, yk〉/〈sk, sk〉. Clearly, (13)
is the most simple choice that satisfies this property. Another remarkable property of
(13) is that the resulting algorithms turn out to be invariant under change of scale of
both f and the independent variables.

In contrast to the property (14), satisfied by the spectral choice of Bk+1, models
generated by the secant choice have the property that the directional derivatives of
the model coincide with the directional derivatives of the objective function at xk.
Property (14) says that the model was chosen in such a way that the first order in-
formation with respect to orthogonal directions to sk is the same as the first order
information of the true objective function at xk+1 for all the points on the line Lk.
This means that first order information at the current point is privileged in the con-
struction of the quadratic model, in relation to second order information that comes
from the previous iteration. Perhaps this is one of the reasons underlying the unex-
pected efficiency of spectral gradient algorithms in relation to some rather arbitrary
secant methods. Needless to say, the special form of Bk+1 trivializes the problem of
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minimizing the model on the feasible set when this is simple enough, a fact that is
fully exploited in SPG1 and SPG2.

Boxes are not the only type of sets on which it is trivial to project. The norm-
constrained regularization problem [18, 23, 24, 32], defined by

minimize f(x) subject to xTAx ≤ r,(15)

where A is symmetric positive definite, can be reduced to ball constrained minimiza-
tion by a change of variables and, in this case, projections can be trivially computed.
A particular case of (15) is the classical trust-region subproblem, where f is quadratic.
Recently (see [20, 25]) procedures for escaping from nonglobal stationary points of this
problem have been found, and so it becomes increasingly important to obtain fast al-
gorithms for finding critical points, especially in the large-scale case. (See [28, 29, 31].)

Perhaps the most important characteristic of SPG algorithms is that they are
extremely simple to code, to the point that anyone can write her or his own code using
any scientific language in a couple of hours. (Fortran, C, and Matlab codes written
by the authors are available by request.) Moreover, their extremely low memory
requirements make them very attractive for large-scale problems. It is quite surprising
that such a simple tool can be competitive with rather elaborate algorithms that use
extensively tested subroutines and numerical procedures. The authors would like to
encourage readers to write their own codes and to verify for themselves the nice
properties of these algorithms in practical situations. Papers [6] and [4] illustrate the
use of SPG methods in applications.

Acknowledgment. The authors are indebted to two anonymous referees whose
comments helped considerably to improve this paper.
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Abstract. There has been a great deal of success in the last 20 years with the use of cutting
plane algorithms to solve specialized integer programming problems. Generally, these algorithms
work by solving a sequence of linear programming relaxations of the integer programming problem,
and they use the simplex algorithm to solve the relaxations. In this paper, we describe experiments
using a predictor-corrector interior point method to solve the relaxations. For some problems, the
interior point code requires considerably less time than a simplex based cutting plane algorithm.
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1. Introduction. Any integer linear programming problem can be expressed as
min{cTx : x ∈ S, xi = 0, 1∀i}, where S is a polyhedron. Often, a good solution can
be found by heuristic methods such as local search, tabu search, simulated annealing,
genetic algorithms, or algorithms specific to the particular problem; this heuristic
solution may well be optimal. It is usually harder to prove optimality. Algorithms
such as branch and bound, cutting plane approaches, and branch and cut can be used
to obtain lower bounds on the optimal value, and if the algorithms are allowed to
run for long enough, they will reduce the gap between the upper and lower bounds
to zero and thus find the optimal solution. Cutting plane algorithms form a linear
programming relaxation of the integer programming problem, solve the relaxation
to obtain a lower bound on the optimal value of the integer program, and, if the
upper and lower bounds do not agree, improve the relaxation and repeat the process.
Cutting plane methods can be incorporated into a branch and bound method to give
a branch and cut algorithm.

Cutting plane and branch and cut algorithms have been successfully used to solve
many types of integer linear programming problems, including the traveling salesman
problem [1, 20, 39], the linear ordering problem [21], clustering problems [24], and
the maximum cut problem [2]. See Jünger, Reinelt, and Thienel [26] for a survey. The
simplex algorithm was used to solve the linear programming relaxations in all of these
references.

Interior point algorithms are now a very good alternative to the simplex method
for linear programming problems, and they are superior for large problems where the
structure of the nonzeroes in the constraint matrix is not too unfavorable. (See, for
example, [30].) It is natural to investigate the use of interior point methods in a cutting
plane algorithm. The successful use of an interior point method in this setting requires
the ability to exploit a warm start: the solution to one relaxation should be close to
the solution to the next relaxation in some sense, so it should require relatively few

∗Received by the editors July 9, 1997; accepted for publication (in revised form) January 12, 2000;
published electronically July 11, 2000.

http://www.siam.org/journals/siopt/10-4/32424.html
†Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180

(mitchj@rpi.edu). This author’s research was supported in part by ONR grant N00014-94-0391
and NSF grant CCR–9901822.

1212



AN INTERIOR POINT CUTTING PLANE ALGORITHM 1213

iterations to solve the next relaxation from this warm start as opposed to starting from
a cold start that does not exploit this information. The simplex method appears to be
fairly adept at exploiting the warm starts provided in a cutting plane algorithm, but
equally efficient ways to restart when using an interior point method are not known.
A general methodology is proposed by Gondzio [19] with encouraging computational
results; as with the results we present in this paper, the principal emphasis in a restart
method has to be to restart with an iterate that is centered. The principal technique
we use is early termination: the relaxations are solved approximately, which results in
an initial iterate for the next relaxation that is somewhat centered, leading to better
performance.

Mitchell and Todd [38] presented a promising first attempt at using an interior
point cutting plane algorithm, solving matching problems. An interior point cut-
ting plane algorithm for the linear ordering problem was described in Mitchell and
Borchers [35]. The computational times in that paper were comparable to those ob-
tained by Grötschel, Jünger, and Reinelt [21] and Reinelt [43] with a cutting plane
algorithm which used the simplex solver CPLEX3.0 [10] to solve the linear programs.
Interior point approaches to integer programming problems are surveyed in [37]; this
reference includes discussions of the theoretical performance of interior point cut-
ting plane algorithms and of other applications of interior point column generation
methods.

In the current paper, we present results on two classical integer programming
problems, namely, the MAXCUT problem and the linear ordering problem. The MAX-
CUT instances arise from finding the ground state of Ising spin glasses, a problem in
statistical physics. Our results appear to be considerably better under one distribution
of the data than recent results in the literature [13] obtained using the simplex solver
in CPLEX3.0. These are the hardest problems considered in this paper, requiring a
more conservative choice of parameters than the other problems in order to obtain
a robust implementation. We improve somewhat on the results in [35] for real-world
linear ordering problems and also look at some larger randomly generated problems,
obtaining better runtimes on some of these problems with our interior point method
than with a cutting plane algorithm using the simplex solver in CPLEX4.0. Because
of extensive experimentation, we are able to be more confident and therefore more
specific about our choices of parameters than in [35]. Our algorithm is presented in
section 2. The results for linear ordering problems and Ising spin glass problems are
contained in sections 3.1 and 3.2, respectively.

Many different integer programming problems can be formulated using the frame-
work (IP ) that we present in section 2; the great majority of research on polyhedral
theory and cutting plane algorithms is on problems that can be written in this form
(see, for example, [7, 26, 34]). Of course, not all of these problems are equally amenable
to the interior point cutting plane approach that we present in this paper. We return
to the issue of determining appropriate problems for the interior point approach in
our conclusions, section 4. One requirement for this investigation is that the linear
programming relaxations should be large and yet the integer programming problems
are solvable, so we examined problems where the time required to solve the linear
programming relaxations is a substantial portion of the total solution time. For this
paper we restrict our attention to problems that can be solved at the root node of a
branch and cut tree, for several reasons, including the following two: interior point
branch and bound is not well understood (see, for example, [28]), and the time to
solve large problems that require branching is impracticable for this investigation.
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2. An interior point cutting plane algorithm. We assume we have an inte-
ger programming problem of the form

(IP)

min cTx
subject to Ax = b,

0 ≤ x ≤ u,
xi = 0 or 1 for i ∈ I,
x satisfies some additional conditions,

where x, c, and u are n-vectors, b is an m-vector, A is an m×n matrix of rank m, and
I is the set of integer variables. We assume ui = 1 for i ∈ I. We assume the additional
conditions can be modeled as a (possibly exponential) set of linear constraints. Many
problems can be cast in this framework; for example, the traveling salesman problem
can be represented in this form, with the additional conditions being the subtour
elimination constraints [20, 39] and the conditions Ax = b representing the degree
constraints that the tour must enter and leave each vertex exactly once. Some problems
do not need additional conditions, and we regard such problems as also falling in our
general framework. We let Q denote the convex hull of feasible solutions to (IP). We
assume that the dimension of Q is n − m. The linear programming relaxation (or
LP relaxation) of (IP) is

(LP)
min cTx,
subject to Ax = b,

0 ≤ x ≤ u

with dual

(LD)
max bT y − uTw
subject to AT y − w + z = c,

w, z ≥ 0,

where y is an m vector and w and z are n-vectors. The value of any feasible solution
to (LD) provides a lower bound on the optimal value of (IP). We solve (LP) and
(LD) using a predictor-corrector primal-dual interior point method similar to those
described in Lustig, Marsten, and Shanno [30] and Mehrotra [31]. This algorithm
keeps x, w, z, and the primal slacks s := u− x strictly positive. We call such a point
an interior point. The method is a barrier method, finding a sequence of approximate
analytic centers in order to approach the optimal solution, where an analytic center
is a solution to min{cTx− µ∑i ln(xi(ui − xi)) : Ax = b} for some positive scalar µ.
All iterates generated by the algorithm will satisfy Ax = b, as described later.

If the optimal solution to (LP) is feasible in (IP), then we can stop with optimality.
If the optimal basic feasible solution xLP to (LP) is not in Q, then we cut off xLP

by adding an extra constraint or cutting plane of the form a0
T

x ≤ b0. If the integer
programming problem is NP-hard, then it is also NP-hard to find a violated cutting
plane [23], so heuristics are usually used to generate cuts. This gives the relaxation

(LPnew)

min cTx
subject to Ax = b,

a0
T

x + x0 = b0,
0 ≤ x ≤ u,
0 ≤ x0 ≤ u0,
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where x0 is a new fractional variable giving the slack in the added constraint. The
cutting plane is a valid inequality for (IP), but it is violated by the optimal solu-
tion xLP. We then solve (LPnew), and repeat the process. In this paper, the cutting
planes we add are generally facets of Q, and we use specialized routines to find the
cutting planes. The dual problem to (LPnew) is

(LDnew)

max bT y − uTw − u0w0

subject to AT y + a0y0 − w + z = c,
y0 − w0 + z0 = 0,

w, z ≥ 0,
w0, z0 ≥ 0.

Every iterate x̂, ŷ, ŵ, ẑ generated by an interior point method before reaching opti-
mality will satisfy 0 < x̂ < u and ŵ > 0, ẑ > 0. These can be used to obtain a new
feasible solution to (LDnew) by taking y = ŷ, w = ŵ, z = ẑ, y0 = 0, and w0 = z0. If
we pick w0 = z0 to be strictly positive, then all the nonnegativity constraints will be
satisfied strictly. It is not so simple to obtain a feasible solution to (LPnew) because

we have a0
T

x̂ > b0 if the new constraint was a cutting plane.
It has been observed that if an interior point method is started from close to

the boundary, it will move towards the center of the feasible region before starting
to move towards the optimal solution. Thus, the optimal solution to (LP) is not a
very good starting point for trying to solve (LPnew), so we search for cutting planes
violated by x̂ before reaching optimality. Such cutting planes may well be deeper cuts
and cut off more of the part of the feasible region that is close to the optimal solution
to (LP), because the iterate is further than the optimal solution from the boundary
of the polyhedron.

The two principal disadvantages of looking for cuts before solving the current
relaxation to optimality are, first, that we may be unable to find any cuts, so the
search is a waste of time, and, second, that the search may return cuts which are
violated by the current iterate, but which are not violated by the optimal solution,
so we may end up solving additional relaxations. The second disadvantage can be
minimized by moving towards the optimal solution from the center of the polyhedron,
reducing the likelihood of violating cutting planes that are satisfied by the optimal
solution to (LP). To reduce the impact of the first disadvantage, we use a dynamically
altered tolerance τ for deciding when to search for violated cutting planes, searching
only when the duality gap drops below this tolerance. This tolerance is increased if
we find a large number of violated constraints, and decreased if we find only a few
violated constraints.

As mentioned earlier, we can obtain a new feasible interior iterate for (LDnew) by
setting y0 = 0 and w0 = z0 = εD for some appropriate small positive value of εD. We
chose εD = 10−3, which is considerably larger than the 10−6 used in [35]. To improve
stability and performance, it is useful to also increase any small components of w and
z up to εD.

We update the primal iterate using a point that is known to be feasible and interior
in (LPnew). Any interior point which is a convex combination of feasible integral
points will satisfy all cutting planes, so it will be feasible in (LPnew). In addition,
it will be interior in (LPnew) provided it satisfies all the cutting planes strictly. Any
point in the relative interior of Q will be feasible and interior in (LPnew). We used the
vector of all halves as an initial point of this type for both problem classes considered
in this paper. This point is updated as the algorithm progresses, by combining it with
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1. Initialize. Set up the initial relaxation. Find initial interior primal and
dual points. Find a feasible point in Q. Find a restart point xFEAS in the relative
interior of Q for use in Step 10.

2. Inner iteration. Perform one iteration of the primal dual algorithm.
3. Check for early termination. If the relative duality gap is larger than

the tolerance τ, return to Step 2.
4. Primal heuristics. Use the primal heuristics to try to improve on the

current best solution to (IP ).
5. Check for optimality. The current dual solution provides a lower bound

and the value of the best known feasible point provides an upper bound. If the
difference between these two is sufficiently small, Stop with optimality.

6. Look for cutting planes. If possible, also update the known feasible point
xFEAS .

7. Add cutting planes. If any cutting planes were found in Step 6 then add
an appropriate subset; otherwise, reduce τ and return to Step 2.

8. Drop cutting planes. If any cutting plane appears to no longer be im-
portant, drop it.

9. Fix variables. If possible, fix variables at zero or one.
10. Modify current iterate. Increase any small components of w and z to

a small value εD. If necessary, increase appropriate components of w and/or z to
regain dual feasibility. Update the primal solution to a convex combination of the
current iterate and xFEAS , giving a point which is interior in the new relaxation.
Increase any small components of x and the vector of primal slacks to εP . Modify
the tolerance τ . Return to Step 2.

Fig. 1. An interior point cutting plane algorithm.

any iterate which is in the convex hull. We can restart either at this feasible point
or at an appropriate convex combination of this point and the previous iterate. To
improve stability and performance, it is useful to also increase any small components
of x and s to εP := 10−5.

In practice, many constraints are added at once. The same procedures for finding
initial solutions to the new primal and dual relaxations can still be used.

Cutting plane algorithms are useful for proving optimality by generating lower
bounds on the optimal value of (IP). Fractional primal points x can also be used to
generate new feasible solutions to (IP) by using problem-specific rounding heuristics.
If the interior point method is converging to a point in the interior of the optimal
face of Q, then the primal heuristics may well provide one of the optimal solutions to
(IP), so we can terminate the algorithm, because the value of the relaxation will agree
with the value of the integer solution. Without good primal heuristics, the algorithm
may search in vain for cutting planes, and be forced to branch, resulting in longer run
times.

It is useful to drop constraints that no longer appear important. This has the
advantage of shrinking the size of the relaxation, with the principal benefit of reducing
the time required for each iteration, and the marginal benefit of very slightly reducing
the number of iterations to solve a relaxation. Generally, we do not discard a constraint
for several stages, and we drop the constraint if its slack variable is large—see section
3 for more details. Note that if the slack variable is large, then the corresponding dual
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variable y will be close to zero. More sophisticated tests are available, but the costs
of these outweigh the benefits of the reduction in the size of the relaxations.

Simplex branch and cut methods can use reduced costs to fix variables at zero
or one. The reduced costs are not available at the current interior solution to the
relaxation (LP), but the dual variables are available, and these can be used to fix
variables, as described in [32]. Fixing variables has the practical disadvantage of mak-
ing the old restart point for (LPnew) no longer feasible, because this restart point is
interior. Fixing some variables may impose logical constraints on other variables, so
the restart point usually has to be modified and these additional logical constraints
sometimes have to be added to the model. We did not find it necessary to fix variables
for problems with integral objective function coefficients.

We summarize the complete algorithm in Figure 1. Note that more details can
be found in section 3 for the two problem classes considered in this paper. We say
that we have completed a stage every time we enter step 10. We complete the final
stage when we enter step 5 for the last time. The set of appropriate constraints in
step 7 is usually obtained using a bucket sort. The results in this paper represent an
improvement over those obtained with a similar algorithm for linear ordering problems
in [35], with a reduction in the number of iterations as well as the runtime. The
principal differences are the use of larger restart parameters εP and εD in step 10,
keeping constraints for more stages before allowing them to be dropped in step 8,
slightly changing the method for updating τ in step 7, and using different parameters
to choose the appropriate subset, including adding a larger number of constraints.

3. Computational results. We have used this algorithm to solve several differ-
ent problems in combinatorial optimization. In this section, we describe the modifi-
cations made to the basic algorithm and give computational results for each problem.
The computer code was written in FORTRAN 77. We have a framework where the
majority of the code remains the same for each problem, and we use problem spe-
cific subroutines for initializing the problem, finding primal integral solutions using
heuristics, finding cutting planes, and modifying the relaxation by adding and drop-
ping constraints. All the computational testing was performed on a Sun SPARC 20/71
UNIX workstation. All runtimes are reported in seconds.

We use the Yale Sparse Matrix Package [16] to calculate the projections, using
the routine mmd due to Liu [29] to find an ordering of the columns of ADAT for the
Cholesky factorization of this matrix, where D is an appropriate diagonal matrix.
Our interior point linear programming solver could be improved. It is probably about
two to three times slower than commercial solvers such as CPLEX [10]. In particular,
some of the linear algebra routines could be improved. We do not use a publicly
available code such as HOPDM [18] or PCx [11], because none of these codes makes
it easy to access the current solution after each iteration, stop the process when
desired, suggest a new starting point, and not preprocess each relaxation, which are
all required features of our algorithm.

3.1. The linear ordering problem.

3.1.1. Definition of the problem. The linear ordering problem is a combina-
torial optimization problem with a wide variety of applications, such as triangulation
of input-output matrices, archeological seriation, minimizing total weighted comple-
tion time in one-machine scheduling, and aggregation of individual preferences. It is
NP-hard (Karp [27]), and a complete description of the facets of its convex hull is not
known. The polyhedral structure of the linear ordering problem has been investigated
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by Grötschel, Jünger, and Reinelt [21], Jünger [25], and Reinelt [42].
The problem requires placing p sectors (or objects) in order, where there is a

cost gij for placing sector i before sector j. It was shown by Grötschel, Jünger,
and Reinelt [21] that the linear ordering problem with p sectors is equivalent to the
following integer programming problem:

min
∑

1≤i<j≤p
cijxij

(LO) subject to xij + xjk − xik ≤ 1 for 1 ≤ i < j < k ≤ p(3.1)

− xij − xjk + xik≤ 0 for 1 ≤ i < j < k ≤ p,(3.2)

xij = 0 or 1 for 1 ≤ i < j ≤ p,

where cij = gij − gji for 1 ≤ i < j ≤ p. Here, we obtain xij = 1 if i is before j
in the ordering, and xij = 0 otherwise. Equations (3.1) and (3.2) are called triangle
inequalities; they prevent solutions x which correspond to, for example, sector i before
sector j, sector j before sector k, and sector k before sector i.

3.1.2. Details of the algorithm. The initial linear programming relaxation of
(LO) is min{cTx : 0 ≤ x ≤ e}, where c and x are p(p − 1)/2 vectors and e is the
p(p − 1)/2 vector of ones. (Throughout, we use e to denote the vector of ones of an
appropriate dimension.)

The only cutting planes we add are triangle inequalities of the form given in
(3.1) and (3.2)—these were sufficient to solve most of the problems in our test set.
We first called the separation routines when the relative duality gap (the duality
gap divided by the larger of the absolute value of the dual value and 1) was below
τ = 0.3. When cutting planes were found, this tolerance τ was multiplied by 1.4k,
where k = 	10(MAXV IOL + 0.1)
 − 9 and MAXV IOL is the maximum cutting
plane violation.

The separation routine comprised complete enumeration of all the triangle in-
equalities. These were bucket sorted by violation. We add only constraints that have
violation at least 0.5MAXV IOL. The algorithm proceeds through the inequalities
in order of decreasing violation until an edge-disjoint set of at most 500 constraints
has been found, which is then added to the relaxation. (We say several constraints
are edge-disjoint if they use distinct sets of variables.) Adding an edge-disjoint subset
has the beneficial effect of reducing the amount of fill-in in the matrix product AAT ,
and thus reducing the linear algebra required to calculate projections when finding
the next interior point iterate. Note that if we chose to translate the cutting planes
so that they are satisfied at equality, then it is easy to find a restart direction if the
cuts are orthogonal [41, 17], as they are if they are edge-disjoint.

Our primal heuristics are similar to those suggested in Grötschel, Jünger, and
Reinelt [21]. We round the current iterate. An ordering is constructed from this
rounded solution using a greedy heuristic: at step k it picks the kth element in the
ordering, breaking ties arbitrarily. A local optimization routine is then applied to this
greedy ordering, where each sector is examined in a different position in the ordering.

We dropped any constraint which had been in the relaxation for at least five
stages and which still had a slack of at least 0.4.

We initialized the restart point to be xFEASij = 0.5. This was updated at each
iteration to x if x did not violate any of the cutting planes. If x violated any triangle
constraint, then we updated xFEAS by taking a step of length α from xFEAS in the
direction towards x, where α is 90% of the distance to the closest triangle inequality.
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Table 1
Results on real-world input-output matrices.

Sectors 44 50 56 60 79
Number 29 3 11 2 1
Iterations 53 64 62 67 104
Time (seconds) 9.1 21.1 32.1 52.9 487.4
Stages 14 17 17 18 24
Cuts added 322 539 732 891 1985
Cuts dropped 77 140 225 269 646

Christof and Reinelt [9] have developed a simplex based branch and cut algo-
rithm for hard instances of the linear ordering problem where the cutting planes
come from small-dimensional versions of the problem, as in Christof and Reinelt [8].
The instances we examine in this paper are larger, but they do not generally require
branching or extensive separation routines to find violated cutting planes. We are
interested in large instances because they have large linear programming relaxations,
so the amount of time spent solving the relaxations will be a significant proportion
of the total solution time. We expect that the methods described in this paper, in
conjunction with the methods described in [9], will make it possible to solve large,
hard instances.

3.1.3. Real-world problems. Table 1 contains the results of our algorithm
on 46 real-world linear ordering problems. All the problems come from input-output
tables in economics; except for the 79-sector problem usa79, they are all available from
LOLIB at the URL http://www.iwr.uni-heidelberg.de/iwr/comopt/software/LOLIB.
For a discussion of the origins of these problems, see Grötschel, Jünger, and Reinelt
[21] or Mitchell and Borchers [35]; for a discussion of the economic interpretation of
the results see Grötschel, Jünger, and Reinelt [22]. All the problems in Table 1 except
for those with 50 sectors were attacked using the algorithm discussed in [35]. The
costs in all of these input-output tables are integral, so we terminated when the gap
between our upper and lower bounds was smaller than 1.

The rows of the tables convey the following information. The first row gives the
number of sectors and the second row the number of instances of that particular size
that were solved. The rows labeled Iterations, Time (seconds), and Stages give the
means of, respectively, the total number of primal-dual predictor-corrector iterations
required to solve the integer programming problem, the total time in seconds required
to solve the problems, and how often the LP relaxation was modified so the total
number of LP relaxations formed for a particular problem is one more than the number
of stages. The rows labeled Cuts added and Cuts dropped give, respectively, the total
number of cutting planes added to the relaxations and the number of these cuts that
were subsequently dropped. The numbers are rounded to the number of digits shown.

As can be seen, all these problems can be solved easily with our code. The
algorithm requires only around 4 iterations per stage; as would be expected, the
number of iterations required on a stage increases as the algorithm proceeds, so the
last stage may well require about 10 iterations. Of course, this last stage is the only
one that has to be solved exactly. The proportion of time spent actually solving the
linear programming relaxations increases as the problem size increases, accounting for
over 90% of the time on the largest problem usa79. The number of stages is larger
than in some simplex based implementations because we add a set of edge-disjoint
constraints at each stage, which keeps the Cholesky factor from becoming too dense.
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The iteration counts and the number of stages are better than those contained
in [35]. The Sun SPARC 20/71 used in the experiments in this paper is about twice
as fast as the Sun SPARC 10/30 used for the experiments in [35]. After adjusting for
this, the runtimes for the 44 and 56 sector problems in Table 1 are similar to those
in the earlier paper, but the runtimes for the larger problems are two to three times
better than those in [35]. It was argued in [35] that the runtimes in that paper were
comparable to those obtained by the simplex based cutting plane algorithm due to
Grötschel, Jünger, and Reinelt [21] and Reinelt [43]—they were somewhat worse, but
the difference was shrinking as the problem size increased. Thus, the new results give
a runtime that is very similar to that in [43] for the largest problem usa79.

Our results can also be compared with a simplex based cutting plane algorithm
for these problems [6], which is written in C and uses the simplex solver in CPLEX4.0
to solve the relaxations. It adds all the violated constraints to the relaxation and
resolves. We obtained a copy of this code and used it to solve the problems in our test
set. Most of them required only two or three stages, and the runtimes are better than
those obtained with the interior point code—the ratio decreases as the problem size
increases, but the runtimes are still perhaps three times better for the problem usa79.
This is still a good result for the interior point code, since it was all written “in-house”
whereas CPLEX4.0 is an excellent commercial code. We are also comparing runtimes
of codes written in different languages, so it is hard to draw definitive conclusions.
For these problems, CPLEX4.0 uses Devex pricing in the dual and it introduces
perturbations in the data; these choices aid the solution procedure considerably.

3.1.4. Random problems. We also solved some larger randomly generated
problems, and in addition some of these problems were solved using the code de-
scribed in [6]. We generated these problems by first setting pz% of the entries gij
to 0 and generating a random permutation τ ; the remaining entries were then uni-
formly distributed integers between 0 and 99 if τ(i) < τ(j) or between 0 and 39 if
τ(i) > τ(j). The problems become harder as pz increases. Many of the real-world
problems contain a number of zeroes in the gij entries. The generated problems all had
linearity between 70.9 and 74.2—the linearity measures the proportion of the total
weight accounted for by the ordering. The extreme cases are, first, that every entry in
the matrix takes the same value, when the linearity would be 50, and second, when
there are no nonzero entries below the diagonal, in which case the linearity is 100.
The randomly generated problems had similar linearity to the real-world problems.

The results are contained in Table 2. We let pz take the values 0, 10, 20, and
30, and the number of sectors was set to 50, 75, 100, 150, and 200; five problems
were generated with each combination. The table contains the mean results for each
set of problems. Because of memory limitations, we were unable to solve problems
with more than 100 sectors using the simplex code, and we were also unable to solve
problems with 150 sectors and pz ≥ 20 or with 200 sectors and pz ≥ 10 using the
interior point code. In addition, again because of memory limitations, we could not
solve problems with 100 sectors and pz = 30 with either code, and we were able to
solve only one problem with 100 sectors and pz = 20 using the simplex code—on
the remaining problems, the code ran for roughly 1000 seconds before running out of
memory. The triangle inequalities were not sufficient to solve four of the problems,
one each with 75 sectors and pz equal to 10, 20, and 30 and one with 100 sectors and
pz = 20; we have omitted these problems from the tables. It appears that the simplex
code spends well over 90% of its time within CPLEX, at least for the harder problems.
The columns in Table 2 contain the same information as the rows in Table 1, with
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Table 2
Results for random linear ordering problems.

pz Sectors Interior point Simplex
Time Iters Stages Added time

0 50 6.0 26.0 7.0 236.0 3.3
0 75 20.2 30.2 8.2 543.2 13.8
0 100 51.1 33.6 9.2 1003.2 98.4
0 150 206.4 44.8 12.2 2919.0 —
0 200 754.8 46.2 12.4 6406.4 —
10 50 10.1 35.8 9.6 362.2 6.1
10 75 50.8 47.5 13.0 871.5 73.9
10 100 155.6 53.0 13.8 1510.0 280.9
10 150 2071.9 72.4 12.4 6406.4 —
20 50 19.7 50.8 12.6 500.2 10.4
20 75 240.7 90.5 17.3 1247.5 119.6
20 100 1405.4 89.5 18.5 2313.8 —
30 50 70.1 73.6 15.2 732.6 29.5
30 75 771.3 102.3 17.8 1588.0 251.9

the addition that the last column contains the runtimes with the cutting plane code
that uses the simplex solver in CPLEX 4.0. Runtimes are quoted in seconds.

As can be seen, the interior point code outperforms the simplex based code for
problems with at least 100 sectors where pz is no bigger than 10. Furthermore, it can
be seen that the rate of increase in the runtimes as the problem size increases is far
smaller for the interior point code than for the simplex code. When pz is as big as
30, the Cholesky factors become dense and the simplex code outperforms the interior
point code. For pz = 20, the simplex code outperforms the interior point code for 50
and 75 sector problems, but it appears that the codes would take similar times for
100 sector problems, were it not for memory limitations.

As the proportion of zeroes pz increases, the linear ordering problems should be-
come more dual degenerate, with multiple optimal solutions. For linear programming
problems, degeneracy is normally favorable for an interior point method. However, for
these problems, the degeneracy results in the addition of many cutting planes that
use the same variables so the constraint matrix A eventually contains several dense
columns and there is considerable fill in the Cholesky factor of the matrix AAT . This
increases the time for one iteration of the interior point method, and thus the sim-
plex code outperforms the interior point code when pz = 30. One possible remedy for
this problem is to use a preconditioned conjugate gradient algorithm to calculate the
directions in the interior point method; this is a subject for future research.

We have recently investigated combining an interior point cutting plane method
with a simplex cutting plane method [36], with results that appear to be superior
to using either method on its own. The random problems used in both [36] and this
paper are available at the URL http://www.math.rpi.edu/˜mitchj/generators.

We also examined a formulation of a clustering problem proposed by Grötschel
and Wakabayashi [24]. This problem can be written in a manner similar to the linear
ordering problem, with triangle inequalities, although the triangle inequalities have
a different structure. The computational results were similar to those for the linear
ordering problem, in that they were comparable to the results obtained with a simplex
method, and the relative performance of the interior point code improved as the
problems increased in size. The algorithm appears to perform worse than one described
by Palubeckis [40], at least for smaller problems. As the problem sizes increased, the
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gap between the algorithms decreased. The random instances of both this clustering
problem and also the Ising spin glass problem used in this paper are also available
from the URL given above.

3.2. The ground states of Ising spin glasses.

3.2.1. Definition of the problem. Finding the ground states of Ising spin
glasses is an important problem in physics. We examine two-dimensional Ising spin
glasses. This problem was originally discussed in the operations research literature by
Barahona, Jünger, and Reinelt [3], who modeled the problem as a MAXCUT problem
and developed a simplex based cutting plane algorithm to solve the problem. Recently,
some of these authors and other colleagues have returned to this problem and have
improved their computational results considerably [44, 12, 13]. We have previously
sketched our experience on a smaller set of these problems in [33]. Facets of the cut
polytope are described in [4, 14, 15].

We are given a collection of points, and we know the interaction between the
points; we want to determine which points have a positive charge and which points
have a negative charge. Our model places vertices at points of an L × L grid on a
torus. Each vertex has four neighbors: to the left, to the right, above, and below.
There are weights on the edges joining a vertex to its neighbors which correspond to
the bonds or interactions between the vertices. We generate edge weights using two
different distributions, and we report results for problems with grids of size up to
100 × 100. We assume there is no external field—it was shown by Barahon, Jünger,
and Reinelt [3] that an external field can be modeled by including an extra vertex;
the resulting problem appears to be easier to solve than a problem with no external
field, at least when the edge weights have a Gaussian distribution.

The problem can be modeled on an undirected graph G = (V,E) as

min
∑p
i=1

∑
j>i,(i,j)∈G cijxij

subject to x is the incidence vector of a cut,

where p is the number of vertices, there is a variable xij for each edge, and the cost
cij of each edge is derived from the interaction between the vertices. Each vertex has
four neighbors, so a k × k grid will have k2 vertices and 2k2 edges.

Cutting planes can be derived by using the observation that every cycle and every
cut intersect in an even number of edges. Every subset F of odd cardinality of every
chordless cycle C gives the facet-defining inequality

x(F )− x(C \ F ) ≤ |F | − 1,(3.3)

where x(S) denotes
∑

(i,j)∈S xij for any subset S ⊆ E. The cycles of length four (the

squares) in the graph are chordless cycles, and there are many other chordless cycles.
There are other families of facet-defining inequalities; we searched only for facets of
the form (3.3).

3.2.2. Details of the algorithm. The initial relaxation is min{cTx : 0 ≤ x ≤
e}. All the cutting planes are of the form (3.3).

The separation routine consists of three parts. We first search for cutting planes
corresponding to the squares in the graph using complete enumeration. The violated
constraints are bucket sorted by violation and the most violated constraints are added.
We are prepared to add constraints that correspond to squares that share edges. We
add at most 500 square constraints; further, if k < 500 constraints are violated by at
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least 0.1, then we add at most max{L− k, 0} constraints with violation less than 0.1.
If this does not return at least L constraints which are violated by cutting planes
or if the largest violation of a square constraint is no more than 0.2, we then use a
heuristic procedure similar to that described in Barahona, Jünger, and Reinelt [3] to
find longer chordless cycles with violated constraints. The heuristic is restricted to
add at most 100 violated constraints; further, we restrict it so that it adds at most
L2 nonzeroes to the constraint matrix A (excluding the columns corresponding to the
slack variables).

If the heuristic was called and it did not find at least 20 cutting planes, we use
an implementation of the exact algorithm due to Barahona and Mahjoub [4], which
has complexity O(p3) (p is the number of nodes), and is guaranteed to find a violated
cycle inequality, if one exists. We place an upper limit of L on the number of these
constraints that we will add, and we add a constraint only if it has a violation that
is at least half of the violation of the most violated constraint found by this exact
procedure on this stage. The routine looks for cycles starting from each vertex in the
graph; to limit the time spent on this, we start from a maximum of 50 further vertices
after finding a constraint with violation at least 0.05. We insist that the set of added
constraints arising from longer cycles be edge-disjoint at each stage. The nonsquare
constraints usually contain many more than 4 edges. We found it advantageous to
scale an added constraint with |C| edges, normalizing so that the L1-norm of the
constraint was 4/

√|C|.
We solved every tenth LP relaxation to a relative duality gap of 10−8. Several of

the problems took a large number of stages, and solving the relaxations accurately is
a way to limit the number of stages, at a cost of an increased number of iterations.
This approach reduces the variability of the runtimes.

Adding the longer cycles makes it hard to update the restart point: the restart
point found in one stage may well be infeasible at a future stage because we do not
check every possible constraint. Thus, we restarted in step 10 of the algorithm by
moving towards the point 0.5e. We move so that the restart point is 5% of the way
from the boundary of the feasible region of the new relaxation towards 0.5e. The dual
iterate was updated to an earlier dual iterate, namely the last point where the relative
duality gap was at least 10%.

Our primal heuristic used the primal point x to generate the incidence vectors
of several cuts. Edges with xij smaller than 0.01 or greater than 0.99 forced vertices
onto the same side or opposite sides of the cut and then unassigned vertices were
assigned in a greedy manner. In order to get several cuts, the order in which initially
unassigned vertices were examined was randomized. The number of cuts generated
at stage k is (1 + (k/6)). Once an incidence vector has been generated, it is modified
using a local improvement process. The local improvement process looks for paths of
vertices—all vertices on a path are moved to the other side of the cut if this results
in improvement. We start off looking for paths consisting of just a single vertex, and
eventually we look for paths containing up to 10 vertices. We use each vertex in turn
as the starting vertex. We use a breadth first search to explore all paths starting from
the vertex; if a path results in an increase in the size of the cut of at least 2.5, then we
stop searching along this branch and backtrack. If we are unable to find an improving
path starting from any vertex, we look for paths that do not hurt the solution. If we
are then still unable to find improving paths, we terminate the local improvement
process. This idea of looking for paths was proposed by Berry and Goldberg [5].

Each edge appears only in eight of the possible cycle constraints of length 4, so
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Table 3
Results for Ising spin glass problems.

L NL Time Iters Stages Added Energy

10 1946 0.47 9 2.0 69.0 –1.3895
20 1946 4.79 21 4.0 327.7 –1.3985
30 1546 24.38 39 6.7 809.4 –1.4003
40 1200 93.08 64 9.8 1550.6 –1.4001
50 720 290.75 99 13.8 2502.9 –1.4005
60 440 772.37 154 19.5 3670.0 –1.4019
70 384 2245.92 216 25.8 5294.2 –1.4012
80 310 5787.28 310 34.5 7219.3 –1.4012
90 280 11320.24 400 42.8 9501.6 –1.4017
100 229 11873.59 391 44.1 10975.0 –1.4023

the columns of the constraint matrix did not become dense. Therefore, we dropped a
constraint only if none of the corresponding edge variables remained unfixed.

3.2.3. Computational results. We generated random problems using two dif-
ferent probability distributions. First, we generated random edge weights with a Gaus-
sian distribution with mean 0 and standard deviation 1. Second, we generated edge
weights of ±1, with 1 or −1 equally likely. Our results were far better for the second
class. The principal properties of real spin glasses (for example, amorphous alloys)
are represented well by the ±1 spin glass model on a rectangular lattice. The results
in [12] are far better than our results with the first distribution, so we do not report
these results in detail.

The results from problems where the edge weights were ±1 are contained in
Table 3. We give the number NL of problems of each size solved, the number of
primal-dual iterations required, the total CPU time to solve the problems, the number
of stages, the number of cuts added, and the average ground state energy. Typically,
over 40% of the total CPU time for the larger instances was spent on the primal
heuristics. In addition, we were unable to solve 2, 18, 10, and 7 instances with
L = 70, 80, 90, 100, respectively, using just cutting planes of type (3.3), so these
instances are omitted from the table.

When solving these problems, we exploited the fact that every cut will have even
value, so we can terminate the algorithm with the optimal solution when the gap
between the upper and lower bounds falls below two. With this termination criterion,
we found that we were rarely able to fix any edges in step 9 of the algorithm. (This
contrasts markedly with our experience with problems with a Gaussian distribution
of edge weights, where fixing variables made it possible to solve problems which were
otherwise beyond the reach of our implementation due to memory requirements.)

These results compare very favorably with those in De Simone et al. [13], who
used the simplex solver in CPLEX3.0 in a branch and cut algorithm for problems
with the same distribution, on a Sun SPARC 10, which is approximately half as fast
as our machine. They report results for problems of size up to 70× 70. Problems of
size 50× 50 took them roughly an hour, problems of size 60× 60 took roughly two to
three hours, and problems of size 70× 70 required on the order of fifteen hours.

One reason for the better results for the problems with ±1 edge weights than with
Gaussian edge weights is that the problems do not have to be solved as accurately:
we can terminate if the gap becomes less than two. An interior point method is good
at getting close to an optimal solution, but it may take a while in the cutting plane
setting to get a relative gap of, say, 10−6. Our primal heuristic worked well for the ±1
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problems, almost always finding the optimal solution at least one or two stages before
it was possible to prove optimality; this was not the case for the Gaussian problems,
with the optimal solution often not discovered until the final stage.

The number of stages and iterations for problems with either distribution are sen-
sitive to slight changes in the parameters of the algorithm. We found a slight change
may well halve the number of iterations required to solve one problem but double the
number of iterations required to solve another. The table contains the results with
a set of parameters that appeared to produce reasonable results, producing some of
the better runs for most problems and respectable results for most of the remaining
problems.

4. Conclusions. We have presented cutting plane algorithms for several integer
programming problems. These algorithms use a predictor-corrector interior point
method to solve the LP relaxations. For some MAXCUT problems and linear ordering
problems, we have obtained runtimes that are comparable with or better than those
obtained using a cutting plane method that employs the simplex solver in CPLEX to
solve the relaxations.

It appears from the results detailed in the current paper and from other experi-
ments, that the most suitable problems are of the following types.

• The linear programming relaxations are large, with the number of variables
and/or constraints numbering in the thousands. This is because of the well-
documented observation that the performance of interior point methods rel-
ative to simplex methods for linear programs improves as the problem size
increases.
• The objective function coefficients are integer. It then suffices to reduce the

duality gap to be less than 1 in order to prove optimality. This is useful
for an interior point cutting plane method because such an approach can
typically get close to optimality quickly but then may take a long time to
reduce the duality gap to, say, 10−6. Problems with integral coefficients are
more likely to suffer from primal or dual degeneracy, which is more harmful
to the performance of a simplex cutting plane algorithm than an interior
point cutting plane algorithm. When the objective function coefficients are
fractional, an appropriate method may be to use an interior point cutting
plane algorithm initially and switch over to a simplex cutting plane algorithm
as optimality is approached.
• It should be possible to find a strictly feasible point in the convex hull of

feasible integral points efficiently, because such a point can then be used to
restart the algorithm after cutting planes have been added. If it is not possible
to restart in this manner, the method proposed by Gondzio [19] can be used.

We have recently experimented with combining interior point cutting plane algorithms
with dual simplex cutting plane algorithms, using the interior point solver for the early
stages and the simplex solver for the later stages. The performance of this algorithm
has been outstanding for linear ordering problems [36]. It may well be that such a
hybrid cutting plane method is an appropriate choice for a wide variety of integer
programming problems.
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[21] M. Grötschel, M. Jünger, and G. Reinelt, A cutting plane algorithm for the linear ordering
problem, Oper. Res., 32 (1984), pp. 1195–1220.
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Abstract. For iterative sequences that converge to the solution set of a linear matrix inequality,

we show that the distance of the iterates to the solution set is at most O(ε2
−d

). The nonnegative
integer d is the so-called degree of singularity of the linear matrix inequality, and ε denotes the
amount of constraint violation in the iterate. For infeasible linear matrix inequalities, we show that

the minimal norm of ε-approximate primal solutions is at least 1/O(ε1/(2
d−1)), and the minimal

norm of ε-approximate Farkas-type dual solutions is at most O(1/ε2
d−1). As an application of these

error bounds, we show that for any bounded sequence of ε-approximate solutions to a semidefinite

programming problem, the distance to the optimal solution set is at most O(ε2
−k

), where k is the
degree of singularity of the optimal solution set.
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1. Introduction. Linear matrix inequalities play an important role in system
and control theory; see the book by Boyd et al. [6]. Recently, considerable progress
has been made in optimization over linear matrix inequalities, i.e., semidefinite pro-
gramming (see [1, 9, 13, 14, 22, 24, 25, 32, 34] and the references cited therein).

We study the linear matrix inequality (LMI)

{
X ∈ B +A,
X � 0,

(1.1)

where X � 0 means positive semidefiniteness, B is a given (real) symmetric matrix,
and A is a linear subspace of symmetric matrices.

The LMI (1.1) is in conic form; see, e.g., [23, 32]. Since we leave complete freedom
as to the formulation of A, it is in general not difficult to fit a given LMI into conic
form. Consider for instance a linear matrix inequality

F0 +

m∑
j=1

yjFj � 0,

where F0, F1, . . . , Fm are given symmetric matrices. This is a conic form LMI (1.1)
where B = F0 and A is the span of {F1, F2, . . . , Fm}.

Recently developed interior point codes for semidefinite programming make it
possible to solve LMIs numerically. Such algorithms generate sequences of increasingly
good approximate solutions, provided that the LMI is solvable. For a discussion of
interior point methods for semidefinite programming, see, e.g., [13, 32]. A typical
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way to measure the quality of an approximate solution is by evaluating its constraint
violation.

For instance, if we denote the smallest eigenvalue of an approximate solution X̃
by λmin(X̃), then we may say that X̃ violates the constraint “X � 0” by an amount of
[−λmin(X̃)]+, where the operator [·]+ yields the positive part. In fact, [−λmin(X̃)]+
is the distance, measured in the matrix 2-norm, of the approximate solution X̃ to the
cone of positive semidefinite matrices. The matrix 2-norm is a convenient measure for
the amount by which the positive semidefiniteness constraint is violated, but other
matrix norms can in principle be used as well.

Similarly, we say that X̃ violates the constraint “X ∈ B + A” by an amount
of dist(X̃, B +A), where dist(·, ·) denotes the distance function (for a given norm).
The total amount of constraint violation in X̃, i.e.,

dist(X̃, B +A) + [−λmin(X̃)]+,(1.2)

is called the backward error of X̃ with respect to the LMI (1.1). The backward
error indicates how much we should perturb the data of the problem, such that X̃
is an exact solution to the perturbed problem. (The perturbation parameters are
symmetric matrices U and V such that X̃ ∈ (B + U) + A and X̃ � V . One may
restrict to perturbations in B by taking the positive semidefinite part of X̃, which
has essentially the same backward error.)

However, the backward error does not (immediately) tell us the distance from X̃
to the solution set of the original LMI; this distance is called the forward error of X̃.

Without knowing any exact solution, there is no straightforward way to estimate
the forward error. For linear inequality and equation systems, however, the forward
error and backward error are of the same order of magnitude; see Hoffman [11]. The
equivalence between forward and backward errors also holds true for systems that are
described by convex quadratic inequalities if a Slater condition holds; see Luo and
Luo [17]. In these cases, we have a relation of the form

forward error = O(backward error),

which is called a Lipschitzian error bound. For systems of convex quadratic inequali-
ties without Slater’s condition, an error bound of the form

forward error = O((backward error)1/2
d

)(1.3)

was obtained by Wang and Pang [35]. They also showed that d ≤ n+1, where n is the
dimension of the problem. The error bounds for linear and convex quadratic inequality
systems hold without any boundedness assumption. This is remarkable, since in other
cases where an error bound is known, the error bounds usually depends on the norm of
the approximate solution [26]. Error bounds for systems with a nonconvex quadratic
inequality are given in Luo and Sturm [19] and references cited therein.

An error bound of the form (1.3) is called a Hölderian error bound with exponent
γ = 1/2d. A Hölderian error bound has been demonstrated for analytic inequality
and equation systems if the size of the approximate solutions is bounded by a fixed
constant; see Luo and Pang [18]. However, there are no known positive lower bounds
on the exponent γ, except in the linear and quadratic cases that are mentioned above,
or when a Slater condition holds [7]. For a comprehensive survey of error bounds, we
refer to Pang [26].

Some issues on error bounds for LMIs and semidefinite programming were ad-
dressed in [4, 7, 8, 22, 31, 33]. Deng and Hu [7] derived upper bounds on the Lipschitz
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constant (or condition number) for LMIs if Slater’s condition holds. Luo, Sturm, and
Zhang [22] and Sturm and Zhang [33] proved some Lipschitzian type error bounds for
central solutions for semidefinite programs under strict complementarity.

There is a rich perturbation theory for nonlinear optimization problems which
also applies to semidefinite programming; see the recent survey by Bonnans and
Shapiro [4]. Under regularity and nondegeneracy conditions, Shapiro [31] showed
that the then unique optimal solution is differentiable in the perturbation parameter;
this is an application of the inverse function theorem. Bonnans and Shapiro [4] also
gave an example with unique primal and dual optimal solutions, while violating the
strict complementarity condition in which the optimal solution is not Lipschitz stable.
Without imposing nondegeneracy conditions, little is known about the sensitivity of
the optimal solution set with respect to perturbations; much more is known about
the optimal value function. In particular, it is already known from Rockafellar [30]
that the directional derivatives of the optimal value function exist in any perturbation
direction. Goldfarb and Scheinberg [8] investigated how these directional derivatives
can be computed. Helmberg [10] demonstrated how to use dual solutions to estimate
the optimal objective value when new constraints are added.

In this paper, we show for LMIs in n × n matrices that (1.3) holds for a certain
d ∈ {0, 1, 2, . . . , n−1}, the so-called degree of singularity, provided that the size of the
approximate solutions is bounded. The boundedness assumption is not very restric-
tive. Namely, the interior point method generates a bounded sequence of approximate
solutions whenever the LMI has a feasible solution. We will show that if the LMI is
infeasible, then the norm of ε-approximate solutions must be at least 1/O(ε1/(2

d−1)).
The error bound results in this paper hold without any assumptions on the LMI.

In particular, the solution set of the LMI can be unbounded and nonsolid.
We interpret the degree of singularity in the context of regularized duality as

defined by Borwein and Wolkowicz [5] and Ramana [28]. (See [29] for the relation
between the dual in [28] and the regularization scheme in [5].) The degree of singu-
larity is basically the number of elementary regularizations that are needed to obtain
a fully regularized dual. Under Slater’s constraint qualification, the irregularity level
d is zero. (Notice that this is also true for convex quadratic systems; see Wang and
Pang [35].) Unfortunately, it is not easy to determine the irregularity level in general.
But even if d is unknown, a nontrivial error bound is obtained by replacing d with its
upper bound, d ≤ n− 1.

It is a natural idea to apply error bound results for LMIs to obtain sensitivity
results for semidefinite optimization and vice versa. However, we cannot use the same
argumentation that links results for systems of linear inequalities with results for
parametric linear programs. Namely, the linear case has two crucial properties: the
optimal solution set is characterized by the primal-dual optimality conditions, and a
strictly complementary solution exists. In the nonlinear case, however, there may not
exist any Lagrangean dual solution even if the primal problem has an optimal solution.
The existence of a dual optimal solution can be guaranteed by imposing (possibly
restrictive) constraint qualifications, but even then a strictly complementary solution
may not exist. Perturbation theory has been developed for the situation where no
dual optimal solution exists (and the primal Slater condition fails). However, these
results require some second order conditions [4], which imply a Hölderian error bound
of degree 1/2.

In section 4, we will apply our error bound for LMIs to obtain an error bound
for the optimal solution set of a semidefinite program. In general, however, there
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is not a sensible way to define a backward error for the optimal solution set of a
semidefinite program, using only approximate solutions to the standard primal-dual
pair. Therefore, we will assume that a complementary solution exists. The optimal
solution set is then described by the LMI


X ∈ B +A,
C̄ •X = 0,
X � 0,

(1.4)

where C̄ is a dual optimal solution. For (1.4), i.e., the optimal solution set of a
semidefinite programming problem, the degree of singularity is at most one, if strict
complementarity holds. The concept of singularity degrees thus embeds the Slater and
strict complementarity conditions in a hierarchy of singularity for LMIs. We will argue
that if a feasible interior point method is used, then one may simply take the duality
gap as the backward error measure in the error bound. This applies in particular to
interior point methods that use the self-dual embedding technique [20, 36]. It is left as
a subject of further research to develop an error bound that is based on approximate
solutions to Ramana’s perfect dual [28, 13], instead of the standard Lagrangian dual.

This paper is organized as follows. In section 2, we introduce the concept of reg-
ularized backward errors, which is closely related to the concept of minimal faces [5].
In this section, we also show that there is a close connection between the regularized
backward error and the forward error. We will then estimate in section 3 how the
regularized backward error depends on the usual backward error. In section 4, we
apply the error bound for LMIs to semidefinite programming problems. The paper is
concluded in section 5.

Notation. Let Sn×n denote the space of n × n real symmetric matrices. The
cone of all positive semidefinite matrices in Sn×n is denoted by Sn×n+ , and we write
X � 0 if and only if X ∈ Sn×n+ . The interior of Sn×n+ is the set of positive definite
matrices Sn×n++ , and we write X � 0 if and only if X ∈ Sn×n++ . We let N := n(n+1)/2
denote the dimension of the real linear space Sn×n. The standard inner product for
two symmetric matrices X and Y is X • Y = tr XY . The matrix norm ‖X‖2 is the
operator 2-norm that is associated with the Euclidean norm for vectors, namely

‖X‖2 = max{‖Xy‖2 | ‖y‖2 = 1}.
For symmetric matrices, ‖X‖2 is the largest eigenvalue of X or the largest eigenvalue
of −X, whichever is larger.

2. The regularized backward error. Let Ā denote the smallest linear sub-
space containing B +A, i.e.,

Ā = {X ∈ Sn×n | X + tB ∈ A for some t ∈ �}.(2.1)

We are naturally interested in the intersection of this linear subspace with the cone
of positive semidefinite matrices. It holds that

Ā ∩ Sn×n+ = {0} ⇐⇒ Ā⊥ ∩ Sn×n++ �= ∅;(2.2)

the above characterization is a simple illustration of a duality theorem for convex
cones which will play an important role in our analysis.

This duality theorem states that given a linear subspace L and a convex cone
K ⊆ �N with relative interior relint K and dual cone K∗ := {z ∈ �N | zTK ⊆ �+},
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it holds that

L ∩ relint K �= ∅ ⇐⇒ L⊥ ∩ K∗ ⊆ −K∗;(2.3)

see Corollary 2 in Luo, Sturm, and Zhang [21] and Corollary 2.2 in [32]. This result
generalizes a classical duality theorem of Gordan and Stiemke for linear inequalities.

To see why (2.2) is a special case of (2.3), we must interpret Sn×n+ as a convex cone
in �N . This can be established by choosing an orthonormal basis of Sn×n, say, an
orthonormal set of symmetric matrices {S[1], S[2], . . . , S[N ]}, where N := n(n+1)/2
is the dimension of Sn×n. We can then associate with any matrix X ∈ Sn×n a
coordinate vector x ∈ �N into this basis and vice versa. Namely, we let xi = S[i] •X
for i = 1, . . . , N , and X =

∑N
i=1 xiS[i]. Due to the orthonormality of the basis, we

have X • Y = xTy for all matrices X,Y ∈ Sn×n with coordinate vectors x, y ∈ �N .
As a convention, we use upper-case symbols, like X and B, for symmetric ma-

trices, and we implicitly define the corresponding lower-case symbols, like x and b,
to be the associated coordinate vectors, as described above. Furthermore, we use
calligraphic letters, such as Sn×n+ , to denote sets. With the established one-to-one
correspondence between Sn×n and �N in mind, we do not only use Sn×n+ for the set
of positive semidefinite matrices in Sn×n, but also for the set of coordinate vectors of
positive semidefinite matrices, which is a convex cone in the Euclidean space �N . We
will also use such a convention for other sets of symmetric matrices. In particular, we
reformulate (2.1) as

Ā = A+ Img b,

where Img b ⊂ �N is the line of all multiples of b. The orthogonal complement of Ā
is

Ā⊥ = A⊥ ∩ Ker bT = {X ∈ A⊥ | B •X = 0}.
The all-zero matrix is obviously the only matrix that is both positive and negative

semidefinite, i.e., Sn×n+ ∩−Sn×n+ = {0}. Also, the cone of positive semidefinite matrices
is self-dual, i.e., (Sn×n+ )∗ = Sn×n+ . Thus, taking K = Sn×n+ and L = Ā⊥ in (2.3) yields
(2.2).

Relation (2.2) states that if Ā and Sn×n+ intersect only at the origin, then there
exists a positive definite matrix Z ∈ Ā⊥. Now consider a sequence of increasingly
accurate solutions {X(ε) | ε > 0} satisfying

dist(X(ε), B +A) ≤ ε and λmin(X(ε)) ≥ −ε for all ε > 0;(2.4)

notice that the parameter ε measures the backward error in X(ε). It follows that since
Z⊥(B+A), we must have |Z •X(ε)| = O(ε). Using the fact that X(ε)+εI � 0 and Z
is positive definite, this implies that ‖X(ε)‖ = O(ε). The above reasoning establishes
the relation

Ā ∩ Sn×n+ = {0} =⇒ ‖X(ε)‖ = O(ε),(2.5)

which is an error bound for the case that Ā intersects the semidefinite cone only at
the origin.

Now assume that Ā ∩ Sn×n+ �= {0}, and let X∗ ∈ relint (Ā ∩ Sn×n+ ). By applying
a basis transformation if necessary, we may assume without loss of generality that we
can partition X∗ as

X∗ =
[
X∗
B 0
0 0

]
, X∗

B � 0.(2.6)
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Using this notation, we can partition an arbitrary matrix X ∈ Sn×n as

X =

[
XB XU
XT
U XN

]
.

A face of Sn×n+ is by definition a cone F ⊆ Sn×n+ such that for all X,Y ∈ Sn×n+ ,

X + Y ∈ F =⇒ X,Y ∈ F .
Since the faces of Sn×n+ are exposed, we can parametrize the faces of Sn×n+ as

face(Sn×n+ , Z) = {X ∈ Sn×n+ | Z •X = 0},(2.7)

where the parameter Z is a given positive semidefinite matrix. In particular, if

Z =

[
0 0
0 ZN

]
, ZN � 0,

then

face(Sn×n+ , Z) =

{
X =

[
XB 0
0 0

]∣∣∣∣XB ∈ Sn×n+

}
,(2.8)

and X is in the relative interior of face(Sn×n+ , Z) if XB � 0 (and XU = 0, XN = 0).
The facial structure of Sn×n+ has been studied in detail by Bohnenblust [3], Barker and
Carlson [2], Lewis [16], and Pataki [27]. The following two lemmas can be derived using
the results of Barker and Carlson [2]. We give elementary proofs for completeness.

Lemma 2.1. Let X∗ ∈ relint (Ā ∩ Sn×n+ ), and suppose without loss of generality
that X∗ is of the form (2.6). Then it holds for all X ∈ Ā ∩ Sn×n+ that XU = 0 and
XN = 0.

Proof. Suppose to the contrary that XN is not the all-zero matrix, and let yT =[
0 yT

N

]
be such that XNyN �= 0. Then for any α ∈ �,

yT(X∗ + αX)y = α yT
NXNyN , yT

NXNyN > 0,

where we used the fact that X is positive semidefinite. Consequently, we have for all
α > 0 that

X∗ + αX ∈ Ā ∩ Sn×n+ , X∗ − αX �∈ Sn×n+ ,

which contradicts the fact that by definition X∗ is in the relative interior of Ā∩Sn×n+ .
We have now shown by contradiction that XN = 0. Since X is positive semidefinite,
it also follows that XU = 0.

Lemma 2.2. Let X∗ ∈ relint (Ā ∩ Sn×n+ ) and suppose without loss of generality
that X∗ is of the form (2.6). Then

relint ((B +A) ∩ Sn×n+ ) = (B +A) ∩ relint face

(
Sn×n+ ,

[
0 0
0 I

])
.

Proof. The lemma holds trivially true if (B + A) ∩ Sn×n+ = ∅. Suppose now
that there exists X ∈ (B + A) ∩ Sn×n+ . Since X∗ ∈ Ā, there exists t ∈ � such that
X∗ − tB ∈ A. However, for all α > 0 satisfying αt > −1, we have

1

1 + αt
(X + αX∗) ∈ (B +A) ∩ relint face

(
Sn×n+ ,

[
0 0
0 I

])
,
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where we used Lemma 2.1. This shows that

(B +A) ∩ relint face

(
Sn×n+ ,

[
0 0
0 I

])
�= ∅.

Using Lemma 2.1 once again, the lemma follows from the above relation.
Due to the above result, the face

face

(
Sn×n+ ,

[
0 0
0 I

])

is sometimes called the minimal face [5] or the regularized semidefinite cone [21] for
the affine space B +A.

The backward error of X(ε) with respect to the regularized system

(B +A) ∩ face

(
Sn×n+ ,

[
0 0
0 I

])

is naturally defined as

dist(X(ε), B +A) + [−λmin(X(ε))]+ + ‖XU (ε)‖+ ‖XN (ε)‖.(2.9)

An implication of Lemma 2.3 below is that if {X(ε) | ε > 0} is bounded, then the
regularized backward error is of the same order as the forward error dist(X(ε), (B +
A) ∩ Sn×n+ ). Notice that there are no conditions made on the LMI itself.

Lemma 2.3. Let X∗ ∈ relint (Ā ∩ Sn×n+ ) and suppose without loss of generality
that X∗ is of the form (2.6). If {X(ε) | ε > 0} is such that

dist(X(ε), B +A) ≤ ε, λmin(X(ε)) ≥ −ε, ‖XU (ε)‖+ ‖XN (ε)‖ ≤ ε(2.10)

for all ε > 0, then (B + A) ∩ Sn×n+ �= ∅. Moreover, there exists {δ(ε) ∈ � | ε > 0},
such that

dist((1 + δ(ε))X(ε), (B +A) ∩ Sn×n+ ) = O(ε), |δ(ε)| = O(ε)

for 0 < ε ≤ 1.
Proof. As is well known, the backward and forward error for a system of linear

equations are of the same order [11]. Therefore, the relations

dist(X(ε), B +A) ≤ ε, ‖XU (ε)‖+ ‖XN (ε)‖ ≤ ε

imply that

dist(X(ε), {X ∈ B +A | XU = 0, XN = 0}) = O(ε).

This bound implies the existence of {Y (ε) | ε > 0} such that

X(ε) + Y (ε) ∈ {X ∈ B +A | XU = 0, XN = 0}, ‖Y (ε)‖ = O(ε).(2.11)

Using also the fact that X∗
B is positive definite, it follows that

X(ε) + Y (ε) + α(ε)X∗ � 0 for all ε > 0,

with

α(ε) :=
[−λmin(X(ε))]+ + ‖Y (ε)‖2

λmin(X∗
B)

.
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Notice that α(ε) = O(ε). SinceX∗ ∈ Ā, there must exist t ∈ � such thatX∗−tB ∈ A.
Let ε̄ > 0 be such that tα(ε) > −1 for all ε ∈ (0, ε̄]. Then

1

1 + tα(ε)
(X(ε) + Y (ε) + α(ε)X∗) ∈ (B +A) ∩ Sn×n+ for 0 < ε ≤ ε̄,

and hence

dist

(
1

1 + tα(ε)
X(ε), (B +A) ∩ Sn×n+

)
= O(ε)

for 0 < ε ≤ ε̄.
Under Slater’s condition, i.e., if (B + A) ∩ Sn×n++ �= ∅, Lemma 2.3 generalizes

Hoffman’s error bound [11] for systems of linear inequalities and equations to LMIs.
Remark that error bounds for convex inequality systems under Slater’s condition are
well known, but require additional regularity conditions [12]. Here we do not impose
additional conditions. In particular, no boundedness assumption is made, i.e., the
error bound holds globally over Sn×n. However, the lemma requires a scaling factor
1 + δ(ε), which is not needed in the case of linear inequalities and equations. The
following example shows that this scaling factor is essential in the case of LMIs.

Example 1. Consider the LMI in S2×2 with

B =

[
0 0
0 1

]
, A =

{
W =

[
w11 w12

w12 0

]∣∣∣∣w11, w12 ∈ �
}
,

i.e., we want to find w11 and w12 such that w11 ≥ |w12|2. This LMI obviously has
positive definite solutions (the identity matrix for instance). Therefore, the regularized
backward error is identical to the usual backward error. The approximate solution

X(ε) :=

[
1/(ε2 + ε3) 1/ε

1/ε 1 + ε

]

has backward error ε > 0. However, X(ε) + Y (ε) ∈ (B +A) ∩ S2×2
+ if and only if

y22(ε) = −ε, y11(ε) ≥ 1

ε(1 + ε)
+

2 y12(ε)

ε
+ |y12(ε)|2,

which shows that the distance of X(ε) to (B +A) ∩ S2×2
+ is bounded from below by

a positive constant as ε ↓ 0. However, we have X(ε)/(1 + ε) ∈ (B +A)∩ S2×2
+ , which

agrees with the statement of Lemma 2.3.
Below are more remarks on the regularized error bound of Lemma 2.3.
Remark 1. Lemma 2.3 states that the mere existence of {X(ε) | ε > 0} satisfying

(2.10) for all ε > 0 implies that (B+A)∩Sn×n+ �= ∅, even thoughX(ε) is not necessarily
bounded for ε ↓ 0. In the case of weak infeasibility, i.e., if

dist(B +A,Sn×n+ ) = 0, (B +A) ∩ Sn×n+ = ∅,
we can therefore conclude that if X(ε) satisfies (2.4), then

lim inf
ε↓0

‖XN (ε)‖+ ‖XU (ε)‖ > 0.

Remark 2. If X(1), X(2), . . . is a bounded sequence with

dist(X(k), B +A) → 0 and [−λmin(X
(k))]+ → 0 for k →∞,
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then also ‖X(k)
U ‖+ ‖X(k)

N ‖ → 0, as follows from Lemma 2.1. Letting

εk := dist(X(k), B +A) + [−λmin(X
(k))]+ + ‖X(k)

U ‖+ ‖X(k)
N ‖,

it follows from Lemma 2.3 and the boundedness of the sequence {X(k) | k = 1, 2, . . .}
that

dist(X(k), (B +A) ∩ Sn×n+ ) = O(εk).

3. Regularization steps. In order to bound the regularized backward error
(2.9) in terms of the original backward error (1.2), we use a sequence of regularization
steps.

In section 2, we have partitioned n×n matrices according to the structure of X∗

given by (2.6). In this section, we will also partition n × n matrices into blocks, but
with respect to a possibly different eigenvector basis; the sizes of the blocks can be
different as well. We will denote the blocks by the subscripts 11, 12 and 22, i.e.,

X =

[
X11 X12

XT
12 X22

]
.

We will also encounter the dual cone of a face of Sn×n+ , namely,

face

(
Sn×n+ ,

[
0 0
0 I

])∗
= {Z | Z11 •X11 ≥ 0 for all X11 � 0}

=

{[
Z11 Z12

ZT
12 Z22

]∣∣∣∣Z11 � 0

}
.

Obviously, we have

relint face

(
Sn×n+ ,

[
0 0
0 I

])∗
=

{[
Z11 Z12

ZT
12 Z22

]∣∣∣∣Z11 � 0

}
.

In the following, we will allow the possibility that X = X11, i.e., X12 and X22 are
nonexistent. For this case, we use the convention that ‖X12‖ = ‖X22‖ = 0.

Lemma 3.1. Let Ā be a linear subspace of Sn×n, and suppose that {X(ε) | 0 <
ε ≤ 1} is such that

dist(X(ε), Ā) ≤ ε, ‖X12(ε)‖+ ‖X22(ε)‖ ≤ ε, λmin(X(ε)) ≥ −ε
for all 0 < ε ≤ 1. Let

Z ∈ relint

(
Ā⊥ ∩ face

(
Sn×n+ ,

[
0 0
0 I

])∗)
.

It holds that
• Z11 � 0 if and only if

Ā ∩ face

(
Sn×n+ ,

[
0 0
0 I

])
= {0}.

• Z11 = 0 if and only if

Ā ∩ relint face

(
Sn×n+ ,

[
0 0
0 I

])
�= ∅.
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• For the remaining case that 0 �= Z11 �� 0, let Q =
[
Q1, Q2

]
be an or-

thogonal matrix such that Z11Q1 = 0, QT
2 Z11Q2 � 0, and hence QTZ11Q =

0⊕ (QT
2 Z11Q2). Then

‖QT
2X11(ε)Q2‖ = O(ε), ‖X11(ε)Q2‖ = O(

√
ε‖X(ε)‖).

Proof. The first two cases, i.e., Z11 = 0 or Z11 � 0, are immediate applications
of (2.3). It remains to consider the case that Z11 is a nonzero but singular, positive
semidefinite matrix. Since dist(X(ε), Ā) ≤ ε, there must exist Y (ε), such that

X(ε) + Y (ε) ∈ Ā, ‖Y (ε)‖ ≤ ε(3.1)

for all ε > 0. This implies that Z⊥(X(ε) + Y (ε)) because Z ∈ Ā⊥, and therefore

Z11 •X11(ε) = Z •
([

X11(ε) 0
0 0

]
−X(ε)− Y (ε)

)

≤ ‖Z‖F
∥∥∥∥
[

Y11(ε) X12(ε) + Y12(ε)
(X12(ε) + Y12(ε))

T X22(ε) + Y22(ε)

]∥∥∥∥
F

,

where we used the Cauchy–Schwarz inequality. Now recall that

‖X12(ε)‖ = O(ε), ‖X22(ε)‖ = O(ε), ‖Y (ε)‖ = O(ε),

so that we further obtain

Z11 •X11(ε) = O(ε).(3.2)

We will now apply a basis transformation so that the structure in X11(ε) becomes
apparent. In particular, we define Ξ(ε) := QTX11(ε)Q. Partition Ξ(ε) according to
the partition in Q, i.e.,

Ξ11(ε) := QT1X11(ε)Q1, Ξ12(ε) := QT1X11(ε)Q2, Ξ22(ε) := QT2X11(ε)Q2.

By definition, Q is such that

QTZ11Q =

[
0 0
0 QT

2 Z11Q2

]
, QT

2 Z11Q2 � 0.

Using also that λmin(Ξ(ε)) = λmin(X11(ε)) ≥ λmin(X(ε)) ≥ −ε, we get
0 ≤ tr (QT

2 Z11Q2)(Ξ22(ε) + εI)

= tr (QTZ11Q)(Ξ(ε) + εI)

= tr Z11(X11(ε) + εI) = O(ε),

where we applied estimation (3.2) in the last identity. Recalling that QT
2 Z22Q2 � 0,

it follows easily from the above relation that

‖Ξ22(ε)‖ = O(ε).(3.3)

Finally, since λmin(X(ε)) ≥ −ε, we know that Ξ(ε) + 2εI is positive definite. The
Schur complement

(Ξ11(ε) + 2εI)− Ξ12(ε) (Ξ22(ε) + 2εI)−1 Ξ12(ε)
T
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must therefore be positive definite as well. However, the eigenvalues of Ξ22(ε) are
all O(ε) in magnitude; see (3.3). The eigenvalues of (Ξ22(ε) + 2εI)−1 are therefore
bounded below by 1/O(ε). It thus follows that

‖Ξ12(ε)‖2 = O(ε‖Ξ11(ε) + 2εI‖).(3.4)

Furthermore, an immediate consequence of the definition of Ξ(ε) is that

‖Ξ11(ε)‖ ≤ ‖X11(ε)‖, ‖Ξ12(ε)‖ ≤ ‖X11(ε)‖.(3.5)

Considering (3.4)–(3.5), we conclude that

‖Ξ12(ε)‖2 = O(ε‖X11(ε)‖).(3.6)

The bound in (3.4) can be replaced by (3.6) without further conditions, because if
‖X11(ε)‖ < ε, then also ‖X11(ε)‖2 ≤ ε‖X11(ε)‖. Similarly, (3.3) and (3.5) imply that

‖Ξ22(ε)‖2 = O(ε‖X11(ε)‖).(3.7)

This completes the proof: the claimed bounds follow directly from (3.3), (3.6), and
(3.7).

For a given linear subspace Ā ⊆ Sn×n, we define the level of singularity d(Ā)
by recursively applying the construction of Lemma 3.1. This procedure, which is
equivalent to the regularization scheme of Borwein and Wolkowicz [5], is outlined
below.

Procedure 1. Definition of the level of singularity of a linear subspace Ā ⊆
Sn×n.

Step (1) Let Z(0) ∈ relint (Ā⊥ ∩ Sn×n+ ). If Z(0) = 0 or Z(0) � 0, then d(Ā) = 0.
Otherwise, proceed with Step 2.

Step (2) Let Q
(0)
1 , Q

(0)
2 be such that Z(0)Q

(0)
1 = 0 and (Q

(0)
2 )TZ(0)Q

(0)
2 � 0. Set

d = 1 and

Ā1 =

{
X =

[
X11 X12

XT
12 X22

]∣∣∣∣ [ Q(0)
1 , Q

(0)
2

]
X

[
(Q

(0)
1 )T

(Q
(0)
2 )T

]
∈ Ā

}
.

Step (3) Let

Z(d) ∈ relint

(
Ā⊥
d ∩ face

(
Sn×n+ ,

[
0 0
0 I

])∗)
.

If Z
(d)
11 = 0, then set d(Ā) = d. Otherwise, proceed with Step 4.

Step (4) Let Q
(d)
1 , Q

(d)
2 be such that Z

(d)
11 Q

(d)
1 = 0 and (Q

(d)
2 )TZ

(d)
11 Q

(d)
2 � 0, and

define

Q̄
(d)
1 =

[
Q

(d)
1

0

]
, Q̄

(d)
2 =

[
Q

(d)
2 0
0 I

]
, Q̄(d) =

[
Q̄

(d)
1 , Q̄

(d)
2

]
.

Let

Ād+1 =

{
X =

[
X11 X12

XT
12 X22

]∣∣∣∣ [ Q̄(d)
1 , Q̄

(d)
2

]
X

[
(Q̄

(d)
1 )T

(Q̄
(d)
2 )T

]
∈ Ād

}
,
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and therefore

Ād+1 =


X

∣∣∣∣∣∣
(

d∏
k=0

Q̄(k)

)
X

(
d∏
k=0

Q̄(k)

)T

∈ Ā

 .

Set d = d+ 1 and return to Step 3.
Note that the order of the 11 block is reduced in each iteration of the above

procedure. We start with the full dimensional cone Sn×n+ , and in the first iteration
we determine a face of this cone. Next we arrive at a face of this face and so on.
We claim that this procedure finally arrives at the minimal face. To see this, notice
that at any given step d = 0, 1, . . . , d(Ā) above, we perform a regularization step as
described in Lemma 3.1. Recall from (2.2) that d(Ā) = 0 and Z(0) � 0 if and only if
Ā∩Sn×n+ = {0}, and this case has already been treated in section 2. In any other case,

we have Z
(d(Ā))
11 = 0. It is easily seen from Lemma 3.1 that if X ∈ Ā ∩ Sn×n+ , then

XQ̄
(d(Ā)−1)
2 = 0. This means that all nonzeros of X must be contained in the (final)

11 block for Ād(Ā). On the other hand, since Z
(d(Ā))
11 = 0 in the above procedure, it

follows from (2.3) that there exists X̃ ∈ Ā ∩ Sn×n+ such that X̃11 � 0 and X̃12 = 0,

X̃22 = 0. Since we just showed that X12 = 0 and X22 = 0 for all X ∈ Ā ∩ Sn×n+ ,

we must have X̃ ∈ relint (Ā ∩ Sn×n+ ). Hence, the face in the final iteration is the

minimal face. For Ā = A + Img b, we may therefore take X∗ = X̃ and X∗
B = X̃11;

see (2.6).

The columns of
∏d(Ā)−1
k=0 Q̄(k) in Procedure 1 define a new basis for �n, and

the matrices Z(d), d = 0, 1, . . . , d(Ā), are block diagonal with respect to this basis.
Thus, by applying a basis transformation if necessary, we may assume without loss
of generality that there is a (d(Ā) + 1) × (d(Ā) + 1) block partition, such that for
k = 1, 2, . . . , d(Ā),



Z := Z(d(Ā)−k),

Z =


 0 0 Z(1 : k, k + 2 : d(Ā) + 1)

Z(k + 1, k + 1) Z(k + 1, k + 2 : d(Ā) + 1)
Z(k + 2 : d(Ā) + 1, k + 2 : d(Ā) + 1)


 ,

Z(k + 1, k + 1) � 0.

(3.8)

Above, we used a Matlab-type1 notation, thus 1 : k means 1, 2, . . . , k, and Z(i, j)
denotes the block on the ith row and jth column in the (d(Ā)+ 1)× (d(Ā)+ 1) block
partition. Since Z is symmetric, we specified only the upper block triangular part of
Z. The relation between the (d(Ā) + 1)× (d(Ā) + 1) partition in (3.8) and the 2× 2
partition in iteration d = d(Ā)− k of Procedure 1 is that

Z11 = Z(1 : k + 1, 1 : k + 1).

The minimal face is the set of matrices X for which

X(1, 1) � 0, X(i, j) = 0 for all (i, j) �= (1, 1).

In iteration d = d(Ā)− k of Procedure 1, we arrive at the face where

X(1 : k + 1, 1 : k + 1) � 0, X(i, j) = 0 if max(i, j) > k + 1,

1MATLAB is a registered trademark of The MathWorks, Inc.
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which indeed includes the minimal face.
We remark that the third row and column in the 3 × 3 block form of (3.8) are

nonexistent for k = d(Ā).
Using Lemma 3.1, we can now estimate the regularized backward error.
Lemma 3.2. Let Ā = A+ Img b, and X∗ ∈ relint (Ā ∩ Sn×n+ ). Suppose without

loss of generality that X∗ is of the form (2.6). If d(Ā) > 1 and {X(ε) | 0 < ε ≤ 1} is
such that for all 0 < ε ≤ 1,

dist(X(ε), B +A) ≤ ε, λmin(X(ε)) ≥ −ε,
then

‖XU (ε)‖ = O(εγ‖X(ε)‖1−γ), ‖XN (ε)‖ = O(ε2γ‖X(ε)‖1−2γ),

with γ = 2−d(Ā), where d(Ā) is the degree of singularity of Ā.
Proof. Assume that a suitable basis transformation has taken place, so that the

partition in (3.8) is valid for all k = 1, 2, . . . , d(Ā). Applying Lemma 3.1 in iteration
d = 0 of Procedure 1, we have that

‖Xε(1 : d(Ā), d(Ā) + 1)‖ = O(
√
ε‖Xε‖), ‖Xε(d(Ā) + 1, d(Ā) + 1)‖ = O(ε),

where we used Xε as a synonym for X(ε). Suppose now that in iteration d ∈
{0, . . . , d(Ā)− 2}, we have


‖Xε(1 : k, k + 1 : d(Ā) + 1)‖ = O(εφ‖Xε‖1−φ),

‖Xε(k + 1 : d(Ā) + 1, k + 1 : d(Ā) + 1)‖ = O(ε2φ‖Xε‖1−2φ),
(3.9)

where

k = d(Ā)− d, φ = 2−(d+1).

We can now apply Lemma 3.1 with “ε” replaced by “O(εφ‖Xε‖1−φ).” This yields the
conclusion that (3.9) also holds for k′ = k− 1 and φ′ = φ/2. By induction, we obtain
that (3.9) holds for d = d(Ā)−1, k = 1, and φ = 2−(d+1) = γ. SinceXε(1, 1) = XB(ε),
the lemma follows.

We arrive now at the main result of this paper, namely an error bound for LMIs.
Theorem 3.3. Let Ā = A+ Img b. If {X(ε) | 0 < ε ≤ 1} is such that ‖X(ε)‖ is

bounded and

dist(X(ε), B +A) ≤ ε and λmin(X(ε)) ≥ −ε for all ε > 0,

then

dist(X(ε), (B +A) ∩ Sn×n+ ) = O(ε2
−d(Ā)

).

Proof. For the case that d(Ā) > 0, the theorem follows by combining Lemma 2.3
with Lemma 3.2. If d(Ā) = 0, there are two cases, either Ā∩Sn×n+ = {0} or Ā∩Sn×n++ �=
∅. In the former case, we have ‖X(ε)‖ = O(ε), and hence the error bound holds; see
section 2. In the latter case, we have that X∗ = X∗

B � 0, and the error bound follows
from Lemma 2.3.

An LMI is said to be weakly infeasible if
(1) there is no solution to the LMI, i.e., (B +A) ∩ Sn×n+ = ∅, but
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(2) dist(B +A,Sn×n+ ) = 0.
For weakly infeasible LMIs, there exist approximate solutions with arbitrarily small
constraint violations. However, the following theorem provides a lower bound on the
size of such approximate solutions to weakly infeasible LMIs.

Theorem 3.4. Let Ā = A+ Img b and suppose that

(B +A) ∩ Sn×n+ = ∅.

If {X(ε) | ε > 0} is such that

dist(X(ε), B +A) ≤ ε and λmin(X(ε)) ≥ −ε for all ε > 0,

then, for ε small enough, we have X(ε) �= 0 and

1

‖X(ε)‖ = O(ε1/(2
d(Ā)−1)).

Proof. Suppose to the contrary that there exists a sequence ε1, ε2, . . . with εk → 0

and ‖X(εk)‖ = o(ε
−1/(2d(Ā)−1)
k ). Applying Lemma 3.2, it follows that

‖XU (εk)‖+ ‖XN (εk)‖ = O(ε2
−d(Ā)

k ‖X(εk)‖1−2−d(Ā)

) = o(1).

Together with Lemma 2.3, we obtain that (B+A)∩Sn×n+ �= ∅, a contradiction.
There is an extension of Farkas’ lemma from linear inequalities to convex cones,

which states that

dist(B +A,K) > 0 ⇐⇒ ∃Z ∈ A⊥ ∩ K∗ : B • Z < 0,(3.10)

where K ⊂ Sn×n is a convex cone, and K∗ is the associated dual cone. See, e.g.,
Lemma 2.5 in [32]. If dist(B + A,Sn×n+ ) > 0, then we say that the LMI is strongly
infeasible. Relation (3.10) states that strong infeasibility can be demonstrated by a
matrix Z ∈ A⊥∩Sn×n+ with B•Z < 0, and such Z is called a dual improving direction.

For weakly infeasible LMIs, infeasibility cannot be demonstrated by a dual im-
proving direction. However, an LMI is infeasible if and only if there exist approxi-
mate dual improving directions with arbitrarily small constraint violations. See, e.g.,
Lemma 2.6 in [32]. The next theorem gives an upper bound for the minimal norm of
such approximate dual improving directions in the case of infeasibility.

Theorem 3.5. Let Ā = A + Img b. If (B + A) ∩ Sn×n+ = ∅, then there exist
{Y (ε) | ε > 0} such that for all 0 < ε ≤ 1, it holds that

dist(Y (ε),A⊥) = O(ε), B • Y (ε) < −1 +O(ε), λmin(Y (ε)) ≥ −ε,

and

‖Y (ε)‖ = O(ε1−2d(Ā)

).

Proof. Let X∗ ∈ relint (Ā ∩ Sn×n+ ), and suppose without loss of generality that
X∗ is of the form (2.6). Using the same 2 × 2 partition as in (2.6), it follows from
Lemma 2.3 that

dist

(
B +A, face

(
Sn×n+ ,

[
0 0
0 I

]))
> 0.
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Applying (3.10), it thus follows that there exists a matrix Y (0) such that

B • Y (0) < −1, Y (0) ∈ A⊥ ∩ face

(
Sn×n+ ,

[
0 0
0 I

])∗
.(3.11)

Partitioning Y (0), we have

Y (0) =

[
Y

(0)
B Y

(0)
U

(Y
(0)
U )T Y

(0)
N

]
, Y

(0)
B � 0.(3.12)

Assume that a suitable basis transformation has taken place, so that the partition
in (3.8) is valid for all k = 1, 2, . . . , d(Ā). We shall now construct {Y (k) | k =
0, 1, . . . , d(Ā)} such that 


‖Y (k)‖ = O(ε1−2k

),
Y (k)(1 : k + 1, 1 : k + 1) � 0,
B • Y (k) < −1 +O(ε),
dist(Y (k),A⊥) = O(ε)

(3.13)

for 0 < ε ≤ 1. Remark from (3.11)–(3.12) that (3.13) holds for k = 0. We will
construct Y (k) for k ∈ {1, 2, . . . , d(Ā) − 1} in such a way that it satisfies (3.13),
provided that Y (k−1) satisfies (3.13). We can then use induction.

Let

Yt := Y (k−1) + εI + tZ(d(Ā)−k).

Since Z(d(Ā)−k) ∈ Ā⊥ = A⊥ ∩ Ker bT, we immediately obtain from (3.13) that

B • Yt < −1 +O(ε), dist(Yt,A⊥) = O(ε),(3.14)

irrespective of t. Furthermore, since Y (k−1)(1 : k, 1 : k) � 0, it follows that Yt(1 :
k + 1, 1 : k + 1) is positive semidefinite if and only if the Schur-complement

Yt(k + 1, k + 1)− Yt(1 : k, k + 1)TYt(1 : k, 1 : k)
−1Yt(1 : k, k + 1)

is positive semidefinite. From (3.8) and the definition of Yt, we have

Yt(1 : k, k + 1) = Y (k−1)(1 : k, k + 1),

and hence

Yt(k + 1, k + 1)− Yt(1 : k, k + 1)TYt(1 : k, 1 : k)
−1Yt(1 : k, k + 1)

� t Z(d(Ā)−k)(k + 1, k + 1) + Y (k−1)(k + 1, k + 1)− 1

ε
‖Y (k−1)‖2

2 I.

Thus, Yt(1 : k + 1, 1 : k + 1) is positive semidefinite if we choose t as

t =
‖Y (k−1)‖2 + (‖Y (k−1)‖2

2/ε)

λmin(Z(d(Ā)−k)(k + 1, k + 1))
= O(ε1−2k

),

where we used that ‖Y (k−1)‖ = O(ε1−2k−1

). Setting Y (k) = Yt, we obtain (3.13). The
theorem follows by letting

Y (ε) = Y (d(Ā)).
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We remark from the proof of Theorem 3.5 that the matrices Y (0) and Z(k),
k = 0, 1, . . . , d(Ā) − 1, provide a finite certificate of the infeasibility of the LMI.
Together, these matrices form essentially a solution to the regularized Farkas-type
dual of Ramana [28]; see also [15, 21]. Thus, the degree of singularity is the minimal
number of layers that are needed in the perfect dual of Ramana. Equivalently, it is the
number of regularization steps that is needed in the regularization scheme of Borwein
and Wolkowicz [5, 29].

As discussed in the introduction, it is easy to calculate the backward error of an
approximate solution. However, the error bound for the forward error of an LMI, as
given in Theorem 3.3, does not only involve the backward error but also the degree of
singularity. We will now provide some easily computable upper bounds on the degree
of singularity.

Lemma 3.6. For the degree of singularity d(Ā) of a linear subspace Ā ⊆ Sn×n,
it holds that

d(Ā) ≤ min{n− 1, dim Ā, dim Ā⊥}.
Proof. If d(Ā) > 0, then Ā ∩ Sn×n+ �= {0}, by definition of d(Ā). For this case,

we have defined the (d(Ā) + 1)× (d(Ā) + 1) block partition (3.8), where each of the
d(Ā) + 1 diagonal blocks is at least of size 1× 1. Thus,

d(Ā) ≤ n− 1.

Furthermore, Lemma 3.1 defines a matrix Z(k) ∈ Ā⊥, for each regularization step
k ∈ {0, 1, 2, . . . , d(Ā) − 1}, and it is easily verified that these matrices are mutually
independent. Therefore,

d(Ā) ≤ dim Ā⊥.

Finally, using the (d(Ā) + 1) × (d(Ā) + 1) block partition (3.8), we claim that there
exists X(k) ∈ Ā with


X(k) =


 X(k)(1 : k, 1 : k) X(k)(1 : k, k + 1) 0
X(k)(1 : k, k + 1)T 0 0

0 0 0


 ,

X(k)(1 : k, 1 : k) � 0.

Namely, if such X(k) does not exist, then by (2.3), there must exist ∆Z ∈ Ā⊥ such
that 


∆Z(1 : k + 1, 1 : k + 1) =

[
∆Z(1 : k, 1 : k) 0

0 ∆Z(k, k)

]
,

0 �= ∆Z(1 : k, 1 : k) � 0,

and this contradicts the fact that Z(d(Ā)−k)(1 : k + 1, 1 : k + 1) is of maximal rank;
see its definition in Lemma 3.1. Again, it is easy to see that the matrices X(k) ∈ Ā,
k = 1, 2, . . . , d(Ā), are mutually independent, and hence d(Ā) ≤ dim Ā.

The bounds of Theorems 3.3 and 3.4 quickly become unattractive as the singu-
larity degree increases. However, the next two examples show that these bounds can
be tight. This means that problems with a large degree of singularity can be very
hard to solve numerically.
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Example 2. Consider the LMI


x22 = 0,
xk+1,k+1 = x1,k for k = 2, 3, . . . , n− 1,

X ∈ Sn×n+ .

Due to the restriction “x22 = 0” and the positive semidefiniteness, we have 0 = x12 =
x33, which further implies 0 = x13 = x44, and so on. With an inductive argument,
we have x1,k = 0 for all k = 2, 3, . . . , n. However, we can construct a sequence

{X(ε) | ε > 0} with a constraint violation ε, but x1,n = ε1/2
n−1

, namely,

X(ε) =




n ε1/2
1

ε1/2
2 · · · ε1/2

n−1

ε1/2
1

ε 0 · · · 0

ε1/2
2

0 ε1/2
1

...
...

. . .

ε1/2
n−1

0 ε1/2
n−2



.

Notice that “x22 = 0” is the only constraint that is violated by X(ε).
To see how unfortunate this example is, consider a backward error ε = 10−8.

Then, already for n = 25, we have x1,25(10
−8) > .99999, whereas x̂1,25 = 0 for any

solution X̂ of the LMI.
Example 3. Extending Example 2 with the restriction “x1,n = 1,” we obtain a

(weakly) infeasible LMI:


x22 = 0, x1,n = 1,
xk+1,k+1 = x1,k for k = 2, 3, . . . , n− 1,

X ∈ Sn×n+ .

However, we may construct a sequence {X(ε) | ε > 0} with constraint violation ε and

‖X(ε)‖ = O(1/ε1/(2
n−1−1)). Namely, we let


x11(ε) = n/εα with α := 1/(2n−1 − 1),

x22(ε) = ε,
x1,n(ε) = 1,

xk+1,k+1(ε) = x1,k(ε) = εβ with β =
(
2n−1−k − 1

)
/
(
2n−1 − 1

)
,

where k ∈ {2, 3, . . . , n− 1}.
This example shows that (in)feasibility can be hard to detect. Namely, for n = 10

and a backward error ε = 10−8, we have ‖X(10−8)‖2 < 11, which is not unusually
large; yet, the problem is infeasible.

4. Application to semidefinite programming. Error bounds for LMIs can
be applied to semidefinite optimization models as well. A standard form semidefinite
program is

(P) min{C •X | X ∈ (B +A) ∩ Sn×n+ },

where B and C are given symmetric matrices. Associated with this optimization
problem is a dual problem, namely,

(D) min{B • Z | Z ∈ (C +A⊥) ∩ Sn×n+ }.
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An obvious property of the primal-dual pair (P) and (D) is the weak duality
relation. Namely, if X ∈ (B +A) ∩ Sn×n+ and Z ∈ (C +A⊥) ∩ Sn×n+ , then

0 ≤ X • Z = C •X +B • Z −B • C.(4.1)

Clearly, if X • Z = 0, then X and Z must be optimal solutions to (P) and (D),
respectively; we say then that (X,Z) is a pair of complementary solutions. In general,
such a pair may not exist, even if both (P) and (D) are feasible. (We say that (P) is
feasible if (B+A)∩Sn×n+ �= ∅ and (D) is feasible if (C+A⊥)∩Sn×n+ �= ∅.) A sufficient
condition for the existence of a complementary solution pair is that (P) and (D) are
feasible and satisfy the primal-dual Slater condition, in which case d(A + Img b) =
d(A⊥ + Img c) = 0.

Based on (4.1), we can formulate the set of complementary solutions as the LMI


C •X +B • Z = B • C,
X ∈ B +A, Z ∈ C +A⊥,

X � 0, Z � 0.

In principle, we can apply our error bound results for LMIs directly to the above
system. However, tighter bounds can be obtained by exploring its special structure.

Consider a bounded trajectory of approximate primal-dual solutions

{(X(ε), Z(ε)) | ε > 0},
satisfying 


dist(X(ε), B +A) ≤ ε, dist(Z(ε), C +A⊥) ≤ ε,

λmin(X(ε)) ≥ −ε, λmin(Z(ε)) ≥ −ε,
X(ε) • Z(ε) ≤ ε.

(4.2)

Let (B̄, C̄) be a complementary solution pair, i.e.,

B̄ • C̄ = 0, B̄ ∈ (B +A) ∩ Sn×n+ , C̄ ∈ (C +A⊥) ∩ Sn×n+ .

Such a pair must exist, since in particular any cluster point of {(X(ε), Z(ε) | ε > 0}
for ε ↓ 0 is a complementary solution pair. Notice that B +A = B̄ +A and similarly
C +A⊥ = C̄ +A⊥, from which we easily derive that

X • Z = C̄ •X + B̄ • Z,
for feasible solutions X and Z, and

[C̄ •X(ε)]+ = O(ε), [B̄ • Z(ε)]+ = O(ε)

for (X(ε), Z(ε)) satisfying (4.2). This means thatX(ε) has anO(ε) constraint violation
with respect to the LMI 


X ∈ B̄ +A,
C̄ •X ≤ 0,
X � 0.

(4.3)

Notice that (4.3) describes the set of optimal solutions to (P). If we let

Ā := Img b̄+ (A ∩ Ker c̄T),(4.4)
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then Theorems 3.3 and 3.4 are applicable to the LMI (4.3) and hence to the semi-
definite program (P). Specifically, given a bounded trajectory {X(ε), Z(ε) | ε > 0}
satisfying (4.2), we know that the distance from X(ε) to the set of optimal solutions

to (P) is O(ε2
−d(Ā)

), where d(Ā) is the degree of singularity of the linear subspace
defined in (4.4).

Since B̄ • C̄ = 0, we can move the parentheses in definition (4.4) to get

Ā = ( Img b̄+A) ∩ Ker c̄T,

from which we get

Ā⊥ = Img c̄+ (A⊥ ∩ Ker b̄T).

Noticing the primal-dual symmetry, we conclude that the distance from Z(ε) to the

set of optimal solutions to (D) is O(ε2
−d(Ā⊥)

), where d(Ā⊥) is the degree of singularity
of Ā⊥.

5. Concluding remarks. Theorem 3.3 provides a Hölderian error bound for
LMIs. For weakly infeasible LMIs, we have derived relations between backward errors
and the size of approximate solutions; see Theorems 3.4 and 3.5. In section 4, we ap-
plied the error bound of Theorem 3.3 to semidefinite programming problems (SDPs).
If the SDP has a strictly complementary solution, then its degree of singularity can
be at most 1, and the bound becomes

forward error = O(
√
backward error).

For this case, Luo, Sturm, and Zhang [22] obtained a Lipschitzian error bound if the
approximate solutions (X(ε), Z(ε)) are restricted to the central path. The sensitivity
of central solutions with respect to perturbations in the right-hand side was studied
by Sturm and Zhang [33].
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